JP2008043947A - Dual bed catalytic system for nitrogen oxide removal - Google Patents

Dual bed catalytic system for nitrogen oxide removal Download PDF

Info

Publication number
JP2008043947A
JP2008043947A JP2007210357A JP2007210357A JP2008043947A JP 2008043947 A JP2008043947 A JP 2008043947A JP 2007210357 A JP2007210357 A JP 2007210357A JP 2007210357 A JP2007210357 A JP 2007210357A JP 2008043947 A JP2008043947 A JP 2008043947A
Authority
JP
Japan
Prior art keywords
zsm
catalyst
weight
zeolite
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007210357A
Other languages
Japanese (ja)
Inventor
Jeong Ki Kil
廷 基 吉
In Sik Nam
寅 植 南
Joo-Hyoung Park
奏 炯 朴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hyundai Motor Co
Original Assignee
Hyundai Motor Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyundai Motor Co filed Critical Hyundai Motor Co
Publication of JP2008043947A publication Critical patent/JP2008043947A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification
    • F01N2370/02Selection of materials for exhaust purification used in catalytic reactors
    • F01N2370/04Zeolitic material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an excellent dual bed catalytic system for NO<SB>x</SB>removal composed of Ag/Al<SB>2</SB>O<SB>3</SB>and a ZSM-5 zeolite catalyst. <P>SOLUTION: The dual bed catalytic system of the invention is characterized in that the catalytic system includes silver (Ag)-carrying alumina (Al<SB>2</SB>O<SB>3</SB>) containing silver (Ag) of 1 to 5% by weight and alumina (Al<SB>2</SB>O<SB>3</SB>) of 95 to 99% by weight and zeolite (ZSM-5) containing copper (Cu) of 0 to 5% by weight and zeolite (ZSM-5) of 95 to 100% by weight, in that the silver (Ag)-carrying alumina (Al<SB>2</SB>O<SB>3</SB>) and the zeolite (ZSM-5) are stacked and contained in a range of 4:1 to 1:4 by weight, in that the silver (Ag)-carrying alumina (Al<SB>2</SB>O<SB>3</SB>) is located at the front end of the catalytic group, whereas the zeolite (ZSM-5) is located at the back end of the catalytic group, and in that the catalytic system further contains a hydrocarbon compound of 6 to 16 carbons as a reducing agent. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、窒素酸化物除去用二重層触媒システムに係り、詳しくは、銀(Ag)担持アルミナ(Al)とゼオライト(ZSM−5)を含む窒素酸化物除去用二重層触媒システムに関する。 The present invention relates to a double-layer catalyst system for removing nitrogen oxides, and more particularly, to a double-layer catalyst system for removing nitrogen oxides containing silver (Ag) -supported alumina (Al 2 O 3 ) and zeolite (ZSM-5). .

軽油を燃料とする自動車は、その特性上、排気ガス中のCOと炭化水素の問題は比較的少ないが、粒子状の物質(PM)と窒素酸化物(NOx)は疾病を引き起こすなどの環境問題から欧州を始めとする先進国では規制を強化している。
欧州はEURO−IVとV、そして米国はSUVLEとZEVにて大別される環境規制を採択しており、このような規制はエンジンの改良だけでは満足させることができなくなっている。そこで、エンジンの改良と合わせて排気ガスの後処理技術を発展させる必要がでてきた。
Automobiles that use light oil as fuel, due to their characteristics, have relatively few problems with CO and hydrocarbons in exhaust gas, but particulate matter (PM) and nitrogen oxides (NOx) cause environmental problems such as causing disease. In Europe and other developed countries, regulations are being tightened.
Europe has adopted environmental regulations roughly classified by EURO-IV and V, and the United States by SUVLE and ZEV. Such regulations cannot be satisfied by engine improvements alone. Therefore, it has become necessary to develop exhaust gas aftertreatment technology along with engine improvements.

現在PMを除去する技術はJohnson Matthey、Engelgard, Umicoreなどで開発したDPF(Diesel Particulate Filter)を中心に開発が進められている。NOxを除去する技術としては、最近トヨタ自動車で開発されたDPNR(Diesel Particulate NOx Reduction)がある。これはPMとNOxを同時に低減させることのできるが、間欠的に過負荷条件で運転する必要があり、また、燃料に含まれた硫黄に対して脆弱な面がある。   Currently, the technology for removing PM is being developed mainly by DPF (Diesel Particulate Filter) developed by Johnson Matthey, Engelgard, Umicore and others. As a technique for removing NOx, there is DPNR (Diesel Particulate NOx Reduction) recently developed by Toyota Motor Corporation. This can reduce PM and NOx at the same time, but it is necessary to operate intermittently under an overload condition, and is vulnerable to sulfur contained in the fuel.

欧州では、実用化の面で尿素(またはアンモニア)SCR技術が最も有望な技術として期待されているが、噴射装置を自動車に直接設置しなければならず、ガソリンスタンドのような尿素を供給することのできる基幹施設も構築しなければならないという問題点がある。
このような問題点を解決する技術として、軽油自動車のディーゼル燃料を還元剤として使用するHC−SCR技術が注目されている。CleaireのLongviewとLonestarは既存の車両を容易に改良することのできるHC−SCR触媒技術を開発したが、低い活性と燃料に対する制限がある。
In Europe, urea (or ammonia) SCR technology is expected to be the most promising technology in terms of practical application, but the injector must be installed directly in the car, supplying urea like a gas station There is a problem that it is necessary to construct a basic facility that can be used.
As a technique for solving such a problem, HC-SCR technology using diesel fuel of a light oil vehicle as a reducing agent has attracted attention. Clearaire's Longview and Lonestar have developed HC-SCR catalyst technology that can easily improve existing vehicles, but with low activity and fuel limitations.

