JP2008040285A - Toner - Google Patents

Toner Download PDF

Info

Publication number
JP2008040285A
JP2008040285A JP2006216426A JP2006216426A JP2008040285A JP 2008040285 A JP2008040285 A JP 2008040285A JP 2006216426 A JP2006216426 A JP 2006216426A JP 2006216426 A JP2006216426 A JP 2006216426A JP 2008040285 A JP2008040285 A JP 2008040285A
Authority
JP
Japan
Prior art keywords
mass
parts
resin
polyester resin
toner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006216426A
Other languages
Japanese (ja)
Inventor
Hiroyuki Mariko
浩之 鞠子
Hitoshi Takayanagi
均 高柳
Yoshihiro Sato
義浩 佐藤
Takayuki Ito
孝之 伊東
Kenichi Hirabayashi
憲一 平林
Akira Yoshimuta
晃 吉牟田
Hiroyuki Onishi
弘幸 大西
Toshiaki Yamagami
利昭 山上
Masaya Shibatani
正也 柴谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2006216426A priority Critical patent/JP2008040285A/en
Publication of JP2008040285A publication Critical patent/JP2008040285A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To solve problems that when a softening point and a glass transition temperature of a polyester resin are lowered, the content of volatile organic compounds (VOC) included in the polyester resin increases, and when a toner containing a polyester resin having a low softening point and a low glass transition temperature as a raw material is fixed, the amount of VOC also increases. <P>SOLUTION: A thermoplastic polyester resin having a softening point of 90 to 100°C, a glass transition point of 35 to 50°C and the content of volatile organic compounds of 170 ppm or less is used as a resin component of the toner. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、複写機、プリンター、ファックス等に好適に用いられ、さらにはトナージェット方式のプリンター等にも用いられる静電荷像現像用トナーに関する。   The present invention relates to an electrostatic charge image developing toner that is suitably used for a copying machine, a printer, a fax machine, and the like, and further used for a toner jet printer or the like.

電子写真式の複写機、プリンター、ファックス等の画像出力装置においては、印刷画像品質の高解像度化、階調性の向上、廃トナー量の削減、定着温度の低温度化による消費エネルギーの低下、フルカラー画像における画像特性の向上等の要求から、画像形成に用いるトナー粒子は、粉砕によって小粒径粒子を製造する粉砕法に代えて重合法や乳化分散法等が利用されている。
重合法によるトナーの製造方法では、結着樹脂がラジカル重合可能なビニル重合体に限られているので、ポリエステル樹脂を原料としてトナーを製造することはできない。また、重合法では、未反応モノマーなどからなる揮発性有機化合物が残留するという問題があった。
これに対して、結着樹脂と着色剤等の混合物を水性媒体と混合して乳化させた後に、粒子を生成させる乳化分散法が提案されている。乳化分散法は、結着樹脂と着色剤等との混合物を水性媒体と混合して乳化させてトナー粒子を得る方法であるので、混合溶剤を使用するために溶剤の回収、再利用が困難であるとともに、微粒子が発生するのでトナーの収率が低下するという問題点があった。
In image output devices such as electrophotographic copiers, printers, fax machines, etc., the resolution of printed images is improved, the gradation is improved, the amount of waste toner is reduced, and the energy consumption is reduced by lowering the fixing temperature. In view of demands for improving image characteristics in full-color images, toner particles used for image formation use a polymerization method, an emulsification dispersion method, or the like instead of a pulverization method in which small particle size particles are produced by pulverization.
In the toner manufacturing method by the polymerization method, since the binder resin is limited to a vinyl polymer capable of radical polymerization, the toner cannot be manufactured using a polyester resin as a raw material. In addition, the polymerization method has a problem that volatile organic compounds composed of unreacted monomers remain.
On the other hand, an emulsification dispersion method has been proposed in which particles are produced after a mixture of a binder resin and a colorant is mixed with an aqueous medium and emulsified. The emulsion dispersion method is a method in which a mixture of a binder resin and a colorant is mixed with an aqueous medium and emulsified to obtain toner particles. Therefore, since a mixed solvent is used, it is difficult to recover and reuse the solvent. In addition, there is a problem that the yield of the toner is reduced because fine particles are generated.

そこで、ポリエステル樹脂等を結着樹脂として乳化分散した後、得られた微粒子を凝集させ、更に加温して融着させて会合体を形成する方法が提案されているが、凝集した後に融着させるため、高温で長時間攪拌する必要があるという問題点があった。
また、乳化分散により微粒子を製造した後に、該微粒子を凝集させる工程と凝集した微粒子同士を融着させる工程を同時に行う方法が提案されているが、分散安定剤や電解質を使用せず、高剪断力下での粒子間の衝突により合一を行っている。このため合一が不均一となりやすく、凝集物の発生が避けらなかった。一方、剪断力下で乳化分散を行い、引き続き同条件下で粒子の凝集を行うため、合一とともに解砕が競争的に生じ、そのため微粒子の発生が多くなり、生成するトナー粒子の粒度分布を狭くすることに限界があった。
Therefore, a method has been proposed in which a polyester resin or the like is emulsified and dispersed as a binder resin, and then the obtained fine particles are aggregated and further heated and fused to form an aggregate. Therefore, there is a problem that it is necessary to stir at high temperature for a long time.
In addition, a method has been proposed in which fine particles are produced by emulsification and dispersion, and then the step of aggregating the fine particles and the step of fusing the agglomerated fine particles are performed at the same time. They are united by collisions between particles under force. For this reason, the coalescence tends to be non-uniform, and the generation of aggregates is inevitable. On the other hand, since emulsification and dispersion are performed under shearing force, and then the particles are aggregated under the same conditions, crushing occurs at the same time as coalescence, so the generation of fine particles increases, and the particle size distribution of the toner particles to be generated is increased. There was a limit to narrowing.

