JP2008043939A - Virus potency reduction content object - Google Patents

Virus potency reduction content object Download PDF

Info

Publication number
JP2008043939A
JP2008043939A JP2007068317A JP2007068317A JP2008043939A JP 2008043939 A JP2008043939 A JP 2008043939A JP 2007068317 A JP2007068317 A JP 2007068317A JP 2007068317 A JP2007068317 A JP 2007068317A JP 2008043939 A JP2008043939 A JP 2008043939A
Authority
JP
Japan
Prior art keywords
titanium oxide
virus titer
virus
irradiation time
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007068317A
Other languages
Japanese (ja)
Other versions
JP4240508B2 (en
Inventor
Kazuhiko Fujimori
和彦 藤森
Takehito Haino
雄仁 拝野
Takaharu Fujii
隆治 藤井
Kazuaki Takehara
一明 竹原
Masayuki Nakamura
政幸 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KON Corp KK
Original Assignee
KON Corp KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KON Corp KK filed Critical KON Corp KK
Priority to JP2007068317A priority Critical patent/JP4240508B2/en
Publication of JP2008043939A publication Critical patent/JP2008043939A/en
Application granted granted Critical
Publication of JP4240508B2 publication Critical patent/JP4240508B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To prepare a reduction in potency of influenza virus to approximately 10,000 times. <P>SOLUTION: The virus potency reduction content object is manufactured, which contains a titanium oxide sol containing a crystal grain of a spear-like shape having a relatively large average size of the crystal grain and an OH group, a crystal grain of a spherical shape having a relatively small average size of the crystal grain and an OH group, and titanium oxide sol mutually bonded through the respective OH groups. The crystal of the spear-like shape contains nitrogen, and the virus potency reduction content object can obtain a catalytic action by receiving a visible radiation. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ウィルス力価低下含有体に関し、特に、七面鳥ヘルペスウイルス、マレック病ウィルス、伝染性ファブリキウス嚢病ウィルス、ニューカッスル病ウィルス、伝染性気管支炎ウィルス、感染性喉頭気管炎、鳥脳脊髄炎ウィルス、ひな貧血ウィルス、鶏痘ウィルス、鳥インフルエンザウィルス、鳥類レオウイルス、鳥類白血病ウィルス、細網組織症ウィルス、鳥類アデノウイルス及び出血性腸炎ウィルス、豚インフルエンザ及びその組換え体などに対して好適なウィルス力価低下含有体に関する。   The present invention relates to a virus titer-containing body, in particular, turkey herpes virus, Marek's disease virus, infectious bursal disease virus, Newcastle disease virus, infectious bronchitis virus, infectious laryngotracheitis, avian encephalomyelitis virus. Viruses suitable for chick anemia virus, fowlpox virus, avian influenza virus, avian reovirus, avian leukemia virus, reticulocytosis virus, avian adenovirus and hemorrhagic enteritis virus, swine influenza and its recombinants It relates to a lower titer-containing body.

特許文献1には、鶏インフルエンザウィルスが社会問題となっていて、何らかの対策が必要である旨が記載されている。また、ニワトリ、七面鳥、ガチョウ、雌アヒル、キジ、ウズラ、ハト及びダチョウなどの鳥インフルエンザウィルスに対しては、ワクチンが有効であるという見解がある。   Patent Document 1 describes that chicken influenza virus is a social problem and some measures are required. There is also a view that the vaccine is effective against avian influenza viruses such as chickens, turkeys, geese, female ducks, pheasants, quail, pigeons and ostriches.

特開2004−254696号公報JP 2004-254696 A

しかし、ワクチンは、一般的に開発費用が嵩むため、相対的に高価なものとなり実用性の点で問題がある。しかも、鳥インフルエンザウィルスが猛威を振るうような事態が生じれば、ワクチンの不足が予想される。また、たとえワクチンが安価に入手できたとしても、鳥インフルエンザの発生を十分に予防することは困難である。   However, since vaccines generally have high development costs, they are relatively expensive and have problems in practical use. Moreover, if there is a situation where the bird flu virus is rampant, a shortage of vaccine is expected. Moreover, even if a vaccine is available at a low price, it is difficult to sufficiently prevent the occurrence of avian influenza.

さらに、ワクチンでは発症予防ができても、完全な感染予防は難しいとされており、国際的な鳥インフルエンザ対策としては、摘発淘汰による清浄化が理想とされる。ワクチンの利用は、感染鳥とワクチン投与鳥とのを識別困難にするため、摘発淘汰戦略が取れなくなり、“ワクチンによる感受性の低下”に代わる“感染の機会の低下(曝露ウイルス量の低下)”の方法が求められている。   Furthermore, even if the vaccine can prevent the onset, it is said that complete infection prevention is difficult, and as an international countermeasure against avian influenza, it is ideal to clean it by excision. Vaccine use makes it difficult to distinguish between infected birds and vaccinated birds, so it is impossible to adopt a trapping strategy and “reducing the chance of infection (decreasing the amount of virus exposed)” instead of “decreased susceptibility to vaccine” Is needed.

ここで、酸化チタンなどの光触媒活性物質は、抗菌作用があることが知られている。しかし、公知の酸化チタンでは、インフルエンザウィルスの力価を1000倍程度しか低下させることができない。これは、仮にウィルス数が100万程度あった場合に、これらに対して酸化チタン溶液等を塗布することによって、ウィルス数が1000程度まで減少することを意味している。   Here, it is known that photocatalytically active substances such as titanium oxide have an antibacterial action. However, known titanium oxide can reduce the titer of influenza virus only about 1000 times. This means that if the number of viruses is about 1 million, the number of viruses is reduced to about 1000 by applying a titanium oxide solution or the like to these.