最近知られているHC−SCR触媒には、Ag/Alがあり、Burchなど[S. Satokawa, J. Shibata, K. Shimizu, A. Satsuma, T. Hattori, Appl. Catal. B 42 (2003) 179., R. Burch, J. P. Breen, C. J. Hill, B. Krutzsch, B. Konrad, E. Jobson, L. Cider, K. Eranen, F. Klingstedt, L−E. Lindfors, Capoc6 meeting (2003)]によると、Ag/Al触媒は、n−オクタンのような長鎖炭化水素を還元剤として使用したシステムを使用して350℃以上の条件で優れた活性を得ることができることを確認し、Niwa[T. Nakatsuji, R. Yasukawa, K. Tabata, K. Ueda, M. Niwa, Appl. Catal. B, 17 (1998) 333]は、Ag/Alを触媒として使用して2次燃料注入を有するディーゼルエンジンにてNOx除去研究を行い、ガソリンの希薄燃焼エンジンやディーゼルエンジンに適用することができることを確認した。
しかし、未だにNOxをNで還元させる活性の面では問題がある。
特開2001−327838号公報 特開2001−212464号公報 S. Satokawa, J. Shibata, K. Shimizu, A. Satsuma, T. Hattori, Appl. Catal. B 42(2003) 179 R. Burch, J. P. Breen, C. J. Hill, B. Krutzsch, B. Konrad, E. Jobson, L. Cider, K. Eranen, F. Klingstedt, L−E. Lindfors, Capoc6 meeting (2003) T. Nakatsuji, R. Yasukawa, K. Tabata, K. Ueda, M. Niwa, Appl. Catal. B, 17 (1998) 333
Recently known HC-SCR catalysts include Ag / Al 2 O 3 , such as Burch et al. [S. Satokawa, J. et al. Shibata, K .; Shimizu, A.A. Satsuma, T .; Hattori, Appl. Catal. B42 (2003) 179. , R.A. Burch, J. et al. P. Breen, C.I. J. et al. Hill, B.B. Krutzsch, B.R. Konrad, E .; Jobson, L.M. Cider, K.C. Eranen, F.M. Klingstedt, LE. According to Lindfors, Capoc6 meeting (2003)], the Ag / Al 2 O 3 catalyst has excellent activity under conditions of 350 ° C. or higher using a system using a long-chain hydrocarbon such as n-octane as a reducing agent. Can be obtained, Niwa [T. Nakatsuji, R.A. Yaskawa, K .; Tabata, K .; Ueda, M .; Niwa, Appl. Catal. B, 17 (1998) 333] is a NOx removal study on a diesel engine with secondary fuel injection using Ag / Al 2 O 3 as a catalyst and applied to a gasoline lean-burn engine or diesel engine. I confirmed that I was able to.
However, there is still a problem in terms of activity for reducing NOx with N 2 .
JP 2001-327838 A JP 2001-212464 A S. Satokawa, J. et al. Shibata, K .; Shimizu, A.A. Satsuma, T .; Hattori, Appl. Catal. B 42 (2003) 179 R. Burch, J. et al. P. Breen, C.I. J. et al. Hill, B.B. Krutzsch, B.R. Konrad, E .; Jobson, L.M. Cider, K.C. Eranen, F.M. Klingstedt, LE. Lindfors, Capoc6 meeting (2003) T.A. Nakatsuji, R.A. Yaskawa, K .; Tabata, K .; Ueda, M .; Niwa, Appl. Catal. B, 17 (1998) 333

本発明の発明者は、上記のような従来のAg/Al触媒の問題点である、300℃以下ではNOxをNで還元させるdeNOx活性を殆ど示さないことと、350℃以上でも活性の側面で未だに改善しなければならない点があることを考慮して研究した結果、従来のAg/Al触媒のみを利用した単一層触媒システム(single bed catalytic system)をZSM−5とAg/Alを利用した二重層触媒システム(dual bed catalytic system)にて製造すると、300℃でも優れた活性を示し、350℃以上でもAg/Al触媒のみを使用する場合よりNOのNへの活性を20%以上増進させることができることを確認し、本発明を完成するに至った。 The inventor of the present invention has a problem with the conventional Ag / Al 2 O 3 catalyst as described above, that it shows almost no deNOx activity for reducing NOx with N 2 at 300 ° C. or lower, and even at 350 ° C. or higher. As a result of studying that there are still points to be improved in terms of activity, a single-bed catalytic system using only a conventional Ag / Al 2 O 3 catalyst (ZED-5) was developed as a single-bed catalytic system. When produced in a dual bed catalytic system using Ag / Al 2 O 3 , it shows excellent activity even at 300 ° C., even when only Ag / Al 2 O 3 catalyst is used at 350 ° C. or higher. It was confirmed that the activity of NO to N 2 could be increased by 20% or more, and the present invention was completed.

本発明は、NOx除去のためのAg/AlとZSM−5ゼオライト触媒とからなる優れた二重層触媒システムを提供することにその目的がある。 The object of the present invention is to provide an excellent double-layer catalyst system comprising Ag / Al 2 O 3 and ZSM-5 zeolite catalyst for NOx removal.

本発明は、銀(Ag)1〜5重量%とアルミナ(Al)95〜99重量%を含めてなる銀(Ag)担持アルミナ(Al)と、銅(Cu)0〜5重量%とゼオライト(ZSM−5)95〜100重量%を含めてなるゼオライト(ZSM−5)と、を含むことを特徴とする。 The present invention relates to silver (Ag) -supported alumina (Al 2 O 3 ) containing 1 to 5% by weight of silver (Ag) and 95 to 99% by weight of alumina (Al 2 O 3 ), copper (Cu) 0 to 5% by weight and zeolite (ZSM-5) including 95 to 100% by weight of zeolite (ZSM-5).

本発明は、前記銀(Ag)担持アルミナ(Al)とゼオライト(ZSM−5)が積層され、前記銀(Ag)担持アルミナ(Al)とゼオライト(ZSM−5)は4:1〜1:4重量比の範囲で含まれることを特徴とする。 In the present invention, the silver (Ag) -supported alumina (Al 2 O 3 ) and zeolite (ZSM-5) are laminated, and the silver (Ag) -supported alumina (Al 2 O 3 ) and zeolite (ZSM-5) are 4 : It is characterized by being contained in the range of 1-1: 4 weight ratio.