これらの方法に対して、ポリエステル樹脂、ワックス、着色剤等を有機溶中に溶解または分散させ、得られた油相成分を水性媒体中に分散造粒する転相乳化法と称するトナー製造方法が提案されている。この方法では、乳化損失を減少させて粒度分布がシャープなものを得るために、油相成分を水性媒体中に乳化させて、水性媒体中に該混合物の微粒子を形成させる乳化工程、次いで分散安定剤を添加し、更に電解質を順次添加することで該微粒子を合一させる合一工程を経てトナーを製造するものである(例えば、特許文献1、2参照)。この製造方法で得られたトナー粒子は、ポリエステル樹脂として軟化点及びガラス転移温度が低いものを使用することにより、トナーの低温定着を達成できるが、ポリエステル樹脂の軟化点及びガラス転移温度を低くすると、ポリエステル樹脂に含まれる、残留未反応モノマー等の揮発性有機化合物(VOC)の含有量が多くなり、軟化点及びガラス転移温度が低いポリエステル樹脂を原料とするトナーを定着する際に発生するVOC量も増加するという問題があった。
特開2003−122051号公報 特開2004−198598号公報
In contrast to these methods, there is a toner production method called a phase inversion emulsification method in which a polyester resin, wax, colorant and the like are dissolved or dispersed in an organic solution, and the obtained oil phase component is dispersed and granulated in an aqueous medium. Proposed. In this method, in order to reduce emulsification loss and obtain a sharp particle size distribution, an oil phase component is emulsified in an aqueous medium to form fine particles of the mixture in the aqueous medium, followed by dispersion stabilization. A toner is manufactured through a coalescing step in which the fine particles are coalesced by adding an agent and sequentially adding an electrolyte (see, for example, Patent Documents 1 and 2). The toner particles obtained by this production method can achieve low-temperature fixing of the toner by using a polyester resin having a low softening point and glass transition temperature, but if the softening point and glass transition temperature of the polyester resin are lowered, VOCs generated when fixing toners made from polyester resin, which has a high softening point and low glass transition temperature, and contains a large amount of volatile organic compounds (VOC) such as residual unreacted monomers contained in the polyester resin There was a problem that the amount also increased.
JP 2003-122051 A JP 2004-198598 A

本発明は、ポリエステル樹脂の軟化点及びガラス転移温度を低くすると、ポリエステル樹脂に含まれる揮発性有機化合物(VOC)の含有量が多くなり、軟化点及びガラス転移温度が低いポリエステル樹脂を原料とするトナーを定着する際に発生するVOC量も増加するという問題を解決することを課題とするものである。   In the present invention, when the softening point and glass transition temperature of the polyester resin are lowered, the content of the volatile organic compound (VOC) contained in the polyester resin is increased, and the polyester resin having a low softening point and glass transition temperature is used as a raw material. An object of the present invention is to solve the problem that the amount of VOC generated when fixing toner is also increased.

本発明は、樹脂成分として、軟化点が90〜100℃、ガラス転移温度が35〜50℃かつ揮発性有機化合物含有量が170ppm以下であるポリエステル樹脂を使用ことを特徴とするものである。
また、本発明は、静電荷像現像用トナーであって、上記熱可塑性ポリエステル樹脂が、樹脂成分に対して30質量%以上含有されることを特徴とするものである。
本発明のトナーは、上記熱可塑性ポリエステル樹脂が含有される結着樹脂、ワックス及び着色剤を有機溶剤中に溶解あるいは分散させて着色樹脂溶液を得る工程、着色樹脂溶液に塩基性化合物、水を順次添加して、水性媒体中に着色樹脂溶液を乳化させる工程、調製した乳化懸濁液に電解質水溶液を添加し、当該乳化懸濁液中の分散質を合一させることにより着色樹脂微粒子を生成させて粒子形成を行う工程、減圧下で有機溶剤を除去した後に、着色樹脂微粒子を水性媒体中から分離、洗浄し、乾燥させる工程を経て生産される。
本発明は、上記トナーにおいて、コアシェル構造を有することを特徴とするものである。
本発明は、上記トナーにおいて、揮発性有機化合物含有量が50ppm以下であることを特徴とするものである。
本発明により、軟化点及びガラス転移温度が低く、かつVOC含有量が少ない熱可塑性ポリエステルトナーが提供される。
The present invention is characterized in that a polyester resin having a softening point of 90 to 100 ° C., a glass transition temperature of 35 to 50 ° C. and a volatile organic compound content of 170 ppm or less is used as the resin component.
The present invention is also an electrostatic image developing toner, characterized in that the thermoplastic polyester resin is contained in an amount of 30% by mass or more based on the resin component.
The toner of the present invention comprises a step of obtaining a colored resin solution by dissolving or dispersing the binder resin, wax and colorant containing the thermoplastic polyester resin in an organic solvent, and adding a basic compound and water to the colored resin solution. Step of emulsifying the colored resin solution in the aqueous medium sequentially, adding the electrolyte aqueous solution to the prepared emulsion suspension, and combining the dispersoids in the emulsion suspension to produce colored resin fine particles The particles are produced through a step of forming particles, removing an organic solvent under reduced pressure, and then separating, washing, and drying the colored resin fine particles from the aqueous medium.
The present invention is characterized in that the toner has a core-shell structure.
The present invention is characterized in that the toner has a volatile organic compound content of 50 ppm or less.
According to the present invention, a thermoplastic polyester toner having a low softening point and glass transition temperature and a low VOC content is provided.

以下、本発明を詳しく説明する。本発明のポリエステル樹脂は、2価塩基酸類と2価アルコールとを反応させることによって製造する。
2価塩基酸化合物としては、例えば、無水フタル酸、テレフタル酸、イソフタル酸、アジピン酸、マレイン酸、無水マレイン酸、フマル酸、イタコン酸、シトラコン酸、ヘキサヒドロ無水フタル酸、シクロヘキサンジカルボン酸、コハク酸、マロン酸、グルタル酸、アゼライン酸、セバシン酸などのジカルボン酸又はその誘導体が挙げられる。
The present invention will be described in detail below. The polyester resin of the present invention is produced by reacting a divalent basic acid with a dihydric alcohol.
Examples of the divalent basic acid compound include phthalic anhydride, terephthalic acid, isophthalic acid, adipic acid, maleic acid, maleic anhydride, fumaric acid, itaconic acid, citraconic acid, hexahydrophthalic anhydride, cyclohexanedicarboxylic acid, and succinic acid. , Dicarboxylic acids such as malonic acid, glutaric acid, azelaic acid and sebacic acid or derivatives thereof.