ところが、インフルエンザウィルスの感染を防止するためには、インフルエンザウィルスの力価を、少なくとも100個以下程度に減少させなければならないことが知られている。ワクチン防御試験においては、野外での高濃度感染を想定して、100万個のウイルスが攻撃に用いられているが、それを踏まえると感染阻止には10000倍程度の力価の低下が要求される。このため、公知の酸化チタンでは、ウィルスの感染を十分に抑止するまでには至っていない。   However, in order to prevent infection with influenza virus, it is known that the titer of influenza virus must be reduced to at least about 100 or less. In vaccine defense studies, assuming a high concentration infection in the field, 1 million viruses are used for the attack, but based on that, a 10,000-fold reduction in titer is required to prevent infection. The For this reason, well-known titanium oxide has not reached the point of sufficiently suppressing virus infection.

そこで、本発明は、安価に十分なウィルス力価低下させることを課題とする。具体的には、ウィルスの力価を10000倍程度低下させることを課題とする。   Therefore, an object of the present invention is to sufficiently reduce the virus titer at a low cost. Specifically, it is an object to reduce the virus titer by about 10,000 times.

上記課題を解決するために、本発明のウィルス力価低下含有体は、結晶粒子の平均サイズが相対的に大きくOH基を有している槍型形状の結晶粒子を含む酸化チタンゾルと、結晶粒子の平均サイズが相対的に小さくOH基を有している球型形状の結晶粒子と、前記各OH基を通じて相互に結合してなる酸化チタンゾルを含み、前記槍型形状の結晶が窒素を含んでいて、可視光線を受けることによって触媒作用が得られる。   In order to solve the above-mentioned problems, the virus titer-decreasing content of the present invention comprises a titanium oxide sol containing a bowl-shaped crystal particle having a relatively large average size of crystal particles and having OH groups, and a crystal particle A spherically-shaped crystal particle having a relatively small average size and having an OH group, and a titanium oxide sol formed by bonding to each other through each OH group, and the saddle-shaped crystal contains nitrogen The catalytic action is obtained by receiving visible light.

塗布乾燥後の光触媒の気孔率が50%以下であるとよい。光媒体の単位容積あたりの結晶数が増加して、再結合速度を遅くする等に貢献するためである。   The porosity of the photocatalyst after coating and drying is preferably 50% or less. This is because the number of crystals per unit volume of the optical medium is increased, which contributes to reducing the recombination rate.

また、本発明の物品は、上記の光触媒含有体に含まれる光触媒が塗布されている。特に、光触媒含有体が水系であるので、人畜無害である。したがって、上記物品として、抗菌等の作用が発揮されるような厨房、動物などを飼っておく小屋及びそれに付帯して使用される大鋸屑、籾殻などなどに好適に用いることができる。   Moreover, the photocatalyst contained in said photocatalyst containing body is apply | coated to the article | item of this invention. In particular, since the photocatalyst-containing body is aqueous, it is harmless to humans. Therefore, the article can be suitably used for kitchens that exhibit antibacterial and other effects, sheds for keeping animals, etc., and large sawdust, rice husks, and the like that are incidental thereto.

発明の実施の形態BEST MODE FOR CARRYING OUT THE INVENTION

以下、本発明の実施形態について、図面を参照して説明する。
図1は、本発明の実施形態のウィルス力価低下含有体の製造工程の概要説明図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic explanatory diagram of a production process of a virus titer-decreasing content according to an embodiment of the present invention.

まず、酸化チタン原液を製造する(ステップS1)。   First, a titanium oxide stock solution is manufactured (step S1).

水酸化チタン或いは酸化チタン等の超微粒子の分散液、又は水酸化チタンゲルを用意する(ステップS11)。つづいて、上記分散液等に対して、水酸化ナトリウム等の沈殿物生成剤を加える(ステップS12)。これにより、上記分散液等に水酸化チタンの沈殿物が生成させる。   A dispersion of ultrafine particles such as titanium hydroxide or titanium oxide, or titanium hydroxide gel is prepared (step S11). Subsequently, a precipitate generating agent such as sodium hydroxide is added to the dispersion liquid or the like (step S12). Thereby, a precipitate of titanium hydroxide is generated in the dispersion or the like.

具体的には、四塩化チタンの約50〜70重量%水溶液10mlを、蒸留水で1000mlに希釈したもの上記分散液として用意した。また、上記分散液に対して、2.0〜2.5重量%アンモニア水を10ml程度滴下して、水酸化チタンの沈殿物を生成した。   Specifically, 10 ml of an aqueous solution of about 50 to 70% by weight of titanium tetrachloride diluted to 1000 ml with distilled water was prepared as the dispersion. Further, about 10 ml of 2.0 to 2.5 wt% aqueous ammonia was dropped into the dispersion to produce a precipitate of titanium hydroxide.

つぎに、上記分散液の中から沈殿物を遠心分離や濾別等によって抽出して、その後、
水酸化チタンゲル自体を、不純物除去のために、純水、イオン交換水、蒸留水などで水洗する(ステップS13)。水酸化チタンゲルに純水、イオン交換水、又は蒸留水を加えて100〜500mlとした水酸化チタン懸濁液を製造する(ステップS14)。
Next, the precipitate is extracted from the dispersion by centrifugation or filtration, and then
The titanium hydroxide gel itself is washed with pure water, ion-exchanged water, distilled water or the like to remove impurities (step S13). Pure water, ion-exchanged water, or distilled water is added to the titanium hydroxide gel to produce a titanium hydroxide suspension having a volume of 100 to 500 ml (step S14).

つぎに、水酸化チタン懸濁液に30重量%過酸化水素水を10〜20ml加えて攪拌してから(ステップS15)、例えば2〜15時間、65〜400℃の温度で加熱する(ステップS16)。こうして、5nm〜30nmのアナターゼ結晶の酸化チタンを含む酸化チタン原液を得る(ステップS17)。   Next, 10 to 20 ml of 30 wt% hydrogen peroxide solution is added to the titanium hydroxide suspension and stirred (step S15), and then heated at a temperature of 65 to 400 ° C. for 2 to 15 hours, for example (step S16). ). In this way, a titanium oxide stock solution containing 5-30 nm anatase crystal titanium oxide is obtained (step S17).

