JP2008043065A - Motor core phase adjusting method - Google Patents

Motor core phase adjusting method Download PDF

Info

Publication number
JP2008043065A
JP2008043065A JP2006214655A JP2006214655A JP2008043065A JP 2008043065 A JP2008043065 A JP 2008043065A JP 2006214655 A JP2006214655 A JP 2006214655A JP 2006214655 A JP2006214655 A JP 2006214655A JP 2008043065 A JP2008043065 A JP 2008043065A
Authority
JP
Japan
Prior art keywords
motor core
phase
motor
excitation
origin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006214655A
Other languages
Japanese (ja)
Inventor
Noboru Sato
昇 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2006214655A priority Critical patent/JP2008043065A/en
Publication of JP2008043065A publication Critical patent/JP2008043065A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a motor core phase adjusting method for rapidly executing exact phase adjustment by rotating and driving a motor core to a position other than an opposite phase of an excitation original point, preliminarily driving it to the excitation original point, and allowing an application current to be steep into a rectangular wave in a closing operation from a CW direction and a CCW direction. <P>SOLUTION: The motor core is rotated and driven in the position other than positive and opposite phases of the excitation original point, the motor core is rotated and driven to the excitation original point, the motor core is rotated and driven to the CW direction and the CCW direction symmetrically at the excitation original point from a predetermined angle, the rise of the application current at the time of rotary driving is made to be steep, and a mid-point of a driving distance of rotary driving is used as the excitation original point. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ブラシレスDCモータの各相に巻回されているコイルと磁極の関係により、モータコアの電気角の位相を調整するモータコア位相調整方法に関し、特に各相のコイルに電流を流してモータコアに基づくトルクが発生しなくなる位置を励磁原点とし、励磁原点を調整するための寄り付き動作において、正逆位相の駆動指令を順次与えると共に、任意のコイルに印加する電流の波形を急峻にして駆動を高速にすることによって、正確な励磁原点を迅速に設定できるようにしたモータコア位相調整方法に関する。   The present invention relates to a motor core phase adjustment method for adjusting the phase of an electrical angle of a motor core based on the relationship between a coil and a magnetic pole wound around each phase of a brushless DC motor, and more particularly, to a motor core by passing a current through each phase coil. Based on the position at which no torque is generated based on the excitation origin, in the approaching operation to adjust the excitation origin, forward and reverse phase drive commands are given sequentially, and the waveform of the current applied to any coil is sharpened to drive at high speed. Therefore, the present invention relates to a motor core phase adjustment method that can set an accurate excitation origin quickly.

ブラシレスDCモータはモータコアの電気的な位相を検出し、電気角原点(励磁原点)を基準として、モータコアの位相に合わせて各相コイルに電流を同期させて流す(転流)ことで、最も効率良くトルクを出力することができる。このため、位置検出器とモータコア(ロータ)の位相差を検出する必要がある。   The brushless DC motor detects the electrical phase of the motor core, and with the electrical angle origin (excitation origin) as a reference, the current flows through each phase coil in synchronization with the phase of the motor core (commutation). Torque can be output well. For this reason, it is necessary to detect the phase difference between the position detector and the motor core (rotor).

ここで、ブラシレスDCモータの構造と動作について説明する。図6はインナーロータ型の3相ブラシレスDCモータ10の断面構造を示しており、ステータ11にはU相、V相、W相のコイル13、14、15が120°ずつ位相をずらして巻回され、ロータとなるモータコア12は永久磁石4極(N、S、N、S)で形成されている。そして、各相コイル13〜15に電流を流すことにより、各相コイル13〜15に発生する磁界と永久磁石4極との吸引力でモータコア12は回転され、更にモータコア12の位相に合わせて3相のコイル13〜15の電流を転流制御することにより、モータコア12を連続的に回転駆動する。正弦波駆動の場合のU相コイル13、V相コイル14、W相コイル15の転流の位相関係を図7に示す。即ち、コイル13〜15に120°ずつずれた正弦波の電流を流すことにより、モータコア12のロータを回転する。   Here, the structure and operation of the brushless DC motor will be described. FIG. 6 shows a cross-sectional structure of an inner rotor type three-phase brushless DC motor 10, and U-phase, V-phase, and W-phase coils 13, 14, and 15 are wound around the stator 11 with phases shifted by 120 °. The motor core 12 serving as a rotor is formed of four permanent magnets (N, S, N, S). Then, by passing an electric current through each phase coil 13-15, the motor core 12 is rotated by the attractive force between the magnetic field generated in each phase coil 13-15 and the permanent magnet 4 poles, and further in accordance with the phase of the motor core 12. The motor core 12 is continuously driven to rotate by performing commutation control on the currents of the phase coils 13 to 15. FIG. 7 shows the phase relationship of commutation of the U-phase coil 13, V-phase coil 14, and W-phase coil 15 in the case of sinusoidal drive. That is, the rotor of the motor core 12 is rotated by passing a sine wave current shifted by 120 ° through the coils 13 to 15.

このように、ブラシレスDCモータ10を転流制御を行って回転駆動する場合、モータコア12の電気角原点を基準として3相の電流を流すことで最も効率良くトルクを生じさせることができるので、レゾルバ等の位置検出器とモータコア12の位相差を正確に知る必要がある。   As described above, when the brushless DC motor 10 is rotationally driven by performing commutation control, torque can be generated most efficiently by flowing a three-phase current with the electric angle origin of the motor core 12 as a reference. It is necessary to know the phase difference between the position detector such as the motor core 12 accurately.