2価脂肪族アルコールとしては、例えば、1,4−シクロヘキサンジメタノール、エチレングリコール、ジエチレングリコール、プロピレングリコール、トリエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、ネオペンチルグリコール、ブタンジオール、ペンタンジオール、ヘキサンジオール、ポリエチレングリコール、ポリプロピレングリコール、エチレンオキサイドープロピレンオキサイドランダム共重合体ジオール、エチレンオキサイド−プロピレンオキサイドブロック共重合体ジオール、エチレンオキサイド−テトラハイドロフラン共重合体ジオール、ポリカプロカクトンジオールなどのジオールが挙げられる。   Examples of the divalent aliphatic alcohol include 1,4-cyclohexanedimethanol, ethylene glycol, diethylene glycol, propylene glycol, triethylene glycol, dipropylene glycol, tripropylene glycol, neopentyl glycol, butanediol, pentanediol, and hexanediol. Diols such as polyethylene glycol, polypropylene glycol, ethylene oxide-propylene oxide random copolymer diol, ethylene oxide-propylene oxide block copolymer diol, ethylene oxide-tetrahydrofuran copolymer diol, polycaprocactone diol It is done.

通常ポリエステル樹脂を合成する場合、原料成分を用いて、触媒の存在下で脱水縮合反応又はエステル交換反応を行う。
上記反応を行う際の触媒として、例えばテトラブチルチタネート、酸化亜鉛、酸化第一錫、ジブチル錫オキサイド、ジブチル錫ジラウレート、パラトルエンスルホン酸などを適宜使用する。反応は原料を反応釜に仕込んだ後、加温し常圧もしくは加圧下で反応を進め、樹脂反応物が透明(約90%の反応が進んだ状態)になったところで、減圧し更に反応を進め目的の粘度の樹脂を得る。本発明の樹脂は触媒の使用を極力抑え減圧後の反応の進行を極力遅くし樹脂製造時の減圧反応時間を出来るだけ長くした事で樹脂の残存モノマーを除去し低VOC化したことを特徴とする。
Usually, when a polyester resin is synthesized, a dehydration condensation reaction or a transesterification reaction is performed in the presence of a catalyst using raw material components.
As a catalyst for performing the above reaction, for example, tetrabutyl titanate, zinc oxide, stannous oxide, dibutyltin oxide, dibutyltin dilaurate, paratoluenesulfonic acid and the like are appropriately used. In the reaction, after the raw materials are charged into the reaction kettle, the reaction is heated and the reaction proceeds at normal pressure or under pressure. When the resin reactant becomes transparent (a state in which about 90% of the reaction has progressed), the pressure is reduced and the reaction is continued. Proceed to obtain a resin with the desired viscosity. The resin of the present invention is characterized in that the use of the catalyst is suppressed as much as possible and the progress of the reaction after depressurization is made as slow as possible, and the depressurization reaction time at the time of resin production is made as long as possible to remove the residual monomer of the resin and reduce the VOC. To do.

本発明のポリエステル樹脂のガラス転移温度は、35〜50℃であり、40〜50℃であることが特に好ましい。ポリエステル樹脂のガラス転移温度が35℃より低いと、トナーが保存、運搬、あるいはマシンの現像装置内部で高温下に晒された場合にブロッキング現象(熱凝集)が生じやすい。また、ポリエステル樹脂のガラス転移温度が50℃より高いと、トナーの低湛定着性が低下するため好ましくない。   The glass transition temperature of the polyester resin of this invention is 35-50 degreeC, and it is especially preferable that it is 40-50 degreeC. When the glass transition temperature of the polyester resin is lower than 35 ° C., a blocking phenomenon (thermal aggregation) tends to occur when the toner is stored, transported, or exposed to a high temperature inside the developing device of the machine. Further, if the glass transition temperature of the polyester resin is higher than 50 ° C., it is not preferable because the low toner fixing property of the toner is lowered.

また、本発明のポリエスデル樹脂の軟化点は90℃〜100℃であり、90℃〜95℃であることが特に好ましい。これは、ポリエステル樹脂の軟化点が90℃未満の場合は、トナーが凝集現象を生じやすくなるので保存時や印字の際にトラブルになりやすく、ポリエステル樹脂の軟化点が100℃を越える場合には、トナーの定着性が悪化しやすくなるためである。   The softening point of the polyester resin of the present invention is 90 ° C to 100 ° C, and particularly preferably 90 ° C to 95 ° C. This is because when the softening point of the polyester resin is less than 90 ° C., the toner tends to cause agglomeration phenomenon, which is likely to cause trouble during storage or printing. When the softening point of the polyester resin exceeds 100 ° C. This is because the toner fixing property is likely to deteriorate.

本発明のポリエステル樹脂のVOC含有量は170ppm以下であり、150ppm以下であることが更に好ましい。ポリエステル樹脂のVOC含有量が180ppmを超えると、トナーのVOC含有量も増加し、その結果、トナーの定着時に発生するVOC量が増大する。   The VOC content of the polyester resin of the present invention is 170 ppm or less, and more preferably 150 ppm or less. When the VOC content of the polyester resin exceeds 180 ppm, the VOC content of the toner also increases, and as a result, the VOC amount generated at the time of fixing the toner increases.

ポリエステル樹脂の軟化点は、定荷重押出し形細管式レオメータ(島津製作所製フローテスタCFT−500)を用いて測定されるT1/2温度である。測定は、ピストン断面積1cm2、シリンダ圧力0.98MPa、ダイ穴長さ1mm、ダイ穴径1mm、測定開始温度50℃、昇温速度6℃/min、試料質量1.5gの条件下で行う。 The softening point of the polyester resin is a T1 / 2 temperature measured using a constant load extrusion type capillary rheometer (Flow Tester CFT-500 manufactured by Shimadzu Corporation). The measurement is performed under the conditions of a piston cross-sectional area of 1 cm 2 , a cylinder pressure of 0.98 MPa, a die hole length of 1 mm, a die hole diameter of 1 mm, a measurement start temperature of 50 ° C., a temperature increase rate of 6 ° C./min, and a sample mass of 1.5 g. .