この酸化チタン原液は、酸化チタンの平均サイズが約10nmであった。酸化チタンの表面には、ペルオキソ基が修飾されることになる。このため、酸化チタン原液中では、ペルオキソ基の分極によって粒子間の電気的斥力が働き、酸化チタンが相互に反発しあうので凝集することない。なお、酸化チタン原液中におけるアンモニウムイオンなども上記分散に寄与している。このため、酸化チタン原液は、酸化チタンが均一に分散した液体となる。また、こうして製造した酸化チタンは、一つ以上のOH基を有することになる。   This titanium oxide stock solution had an average titanium oxide size of about 10 nm. A peroxo group is modified on the surface of titanium oxide. For this reason, in the titanium oxide stock solution, the electric repulsive force between the particles acts due to the polarization of the peroxo group, and the titanium oxides repel each other and thus do not aggregate. Note that ammonium ions in the titanium oxide stock solution also contribute to the dispersion. For this reason, the titanium oxide stock solution is a liquid in which titanium oxide is uniformly dispersed. In addition, the titanium oxide thus produced has one or more OH groups.

表1は、図1のステップS1において製造された酸化チタン原液を、透過型電子顕微鏡を介して撮影した図面代用写真である。表1に示すように、酸化チタン原液に含まれる酸化チタンの結晶粒子は、平面的な鑓型をしている(以下、「鑓型酸化チタン」と称する。)。鑓型となるのは、ステップS14の加熱によって、酸化チタンの結晶が、アモルファスからアナタース型結晶となったことを意味する。
Table 1 is a drawing-substituting photograph obtained by photographing the titanium oxide stock solution produced in step S1 of FIG. 1 through a transmission electron microscope. As shown in Table 1, the titanium oxide crystal particles contained in the titanium oxide stock solution have a planar saddle shape (hereinafter referred to as “saddle-type titanium oxide”). The saddle shape means that the titanium oxide crystal is changed from amorphous to anatase crystal by heating in step S14.

もっとも、酸化チタン原液に含まれる鑓型酸化チタンの形状は制御可能であり、鑓型以外にも、例えば、ステップS14,S15間に、酸化チタン原液に対してホウ素などを添加することによって、略四角形、略五角形、略八角形などの平面的な種々の幾何学形状とすることも可能である。   However, the shape of the saddle type titanium oxide contained in the titanium oxide stock solution can be controlled, and in addition to the saddle type, for example, by adding boron or the like to the titanium oxide stock solution during steps S14 and S15, Various planar geometric shapes such as a quadrangle, a substantially pentagon, and a substantially octagon can also be used.

つぎに、酸化チタン原体を製造する(ステップS2)。   Next, a titanium oxide raw material is manufactured (step S2).

まず、酸化鉄及び酸化チタンが主成分であるイルメナイト鉱石と硫酸とを反応させることによって硫酸塩を製造する(ステップS21)。つぎに、硫酸塩から不純物を除去する(ステップS22)。その後、その硫酸塩を加水分解して(ステップS23)、不溶性の白色含水酸化チタンを沈澱させる。この際、一つ以上のOH基が形成される。   First, a sulfate is produced by reacting ilmenite ore whose main components are iron oxide and titanium oxide with sulfuric acid (step S21). Next, impurities are removed from the sulfate (step S22). Thereafter, the sulfate is hydrolyzed (step S23) to precipitate insoluble white hydrous titanium oxide. At this time, one or more OH groups are formed.

その後、これを中和洗浄し、乾燥又は焼成して、平均サイズが6nm程度の略球型となるまで微粒子化することによって、酸化チタン原体を得る(ステップS24)。このように製造した酸化チタンは、1個以上のOH基を有することになる。   Then, this is neutralized and washed, dried or baked, and fine particles are obtained until the average size becomes a substantially spherical shape of about 6 nm, thereby obtaining a titanium oxide raw material (step S24). The titanium oxide produced in this way will have one or more OH groups.

なお、上記製造方法は、いわゆる硫酸法と称されている手法であるが、これに限定されず、塩素法、フッ酸法塩化チタンカリ法、四塩化チタン水溶液法、アルコキシド加水分解法など他の製造方法を用いてもよい。   The above production method is a so-called sulfuric acid method, but is not limited to this, and other production methods such as chlorine method, hydrofluoric acid method titanium potassium chloride method, titanium tetrachloride aqueous solution method, alkoxide hydrolysis method, etc. A method may be used.

ここで、鳥インフルエンザは、主として、屋内養鶏所などのように、太陽光が照射されにくい場所で発生しやすい。そこで、可視光照射によって光触媒作用が得られるように、可視光域の吸収が可能なバンドギャップとすべく、酸化チタンに対する各種ドーパントの導入、酸化チタンの高温還元、酸化チタンに対するX線などの高エネルギー照射などを行う。   Here, avian influenza is likely to occur mainly in places where it is difficult to irradiate sunlight, such as indoor poultry farms. Therefore, in order to obtain a band gap capable of absorbing visible light so that a photocatalytic action can be obtained by irradiation with visible light, introduction of various dopants to titanium oxide, high-temperature reduction of titanium oxide, high X-rays to titanium oxide, etc. Perform energy irradiation.

表2は、図1のステップS2において製造された酸化チタン原体を、透過型電子顕微鏡を介して撮影した図面代用写真である。表2に示すように、酸化チタン原体に含まれる酸化チタンの結晶粒子は、球型をしている(以下、「球型酸化チタン」と称する。)。
Table 2 is a drawing-substituting photograph obtained by photographing the titanium oxide raw material produced in step S2 of FIG. 1 through a transmission electron microscope. As shown in Table 2, the titanium oxide crystal particles contained in the titanium oxide raw material have a spherical shape (hereinafter referred to as “spherical titanium oxide”).