また、前記銀(Ag)担持アルミナ(Al)が触媒基前端部に位置し、前記ゼオライト(ZSM−5)は触媒基後端部に位置することを特徴とし、炭素数6〜16の範囲の炭化水素化合物を還元剤として更に含むことを特徴とする。 The silver (Ag) -supported alumina (Al 2 O 3 ) is located at the front end of the catalyst base, and the zeolite (ZSM-5) is located at the rear end of the catalyst base, and has 6 to 16 carbon atoms. A hydrocarbon compound in the range of is further included as a reducing agent.

本発明のAg/AlとZSM−5を含む二重層触媒システムにおいて、ディーゼル油の興奮剤(stimulant)としてドテカン(n−ドテカン)を還元剤として使用する場合、NOxをN2で還元させるdeNOx活性が単一層のAg/Al触媒に比べて優れているおり、特に従来のAg/Alのみを使用した場合、活性が殆ど確認されない300℃でも40%以上の活性増進を見せるだけでなく、350℃以上でも単一層Ag/Al触媒に比べて相当な活性増加が確認できる。
従って、Ag/AlとZSM−5を含む二重層触媒システムは、300℃以上で数種類の固定源および移動源から排出される窒素酸化物を低減させる産業用触媒としてより幅広く使用できる。
In the double layer catalyst system comprising Ag / Al 2 O 3 and ZSM-5 of the present invention, NOx is reduced with N 2 when dotecan (n-detecan) is used as a reducing agent as a diesel oil stimulant. DeNOx activity is superior to single layer Ag / Al 2 O 3 catalyst, especially when only conventional Ag / Al 2 O 3 is used, the activity is enhanced by 40% or more even at 300 ° C., where almost no activity is confirmed. In addition to the above, even at 350 ° C. or higher, a significant increase in activity can be confirmed as compared with the single layer Ag / Al 2 O 3 catalyst.
Therefore, the double-layer catalyst system containing Ag / Al 2 O 3 and ZSM-5 can be used more widely as an industrial catalyst that reduces nitrogen oxides emitted from several types of fixed and mobile sources at 300 ° C. or higher.

本発明は、銀担持アルミナとゼオライトを含むため既存の銀担持アルミナ触媒またはゼオライトを単独で使用する場合より窒素酸化物の除去効率が優れ、特に銀担持アルミナ触媒のみでは窒素酸化物の除去活性を殆ど示さない低温(300℃)条件でも、高い窒素酸化物の除去活性を示す。   Since the present invention contains silver-supported alumina and zeolite, the removal efficiency of nitrogen oxides is superior to the case where an existing silver-supported alumina catalyst or zeolite is used alone. Even under low-temperature (300 ° C.) conditions which are hardly shown, high nitrogen oxide removal activity is exhibited.

本発明の二重層触媒システムは、銀担持アルミナ(以下、Ag/Al)とゼオライト(ZSM−5)が積層された構造をなしている。
本発明の積層型二重層触媒システムは、これを構成する触媒をパッキングする順序、パッキング比、Ag/Al触媒のAg含量、ZSM−5ゼオライト触媒の担持される金属イオンの種類およびその含量により異なる活性結果を示し、各々の適用箇所に適合するように触媒を配合することができる技術構成を有する。
The double layer catalyst system of the present invention has a structure in which silver supported alumina (hereinafter, Ag / Al 2 O 3 ) and zeolite (ZSM-5) are laminated.
The stacked double-layer catalyst system of the present invention includes the order of packing the catalyst constituting the catalyst, the packing ratio, the Ag content of the Ag / Al 2 O 3 catalyst, the type of metal ions supported on the ZSM-5 zeolite catalyst, and It has a technical configuration that shows different activity results depending on the content, and that the catalyst can be blended to suit each application site.

Ag/Al触媒中、Ag含量により窒素酸化物の除去活性[deNOx活性(NOxをNで還元)]が異なるが、この時、Ag含量は1〜5重量%、好ましくは2〜3重量%の範囲が適当である。Ag含量が1重量%未満の場合、窒素酸化物の除去活性が弱く、5重量%を超過すると、窒素酸化物の除去活性の向上程度が明らかに増加しないため、触媒の適用箇所により、Ag含量を異にして調整することができる。Ag/Al触媒中、アルミナ(Al)の含量は、95〜99重量%の範囲で調節する。 In the Ag / Al 2 O 3 catalyst, the nitrogen oxide removal activity [deNOx activity (NOx reduced by N 2 )] varies depending on the Ag content. At this time, the Ag content is 1 to 5% by weight, preferably 2 to 2% by weight. A range of 3% by weight is suitable. When the Ag content is less than 1% by weight, the nitrogen oxide removal activity is weak. When the Ag content exceeds 5% by weight, the improvement degree of the nitrogen oxide removal activity does not increase obviously. Can be adjusted differently. The content of alumina (Al 2 O 3 ) in the Ag / Al 2 O 3 catalyst is adjusted in the range of 95 to 99% by weight.

本発明の積層型二重層触媒システムにおいてZSM−5ゼオライト触媒は、担持される金属の種類によりその活性が異なり、また、担持された金属の含量により活性が異なる。
また、ZSM−5ゼオライト触媒は銅を担持するのが良く、この時、銅の担持量は0〜5重量%、好ましくは2〜5重量%、最も好ましくは約4.66重量%であり、この時窒素酸化物の除去活性が良い。銅の担持量が5重量%を超過すると、窒素酸化物の除去活性の向上効果が低下傾向となる。ゼオライトは、銅の含量により95〜100重量%を含まれる。
In the stacked double-layer catalyst system of the present invention, the activity of the ZSM-5 zeolite catalyst varies depending on the type of metal supported, and the activity varies depending on the content of the supported metal.
Further, the ZSM-5 zeolite catalyst may support copper, and at this time, the supported amount of copper is 0 to 5% by weight, preferably 2 to 5% by weight, most preferably about 4.66% by weight, At this time, the removal activity of nitrogen oxides is good. If the amount of copper supported exceeds 5% by weight, the effect of improving the nitrogen oxide removal activity tends to decrease. Zeolite is contained in an amount of 95 to 100% by weight depending on the copper content.