また、ポリエステル樹脂のガラス転移温度の測定は、DSC(島津製作所製DSC−60A)を用いて測定される。アルミ製クリンプセルに試料20mgを入れ、昇温速度10℃/minで180℃まで昇温、180℃から降温速度10℃/minで常温まで冷却し、再度昇温速度10℃/minで180℃まで昇温、セカンドランの値をTgとする。   Moreover, the measurement of the glass transition temperature of a polyester resin is measured using DSC (Shimadzu DSC-60A). 20 mg of sample is put in an aluminum crimp cell, heated to 180 ° C. at a heating rate of 10 ° C./min, cooled to room temperature at a cooling rate of 10 ° C./min from 180 ° C., and again to 180 ° C. at a heating rate of 10 ° C./min. The temperature rise and the second run value are Tg.

揮発性有機化合物含有量(VOC)測定はガスクロマトグラフィー(島津 GC−17A)によって求めた。サンプル500mgを27mlのヘッドスペースバイアブルに秤量し、栓をする。このバイアルを200℃で5分間加熱する。加熱したバイアルを取り出し上部よりマイクロシリンジにてガス0.8mlを吸引しガスクロマトグラフィーに注入し測定を行い、得られた結果の面積の300以下をカット、トルエン換算しTVOC(Total VOC)数値を得た。ガスクロマトグラフィーの測定条件はカラム(島津 CBP10-S50-050:長さ50m 内径0.33mm 膜厚0.5μm)、カラム入り口圧(64kPa)、スプリット比(1:40)、気化室温度(250℃)、検出器温度(270℃)、検出器(FID)、温度プログラム(測定温度:50〜240℃ 50℃で7min保持、3℃/minで昇温、240℃で15min保持)である。   The volatile organic compound content (VOC) was measured by gas chromatography (Shimadzu GC-17A). Weigh 500 mg of sample into a 27 ml headspace viable and plug. The vial is heated at 200 ° C. for 5 minutes. Take out the heated vial, aspirate 0.8 ml of gas with a microsyringe from the upper part, inject it into gas chromatography, perform measurement, cut 300 or less of the resulting area, convert it to toluene, and calculate the TVOC (Total VOC) value. Obtained. Gas chromatography measurement conditions were as follows: Column (Shimadzu CBP10-S50-050: Length 50m Inner diameter 0.33mm, Film thickness 0.5μm), Column inlet pressure (64kPa), Split ratio (1:40), Vaporization chamber temperature (250 ° C) , Detector temperature (270 ° C.), detector (FID), temperature program (measurement temperature: 50 to 240 ° C. hold at 50 ° C. for 7 min, temperature rise at 3 ° C./min, hold at 240 ° C. for 15 min).

次に、本発明のトナーを詳しく説明する。本発明のトナーの製造方法は以下の工程からなる。
(1)着色樹脂溶液調製工程
本発明のポリエステル樹脂を含む結着樹脂、ワックス及び着色剤を有機溶剤中に溶解あるいは分散させて着色樹脂溶液を得る工程である。
(2)乳化工程
着色樹脂溶液に塩基性化合物、水を順次添加して、水性媒体中に着色樹脂溶液を乳化させる工程である。
(3)合一工程
調製した乳化懸濁液に電解質水溶液を添加し、当該乳化懸濁液中の分散質を合一させることにより着色樹脂微粒子を生成させて粒子形成を行う操作を少なくとも1回行う工程である。
(4)分離・乾燥工程
減圧下で有機溶剤を除去した後に、着色樹脂微粒子を水性媒体中から分離、洗浄し、乾燥させてトナー母粒子とする工程である。
Next, the toner of the present invention will be described in detail. The toner production method of the present invention comprises the following steps.
(1) Colored resin solution preparation step In this step, a colored resin solution is obtained by dissolving or dispersing the binder resin, wax and colorant containing the polyester resin of the present invention in an organic solvent.
(2) Emulsification step In this step, a basic compound and water are sequentially added to the colored resin solution to emulsify the colored resin solution in an aqueous medium.
(3) Coalescence Step At least one operation of forming particles by adding colored electrolyte solution to the prepared emulsion suspension and coalescing the dispersoid in the emulsion suspension to form colored resin fine particles. It is a process to be performed.
(4) Separation / Drying Step In this step, after removing the organic solvent under reduced pressure, the colored resin fine particles are separated from the aqueous medium, washed and dried to form toner base particles.

合一工程後、分離・乾燥工程前に、シェル形成用樹脂の乳化懸濁液と合一工程で得た着色樹脂微粒子を含む分散液を混合し、電解質水溶液を添加して、コア/シェル構造を有する粒子を形成するシェル形成工程を実施してもよい。   After the coalescence process, before the separation / drying process, an emulsion suspension of the shell-forming resin and the dispersion containing the colored resin fine particles obtained in the coalescence process are mixed, and an aqueous electrolyte solution is added to the core / shell structure. You may implement the shell formation process which forms the particle | grains which have.

着色樹脂溶液調製工程では、最初に有機溶剤中に本発明のポリエステル樹脂を含む結着樹脂、ワックス及び着色剤を投入して溶解あるいは分散させる。
本発明のポリエステル樹脂を含む結着樹脂、ワックス及び着色剤は、高速攪拌機により有機溶剤中に溶解あるいは分散することが好ましい。この場合、着色剤は予め予備分散を行ってマスター混練チップを調製し、作成するトナー粒径以下に微分散したものを用いてもよい。ワックスも予めマスター混練チップを調製した後で混合してよい。あるいは、メディアを用いて湿式分散によりトナー粒径以下に微分散したワックスマスター溶液を用いてもよい。
In the colored resin solution preparation step, first, a binder resin containing the polyester resin of the present invention, a wax and a colorant are introduced into an organic solvent and dissolved or dispersed.
The binder resin, wax and colorant containing the polyester resin of the present invention are preferably dissolved or dispersed in an organic solvent with a high-speed stirrer. In this case, the colorant may be pre-dispersed in advance to prepare a master kneading chip, and finely dispersed below the toner particle diameter to be prepared. The wax may also be mixed after preparing the master kneading chip in advance. Alternatively, a wax master solution finely dispersed below the toner particle size by wet dispersion using media may be used.