もっとも、球型酸化チタンの結晶粒子の形状は、制御可能であり、球型以外にも、例えば、断面が略楕円型、円柱型、角柱型、これらの折れ線型などの立体的な種々の形状とすることが可能である。本実施形態では、酸化チタン原体の酸化チタンの結晶粒子が、立体的形状であればよい。   However, the shape of the crystal particles of the spherical titanium oxide is controllable. In addition to the spherical shape, for example, various three-dimensional shapes such as a substantially elliptical shape, a cylindrical shape, a prismatic shape, and a polygonal shape of these cross sections. Is possible. In the present embodiment, the titanium oxide crystal particles of the titanium oxide base material only need to have a three-dimensional shape.

ここで、本実施形態では、鑓型酸化チタンの結晶粒子の平均サイズを、球型酸化チタンの結晶粒子の平均サイズ以上としている。こうすると、鑓型酸化チタンの隙間に、球型酸化チタンが入りこむことになり、しかも、後述するように両酸化チタンは相互に混合される。したがって、容積あたりのチタン物質の密度は高くなる。このため、ウィルス力価低下含有体を被塗布体に対して塗布した場合、酸化チタンの気孔率の低下を実現する。   Here, in this embodiment, the average size of the crystal particles of the cage-type titanium oxide is set to be equal to or larger than the average size of the crystal particles of the spherical titanium oxide. If it carries out like this, spherical titanium oxide will enter into the clearance gap between vertical titanium oxides, and also both titanium oxides will be mixed mutually so that it may mention later. Therefore, the density of the titanium material per volume is increased. For this reason, when a virus titer lowering containing body is applied to an object to be coated, a reduction in the porosity of titanium oxide is realized.

つぎに、ウィルス力価低下含有体を製造する(ステップS3)。   Next, a virus titer lowering containing body is manufactured (step S3).

まず、ステップS1で製造した酸化チタン原液に対して、ステップS2で製造した酸化チタン原体を混ぜて(ステップS31)、必要に応じて、この酸化チタン原液を攪拌して、鑓型酸化チタンと球型酸化チタンとを結合させる(ステップS32)。この際、酸化チタン原液を加熱等する処理は不要であるであるし、攪拌スピード、攪拌時間などの攪拌条件は特段限定されるものではない。   First, the titanium oxide stock solution produced in step S2 is mixed with the titanium oxide stock solution produced in step S1 (step S31). The spherical titanium oxide is bonded (step S32). At this time, the treatment of heating the titanium oxide stock solution is not necessary, and the stirring conditions such as stirring speed and stirring time are not particularly limited.

ここで、既述のように、酸化チタン原液内の酸化チタンは、ペルオキソ基で修飾されているので、酸化チタン原液中で分散しているので、この状態を維持しながら酸化チタン原液に対して酸化チタン原体を添加するとよい。   Here, as described above, since the titanium oxide in the titanium oxide stock solution is modified with a peroxo group, it is dispersed in the titanium oxide stock solution. It is recommended to add a titanium oxide raw material.

このためには、ペルオキソ基の減少を回避する、又は、酸化チタン原液中における上記分散に寄与するアンモニウイオン濃度などの不純物の減少を回避するとよい。具体的には、ペルオキソチタン酸の濃度が例えば5w%以下とならないようにする、又は、アンモニウムイオンなど不純物が例えば100ppm以下とならないようする。   For this purpose, it is preferable to avoid a decrease in peroxo group or a decrease in impurities such as ammonium ion concentration contributing to the dispersion in the titanium oxide stock solution. Specifically, the concentration of peroxotitanic acid is not set to 5 w% or less, or impurities such as ammonium ions are set to 100 ppm or less, for example.

また、既述のように、酸化チタン原液内の酸化チタンと酸化チタン原体の酸化チタンとの双方ともに、1個以上のOH基を有している。このため、両酸化チタンは、互いのOH基部分で水素結合がなされる。つまり、OH基が置換基となる。   Further, as described above, both of the titanium oxide in the titanium oxide stock solution and the titanium oxide of the titanium oxide raw material have one or more OH groups. For this reason, both titanium oxides are hydrogen-bonded at the OH group portion of each other. That is, the OH group becomes a substituent.

ところで、一般的な球型酸化チタンゾルは非水系で製造され、鑓型酸化チタンゾルは水系で製造されている。したがって、これらは、理論的には結合しない。そこで、本発明者は、これらを結合させるべく、例えばOH基を含む球型酸化チタンを選択した。この結果、上記のように、球型酸化チタンと鑓型酸化チタンとを、OH基を通じて相互に結合することが可能となる。   By the way, a general spherical titanium oxide sol is manufactured in a non-aqueous system, and a vertical titanium oxide sol is manufactured in an aqueous system. Thus, they do not combine theoretically. Therefore, the present inventor has selected, for example, spherical titanium oxide containing an OH group in order to bond them. As a result, as described above, the spherical titanium oxide and the cage titanium oxide can be bonded to each other through the OH group.

表3は、図1のステップS3において製造されたウィルス力価低下含有体を、透過型電子顕微鏡を介して撮影した図面代用写真である。球型酸化チタンの大半は、酸化チタン原液中の鑓型酸化チタンと結合される。なお、所要の振動等を酸化チタン原液に加えても、球型酸化チタンと鑓型酸化チタンとの分離は、確認されなかった。
Table 3 is a drawing-substituting photograph obtained by photographing the virus titer-decreasing material produced in step S3 of FIG. 1 through a transmission electron microscope. Most of the spherical titanium oxide is combined with the cage titanium oxide in the titanium oxide stock solution. In addition, even when the required vibration or the like was added to the titanium oxide stock solution, separation between the spherical titanium oxide and the cage titanium oxide was not confirmed.