ここにおいて、モータコア12の位相を検出する位相検出器とモータコア12の位相差は機械的には変わらないため、モータコア12の位相を調整して正確なパラメータを設定することで、再度位相調整を行う必要はない。即ち、現在位置の取得は通常絶対位置レゾルバ(粗)と相対位置レゾルバ(精)の2つの位置信号から計算されると共に、モータコア12の位相は絶対位置レゾルバの原点からどれだけの距離にあるかのパラメータとして定義される。絶対位置レゾルバとモータコア12の位相の位置を検出すれば、再度モータコア12の位相位置を検出する必要はない。また、インクリメンタル方式のエンコーダからのパルス信号を読み取り、モータコア12を制御する場合においても同様に、モータコア12の位相を調整して設定することで、再度位相調整を行う必要はない。電源投入時や制御開始時におけるモータコア12の位相調整、或いはマニュアルでのモータコア12の位相調整は、その後の回転駆動制御の電流付与の基準となるので特に重要である。更に、絶対位置レゾルバがない場合や故障した場合、絶対位置レゾルバと相対位置レゾルバとの間に誤差が生じた場合、或いは電流付与のパラメータを失ってしまった場合も、モータコアの位相調整が必要となる。   Here, since the phase difference between the phase detector for detecting the phase of the motor core 12 and the motor core 12 does not change mechanically, the phase adjustment is performed again by adjusting the phase of the motor core 12 and setting an accurate parameter. There is no need. That is, the acquisition of the current position is normally calculated from two position signals of an absolute position resolver (coarse) and a relative position resolver (fine), and how far the phase of the motor core 12 is from the origin of the absolute position resolver. Defined as a parameter. If the phase position of the absolute position resolver and the motor core 12 is detected, it is not necessary to detect the phase position of the motor core 12 again. Similarly, when reading the pulse signal from the incremental encoder and controlling the motor core 12, it is not necessary to adjust the phase again by adjusting and setting the phase of the motor core 12. The phase adjustment of the motor core 12 when the power is turned on or when the control is started, or the phase adjustment of the motor core 12 manually is particularly important because it becomes a reference for current application in the subsequent rotation drive control. In addition, if there is no absolute position resolver or if there is a failure, if an error occurs between the absolute position resolver and the relative position resolver, or if the current application parameters have been lost, it is necessary to adjust the phase of the motor core. Become.

位置検出器とモータコアの位相差を検出して調整する装置として、図8に示すようなドライブユニット20がある。ドライブユニット20は全体の制御を行うCPU21を主として構成され、駆動制御部22は設定部23に設定されたパラメータを基にしてモータ10を駆動制御し、駆動制御部22により3相コイル13〜15に流す電流を転流制御してモータ10を駆動する。モータ10のモータコア12の位相はモータ10に取付けられたレゾルバ(絶対位置レゾルバ、相対位置レゾルバ)18で検出され、レゾルバ18からの位置信号により計測部24で位相が計測される。また、モータコア12の位相調整時には、計測部24で計測された計測値を記憶部25に記憶し、記憶部25の記憶データに基づいて計算部26で位相差が計算され、計算された結果は設定部23にパラメータとして設定される。   As an apparatus for detecting and adjusting the phase difference between the position detector and the motor core, there is a drive unit 20 as shown in FIG. The drive unit 20 is mainly configured by a CPU 21 that performs overall control, and a drive control unit 22 controls the drive of the motor 10 based on parameters set in the setting unit 23, and the drive control unit 22 controls the three-phase coils 13 to 15. The motor 10 is driven by controlling the commutation of the current to flow. The phase of the motor core 12 of the motor 10 is detected by a resolver (absolute position resolver, relative position resolver) 18 attached to the motor 10, and the phase is measured by a measuring unit 24 based on a position signal from the resolver 18. Further, when the phase of the motor core 12 is adjusted, the measurement value measured by the measurement unit 24 is stored in the storage unit 25, the phase difference is calculated by the calculation unit 26 based on the storage data of the storage unit 25, and the calculated result is It is set as a parameter in the setting unit 23.

次に、ドライブユニット20を用いてモータコア12の位相調整を行う従来の動作を説明する。   Next, a conventional operation for adjusting the phase of the motor core 12 using the drive unit 20 will be described.

ドライブユニット20の駆動制御部22により図9のように、例えばU相のコイル13に直流電流を流してモータコア12を回転駆動し、モータコア12の発生するトルクがゼロとなる位置をモータコア12の励磁原点として定める様子を示している。図10は、図9のU相コイル13に電流を流したときにコイル14及び15に電流が分流して流れる様子を示している。このようにU相のコイル13に電流を流すとモータコア12の磁極真中の励磁原点で寄り付くはずであるが、モータコア12の摩擦や回転方向等の影響により、実際には図9に示すように励磁原点付近までしか寄り付くことができない。このため、モータコア12をCW方向及びCCW方向の両方から寄り付き動作を駆動制御部22により行い、各方向の駆動距離を計測部24により計測して、記憶部25に記憶する。計算部26はCW方向及びCCW方向からの各駆動距離を記憶部25より読出し、中点を励磁原点として設定部23に設定して位相調整を終了する。   As shown in FIG. 9, for example, a direct current is passed through the U-phase coil 13 by the drive control unit 22 of the drive unit 20 to rotationally drive the motor core 12, and the position where the torque generated by the motor core 12 becomes zero is the excitation origin of the motor core 12. It shows how to determine. FIG. 10 shows a state in which current flows in the coils 14 and 15 when current is passed through the U-phase coil 13 in FIG. When a current is passed through the U-phase coil 13 in this way, it should approach the excitation origin in the middle of the magnetic pole of the motor core 12, but due to the influence of the friction and rotation direction of the motor core 12, the excitation actually occurs as shown in FIG. You can only get close to the origin. For this reason, the drive control unit 22 performs an approaching operation of the motor core 12 from both the CW direction and the CCW direction, and the driving distance in each direction is measured by the measuring unit 24 and stored in the storage unit 25. The calculation unit 26 reads the driving distances from the CW direction and the CCW direction from the storage unit 25, sets the midpoint as the excitation origin, and ends the phase adjustment.