着色樹脂溶液調製工程においては、デスパー(アサダ鉄工所(株)製:デスパ翼)、T.K.ホモミクサー(プライミクス(株)製:T.K.ホモディスパー2.5型翼)などの高速攪拌機が使用できる。この時の翼先端速度は4〜30m/sであることが好ましく、8〜25m/sであることがより好ましい。上記高速攪拌機を用いることで、結着樹脂の有機溶剤への溶解を効率よく行えると共に、着色剤の結着樹脂溶液中での均一微分散を達成できる。すなわち、予め微分散された着色剤の状態を高速攪拌することで、結着樹脂溶液中においても保持することができる。
翼先端速度が4m/sより低いと、着色樹脂溶液中での着色剤やワックス等の微分散が不十分となる。または、樹脂の未溶解分が残り好ましくない。一方、30m/sより高いと剪断による発熱が大きくなり、溶剤の揮発と相まって均一攪拌が困難となるため好ましくない。また、溶解あるいは分散する場合の温度は20〜60℃の範囲が好ましく、30〜50℃の範囲がより好ましい。
In the colored resin solution preparation step, Desper (Asada Iron Works Co., Ltd .: Despa Tsubasa), T.W. K. A high-speed stirrer such as a homomixer (Primix Co., Ltd .: TK homodisper type 2.5 blade) can be used. The blade tip speed at this time is preferably 4 to 30 m / s, and more preferably 8 to 25 m / s. By using the high-speed stirrer, the binder resin can be efficiently dissolved in the organic solvent, and uniform fine dispersion of the colorant in the binder resin solution can be achieved. That is, the state of the colorant finely dispersed in advance can be maintained in the binder resin solution by stirring at high speed.
When the blade tip speed is lower than 4 m / s, fine dispersion of the colorant, wax, etc. in the colored resin solution becomes insufficient. Or, the undissolved portion of the resin remains unfavorable. On the other hand, if it is higher than 30 m / s, heat generation due to shearing becomes large, and it is not preferable because uniform stirring becomes difficult in combination with volatilization of the solvent. Moreover, the temperature in the case of melt | dissolving or disperse | distributing has the preferable range of 20-60 degreeC, and the range of 30-50 degreeC is more preferable.

有機溶剤としては、25℃における水に対する溶解度が0.1〜30質量%であるものが好ましく、0.1〜25質量%であるものがより好ましい。また、常圧における沸点は、水の沸点よりも低いものが好ましい。また、有機溶剤は、結着樹脂を溶解するものであり、後工程で脱溶剤しやすいため低沸点のものが好ましい。
このような有機溶剤として、例えば、メチルエチルケトン、メチルイソプロピルケトンのようなケトン類、酢酸エチル、酢酸イソプロピルのようなエステル類が用いられる。有機溶剤は、2種以上を混合して用いることもできるが、溶剤回収の点から、同一種類の溶剤を単独で使用することが好ましい。なかでも、メチルエチルケトンが好ましい。
As an organic solvent, the thing whose solubility with respect to water in 25 degreeC is 0.1-30 mass% is preferable, and what is 0.1-25 mass% is more preferable. The boiling point at normal pressure is preferably lower than the boiling point of water. Further, the organic solvent is preferably a solvent having a low boiling point because it dissolves the binder resin and can be easily removed in a subsequent process.
As such an organic solvent, for example, ketones such as methyl ethyl ketone and methyl isopropyl ketone, and esters such as ethyl acetate and isopropyl acetate are used. Two or more organic solvents can be mixed and used, but from the viewpoint of solvent recovery, it is preferable to use the same type of solvent alone. Of these, methyl ethyl ketone is preferable.

着色樹脂溶液の調製工程において、乳化剤を加えることが好ましい。
合一工程において乳化剤が機能するためには、後から添加する電解質の存在下においても分散安定性を保持できる特性が必要である。そのような特性を有する乳化剤としては、例えば、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンドデシルフェニルエーテル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、各種プルロニック系などのノニオン型の乳化剤、あるいはアルキル硫酸エステル塩型、アルキルスルホン酸塩型のアニオン性乳化剤、また、第四級アンモニウム塩型のカチオン型の乳化剤などがある。また、アルキルベンゼンスルホン酸塩型の乳化剤、直鎖アルキルベンゼンスルホン酸型の乳化剤を挙げることができる。
上述した乳化剤は単独で用いても、2種類以上を混合して用いてもよい。すなわち、本発明の製造方法では、乳化剤の存在下に電解質を添加することで、不均一な合一を防止することが可能となる。これにより、好ましい粒度分布が得られる。
In the step of preparing the colored resin solution, it is preferable to add an emulsifier.
In order for the emulsifier to function in the coalescing step, it is necessary to have a characteristic capable of maintaining dispersion stability even in the presence of an electrolyte added later. Examples of emulsifiers having such properties include polyoxyethylene nonyl phenyl ether, polyoxyethylene octyl phenyl ether, polyoxyethylene dodecyl phenyl ether, polyoxyethylene alkyl ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, polyoxyethylene Examples include nonionic emulsifiers such as oxyethylene sorbitan fatty acid esters and various pluronics, alkyl sulfate ester salt type and alkyl sulfonate salt type anionic emulsifiers, and quaternary ammonium salt type cationic emulsifiers. Moreover, an alkylbenzene sulfonate type emulsifier and a linear alkyl benzene sulfonic acid type emulsifier can be mentioned.
The above-mentioned emulsifiers may be used alone or in combination of two or more. That is, in the production method of the present invention, it is possible to prevent non-uniform coalescence by adding an electrolyte in the presence of an emulsifier. Thereby, a preferable particle size distribution is obtained.