本発明の窒素酸化物の除去用二重層触媒システムでは、銀担持アルミナとゼオライトの比率により窒素酸化物の除去活性が異なるが、銀担持アルミナとゼオライトが4:1〜1:4重量比の範囲、好ましくは2:1重量比で含有されるのが良い。
銀担持アルミナとゼオライトのパッキング順序により窒素酸化物の除去活性が異なるが、銀担持アルミナが触媒基前端部に位置し、ゼオライトは触媒基後端部に位置するのが好ましい。
また、本発明の窒素酸化物除去用二重層触媒システムは炭化水素化合物を還元剤として含む場合が好ましく、炭化水素化合物としては炭素数6〜16範囲の長鎖炭化水素化合物を使用するのが良く、具体的に炭素数10〜16の範囲のアルカンを使用することができる。これらは混合状態で使用することができ、しばしばディーゼル油が還元剤として使用される。
In the double layer catalyst system for removing nitrogen oxides of the present invention, the removal activity of nitrogen oxides varies depending on the ratio of silver-supported alumina and zeolite, but the ratio of silver-supported alumina and zeolite is in the range of 4: 1 to 1: 4 by weight. Preferably, it is contained in a 2: 1 weight ratio.
Although the removal activity of nitrogen oxides differs depending on the packing order of the silver-supported alumina and the zeolite, it is preferable that the silver-supported alumina is located at the front end of the catalyst base and the zeolite is located at the rear end of the catalyst base.
The double-layer catalyst system for removing nitrogen oxides of the present invention preferably contains a hydrocarbon compound as a reducing agent, and as the hydrocarbon compound, a long-chain hydrocarbon compound having 6 to 16 carbon atoms is preferably used. Specifically, alkanes having 10 to 16 carbon atoms can be used. These can be used in a mixed state, and diesel oil is often used as the reducing agent.

以下、本発明を実施例を詳しく説明するが、本発明は実施例に限定されるわけではない。
Ag/γ−AlとCu/ZSM−5触媒とからなる二重層触媒システムを作るために下記表1で見られる通り、γ−Al(BET=204m/g)にAgNOを前駆体として利用し、Agの含量を1、2、3、5重量比で含浸して製造し、Cu/ZSM−5は湿式イオン交換法により製造し、Cuの含量はイオン交換回数を調節してCu担持量を調節して3種の触媒を製造した。これらの物理化学的特性は表1に示す通りである。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not necessarily limited to an Example.
As seen in Table 1 below to make a double layer catalyst system consisting of Ag / γ-Al 2 O 3 and Cu / ZSM-5 catalyst, AgNO in γ-Al 2 O 3 (BET = 204 m 2 / g). 3 is used as a precursor, and impregnated with an Ag content of 1, 2, 3 , 5 weight ratio, Cu / ZSM-5 is produced by a wet ion exchange method, and the Cu content is determined by the number of ion exchanges. Three kinds of catalysts were manufactured by adjusting the amount of supported Cu. These physicochemical properties are as shown in Table 1.

まず、前端にγ−Al2重量%とCu/ZSM−5触媒を2:1重量比で装着し、二重層触媒システムを製造した。
[実験例1]
実施例1で製造された二重層触媒システムの窒素酸化物の除去効率を測定するために、550℃でHe balance、10%Oがある状態で1時間前処理し、1000ppm NO、10%O、5%HO、還元剤としてディーゼル油の興奮剤(stimulant)であるn−ドテカン(n−C1226)540ppmを注入し、空間速度30,000h−1で200〜500℃でdeNOx反応を実施し、窒素酸化物の除去比率を窒素の除去比率に換算し、反応温度による結果を下記図1に表した。
反応後に生成されるN2を定量的に分析するために、on−line GC(HP6890)に充填カラム(モレキュラーシーブ5A)を設置して分析した。
First, 2% by weight of γ-Al 2 O 3 and Cu / ZSM-5 catalyst were mounted at the front end in a 2: 1 weight ratio to produce a double layer catalyst system.
[Experimental Example 1]
In order to measure the nitrogen oxide removal efficiency of the double layer catalyst system produced in Example 1, it was pretreated at 550 ° C. with He balance, 10% O 2 for 1 hour, 1000 ppm NO, 10% O 2 , 5% H 2 O, 540 ppm of diesel oil stimulant (n-C 12 H 26 ) as a reducing agent was injected at 200 to 500 ° C. at a space velocity of 30,000 h −1. The deNOx reaction was carried out, the nitrogen oxide removal ratio was converted to nitrogen removal ratio, and the results depending on the reaction temperature are shown in FIG.
In order to quantitatively analyze N2 produced after the reaction, a packed column (molecular sieve 5A) was installed in on-line GC (HP6890).

実施例2は、Ag/γ−AlとCu/ZSM−5とからなる二重層触媒システムのパッキング順序による窒素酸化物の除去効率に及ぼす影響を評価するために行われた。
第1に、前端にCu/ZSM−5 3.37重量%と後端にAg/γ−Al 2重量%を1:1重量比で装着し、第2に、前端にAg/γ−Al 2重量%と後端にCu/ZSM−5 3.37重量%を1:1重量比で装着し、最後に前記Cu/ZSM−5触媒3.37重量%とAg/γ−Al触媒2重量%を物理的に混合し、窒素酸化物の除去活性を測定した。測定方法は、実験例1と同じで、活性測定の結果は図2に表した。
Example 2 was conducted to evaluate the effect of nitrogen oxide removal efficiency on the packing sequence of a double layer catalyst system composed of Ag / γ-Al 2 O 3 and Cu / ZSM-5.
First, Cu / ZSM-5 3.37% by weight at the front end and Ag / γ-Al 2 O 3 2% by weight at the rear end are attached at a 1: 1 weight ratio, and second, Ag / γ at the front end. -Al 2 O 3 2 wt% and Cu / ZSM-5 3.37 wt% at the rear end were mounted at a 1: 1 weight ratio, and finally the Cu / ZSM-5 catalyst 3.37 wt% and Ag / γ -al 2 O 3 catalyst 2 wt% physically mixed to measure the removal activity of nitrogen oxides. The measurement method was the same as in Experimental Example 1, and the results of activity measurement are shown in FIG.