更に、モータコア12の位相調整時の出力トルクは、図11に示されるように励磁原点と現在位置との差が90°のときに向心力が最大となっていて、向心力が大きいときは電流を小さく、向心力が小さいときは電流を大きく流すようにしている。また、図12は、正弦波状の印加電流に対して、実際に発生する出力トルク特性(斜線部)を示している。実際に出力されるトルクは向心力と電流値の積で求まり、いずれの角度においても平均的なトルクを出力するように電流を正弦波状に印加している。   Further, as shown in FIG. 11, the output torque when the phase of the motor core 12 is adjusted has the maximum centripetal force when the difference between the excitation origin and the current position is 90 °, and the current is reduced when the centripetal force is large. When the centripetal force is small, a large current is allowed to flow. FIG. 12 shows output torque characteristics (shaded portions) actually generated with respect to a sinusoidal applied current. The actually output torque is obtained by the product of the centripetal force and the current value, and the current is applied in a sine wave shape so that an average torque is output at any angle.

上述の寄り付き動作によってモータコア12の位相検出を行う様子を、図13のフローチャート及び図14の模式図を参照して詳細に説明する。   The manner in which the phase of the motor core 12 is detected by the above-described approaching operation will be described in detail with reference to the flowchart of FIG. 13 and the schematic diagram of FIG.

図13及び図14の例は、寄り付き動作の駆動範囲を設定部23により励磁原点を対称に電気角120°と設定した場合である。図13に示すようにモータコア12の初期位置が電気角20°付近にあるとし(ステップS50)、CW方向に電気角120°位置に回転駆動し(ステップS51)、電気角120°位置からCCW方向に回転駆動して励磁原点に寄り付かせる(ステップS52)。このときの駆動距離A5を計測部24により計測し(ステップS53)、記憶部25に記憶し、更に励磁原点からCCW方向に電気角240°位置に回転駆動し(ステップS54)、回転駆動された電気角240°位置からCW方向の励磁原点に寄り付かせる(ステップS55)。このときの駆動距離A6を計測部24により計測し(ステップS56)、記憶部25に記憶する。計算部26は、CW方向及びCCW方向からの駆動距離A5及びA6を記憶部25から読出して中点を計算し(ステップS57)、算出された励磁原点の中点を設定部23に設定し(ステップS58)、モータコア12の位相調整を終了する。   The example of FIGS. 13 and 14 is a case where the drive range of the approaching operation is set by the setting unit 23 so that the excitation origin is symmetrical and the electrical angle is 120 °. As shown in FIG. 13, assuming that the initial position of the motor core 12 is in the vicinity of an electrical angle of 20 ° (step S50), the motor core 12 is rotationally driven in the CW direction to an electrical angle of 120 ° (step S51), and from the electrical angle of 120 ° to the CCW direction. To the excitation origin (step S52). The driving distance A5 at this time is measured by the measuring unit 24 (step S53), stored in the storage unit 25, and further rotated to an electrical angle of 240 ° in the CCW direction from the excitation origin (step S54). The electrical angle is moved from the 240 ° position to the excitation origin in the CW direction (step S55). The driving distance A6 at this time is measured by the measuring unit 24 (step S56) and stored in the storage unit 25. The calculation unit 26 reads the driving distances A5 and A6 from the CW direction and the CCW direction from the storage unit 25 and calculates the midpoint (step S57), and sets the calculated midpoint of the excitation origin in the setting unit 23 ( Step S58), the phase adjustment of the motor core 12 is finished.

しかしながら、上述のような永久磁石で構成されたブラシレスDCモータ10では、モータコア12の磁極に対して逆位相への駆動指令(例えば電気角0°から電気角180°)を行った場合に電気角0°と電気角180°では、いずれもトルクが0になるため回転駆動できないか、或いは回転駆動しにくいという問題がある。電源投入時や制御開始時或いはマニュアルで行う位相調整において、CW方向及びCCW方向からの寄り付き動作に逆位相への駆動指令が含まれることもあり、寄り付き動作に不具合が発生してしまう場合がある。その様子を、図15のフローチャート及び図16の模式図を参照して説明する。   However, in the brushless DC motor 10 composed of permanent magnets as described above, an electrical angle is generated when a drive command (for example, an electrical angle of 0 ° to an electrical angle of 180 °) is performed on the magnetic poles of the motor core 12 in the opposite phase. At 0 ° and an electrical angle of 180 °, the torque becomes 0, so that there is a problem that it cannot be rotated or is difficult to rotate. When power is turned on, when control is started, or when phase adjustment is performed manually, a drive command to the opposite phase may be included in the approaching operation from the CW direction and the CCW direction, which may cause a malfunction in the approaching operation. . This will be described with reference to the flowchart of FIG. 15 and the schematic diagram of FIG.