使用する乳化剤の量は、固形分含有量に対し0.1〜3.0質量%が好ましく、0.3〜2.0質量%であることがより好ましく、0.3〜1.5質量%であることが特に好ましい。使用する乳化剤の量が固形分含有量に対し0.1質量%より少ないと、目的とする粗大粒子発生に対する防止効果が得られない。また、使用する乳化剤の量が固形分含有量に対し3.0質量%より多いと、電解質の量が増加しても乳化懸濁液中の分散質の合一が十分に進行せず、所定粒径の粒子が得られなくなり、結果として、微粒子が残存して収率が低下する。   The amount of the emulsifier to be used is preferably 0.1 to 3.0% by mass, more preferably 0.3 to 2.0% by mass, and more preferably 0.3 to 1.5% by mass with respect to the solid content. It is particularly preferred that When the amount of the emulsifier to be used is less than 0.1% by mass with respect to the solid content, the desired effect of preventing the generation of coarse particles cannot be obtained. Further, when the amount of the emulsifier used is more than 3.0% by mass with respect to the solid content, the coalescence of the dispersoid in the emulsified suspension does not sufficiently proceed even if the amount of the electrolyte is increased, and the predetermined amount. As a result, fine particles remain and the yield decreases.

次いで、乳化工程において、着色樹脂溶液に塩基性化合物、水を順次添加して、水性媒体中に着色樹脂溶液を乳化させる。ここで、塩基性化合物によって本発明のトナーの樹脂成分であるポリエステル樹脂のカルボキシル基が中和されている着色樹脂溶液に水を徐々に添加することが好ましい。カルボキシル基が中和されることで、本発明のトナーの樹脂成分であるポリエステル樹脂の親水性が向上し、水との親和性が向上する。
添加された水はポリエステル樹脂のカルボキシル基部分に水和され、攪拌効果と相まって本発明のポリエステル樹脂を含む結着樹脂が微細に分散される。一方、水の添加に伴って着色樹脂溶液を含む系の粘度が上昇する。一定量の水を添加すると粘度が低下していく点があり、いわゆる転相点と称する。この直前まで粘度が上昇し、粘度が最大値に達する。粘度上昇は、塩基性化合物の添加量と相関があり、添加量が増加するほど粘度上昇も大きくなる。
Next, in the emulsification step, a basic compound and water are sequentially added to the colored resin solution to emulsify the colored resin solution in the aqueous medium. Here, it is preferable to gradually add water to the colored resin solution in which the carboxyl group of the polyester resin which is the resin component of the toner of the present invention is neutralized with the basic compound. By neutralizing the carboxyl group, the hydrophilicity of the polyester resin, which is the resin component of the toner of the present invention, is improved, and the affinity with water is improved.
The added water is hydrated to the carboxyl group portion of the polyester resin, and the binder resin containing the polyester resin of the present invention is finely dispersed in combination with the stirring effect. On the other hand, the viscosity of the system containing the colored resin solution increases with the addition of water. When a certain amount of water is added, there is a point that the viscosity decreases, which is called a so-called phase inversion point. The viscosity increases until just before this, and the viscosity reaches the maximum value. The increase in viscosity correlates with the addition amount of the basic compound, and the increase in viscosity increases as the addition amount increases.

一方、塩基性化合物の量は乳化工程のみならず、後述する合一工程における着色樹脂微粒子生成時の均一性、速度にも影響を及ぼす。結着樹脂のカルボキシル基に対して1〜3当量の範囲が好ましい。また、1〜2当量の範囲が更に好ましい。このように結着樹脂のカルボキシル基の全部を中和するために要する量よりも過剰に添加することにより、合一工程において異形の粒子が生成することを防止することができ、また、トナー粒子の粒度分布を狭い範囲とすることができる。   On the other hand, the amount of the basic compound affects not only the emulsification step but also the uniformity and speed when the colored resin fine particles are produced in the coalescence step described later. The range of 1-3 equivalent is preferable with respect to the carboxyl group of binder resin. Moreover, the range of 1-2 equivalent is still more preferable. By adding in excess of the amount required to neutralize all the carboxyl groups of the binder resin in this way, it is possible to prevent the formation of irregularly shaped particles in the coalescing step, and toner particles The particle size distribution can be made narrow.

乳化工程終了後の有機溶剤の有機溶剤と水の合計量に対する比率は20〜35質量%の範囲が好ましく、20〜30質量%の範囲がより好ましい。上述したように転相点までの水の量は、着色樹脂溶液調製工程における有機溶剤量が少ないほど減少し、塩基性化合物の量が多いほど増加する。転相点では乳化懸濁液の粘度が高いこともあり、着色樹脂溶液が完全に水性媒体中に微分散していない場合もあるため、更に水を添加することが好ましい。本工程で得られた乳化懸濁液において水を滴下した後の水(乳化の為に使用した水、エマルジョンワックスからの水、中和塩基等を加えた水の全量)と有機溶媒の比率は、50:50〜80:20であるのが好ましく、60:40〜80:20であるのがより好ましい。   The ratio of the organic solvent to the total amount of the organic solvent and water after the emulsification step is preferably in the range of 20 to 35% by mass, and more preferably in the range of 20 to 30% by mass. As described above, the amount of water up to the phase inversion point decreases as the amount of organic solvent in the colored resin solution preparation step decreases, and increases as the amount of basic compound increases. At the phase inversion point, the viscosity of the emulsified suspension may be high, and the colored resin solution may not be completely finely dispersed in the aqueous medium. Therefore, it is preferable to add water. The ratio of water after dripping water in the emulsified suspension obtained in this step (the total amount of water used for emulsification, water from emulsion wax, water added with neutralizing base, etc.) and the organic solvent is 50:50 to 80:20 is preferable, and 60:40 to 80:20 is more preferable.