実施例3は、Ag/γ−AlとCu/ZSM−5とからなる二重層触媒システムのパッキング比率による窒素酸化物の除去効率に及ぼす影響を評価するために行われた。
前端にAg/γ−Al 2重量%と後端にCu/ZSM−5 3.37重量%または4.66重量%を1:2重量比、1:1重量比、そして2:1重量比で装着し、積層型二重層触媒実験を行った。測定方法は、実験例1と同じで、実験結果は図3と図4に表した。
Example 3 was performed in order to evaluate the influence of the packing ratio of the double layer catalyst system composed of Ag / γ-Al 2 O 3 and Cu / ZSM-5 on the removal efficiency of nitrogen oxides.
Ag / γ-Al 2 O 3 2 wt% at the front end and Cu / ZSM-5 3.37 wt% or 4.66 wt% at the rear end in a 1: 2 weight ratio, 1: 1 weight ratio, and 2: 1 A stack type double layer catalyst experiment was carried out by weight. The measurement method is the same as in Experimental Example 1, and the experimental results are shown in FIGS.

実施例4、は、Ag/γ−AlとCu/ZSM−5とからなる二重層触媒システムにおいて最適な銅を確認するために銅をイオン交換をしなかったHZSM−5と1.91重量%、3.37重量%、4.66重量%の銅を含むCu/ZSM−5触媒の4種類を前記二重層触媒システムに適用した。
前端にAg/γ−Al 2重量%を固定し、後端に前記銅の含量による4種類のZSM−5触媒を2:1重量比でパッキングさせた後、窒素酸化物の除去活性を測定した。
測定方法は、実験例1と同じで、測定結果は図5に表した。
[実験例5]
Example 4 is the same as that of HZSM-5 in which copper was not ion-exchanged in order to confirm optimal copper in a double layer catalyst system composed of Ag / γ-Al 2 O 3 and Cu / ZSM-5. Four types of Cu / ZSM-5 catalysts containing 91 wt%, 3.37 wt%, 4.66 wt% copper were applied to the double layer catalyst system.
After removing 2% by weight of Ag / γ-Al 2 O 3 at the front end and packing the four types of ZSM-5 catalysts based on the copper content in a 2: 1 weight ratio at the rear end, the nitrogen oxide removal activity Was measured.
The measurement method is the same as in Experimental Example 1, and the measurement results are shown in FIG.
[Experimental Example 5]

実施例5は、Ag/γ−AlとCu/ZSM−5とからなる二重層触媒システムにおいて最適な銀の含量を確認するために銀1、2、3そして5重量%を坦持したAg/γ−Al触媒4種類を前記二重層触媒システムに適用した。
前記4種類のAg/γ−Al触媒を固定し、後端にCu/ZSM−5触媒を固定させ、前記Ag/γ−AlとCu/ZSM−5の含量を2:1重量比でパッキングさせた後、活性を測定した。測定方法は、実験例1と同じで、測定結果は図6に表した。
[比較例1〜5]
Example 5 carries 1, 2, 3 and 5% by weight of silver to confirm the optimum silver content in a double layer catalyst system consisting of Ag / γ-Al 2 O 3 and Cu / ZSM-5. The four types of Ag / γ-Al 2 O 3 catalysts applied were applied to the double layer catalyst system.
The four types of Ag / γ-Al 2 O 3 catalysts are fixed, a Cu / ZSM-5 catalyst is fixed to the rear end, and the contents of Ag / γ-Al 2 O 3 and Cu / ZSM-5 are set to 2: Activity was measured after packing at 1 weight ratio. The measurement method is the same as in Experimental Example 1, and the measurement results are shown in FIG.
[Comparative Examples 1-5]

Ag/γ−AlとCu/ZSM−5とからなる二重層触媒システムに含まれた各々の触媒中Ag/γ−Al 2重量%とCu/ZSM−5触媒3.37重量%を基準物質として考慮し、実施例1と同一方法で合成し、これらの窒素酸化物の除去効率を確認するために実験例1と同様の方法にて活性を測定し、その結果を図1〜6に示した。
また、Ag/γ−AlとCu/ZSM−5とからなる二重層触媒システムの優秀性を確認するために3種類の異なる二重層触媒システムを合成した。
Ag / γ-Al 2 O 3 and Cu / ZSM-5 bilayers catalyst system 2 each catalyst Ag / γ-Al 2 O 3 contained in weight percent consisting of Metropolitan and Cu / ZSM-5 catalyst 3.37 Taking the weight% as a reference substance, the synthesis was performed in the same manner as in Example 1, and the activity was measured in the same manner as in Experimental Example 1 in order to confirm the removal efficiency of these nitrogen oxides. It was shown in 1-6.
In addition, in order to confirm the superiority of the double layer catalyst system composed of Ag / γ-Al 2 O 3 and Cu / ZSM-5, three different double layer catalyst systems were synthesized.

1番目にAg/γ−AlとCu/Y触媒を2:1重量比で装着し、2番目にAg/γ−AlとFe/ZSM−5触媒を2:1重量比で装着し、最後にAg/γ−AlとG/ZSM−5触媒を2:1重量比で装着して反応基を構成した。
Cu/Yは、湿式イオン交換法にて製造し、Fe/ZSM−5はFeClを水分のない条件で固相イオン交換法にて製造した。これらの物理化学的特性は下記表1に表した。
前記3形態の二重層触媒システムでの窒素酸化物の除去効率を図1に表した。測定方法は実験例1と同じである。
First, Ag / γ-Al 2 O 3 and Cu / Y catalyst are mounted in a 2: 1 weight ratio, and second, Ag / γ-Al 2 O 3 and Fe / ZSM-5 catalyst are in a 2: 1 weight ratio. At last, Ag / γ-Al 2 O 3 and G / ZSM-5 catalyst were mounted in a 2: 1 weight ratio to form a reactive group.
Cu / Y was produced by a wet ion exchange method, and Fe / ZSM-5 was produced by a solid phase ion exchange method with FeCl 3 in a condition free of moisture. These physicochemical properties are shown in Table 1 below.
The removal efficiency of nitrogen oxides in the three-layer double-layer catalyst system is shown in FIG. The measurement method is the same as in Experimental Example 1.