図15及び図16の例は、寄り付き動作の駆動範囲を設定部23により励磁原点を対称に120°と設定した場合である。図16に示すようにモータコアの初期位置が電気角300°にあるとし(ステップS60)、CW方向から逆位相である電気角120°に回転駆動することができない(ステップS61)。そのため、電気角300°の位置で励磁原点にCW方向から寄り付かせ(ステップS62)、このときの駆動距離A7を計測部24により計測して記憶部25に記憶し(ステップS63)、更に励磁原点から電気角240°位置にCCW方向に回転駆動し(ステップS64)、回転駆動された電気角240°位置からCW方向の励磁原点に寄り付かせる(ステップS65)。このときの駆動距離A8を計測部24により計測して記憶部25に記憶するが(ステップS66)、計算部26はCW方向のみの駆動距離A7及びA8のためエラーとする(ステップS67)。   The example of FIGS. 15 and 16 is a case where the drive range of the approaching operation is set by the setting unit 23 so that the excitation origin is symmetrically 120 °. As shown in FIG. 16, when the initial position of the motor core is at an electrical angle of 300 ° (step S60), the motor core cannot be rotationally driven to an electrical angle of 120 °, which is in the opposite phase from the CW direction (step S61). Therefore, the excitation angle is moved closer to the excitation origin from the CW direction at the electrical angle of 300 ° (step S62), and the driving distance A7 at this time is measured by the measurement unit 24 and stored in the storage unit 25 (step S63). The rotational angle is driven in the CCW direction from the origin to the electrical angle 240 ° position (step S64), and the rotationally driven electrical angle 240 ° position is brought close to the excitation origin in the CW direction (step S65). The driving distance A8 at this time is measured by the measuring unit 24 and stored in the storage unit 25 (step S66), but the calculating unit 26 sets an error because of the driving distances A7 and A8 only in the CW direction (step S67).

このように従来の位相調整方法では初期位置によって、電気角0°と計算された中点が一致しない場合がある。更に摩擦抵抗、慣性モーメントやコギングの大きいモータコアの位相調整を行う場合には、コイルに印加する電流が不足し、出力トルクが十分でない状態で寄り付き動作を行うと、摩擦等に基づく誤差の影響が大きくなり、正確な計測を行うことができない場合がある。   Thus, in the conventional phase adjustment method, the calculated midpoint may not match the calculated electrical angle of 0 ° depending on the initial position. Furthermore, when adjusting the phase of a motor core with large frictional resistance, moment of inertia and cogging, if the close-up operation is performed when the current applied to the coil is insufficient and the output torque is not sufficient, the effects of errors due to friction etc. In some cases, it becomes large and accurate measurement cannot be performed.

このため、常に正確な励磁原点を迅速に求める方法の出現が望まれていた。   For this reason, there has been a demand for the emergence of a method for always promptly obtaining an accurate excitation origin.

本発明は上述のような事情によりなされたものであり、本発明の目的は、従来のハードウェア構成でモータコアの位相調整をする場合に、モータコアを励磁原点及び励磁原点の逆位相を除いた位置に駆動し、励磁原点にモータコアを回転駆動する予備駆動の後、CW方向及びCCW方向からの寄り付き動作を確実に行うと共に、寄り付き動作時に任意のコイルへの印加電流の立ち上がり波形を急峻にすることにより、精度良くかつ迅速に位相調整を行うことができるモータコア位相調整方法を提供することにある。   The present invention has been made under the circumstances as described above, and an object of the present invention is to position the motor core excluding the excitation origin and the excitation origin in reverse phase when adjusting the phase of the motor core with a conventional hardware configuration. After pre-driving to rotate the motor core to the excitation origin, the approaching operation from the CW direction and the CCW direction is surely performed, and the rising waveform of the current applied to any coil during the approaching operation is made steep. Accordingly, it is an object of the present invention to provide a motor core phase adjustment method capable of performing phase adjustment with high accuracy and speed.

本発明は、複数の磁極を有するモータコアを備えたモータのコイルに電流を流して前記モータコアの位相を調整するモータコア位相調整方法に関し、本発明の上記目的は、励磁原点の正逆位相を除く位置に前記モータコアを回転駆動した後、前記励磁原点に回転駆動させ、前記励磁原点を対称にしてCW方向及びCCW方向にそれぞれ前記モータコアを所定の角度から回転駆動すると共に、前記回転駆動時の印加電流の立ち上がりを急峻にし、前記回転駆動の駆動距離の中点を前記励磁原点とすることにより達成される。   The present invention relates to a motor core phase adjustment method for adjusting a phase of the motor core by flowing a current through a motor coil having a motor core having a plurality of magnetic poles. The above object of the present invention is a position excluding the normal and reverse phases of the excitation origin. The motor core is rotated and driven to the excitation origin, the excitation origin is symmetrical, the motor core is rotated from a predetermined angle in the CW direction and the CCW direction, respectively, and the applied current during the rotation drive This is achieved by making the rise of the steep rise and setting the midpoint of the driving distance of the rotational drive as the excitation origin.