図2は、本実施形態のウィルス力価低下含有体を塗布して乾燥させたシャーレに鳥インフルエンザウィルス液を滴下して蛍光灯から光を照射したときの実験結果を示す図である。図2の横軸に光の照射時間を示し、縦軸にウィルス力価を示している。ここでは、比較のため、本実施形態のウィルス力価低下含有体を塗布していないシャーレに対しても鳥インフルエンザウィルス液を滴下して、同時に蛍光灯から光を照射した。   FIG. 2 is a diagram showing experimental results when the avian influenza virus solution was dropped onto a petri dish coated with the virus titer-reducing containing body of the present embodiment and dried, and irradiated with light from a fluorescent lamp. The horizontal axis of FIG. 2 shows the light irradiation time, and the vertical axis shows the virus titer. Here, for comparison, the avian influenza virus solution was also dropped onto a petri dish not coated with the virus titer-reducing containing body of the present embodiment, and simultaneously irradiated with light from a fluorescent lamp.

なお、図2に付記しているように、光の照射時間は約48時間とした。また、ウィルス力価は50%組織培養感染量法(Tissue Culture Infectious Dose:TCID50/ml)を用いて測定した。ウィルス力価の検出限界は1×101.5である。 Note that as described in FIG. 2, the light irradiation time was about 48 hours. The virus titer was measured using a 50% tissue culture infectious dose (TCID 50 / ml) method. The detection limit of virus titer is 1 × 10 1.5 .

また、本実験では、各シャーレと蛍光灯との距離は約10cmとし、蛍光灯は20Wの消費電力のものを用いた。   In this experiment, the distance between each petri dish and the fluorescent lamp was about 10 cm, and a fluorescent lamp with a power consumption of 20 W was used.

図2には、比較実験も含めて合計4つの実験結果(2回の実験結果)を示している。   FIG. 2 shows a total of four experimental results (two experimental results) including comparative experiments.

1.第1回目の実験結果
(1)本実施形態のウィルス力価低下含有体を塗布したシャーレの実験結果
第1回目の実験結果では、本実施形態のウィルス力価低下含有体を塗布したシャーレ側(図2において□で示す)では、光の照射時間が0時間のときに約7.25(Log10TCID50/ml)のウィルス力価が、光の照射時間が8時間のときに約7.25(Log10TCID50/ml)、光の照射時間が24時間のときに約4.5(Log10TCID50/ml)、光の照射時間が48時間のときに約3.5(Log10TCID50/ml)となった。
1. Results of the first experiment (1) Experiment results of the petri dish coated with the virus titer-decreasing content body of the present embodiment In the first experiment result, the petri dish side applied with the virus titer-decreasing content of the present embodiment In FIG. 2, the virus titer is approximately 7.25 (Log 10 TCID 50 / ml) when the light irradiation time is 0 hour, and is approximately 7.25 (when the light irradiation time is 8 hours). Log10TCID 50 / ml), about when the irradiation time of light of 24 hours 4.5 (Log10TCID 50 / ml), the irradiation time of light was about 3.5 (Log10TCID 50 / ml) at 48 hours .

換言すると、実施形態のウィルス力価低下含有体を塗布したシャーレ側では、光の照射時間が24時間のときに約1×102.75のウィルス力価の低下がみられ、光の照射時間が48時間のときに約1×103.75のウィルス力価の低下がみられた。 In other words, on the petri dish side coated with the virus titer-decreasing material of the embodiment, when the light irradiation time is 24 hours, a decrease in the virus titer of about 1 × 10 2.75 is observed, and the light irradiation time. A decrease in virus titer of about 1 × 10 3.75 was observed at 48 hours.

(2)本実施形態のウィルス力価低下含有体を塗布していないシャーレの比較実験結果
これに対して、本実施形態のウィルス力価低下含有体を塗布していないシャーレ側(図2において△で示す)では、光の照射時間が0時間のときに約7.25(Log10TCID50/ml)のウィルス力価が、光の照射時間が8時間のときに約7.25(Log10TCID50/ml)、光の照射時間が24時間のときに約6.25(Log10TCID50/ml)、光の照射時間が48時間のときに約4.5(Log10TCID50/ml)となった。
(2) Results of Comparative Experiment on Petri dish not coated with virus titer-decreasing content according to this embodiment On the other hand, Petri dish side (Δ in FIG. 2) without applying the virus titer-decreasing content according to this embodiment in shown), the virus titer of approximately when the irradiation time of the light is 0 h 7.25 (Log10TCID 50 / ml) is about 7.25 (Log10TCID 50 / ml when the irradiation time of light of 8 hours ), About 6.25 (Log 10 TCID 50 / ml) when the light irradiation time was 24 hours, and about 4.5 (Log 10 TCID 50 / ml) when the light irradiation time was 48 hours.

換言すると、本実施形態のウィルス力価低下含有体を塗布していないシャーレ側では、光の照射時間が24時間のときに約1×101.00のウィルス力価の低下しかみられず、光の照射時間が48時間のときに約1×102.75のウィルス力価の低下しかみられなかった。 In other words, on the petri dish side not coated with the virus titer-decreasing content of the present embodiment, only a decrease in the virus titer of about 1 × 10 1.00 is observed when the light irradiation time is 24 hours, When the light irradiation time was 48 hours, only a decrease in the virus titer of about 1 × 10 2.75 was observed.

2.第2回目の実験結果
(1)本実施形態のウィルス力価低下含有体を塗布したシャーレの実験結果
第2回目の実験結果では、本実施形態のウィルス力価低下含有体を塗布したシャーレ側(図2において○で示す)では、光の照射時間が0時間のときに約7.75(Log10TCID50/ml)のウィルス力価が、光の照射時間が8時間のときに約7.75(Log10TCID50/ml)、光の照射時間が24時間のときに約4.75(Log10TCID50/ml)、光の照射時間が48時間のときに約3.5(Log10TCID50/ml)となった。
2. Results of the second experiment (1) Experiment results of the petri dish coated with the virus titer-decreasing body of the present embodiment In the second experiment result, the petri dish side coated with the virus titer-decreasing content of the present embodiment ( In FIG. 2, the virus titer is about 7.75 (Log 10 TCID 50 / ml) when the light irradiation time is 0 hour, and is about 7.75 (when the light irradiation time is 8 hours). Log10TCID 50 / ml), about when the irradiation time of light of 24 hours 4.75 (Log10TCID 50 / ml), the irradiation time of light was about 3.5 (Log10TCID 50 / ml) at 48 hours .