本発明のトナーの樹脂成分であるポリエステル樹脂の酸価は特に限定されないが、3〜30KOHmg/gであることが好ましく、5〜20KOHmg/gであることがより好ましい。本発明のトナーの樹脂成分であるポリエステル樹脂の酸価が3未満であると、本発明のトナーを製造することができない。一方、本発明のトナーの樹脂成分であるポリエステル樹脂の酸価が30より大きいと、本発明のトナー使用環境下における帯電量が安定しない。   The acid value of the polyester resin that is the resin component of the toner of the present invention is not particularly limited, but is preferably 3 to 30 KOHmg / g, and more preferably 5 to 20 KOHmg / g. When the acid value of the polyester resin, which is the resin component of the toner of the present invention, is less than 3, the toner of the present invention cannot be produced. On the other hand, if the acid value of the polyester resin, which is the resin component of the toner of the present invention, is greater than 30, the charge amount under the toner use environment of the present invention is not stable.

中和用の塩基性化合物としては、例えば、水酸化ナトリウム、水酸化カリウム、アンモニアなどの無機塩基、ジエチルアミン、トリエチルアミン、イソプロピルアミンなどの有機塩基が用いられる。特に水酸化ナトリウム、水酸化カリウム、アンモニアなどの無機塩基の水溶液が好ましい。   Examples of the basic compound for neutralization include inorganic bases such as sodium hydroxide, potassium hydroxide, and ammonia, and organic bases such as diethylamine, triethylamine, and isopropylamine. In particular, an aqueous solution of an inorganic base such as sodium hydroxide, potassium hydroxide or ammonia is preferred.

上記した方法で製造した乳化懸濁液は、着色樹脂溶液が水性媒体中に乳化分散した状態で存在する。その状態は、有機溶剤の種類、使用量、結着樹脂の酸価、塩基性化合物の使用量、攪拌条件等で異なるが、樹脂油滴、ワックス分散質、着色剤分散質等の分散質が平均粒径1μm未満に乳化分散していることが好ましい。このような状態であれば、乳化懸濁液の安定性、後の工程における合一の安定性、着色樹脂微粒子の粒度分布等が良好になり好ましい。   The emulsified suspension produced by the above-described method exists in a state where the colored resin solution is emulsified and dispersed in an aqueous medium. The state varies depending on the type of organic solvent, the amount used, the acid value of the binder resin, the amount of basic compound used, the stirring conditions, etc. It is preferable to be emulsified and dispersed with an average particle size of less than 1 μm. Such a state is preferable because the stability of the emulsified suspension, the unitary stability in the subsequent steps, the particle size distribution of the colored resin fine particles, and the like are improved.

次に、合一工程について説明する。得られた乳化懸濁液に攪拌しつつ電解質を添加することにより、乳化懸濁液中の分散質が塩析又は不安定化される。このとき乳化懸濁液を攪拌することにより、分散質同士が衝突を起こし一体化する。分散質である均一に分散された微細な、樹脂油滴、ワックス分散質、着色剤分散質等が一体化し着色樹脂微粒子となる。その後さらに、この着色樹脂微粒子同士が衝突し、合一が進行し、より大きな着色樹脂微粒子が生成する。これにより、着色樹脂微粒子はほぼ組成の揃った粒子となる。この合一の速度をコントロールすることで、所望のサイズと粒度分布の着色樹脂微粒子を得ることができる。
この着色樹脂微粒子は、有機溶媒を含み一種の膨潤した状態にあり、衝突と同時に融着が起こる、いわゆる合一が進行する。そのため、後工程の脱溶剤後の着色樹脂微粒子は十分な強度をもち、別途加熱による融着工程を設ける必要がない。
Next, the coalescence process will be described. By adding an electrolyte to the obtained emulsion suspension while stirring, the dispersoid in the emulsion suspension is salted out or destabilized. At this time, by stirring the emulsified suspension, the dispersoids collide with each other to be integrated. Finely dispersed resin oil droplets, wax dispersoids, colorant dispersoids and the like that are dispersoids are integrated into colored resin fine particles. Thereafter, the colored resin fine particles collide with each other, coalescence proceeds, and larger colored resin fine particles are generated. Thereby, the colored resin fine particles become particles having almost the same composition. By controlling the coalescing speed, colored resin fine particles having a desired size and particle size distribution can be obtained.
These colored resin fine particles are in a kind of swollen state containing an organic solvent, and so-called coalescence occurs in which fusion occurs simultaneously with the collision. For this reason, the colored resin fine particles after solvent removal in the subsequent step have sufficient strength, and it is not necessary to provide a separate fusion step by heating.

ここで用いられる電解質としては、例えば、硫酸ナトリウム、硫酸アンモニウム、硫酸カリウム、硫酸マグネシウム、リン酸ナトリウム、リン酸二水素ナトリウム、塩化ナトリウム、塩化カリウム、塩化アンモニウム、塩化カルシウム、酢酸ナトリウム、炭酸水素ナトリウム等の有機、無機の水溶性の塩等も電解質として有効に用いることができる。合一させるために添加するこれらの電解質は、単独でも、あるいは2種類以上の物質を混合してもよい。中でも、硫酸ナトリウムや硫酸アンモニウムのごとき1価のカチオンの硫酸塩が均一な合一を進める上で好ましい。   Examples of the electrolyte used here include sodium sulfate, ammonium sulfate, potassium sulfate, magnesium sulfate, sodium phosphate, sodium dihydrogen phosphate, sodium chloride, potassium chloride, ammonium chloride, calcium chloride, sodium acetate, sodium bicarbonate, etc. Organic and inorganic water-soluble salts can be effectively used as the electrolyte. These electrolytes to be added for unity may be used alone or in combination of two or more kinds. Among them, monovalent cation sulfates such as sodium sulfate and ammonium sulfate are preferable for promoting uniform coalescence.