また、前記CW方向の駆動距離1と前記CCW方向の駆動距離2の平均値を前記中点とすることにより、或いは前記印加電流の立ち上がりを矩形波状にすることにより、或いは前記モータがブラシレスDCモータであることにより、より効果的に達成される。   Further, by setting the average value of the driving distance 1 in the CW direction and the driving distance 2 in the CCW direction as the middle point, or by making the rising of the applied current into a rectangular wave shape, or the motor is a brushless DC motor. This is achieved more effectively.

本発明のモータコア位相調整方法によれば、モータコアの位相調整する寄り付き動作を行う場合に、モータコアが逆位相に回転駆動できない場合があることを考慮して、モータコアを励磁原点及び励磁原点の逆位相を除いた位置に回転駆動させ、励磁原点に回転駆動する予備駆動の後、CW方向及びCCW方向からの寄り付き動作を行うと共に、任意のコイルに印加する電流の波形を急峻にして、十分な出力トルクに基づきモータコアの位相調整を行い、常に正確な励磁原点を求めることができる。また、回転駆動時の印加電流の立ち上がりを急峻にしているので高速駆動であり、迅速な位相調整が可能である。更に、その調整は従来のハードウェアをそのまま用い、ソフトウェアを変更するだけで、容易に行うことができる。   According to the motor core phase adjustment method of the present invention, when performing the approaching operation for adjusting the phase of the motor core, considering that the motor core may not be rotationally driven in the opposite phase, the motor core is moved to the excitation origin and the opposite phase of the excitation origin. After pre-driving to rotate to the position excluding, and rotating to the excitation origin, a close-up operation from the CW direction and CCW direction is performed, and the waveform of the current applied to any coil is steep and sufficient output By adjusting the phase of the motor core based on the torque, an accurate excitation origin can always be obtained. In addition, since the rising of the applied current at the time of rotational driving is steep, high-speed driving is possible and quick phase adjustment is possible. Further, the adjustment can be easily performed by using conventional hardware as it is and changing the software.

本発明に係るモータコア位相調整方法は、モータコア(ロータ)の位相調整によって寄り付き動作を行う場合に、モータコアに対して逆位相への駆動指令を与えることにより発生する不具合を考慮して、任意のコイルに電流を流して発生する磁力により寄り付く位置をモータコアの励磁原点(電気角原点)とし、励磁原点に対して逆位相を除いた位置へ一度回転駆動させ、更に励磁原点に回転駆動する予備駆動の後、確実に行われるCW及びCCW両方向からの寄り付き動作の各駆動距離を計測することにより、常に正確な励磁原点を求めるようにしている。また、寄り付き動作時において任意のコイルに流す印加電流の立ち上がりを急峻にすることで、迅速に出力される十分な出力トルクに基づいて駆動距離を計測することにより、正確な励磁原点を求めるようにしている。   In the motor core phase adjustment method according to the present invention, in the case of performing a close-up operation by adjusting the phase of the motor core (rotor), an arbitrary coil is considered in consideration of a problem caused by giving a drive command to the opposite phase to the motor core. The position that approaches the excitation origin (electrical angle origin) of the motor core, which is close to the magnetic force generated by passing a current through the motor, is rotated once to a position excluding the opposite phase with respect to the excitation origin, and further driven to the excitation origin. After that, the accurate excitation origin is always obtained by measuring each driving distance of the approaching operation from both the CW and CCW directions that is reliably performed. In addition, by making the rise of the applied current flowing in any coil steep during the approaching operation, the drive distance is measured based on sufficient output torque that is output quickly, so that an accurate excitation origin can be obtained. ing.

以下に、本発明の方法を図面を参照して説明する。また、本発明を実施する装置の構成は従来装置(図8)と同様であり、その説明を省略する。   The method of the present invention will be described below with reference to the drawings. Further, the configuration of the apparatus for carrying out the present invention is the same as that of the conventional apparatus (FIG. 8), and the description thereof is omitted.

本発明の動作例は図1のフローチャート及び図2の模式図の通りであり、図1及び図2の例は予備駆動として電気角300°の位置に回転駆動の後、更に励磁原点に回転駆動するようにし、寄り付き動作の駆動範囲を励磁原点を対称に電気角60°と設定した場合の寄り付き動作を示している。   An example of the operation of the present invention is as shown in the flowchart of FIG. 1 and the schematic diagram of FIG. 2. In the example of FIG. 1 and FIG. 2, the preliminary drive is rotated to an electrical angle of 300 ° and then rotated to the excitation origin. The approaching operation when the drive range of the approaching operation is set to an electrical angle of 60 ° symmetrically with respect to the excitation origin is shown.