換言すると、実施形態のウィルス力価低下含有体を塗布したシャーレ側では、光の照射時間が24時間のときに約1×103.00のウィルス力価の低下がみられ、光の照射時間が48時間のときに約1×104.25のウィルス力価の低下がみられた。 In other words, on the petri dish side coated with the virus titer-decreasing content of the embodiment, when the light irradiation time is 24 hours, a decrease in the virus titer of about 1 × 10 3.00 is observed, and the light irradiation time A decrease in virus titer of about 1 × 10 4.25 was observed at 48 hours.

(2)本実施形態のウィルス力価低下含有体を塗布していないシャーレの比較実験結果
これに対して、本実施形態のウィルス力価低下含有体を塗布していないシャーレ側(図2において◇で示す)では、光の照射時間が0時間のときに約7.75(Log10TCID50/ml)のウィルス力価が、光の照射時間が8時間のときに約7.75(Log10TCID50/ml)、光の照射時間が24時間のときに約6.25(Log10TCID50/ml)、光の照射時間が48時間のときに約4.75(Log10TCID50/ml)となった。
(2) Results of Comparative Experiment on Petri dish not coated with virus titer-decreasing content according to this embodiment On the other hand, Petri dish side without applying the virus titer-decreasing content according to this embodiment (in FIG. 2, ◇ in shown), the virus titer of approximately when the irradiation time of the light is 0 h 7.75 (Log10TCID 50 / ml) is about 7.75 (Log10TCID 50 / ml when the irradiation time of light of 8 hours ), When the light irradiation time was 24 hours, it was about 6.25 (Log 10 TCID 50 / ml), and when the light irradiation time was 48 hours, it was about 4.75 (Log 10 TCID 50 / ml).

換言すると、本実施形態のウィルス力価低下含有体を塗布していないシャーレ側では、光の照射時間が24時間のときに約1×101.50のウィルス力価の低下しかみられず、光の照射時間が48時間のときに約1×103.00のウィルス力価の低下しかみられなかった。 In other words, on the petri dish side that is not coated with the virus titer-decreasing content according to the present embodiment, only a decrease in the virus titer of about 1 × 10 1.50 is observed when the light irradiation time is 24 hours, When the light irradiation time was 48 hours, only a decrease in the virus titer of about 1 × 10 3.00 was observed.

3.考察
上記各実験結果から、以下のことが読み取れる。すなわち、
(1)本実施形態のウィルス力価低下含有体の塗布の有無に拘らず、光の照射時間が8時間程度の場合には、ウィルス力価が低下していない。
3. Discussion From the above experimental results, the following can be read. That is,
(1) Regardless of whether or not the virus titer-reducing containing body of this embodiment is applied, when the light irradiation time is about 8 hours, the virus titer is not lowered.

(2)本実施形態のウィルス力価低下含有体の塗布したシャーレ側では、光の照射時間が8時間経過後には、急激にウィルス力価が低下している。   (2) On the petri dish side to which the virus titer-decreasing content of the present embodiment is applied, the virus titer is drastically decreased after 8 hours of light irradiation.

(3)本実施形態のウィルス力価低下含有体の塗布していないシャーレ側では、光の照射時間が8時間経過後には、ウィルス力価が低下しているもの、急激な低下は見られない。   (3) On the petri dish side where the virus titer-decreasing content of the present embodiment is not applied, the virus titer is decreased after the light irradiation time of 8 hours, but no rapid decrease is observed. .

(4)本実施形態のウィルス力価低下含有体の塗布したシャーレ側では、ウィルス感染が生じないと考えられる、約1×104.00のウィルス力価の低下が確認できた。 (4) On the petri dish side to which the virus titer-decreasing content of the present embodiment was applied, a virus titer decrease of about 1 × 10 4.00 , which is considered to cause no virus infection, was confirmed.

(5)本実施形態のウィルス力価低下含有体の塗布していないシャーレ側では、約1×103.00のウィルス力価の低下しか確認できなかった。 (5) On the petri dish side where the virus titer-decreasing content of this embodiment was not applied, only a decrease in the virus titer of about 1 × 10 3.00 could be confirmed.

なお、抗菌作用を有するとされる銀イオンを本実施形態のウィルス力価低下含有体に添加しても、光の照射時間が8時間程度の場合には、ウィルス力価が低下しないことを確認した。その一方で、本実施形態のウィルス力価低下含有体に、酸性水を添加した場合には、光の照射時間が8時間程度の場合には、ウィルス力価の低下が確認された。   In addition, it is confirmed that the virus titer does not decrease when the light irradiation time is about 8 hours even if silver ions that are considered to have antibacterial action are added to the virus titer-decreasing material of this embodiment. did. On the other hand, when acidic water was added to the virus titer-decreasing containing body of this embodiment, a decrease in virus titer was confirmed when the light irradiation time was about 8 hours.

表4に示すように、球型の光触媒側では20ピコセコンド経過時にほとんどの電子・正孔の再結合が完了している(b)。一方、本実施形態の光触媒側では20ピコセコンド経過時にも半分以上の電子・正孔の再結合が完了していない(a)。これは、本実施形態の光触媒側では、電子・正孔の再結合速度が遅いことを意味している。
As shown in Table 4, on the spherical photocatalyst side, most of the recombination of electrons and holes is completed when 20 picoseconds have elapsed (b). On the other hand, on the photocatalyst side of this embodiment, recombination of more than half of electrons and holes is not completed even after 20 picoseconds have elapsed (a). This means that the recombination rate of electrons and holes is slow on the photocatalyst side of this embodiment.