Figure 2008043947
Figure 2008043947

本発明で二重層触媒システムを利用した窒素酸化物を窒素で除去する方法の有用性を確認するために実施例と比較例の結果を比較した。
図1から分かるように、Cu/ZSM−5、Fe/ZSM−5そしてCu/Y触媒を2重量%Ag/γ−Al後端に装着する二重層触媒システムを構成し、deNOx活性を評価した。
2重量%Ag/Alと4.66重量%Cu/ZSM−5の組合せに比べて他の二重層触媒システムは全て低い活性を示すことが分かる。
H/ZSM−5触媒の場合、300℃で単一層触媒である2重量%Ag/γ−Alに比べて改善された触媒活性を確認することができた。CuY触媒は350℃以下では2重量%Ag/γ− Alの単一層触媒より活性面で優れているが、350℃以上では活性がはるかに低下することが観察された。
In order to confirm the usefulness of the method of removing nitrogen oxides by nitrogen using a double layer catalyst system in the present invention, the results of Examples and Comparative Examples were compared.
As can be seen from FIG. 1, a double-layer catalyst system in which Cu / ZSM-5, Fe / ZSM-5, and Cu / Y catalyst are mounted on the rear end of 2 wt% Ag / γ-Al 2 O 3 is constructed, and deNOx activity is achieved. Evaluated.
Other bilayer catalyst system it is seen that all low activity compared to 2 wt% Ag / Al 2 O 3 to the combination of 4.66 wt% Cu / ZSM-5.
In the case of the H / ZSM-5 catalyst, an improved catalytic activity was confirmed at 300 ° C. compared to 2 wt% Ag / γ-Al 2 O 3 which is a single layer catalyst. The CuY catalyst was superior to the 2 wt% Ag / γ-Al 2 O 3 single layer catalyst at 350 ° C. or lower, but the activity was observed to be much lower at 350 ° C. or higher.

図2から分かるように、パッキング順序による窒素酸化物の除去効率に及ぼす影響を評価した結果、パッキング順序に関係なく300℃ではAg/γ−Al触媒で見られなかった活性が見られ、前端にAg/γ−Al、後端にCu/ZSM−5触媒を装着した場合は活性が他の場合に比べて350℃以上でもかなり活性が改善されることを確認した。Fe/ZSM−5触媒を利用した結果より全ての測定温度で優れたdeNOx活性を見られた。 As can be seen from FIG. 2, as a result of evaluating the influence of the packing order on the removal efficiency of nitrogen oxides, the activity that was not seen with the Ag / γ-Al 2 O 3 catalyst was seen at 300 ° C. regardless of the packing order. When the Ag / γ-Al 2 O 3 was attached to the front end and the Cu / ZSM-5 catalyst was attached to the rear end, it was confirmed that the activity was considerably improved even at 350 ° C. or higher compared to other cases. From the results using the Fe / ZSM-5 catalyst, superior deNOx activity was observed at all measured temperatures.

図3および4で、パッキング比率によりdeNOx活性が多くの差異を見せることを確認することができ、特に前端にAg/γ−Al、後端にCu/ZSM−5を2:1重量比で入れて実験した時、300℃以上で全てのdeNOx活性が増加することを確認することができた。Cu含量が異なる場合にも2:1の場合が最も優れた活性を示した。 3 and 4, it can be confirmed that the deNOx activity shows many differences depending on the packing ratio, in particular, Ag / γ-Al 2 O 3 at the front end and 2: 1 weight of Cu / ZSM-5 at the rear end. When experimented with a ratio, it was confirmed that all deNOx activities increased above 300 ° C. Even when the Cu content was different, 2: 1 showed the most excellent activity.

図5から分かるように、Cu含量によって低温で活性が異なって測定され、4.66重量%Cu/ZSM−5を有した場合が300℃でdeNOx活性が最も優れており、350℃以上ではCu含量の影響が少ないことが観察された。Cuをイオン交換しなかったZSM−5触媒の場合、300℃で単一層触媒である2重量%Ag/γ−Alに比べて非常に改善された触媒活性を確認した。 As can be seen from FIG. 5, the activity was measured at a low temperature depending on the Cu content, and the deNOx activity was most excellent at 300 ° C. with 4.66 wt% Cu / ZSM-5, and at 350 ° C. or higher, It was observed that the effect of content was small. In the case of the ZSM-5 catalyst in which Cu was not ion-exchanged, the catalytic activity was greatly improved at 300 ° C. compared to 2 wt% Ag / γ-Al 2 O 3 which is a single layer catalyst.

図6から分かるように、300℃では1重量%Ag/γ−Al触媒を前端に置く場合を除外して殆ど類似した活性傾向を表し、400℃以上で5重量%Ag/γ−Al触媒は活性が非常に低下することを確認した。従って、銀の担持量が2〜3重量%程度である場合、より好ましい効果を表すことができる。 As can be seen from FIG. 6, at 300 ° C., the activity tendency was almost similar except for the case where a 1 wt% Ag / γ-Al 2 O 3 catalyst was placed at the front end, and at 400 ° C. or higher, 5 wt% Ag / γ- It was confirmed that the activity of the Al 2 O 3 catalyst was greatly reduced. Therefore, a more preferable effect can be expressed when the supported amount of silver is about 2 to 3% by weight.