先ず、図2に示すようにモータコア12の初期位置が電気角210°付近にある状態から予備駆動を行う(ステップS10)。予備駆動はCW方向に電気角300°位置に回転駆動し(ステップS11)、電気角300°位置から励磁原点に回転駆動させ(ステップS12)、寄り付き動作を行う。次に、励磁原点からCW方向の電気角60°位置に回転駆動し(ステップS13)、回転駆動された電気角60°位置からCCW方向の励磁原点に寄り付かせ(ステップS14)、このときの駆動距離A1を計測部24により計測して記憶部25に記憶する(ステップS15)。そして、励磁原点からCCW方向の電気角300°位置に回転駆動し(ステップS16)、回転駆動された電気角300°位置からCW方向の励磁原点に寄り付かせ(ステップS17)、このときの駆動距離A2を計測部24により計測して記憶部25に記憶する(ステップS18)。計算部26は駆動距離A1及びA2を記憶部25から読出して中点を算出し(ステップS19)、算出された中点を励磁原点として設定部23に設定し(ステップS20)、モータコア12の位相調整を終了する。   First, as shown in FIG. 2, preliminary driving is performed from a state where the initial position of the motor core 12 is in the vicinity of an electrical angle of 210 ° (step S10). Preliminary driving is performed by rotating the electrical angle in the CW direction to an electrical angle of 300 ° (step S11), rotationally driving from the electrical angle of 300 ° to the excitation origin (step S12), and performing an approaching operation. Next, it is rotationally driven from the excitation origin to the electrical angle 60 ° position in the CW direction (step S13), and is moved closer to the excitation origin in the CCW direction from the rotationally driven electrical angle 60 ° position (step S14). The driving distance A1 is measured by the measuring unit 24 and stored in the storage unit 25 (step S15). Then, it is rotationally driven from the excitation origin to the electrical angle 300 ° position in the CCW direction (step S16), and is moved closer to the excitation origin in the CW direction from the rotationally driven electrical angle 300 ° position (step S17). The distance A2 is measured by the measuring unit 24 and stored in the storage unit 25 (step S18). The calculation unit 26 reads the driving distances A1 and A2 from the storage unit 25 to calculate the midpoint (step S19), sets the calculated midpoint as the excitation origin in the setting unit 23 (step S20), and the phase of the motor core 12 Finish the adjustment.

一方、図3及び図4の例は、初期位置が120°位置であり、予備駆動として電気角300°の位置に回転駆動の後、更に励磁原点に回転駆動するようにして、寄り付き動作の駆動範囲を励磁原点を対称に電気角60°と設定した場合の動作を示している。   On the other hand, in the examples of FIGS. 3 and 4, the initial position is 120 ° position, and as a preliminary drive, after rotating to an electrical angle of 300 °, further rotating to the excitation origin to drive the approaching operation. The operation when the range is set to an electrical angle of 60 ° symmetrically with respect to the excitation origin is shown.

先ず、図4に示すようにモータコアの初期位置が電気角120°付近にある状態から予備駆動を行う(ステップS30)。予備駆動はCCW方向の電気角300°位置に回転駆動するようにしているが、逆位相であるため回転駆動することができないので(ステップS31)、一旦励磁原点に回転駆動して、寄り付き動作を行う(ステップS32)。そして、励磁原点からCW方向の電気角60位置°に回転駆動し(ステップS33)、回転駆動された電気角60°位置からCCW方向の励磁原点に寄り付かせ(ステップS34)、このときの駆動距離A3を計測部24により計測して記憶部25に記憶する(ステップS35)。更に励磁原点からCCW方向の電気角300°位置に回転駆動し(ステップS36)、回転駆動された電気角300°位置からCW方向の励磁原点に寄り付かせ(ステップS37)このときの駆動距離A4を計測部24により計測して記憶部25に記憶する(ステップS38)。計算部26は駆動距離A3及びA4を記憶部25から読出して中点を算出し(ステップS39)、算出された中点を励磁原点として設定部23に設定し(ステップS40)、モータコア12の位相調整を終了する。   First, as shown in FIG. 4, preliminary driving is performed from a state where the initial position of the motor core is in the vicinity of an electrical angle of 120 ° (step S30). Preliminary drive is rotationally driven at an electrical angle of 300 ° in the CCW direction. However, since it is in an opposite phase, it cannot be rotationally driven (step S31). It performs (step S32). Then, it is rotationally driven from the excitation origin to an electrical angle of 60 ° in the CW direction (step S33), and moved from the rotationally driven electrical angle of 60 ° to the excitation origin in the CCW direction (step S34). The distance A3 is measured by the measuring unit 24 and stored in the storage unit 25 (step S35). Further, it is rotationally driven from the excitation origin to the 300 ° electrical angle position in the CCW direction (step S36), and is moved closer to the excitation origin in the CW direction from the rotationally driven electrical angle position of 300 ° (step S37). Is measured by the measurement unit 24 and stored in the storage unit 25 (step S38). The calculation unit 26 reads the driving distances A3 and A4 from the storage unit 25 to calculate the midpoint (step S39), sets the calculated midpoint as the excitation origin in the setting unit 23 (step S40), and the phase of the motor core 12 Finish the adjustment.

しかしながら、前述したようにモータコア12の位相調整時における出力トルクは、現在位置と励磁原点との距離がどのような場合においても、平均的に出力されるようになっているため、図12で説明したように正弦波的に増減している。その駆動トルクも正弦波的に増減し、高速駆動の点では問題がある。そのため、本発明では立ち上がりを急峻にして矩形波状に駆動する。本発明の印加電流と出力トルクの特性例を図5を参照して説明する。   However, as described above, the output torque at the time of adjusting the phase of the motor core 12 is output on average regardless of the distance between the current position and the excitation origin. As you can see, it increases or decreases sinusoidally. The driving torque also increases and decreases sinusoidally, which is problematic in terms of high-speed driving. Therefore, in the present invention, the driving is performed in a rectangular wave shape with a steep rise. A characteristic example of the applied current and output torque of the present invention will be described with reference to FIG.