表4に示す測定結果と以下の数式(1)とを用いて、電子濃度を算出した。   The electron concentration was calculated using the measurement results shown in Table 4 and the following mathematical formula (1).

電子濃度=時間ゼロでの電子濃度/1+時刻ゼロでの電子濃度×電子・正孔の再結合の二次速度定数×時間+ベースライン (1)
なお、球型の光触媒側の電子濃度は約10×1012cm/s、本実施形態の光触媒側の電子濃度は約1×1012cm/sであった。このように、約10倍程度の電子濃度の相違が確認された。
Electron concentration = electron concentration at time zero / 1 + electron concentration at time zero × secondary rate constant of electron-hole recombination × time + baseline (1)
The electron concentration on the spherical photocatalyst side was about 10 × 10 12 cm 3 / s, and the electron concentration on the photocatalyst side of the present embodiment was about 1 × 10 12 cm 3 / s. Thus, a difference in electron concentration of about 10 times was confirmed.

(比較例)
1.酸化チタン原液のみを基板に塗布して乾燥させた後に、当該基板表面を電子顕微鏡を用いて観察したところ、表面に付着した酸化チタンには、平均的に約60%の気孔率が確認された。
(Comparative example)
1. After applying and drying only the titanium oxide stock solution on the substrate, the substrate surface was observed using an electron microscope. As a result, an average porosity of about 60% was confirmed for the titanium oxide adhering to the surface. .

2.球型酸化チタンを蒸留水に混ぜてから、基板に塗布して乾燥させた後に、当該基板表面を電子顕微鏡を用いて観察したところ、表面に付着した酸化チタンには、平均的に約70%の気孔率が確認された。   2. After the spherical titanium oxide was mixed with distilled water, applied to the substrate and dried, the surface of the substrate was observed using an electron microscope. As a result, the average amount of titanium oxide adhering to the surface was about 70%. The porosity was confirmed.

3.本実施形態のウィルス力価低下含有体を基板に塗布して乾燥させた後に、当該基板表面を電子顕微鏡を用いて観察したところ、表面に付着した酸化チタンには、平均的に約30%の気孔率が確認された。気孔率が50%を超える部分は確認されなかった。   3. After the virus titer-reducing containing body of this embodiment was applied to a substrate and dried, the surface of the substrate was observed using an electron microscope. As a result, an average of about 30% of titanium oxide adhered to the surface was observed. Porosity was confirmed. The part where the porosity exceeds 50% was not confirmed.

また、本実施形態のウィルス力価低下含有体を基板に塗布して乾燥させた光触媒膜での光触媒結晶の配向性が高いことが確認された。さらに、光触媒膜の強度が優れていることも確認できた。   It was also confirmed that the photocatalytic crystal was highly oriented in the photocatalytic film obtained by applying the virus titer-reducing containing body of the present embodiment to a substrate and drying it. Furthermore, it was confirmed that the strength of the photocatalytic film was excellent.

なお、本実施形態のウィルス力価低下含有体内における、2種類の形状の酸化チタンの混合割合を、約3:7,約5:5,約7:3など種々変更しても、気孔率に大差はなかった。   In addition, even if the mixing ratio of the two types of titanium oxide in the virus titer-reducing body of the present embodiment is variously changed to about 3: 7, about 5: 5, about 7: 3, etc., the porosity is increased. There was no big difference.

ちなみに、ウィルス力価低下含有体における球状の酸化チタンの含有割合が高まるに連れて、鑓状の酸化チタンと球状の酸化チタンとが結合状態にある酸化チタンが重くなり、これがウィルス力価低下含有体中に沈殿することになった。結局のところ、鑓状の酸化チタンと球状の酸化チタンとの割合は、約3:7乃至約7:3が好ましく、約5:5が最良であることがわかった。   By the way, as the content of spherical titanium oxide in the virus titer-decreasing substance increases, the titanium oxide in the form of a combination of cage-like titanium oxide and spherical titanium oxide becomes heavier, and this contains the virus titer-decreasing content. It settled in the body. After all, it has been found that the ratio of cage-like titanium oxide to spherical titanium oxide is preferably about 3: 7 to about 7: 3, and most preferably about 5: 5.

なお、本実施形態では、主として、ウィルス力価低下含有体として酸化チタン含有液を例に説明したが、液状に限定されず、ゲル状、ゾル状のものであってもよい。また、光触媒活性物質は、酸化チタン(TiO)のみならず、Fe、CuO、In、WO、FeTiO、PbO、V、FeTiO、Bi、Nb、SrTiO、ZnO、BaTiO、CaTiO、KTaO、SnO、ZrO、Si、GaAs、CdSe、GaP、CdS、ZnSなどとしてもよい。 In the present embodiment, the titanium oxide-containing liquid is mainly described as an example of the virus titer-decreasing content, but the liquid is not limited to a liquid and may be in the form of a gel or a sol. Photocatalytic active materials include not only titanium oxide (TiO 2 ) but also Fe 2 O 3 , Cu 2 O, In 2 O 3 , WO 3 , Fe 2 TiO 3 , PbO, V 2 O 5 , FeTiO 3 , Bi. 2 O 3 , Nb 2 O 3 , SrTiO 3 , ZnO, BaTiO 3 , CaTiO 3 , KTaO 3 , SnO 2 , ZrO 2 , Si, GaAs, CdSe, GaP, CdS, ZnS, or the like may be used.

また、本実施形態のウィルス力価低下含有体を塗布した、ゲージ、シート、大鋸屑などを含む畜舎用品も、抗菌効果に優れたものとなる。鳥インフルエンザウィルス等を含む種々のウィルスに対しても、絶大な効果がある。   Moreover, the livestock articles including the gauge, the sheet, the large sawdust, etc., to which the virus titer-decreasing content of this embodiment is applied are also excellent in antibacterial effect. It has a tremendous effect against various viruses including avian influenza virus.