Ag/AlとCu/ZSM−5、Cu/Y、Fe/ZSM−5またはH/ZSM−5触媒を2:1の比率でパッキングした二重層触媒システムのdeNOx活性を示したグラフである。 ここでFは前端触媒、Rは後端触媒、Ag(2.00)は2重量%Ag/γ−Al、Cu(4.66)は4.66重量%Cu/ZSM−5、Cu/Y(8.17)は8.17重量%Cu/Y、およびFe(1.96)は1.96重量%Fe/ZSM−5を意味する。A graph showing the deNOx activity of a double layer catalyst system packed with Ag / Al 2 O 3 and Cu / ZSM-5, Cu / Y, Fe / ZSM-5 or H / ZSM-5 catalyst in a 2: 1 ratio. is there. Here, F is a front end catalyst, R is a rear end catalyst, Ag (2.00) is 2 wt% Ag / γ-Al 2 O 3 , Cu (4.66) is 4.66 wt% Cu / ZSM-5, Cu / Y (8.17) means 8.17 wt% Cu / Y and Fe (1.96) means 1.96 wt% Fe / ZSM-5. 3.37重量%Cu/ZSM−5と2重量%Ag/γ−Alの二重層触媒システムのパッキング順序によるdeNOx活性を示したグラフである。 ここでFは前端触媒、Rは後端触媒、Ag(2.00)は2重量%Ag/γ−Al、およびCu(3.37)は3.27重量%Cu/ZSM−5を意味する。 3 is a graph showing deNOx activity according to packing order of a double layer catalyst system of 3.37 wt% Cu / ZSM-5 and 2 wt% Ag / γ-Al 2 O 3 . Where F is the front end catalyst, R is the rear end catalyst, Ag (2.00) is 2 wt% Ag / γ-Al 2 O 3 , and Cu (3.37) is 3.27 wt% Cu / ZSM-5 Means. 2重量%Ag/γ−Al(前端)と3.37重量%Cu/ZSM−5(後端)の二重層触媒システムのパッキング比率によるdeNOx活性を示したグラフである。 ここでFは前端触媒、Rは後端触媒、Ag(2.00)は2重量%Ag/γ−Al、およびCu(3.37)は3.27重量%Cu/ZSM−5を意味する。Is a graph showing a 2 wt% Ag / γ-Al 2 O 3 ( front) and 3.37 wt% Cu / ZSM-5 (rear end) of the deNOx activity by packing ratio of double layer catalyst system. Where F is the front end catalyst, R is the rear end catalyst, Ag (2.00) is 2 wt% Ag / γ-Al 2 O 3 , and Cu (3.37) is 3.27 wt% Cu / ZSM-5 Means. 2重量%Ag/γ−Al(前端)と4.66重量%Cu/ZSM−5(後端)の二重層触媒システムのパッキング比率によるdeNOx活性を示したグラフである。 ここでFは前端触媒、Rは後端触媒、Ag(2.00)は2重量%Ag/γ−Al、およびCu(4.66)は4.66重量%Cu/ZSM−5を意味する。Is a graph showing a 2 wt% Ag / γ-Al 2 O 3 ( front) and 4.66 wt% Cu / ZSM-5 deNOx activity by packing ratio of double layer catalyst system of (rear end). Where F is the front end catalyst, R is the rear end catalyst, Ag (2.00) is 2 wt% Ag / γ-Al 2 O 3 , and Cu (4.66) is 4.66 wt% Cu / ZSM-5. Means. 2重量%Ag/γ−Al(前端)とx重量%Cu/ZSM−5(後端)の二重層触媒システムの銅担持量によるdeNOx活性を示したグラフである。 ここでFは前端触媒、Rは後端触媒、Ag(2.00)は2重量%Ag/γ−Al、およびCu(x)はx重量%Cu/ZSM−5を意味する。Is a graph showing a 2 wt% Ag / γ-Al 2 O 3 ( front) and x wt% Cu / ZSM-5 (rear end) of the deNOx activity by copper content of double layer catalyst system. Here, F is a front end catalyst, R is a rear end catalyst, Ag (2.00) is 2 wt% Ag / γ-Al 2 O 3 , and Cu (x) is x wt% Cu / ZSM-5. x重量%Ag/γ−Al(前端)と4.66重量%Cu/ZSM−5(後端)の二重層触媒システムの銀担持量によるdeNOx活性を示したグラフである。 ここでFは前端触媒、Rは後端触媒、Ag(x)はx重量%Ag/γ−Al、およびCu(4.66)は4.66重量%Cu/ZSM−5を意味する。is a graph showing the deNOx activity by silver supported amount of double layer catalyst system of x wt% Ag / γ-Al 2 O 3 ( front) and 4.66 wt% Cu / ZSM-5 (the rear end). Where F is the front end catalyst, R is the rear end catalyst, Ag (x) is x wt% Ag / γ-Al 2 O 3 , and Cu (4.66) is 4.66 wt% Cu / ZSM-5. To do.

Claims (5)

銀(Ag)1〜5重量%とアルミナ(Al)95〜99重量%を含めてなる銀(Ag)担持アルミナ(Al)と
銅(Cu)0〜5重量%とゼオライト(ZSM−5)95〜100重量%を含めてなるゼオライト(ZSM−5)と
を含むことを特徴とする窒素酸化物除去用二重層触媒システム。
Silver (Ag) -supported alumina (Al 2 O 3 ) comprising 1 to 5% by weight of silver (Ag) and 95 to 99% by weight of alumina (Al 2 O 3 ), 0 to 5% by weight of copper (Cu) and zeolite (ZSM-5) Zeolite (ZSM-5) containing 95 to 100% by weight and a double layer catalyst system for removing nitrogen oxides.
前記銀(Ag)担持アルミナ(Al)とゼオライト(ZSM−5)が積層されることを特徴とする請求項1記載の窒素酸化物除去用二重層触媒システム。 The silver (Ag) on alumina (Al 2 O 3) and zeolite (ZSM-5) is according to claim 1 nitrogen oxide bilayer catalyst system for the removal of, wherein a stacked. 前記銀(Ag)担持アルミナ(Al)とゼオライト(ZSM−5)は4:1〜1:4重量比の範囲で含まれることを特徴とする請求項1記載の窒素酸化物除去用二重層触媒システム。 2. The nitrogen oxide removing method according to claim 1, wherein the silver (Ag) -supported alumina (Al 2 O 3 ) and the zeolite (ZSM-5) are contained in a weight ratio of 4: 1 to 1: 4. Double layer catalyst system. 前記銀(Ag)担持アルミナ(Al)が触媒基前端部に位置し、前記ゼオライト(ZSM−5)は触媒基後端部に位置することを特徴とする、請求項1記載の窒素酸化物除去用二重層触媒システム。 2. The nitrogen according to claim 1, wherein the silver (Ag) -supported alumina (Al 2 O 3 ) is located at the front end of the catalyst base and the zeolite (ZSM-5) is located at the rear end of the catalyst base. Double layer catalyst system for oxide removal. 炭素数6〜16の範囲の炭化水素化合物を還元剤として更に含むことを特徴とする、請求項1乃至4のいずれか一項に記載の窒素酸化物除去用二重層触媒システム。   The double-layer catalyst system for removing nitrogen oxides according to any one of claims 1 to 4, further comprising a hydrocarbon compound having 6 to 16 carbon atoms as a reducing agent.
JP2007210357A 2006-08-11 2007-08-10 Dual bed catalytic system for nitrogen oxide removal Pending JP2008043947A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060076274A KR100892483B1 (en) 2006-08-11 2006-08-11 Dual bed catalytic system for the reduction of NOx