モータコア12の出力トルクと駆動速度は、印加する電流の立ち上がり時間(傾斜角)をモータ10のタイプ、モータコア12の摩擦抵抗、慣性モーメント及びコギング等の負荷や状態を考慮して外部から変えることができる。例えば図5に示すように印加電流を矩形波状に急峻に立ち上げることにより、出力されるトルクも急激に大きく出力される。このように、印加電流の立ち上がりを急峻にした場合、出力トルクが急激に大きくなることによりモータコア12の回転も急速にでき、電流実効値は増加するが定格電流範囲であれば異常発熱を抑制できる。そして、外部から設定されるパラメータに基づいて、本発明の図1〜4の各寄り付き動作時に電流を急峻に印加することでモータコア12の位相調整を高速度に行うことができる。   The output torque and driving speed of the motor core 12 can be changed from the outside in consideration of loads and states such as the motor 10 type, friction resistance, inertia moment and cogging of the motor core 12, and the rise time (tilt angle) of the applied current. it can. For example, as shown in FIG. 5, when the applied current rises sharply in a rectangular wave shape, the output torque is also rapidly increased. As described above, when the rising of the applied current is made steep, the output torque is rapidly increased, so that the motor core 12 can be rotated rapidly, and the effective current can be increased, but abnormal heat generation can be suppressed within the rated current range. . Then, the phase adjustment of the motor core 12 can be performed at a high speed by applying the current steeply at the time of each approaching operation of FIGS.

以上のように本発明によれば、十分に出力される出力トルクに基づいて回転駆動されるモータコアの励磁原点及び励磁原点の逆位相を除いた位置に回転駆動し、その後に励磁原点に回転駆動する予備駆動を行った後、CW方向及びCCW方向からそれぞれ寄り付き動作を高速に行い、駆動距離の中点を電気角原点に設定しているので、常に正確な位相調整を迅速に行うことができる。   As described above, according to the present invention, the rotation is driven to the position excluding the excitation origin and the reverse phase of the excitation origin of the motor core that is rotationally driven based on the output torque that is sufficiently output, and then the rotation is driven to the excitation origin. After the preliminary drive, the close-up operation is performed at high speed from the CW direction and the CCW direction, and the midpoint of the drive distance is set as the electrical angle origin, so that accurate phase adjustment can always be performed quickly. .

なお、予備駆動及び寄り付き動作を行う場合に電流を流す相は、一つでも複数でも良く、モータコアの特定の磁極に対して作用し、モータコアのトルクをゼロにすることができれば良い。また、正位相を励磁原点としたが逆位相を原点とすることとしても、モータコアのトルクをゼロにすることができるので同等の効果が得られ、モータコイルも3相を例に挙げたが、多相であれば同等の効果が得られ、U相のみに限らずV相やW相でも検出することができ、モータコアの磁極数についても4極を例に挙げたが、多極であれば同等の効果が得られる。また、ブラシレスDCモータとしてインナーロータ型を例として説明をしたが、アウターロータ型でも同等の効果が得られる。   It should be noted that there may be one or a plurality of phases in which a current is passed in performing the pre-driving and the approaching operation as long as it acts on a specific magnetic pole of the motor core and the torque of the motor core can be made zero. Even if the positive phase is the excitation origin but the opposite phase is the origin, the motor core torque can be reduced to zero, so the same effect can be obtained. If it is multiphase, the same effect can be obtained, and it can be detected not only in U phase but also in V phase and W phase, and the number of magnetic poles of the motor core is exemplified as 4 poles. The same effect can be obtained. Further, although the inner rotor type has been described as an example of the brushless DC motor, the same effect can be obtained even with the outer rotor type.

本発明に係るモータコア位相調整方法の例を示すフローチャートである。It is a flowchart which shows the example of the motor core phase adjustment method which concerns on this invention. 本発明に係るモータコア位相調整方法の例を示す模式図である。It is a schematic diagram which shows the example of the motor core phase adjustment method which concerns on this invention. 本発明に係るモータコア位相調整方法の他の例を示すフローチャートである。It is a flowchart which shows the other example of the motor core phase adjustment method which concerns on this invention. 本発明に係るモータコア位相調整方法の他の例を示す模式図である。It is a schematic diagram which shows the other example of the motor core phase adjustment method which concerns on this invention. 本発明に係るモータコアに印加する電流と出力トルクの特性例を示す図である。It is a figure which shows the example of a characteristic of the electric current applied to the motor core which concerns on this invention, and an output torque. 3相ブラシレスDCモータの軸方向の断面図である。It is sectional drawing of the axial direction of a three-phase brushless DC motor. 3相ブラシレスDCモータの各相の位相差を示す図である。It is a figure which shows the phase difference of each phase of a three-phase brushless DC motor. ドライブユニットの構成例を示す図である。It is a figure which shows the structural example of a drive unit. 3相ブラシレスDCモータに生じる誤差を示す軸方向の断面図である。It is sectional drawing of the axial direction which shows the error which arises in a three-phase brushless DC motor. 3相ブラシレスDCモータの等価回路図である。It is an equivalent circuit diagram of a three-phase brushless DC motor. モータコアの位相差により変化する向心力の出力特性例を示す図である。It is a figure which shows the output characteristic example of the centripetal force which changes with the phase difference of a motor core. モータコアに印加される電流に対する出力トルクの特性例を示す図である。It is a figure which shows the example of a characteristic of the output torque with respect to the electric current applied to a motor core. 従来の寄り付き動作による位相調整方法の一例を示すフローチャートである。It is a flowchart which shows an example of the phase adjustment method by the conventional close-in operation | movement. 従来の寄り付き動作による位相調整の様子を示す模式図である。It is a schematic diagram which shows the mode of the phase adjustment by the conventional close-in operation | movement. 従来の寄り付き動作による位相調整方法の他の例を示すフローチャートである。It is a flowchart which shows the other example of the phase adjustment method by the conventional close-in operation | movement. 従来の寄り付き動作による位相調整の様子の他の例を示す模式図である。It is a schematic diagram which shows the other example of the mode of the phase adjustment by the conventional close-in operation | movement.