本発明の実施形態のウィルス力価低下含有体であるところの光触媒含有液の製造工程の概要説明図である。It is outline | summary explanatory drawing of the manufacturing process of the photocatalyst containing liquid which is a virus titer fall containing body of embodiment of this invention. 本実施形態のウィルス力価低下含有体を塗布して乾燥させたシャーレに鳥インフルエンザウィルス液を滴下して蛍光灯から光を照射したときの実験結果を示す図である。It is a figure which shows the experimental result when an avian influenza virus liquid is dripped at the petri dish which apply | coated and dried the virus titer fall containing body of this embodiment, and was irradiated with light from a fluorescent lamp.

符号の説明Explanation of symbols

S1 光触媒原液製造工程
S2 光触媒原体製造工程
S3 光触媒含有液製造工程
S1 Photocatalyst stock solution production process S2 Photocatalyst stock production process S3 Photocatalyst-containing solution production process

Claims (3)

鑓型形状の結晶粒子の光触媒と球型形状の結晶粒子の光触媒とが結合している、ウィルス力価低下含有体であって、
前記各光触媒のいずれかは、可視光線を受けて触媒作用が得られるウィルス力価低下含有体。
A virus titer-reducing substance in which a photocatalyst of a bowl-shaped crystal particle and a photocatalyst of a spherical crystal particle are combined,
Any one of the above photocatalysts is a virus titer-decreasing substance that receives visible light to obtain a catalytic action.
前記結合は、OH結合である、請求項1記載のウィルス力価低下含有体。   The virus titer-reducing body according to claim 1, wherein the bond is an OH bond. 請求項1記載のウィルス力価低下含有体を含む畜舎用品。   A livestock article comprising the virus titer-reducing body according to claim 1.
JP2007068317A 2007-03-16 2007-03-16 Virus titer-decreasing content Active JP4240508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007068317A JP4240508B2 (en) 2007-03-16 2007-03-16 Virus titer-decreasing content

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007068317A JP4240508B2 (en) 2007-03-16 2007-03-16 Virus titer-decreasing content

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006220460A Division JP4240505B2 (en) 2006-08-11 2006-08-11 Virus titer-decreasing content

Publications (2)

Publication Number Publication Date
JP2008043939A true JP2008043939A (en) 2008-02-28
JP4240508B2 JP4240508B2 (en) 2009-03-18

Family

ID=39178180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007068317A Active JP4240508B2 (en) 2007-03-16 2007-03-16 Virus titer-decreasing content

Country Status (1)

Country Link
JP (1) JP4240508B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013106561A (en) * 2011-11-21 2013-06-06 Nishiki Shizai Co Ltd Bedding for livestock and poultry, and method for preventing virus infection in livestock and poultry breeding house
WO2024053726A1 (en) * 2022-09-09 2024-03-14 有限会社ソルチ Detoxification treatment material for pollutant, method for producing same, and method for using same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5854465B2 (en) 2009-10-19 2016-02-09 国立大学法人 東京大学 Method for inactivating virus and antiviral property-imparting article

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013106561A (en) * 2011-11-21 2013-06-06 Nishiki Shizai Co Ltd Bedding for livestock and poultry, and method for preventing virus infection in livestock and poultry breeding house
WO2024053726A1 (en) * 2022-09-09 2024-03-14 有限会社ソルチ Detoxification treatment material for pollutant, method for producing same, and method for using same

Also Published As

Publication number Publication date
JP4240508B2 (en) 2009-03-18

Similar Documents

Publication Publication Date Title
JP6197162B2 (en) Method for inactivating virus and antiviral property-imparting article
JP4240505B2 (en) Virus titer-decreasing content
CN107456983B (en) Ag/AgCl/TiO2Composite photocatalytic material and preparation method and application thereof
Yan et al. Efficient photocatalytic disinfection of Escherichia coli by N-doped TiO2 coated on coal fly ash cenospheres
KR101962714B1 (en) Anti-virus aluminum member and method for producing same
JP4240508B2 (en) Virus titer-decreasing content
CN109174075A (en) A kind of rare-earth element modified titanium dioxide nano photocatalysis material and preparation method thereof for photocatalytic degradation VOCs
WO2010030098A2 (en) Method for the manufacture of uniform anatase titanium dioxide nanoparticles
CN108837851A (en) A kind of pre-irradiation grafting synthetic method of the nano TiO 2 based photocatalyst of efficient absorption-reduction high toxicity hexavalent chromium
JP2009012444A (en) Layered product and its manufacturing method
CN101716501B (en) Zinc titanate micro-nano photocatalysis material and preparation method thereof
WO2024041565A1 (en) Air purification and sterilization method
JP3886594B2 (en) Method for producing silica three-dimensional network photocatalyst supporting titanium oxide
Siyahi et al. Microwave-assisted one-pot preparation of AgBr/ZnO nanocomposites as highly efficient visible-light photocatalyst for inactivation of Escherichia coli
CN1493395A (en) Nano-titanium dioxide photocatalyst film, preparation and its application
CN101209413A (en) Titanium dioxide photo-catalytic and manufacturing method thereof
CN1410394A (en) Method of forming metal composite titanium dioxide nano particle film on ceramic surface
CN108899265A (en) A kind of ultraviolet quartz lamp mould group of two waveband
WO2022016006A1 (en) Photocatalytic and photo(electro)catalytic approaches for viral decontamination
JP7032744B2 (en) Titania porous material and its manufacturing method
CN108855176A (en) A kind of formaldehyde light cleanser of efficient stable and preparation method thereof
Abou Zeid et al. Antibacterial and Photocatalytic Properties of ZnO Nanostructure Decorated Coatings
RU2324535C1 (en) Method of production of polysurmin adsorbent
JP2008043857A (en) Photocatalyst-containing member
CN113083353A (en) Preparation method and application of liquid photocatalyst

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080910

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4240508

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250