Publications (1)

Publication Number Publication Date
JP2008043947A true JP2008043947A (en) 2008-02-28

Family

ID=39047090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007210357A Pending JP2008043947A (en) 2006-08-11 2007-08-10 Dual bed catalytic system for nitrogen oxide removal

Country Status (4)

Country Link
US (1) US20080038160A1 (en)
JP (1) JP2008043947A (en)
KR (1) KR100892483B1 (en)
DE (1) DE102007037347A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013543947A (en) * 2010-11-11 2013-12-09 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Exhaust gas NOx treatment using 3 continuous SCR catalyst compartments
KR20140075104A (en) * 2012-12-10 2014-06-19 현대자동차주식회사 Supported catalyst for removing nitrogen oxides, method of preparing the same, and removing method of nitrogen oxides using the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100969104B1 (en) * 2008-09-03 2010-07-09 현대자동차주식회사 Diesel oxidation catalyst and Method for manufacturing the same
US8945495B2 (en) * 2008-10-21 2015-02-03 GM Global Technology Operations LLC Method and architecture for reducing NOX and particulate matter emissions in exhaust gas from hydrocarbon fuel source with a fuel lean combustion mixture
EP2301650B1 (en) * 2009-09-24 2016-11-02 Haldor Topsøe A/S Process and catalyst system for scr of nox
KR101110637B1 (en) * 2009-12-07 2012-02-17 제네랄 모터즈 코포레이션 Dual-layered catalyst system for removing nitrogen oxide
US9901900B2 (en) 2014-11-13 2018-02-27 Samsung Electronics Co., Ltd. Gas-adsorbing material and vacuum insulation material including the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3506292B2 (en) * 1995-10-09 2004-03-15 株式会社新エィシーイー Automobile exhaust purification method
US7022871B2 (en) * 1999-12-27 2006-04-04 Huntsman International Llc Process for the synthesis of polycarbamates
US7803338B2 (en) * 2005-06-21 2010-09-28 Exonmobil Research And Engineering Company Method and apparatus for combination catalyst for reduction of NOx in combustion products

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013543947A (en) * 2010-11-11 2013-12-09 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Exhaust gas NOx treatment using 3 continuous SCR catalyst compartments
KR20140075104A (en) * 2012-12-10 2014-06-19 현대자동차주식회사 Supported catalyst for removing nitrogen oxides, method of preparing the same, and removing method of nitrogen oxides using the same
JP2014113585A (en) * 2012-12-10 2014-06-26 Hyundai Motor Company Co Ltd Supported catalyst for reduction reaction of nitrogen oxides, method of producing the same, and method of removing nitrogen oxides utilizing the same
KR101646108B1 (en) 2012-12-10 2016-08-08 현대자동차 주식회사 Supported catalyst for removing nitrogen oxides, method of preparing the same, and removing method of nitrogen oxides using the same

Also Published As

Publication number Publication date
KR100892483B1 (en) 2009-04-10
US20080038160A1 (en) 2008-02-14
DE102007037347A1 (en) 2008-03-13
KR20080014486A (en) 2008-02-14

Similar Documents

Publication Publication Date Title
KR101807440B1 (en) Non-zeolite base metal scr catalyst
JP5875586B2 (en) Catalyst for removing nitrogen oxides from diesel engine exhaust
JP5769708B2 (en) Exhaust gas purification apparatus and exhaust gas purification method using selective reduction catalyst
JP5938819B2 (en) Oxidation catalyst for exhaust gas treatment
EP1992409B1 (en) Selective catalytic reduction type catalyst, and exhaust gas purification equipment and purifying process of exhaust gas using the same
JP2008043947A (en) Dual bed catalytic system for nitrogen oxide removal
JP2011518658A (en) Exhaust gas purification system for processing engine exhaust gas with SCR catalyst
EP2292316A1 (en) Apparatus for after-treatment of exhaust from diesel engine
Narula et al. Materials issues related to catalysts for treatment of diesel exhaust
JP5972274B2 (en) Exhaust gas NOx treatment using 3 continuous SCR catalyst compartments
JP5651727B2 (en) Exhaust gas purification method using selective reduction catalyst
González‐Velasco et al. NOx Storage and Reduction Coupled with Selective Catalytic Reduction for NOx Removal in Light‐Duty Vehicles
Braun et al. Potential technical approaches for improving low‐temperature NOx conversion of exhaust aftertreatment systems
Maunula et al. Thermally durable vanadium-SCR catalysts for diesel applications
Liu et al. Lean NO x reduction with H 2 and CO in dual-layer LNT–SCR monolithic catalysts: impact of ceria loading
Martens et al. Molecule sieving catalysts for NO reduction with hydrocarbons in exhaust of lean burn gasoline and diesel engines
KR101416356B1 (en) Method of reducing nitrogen oxide using amine compound as reductant
Yashnik Catalytic diesel exhaust systems: modern problems and technological solutions for modernization of the oxidation catalyst
JP2012152744A (en) Selective reduction catalyst for cleaning exhaust gas and exhaust gas cleaning device using the catalyst
KR101157127B1 (en) Selective catalytic reduction catalyst using LPG as a reductant for removing NOx
Nakayama et al. Development of TWC and PGM free catalyst combination as gasoline exhaust aftertreatment
KR101177684B1 (en) Selective catalytic reduction catalyst using LPG as a reductant for removing NOx
JP3994862B2 (en) Exhaust gas purification catalyst and purification method
Lambert et al. LNT Catalysis at Ford Motor Company–A Case History
Schmieg et al. Catalysts for lean-burn engine exhaust aftertreatment using hydrocarbon selective catalytic reduction