符号の説明Explanation of symbols

10 モータ
11 ステータ
12 モータコア
13 U相コイル
14 V相コイル
15 W相コイル
18 レゾルバ
20 ドライブユニット
21 CPU
22 駆動制御部
23 設定部
24 計測部
25 記憶部
26 計算部
DESCRIPTION OF SYMBOLS 10 Motor 11 Stator 12 Motor core 13 U phase coil 14 V phase coil 15 W phase coil 18 Resolver 20 Drive unit 21 CPU
22 drive control unit 23 setting unit 24 measurement unit 25 storage unit 26 calculation unit

Claims (4)

複数の磁極を有するモータコアを備えたモータのコイルに電流を流して前記モータコアの位相を調整するモータコア位相調整方法において、励磁原点の正逆位相を除く位置に前記モータコアを回転駆動した後、前記励磁原点に回転駆動させ、前記励磁原点を対称にしてCW方向及びCCW方向にそれぞれ前記モータコアを所定の角度から回転駆動すると共に、前記回転駆動時の印加電流の立ち上がりを急峻にし、前記回転駆動の駆動距離の中点を前記励磁原点とすることを特徴とするモータコア位相調整方法。 In a motor core phase adjustment method for adjusting a phase of the motor core by flowing a current through a coil of a motor having a motor core having a plurality of magnetic poles, the motor core is rotationally driven to a position excluding the normal / reverse phase of the excitation origin, and then the excitation Drive rotationally to the origin, rotate the motor core from a predetermined angle in the CW direction and the CCW direction with the excitation origin symmetrical, and steeply rise the applied current during the rotational drive to drive the rotational drive A motor core phase adjusting method, wherein a midpoint of a distance is set as the excitation origin. 前記CW方向の駆動距離1と前記CCW方向の駆動距離2の平均値を前記中点とする請求項1に記載のモータコア位相調整方法。 The motor core phase adjustment method according to claim 1, wherein an average value of the driving distance 1 in the CW direction and the driving distance 2 in the CCW direction is the midpoint. 前記印加電流の立ち上がりを矩形波状にした請求項1又は2に記載のモータコア位相調整方法。 The motor core phase adjusting method according to claim 1 or 2, wherein the rising edge of the applied current is rectangular. 前記モータがブラシレスDCモータである請求項1乃至3のいずれかに記載のモータコア位相調整方法。
The motor core phase adjusting method according to claim 1, wherein the motor is a brushless DC motor.
JP2006214655A 2006-08-07 2006-08-07 Motor core phase adjusting method Pending JP2008043065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006214655A JP2008043065A (en) 2006-08-07 2006-08-07 Motor core phase adjusting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006214655A JP2008043065A (en) 2006-08-07 2006-08-07 Motor core phase adjusting method

Publications (1)

Publication Number Publication Date
JP2008043065A true JP2008043065A (en) 2008-02-21

Family

ID=39177469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006214655A Pending JP2008043065A (en) 2006-08-07 2006-08-07 Motor core phase adjusting method

Country Status (1)

Country Link
JP (1) JP2008043065A (en)

Similar Documents

Publication Publication Date Title
KR102446699B1 (en) Method for sensor-free control of a PMSM motor
US6100656A (en) Start-up algorithm for a brushless sensorless motor
JP4801772B2 (en) Brushless motor control device and brushless motor control method
TWI844595B (en) Position corrected commutation of brushless direct current motors
US11050370B2 (en) Method for detecting magnetic field location in electric motor
CN111989857B (en) Method for determining angular offset of position sensor
KR20140001826A (en) Method and circuit arrangement for checking the rotor position of a synchronous machine
JP6186824B2 (en) Brushless motor control device, brushless motor electrical angle estimation method, and storage medium
JP5665383B2 (en) Motor control device and control method
JP6962957B2 (en) DC excitation type magnetic pole initial position detection device and magnetic pole position detection device
CN110098775B (en) Permanent magnet motor based on neutral point voltage driving
JP5464793B2 (en) Motor drive device
JP7004540B2 (en) Brushless three-phase synchronous electric motor start control method
JP5261928B2 (en) Motor pole phase adjustment method
JP5772799B2 (en) Motor pole phase adjustment method
KR20170071260A (en) Method and system for detecting a position of low speed section in sensorless motor
JP6087537B2 (en) Control device and stepping motor control method
JP2008043065A (en) Motor core phase adjusting method
JP2008043066A (en) Motor core phase adjusting method
JP6343235B2 (en) Brushless motor driving apparatus and driving method
JP2008043064A (en) Motor core phase adjusting method
JP2007312535A (en) Drive device for synchronous motor, and device for manufacturing the drive device for synchronous motor
JP4416541B2 (en) Stepping motor control method
JP2011109870A (en) Magnetic pole position estimation device of synchronous motor
JP7433113B2 (en) Motor control device, motor system and motor control method