また、得られる着色樹脂微粒子は溶剤によって膨潤しており、低剪断力の攪拌により粒子同士を衝突させて合一を進行させることが好ましい。いわゆる溶解懸濁法の様に、高速攪拌で油滴を微分散する必要がないので、微粉の発生もなく、トナーの粒度分布は狭く良好なものとすることができる。
着色樹脂微粒子の分裂が発生しない合一のみが進行するような範囲の低剪断力になる様に攪拌速度を選ぶことが好ましい。
Moreover, the colored resin fine particles obtained are swollen by a solvent, and it is preferable that the particles collide with each other by stirring with a low shearing force to advance the coalescence. Unlike the so-called dissolution suspension method, it is not necessary to finely disperse oil droplets by high-speed stirring, so that no fine powder is generated and the toner particle size distribution can be narrow and good.
It is preferable to select an agitation speed so as to obtain a low shearing force in such a range that only coalescence in which the colored resin fine particles are not split proceeds.

均一な合一を進める上では、合一時の攪拌条件が重要であり、例えば、アンカー翼、タービン翼、ファウドラー翼、フルゾーン翼、マックスブレンド翼(登録商標、住友重機械工業製)、半月翼等が用いられる。中でも、マックスブレンド翼やフルゾーン翼のような低回転であっても均一混合性が優れる大型翼を用いることが好ましい。
均一な着色樹脂微粒子を生成させるための攪拌翼の周速は、0.2〜10m/sが好ましく、0.2〜8m/sの低剪断での攪拌がより好ましい。特に、0.2〜6m/sとすることが好ましい。攪拌翼の周速が10m/sよりも大きいと微粒子が残存するため好ましくない。一方、周速が0.2m/sより小さいと攪拌が不均一になり粗大粒子が発生するため好ましくない。上述した条件であれば、着色樹脂微粒子同士の衝突のみにより合一が進行し、着色樹脂微粒子が解離、分散することがない。特に、合一工程では微小粒子の発生が少なく、かつ狭い粒度分布とすることができる。
すなわち、着色樹脂溶液調製工程、及び、乳化工程ではデスパー等の高速攪拌機により攪拌を行うことが好ましく、合一工程ではマックスブレンド翼等の低速で均一混合可能な大型翼が好適となる。このため乳化工程で得られた乳化懸濁液を大型翼付属の別の容器に移送して合一工程を実施することが好ましい。
In order to promote uniform coalescence, agitation conditions at the same time are important. For example, anchor blade, turbine blade, fowler blade, full zone blade, max blend blade (registered trademark, manufactured by Sumitomo Heavy Industries, Ltd.), half moon blade, etc. Is used. Among them, it is preferable to use a large wing that is excellent in uniform mixing properties even at a low rotation, such as a Max blend wing or a full zone wing.
The peripheral speed of the stirring blade for generating uniform colored resin fine particles is preferably 0.2 to 10 m / s, and more preferably stirring at a low shear of 0.2 to 8 m / s. In particular, 0.2 to 6 m / s is preferable. If the peripheral speed of the stirring blade is higher than 10 m / s, fine particles remain, which is not preferable. On the other hand, if the peripheral speed is less than 0.2 m / s, stirring is not uniform and coarse particles are generated, which is not preferable. Under the above-described conditions, coalescence proceeds only by collision between the colored resin fine particles, and the colored resin fine particles are not dissociated and dispersed. In particular, in the coalescing process, the generation of fine particles is small and a narrow particle size distribution can be obtained.
That is, it is preferable to stir with a high-speed stirrer such as a desper in the colored resin solution preparation step and the emulsification step, and a large blade that can be uniformly mixed at a low speed such as a max blend blade is suitable in the coalescence step. For this reason, it is preferable to carry out the coalescing step by transferring the emulsified suspension obtained in the emulsifying step to another container attached to the large blade.

また、使用する電解質の量は、固形分含有量に対し、0.5〜15質量%が好ましく、1〜12質量%であることがより好ましく、1〜6質量%であることが特に好ましい。電解質の量が0.5質量%よりも少ないと、合一が十分に進行しない。15質量%より多いと、後工程の停止水が多量に必要になったり、洗浄、乾燥に時間がかかるなど生産性を低下させるので、好ましくない。
また、電解質溶液の濃度は1〜15質量%が好ましく、3〜10質量%であることがより好ましい。1質量%より少ないと、電解質の効果が十分に発揮されず、塩析や合一させるために多量の電解質が必要となるため好ましくない。または、着色樹脂微粒子が生成できない場合がある。また、一方15質量%より高いと、系内にムラが発生しやすく、特に合一初期の着色樹脂微粒子の生成時に凝集物の発生や、粗大粒子が発生しやすいため好ましくない。
Moreover, 0.5-15 mass% is preferable with respect to solid content, and, as for the quantity of the electrolyte to be used, it is more preferable that it is 1-12 mass%, and it is especially preferable that it is 1-6 mass%. When the amount of the electrolyte is less than 0.5% by mass, coalescence does not proceed sufficiently. If the amount is more than 15% by mass, it is not preferable because a large amount of stop water is required in the subsequent process, and it takes time for washing and drying.
Moreover, 1-15 mass% is preferable and, as for the density | concentration of electrolyte solution, it is more preferable that it is 3-10 mass%. If the amount is less than 1% by mass, the effect of the electrolyte is not sufficiently exhibited, and a large amount of electrolyte is required for salting out and coalescence. Or, colored resin fine particles may not be generated. On the other hand, if it is higher than 15% by mass, unevenness is likely to occur in the system, and in particular, aggregates and coarse particles are likely to be generated during the formation of colored resin fine particles in the initial stage of coalescence, which is not preferable.

合一工程では、電解質水溶液を添加する際には、電解質を均一にすばやく系内に混合するため攪拌速度を上げることが好ましい。また、合一時の温度は10〜50℃の範囲内が好ましい。より好ましくは20〜40℃の範囲内であり、20〜35℃であることが特に好ましい。温度が10℃よりも低いと、合一が進行しにくくなるため好ましくない。また、温度が50℃よりも高いと、合一速度が速くなり、凝集物や粗大粒子が発生しやすくなるため好ましくない。本発明の製造法では、例えば、20〜40℃といった低温の条件で、合一による着色樹脂微粒子の生成が可能である。   In the coalescence process, when adding the aqueous electrolyte solution, it is preferable to increase the stirring speed in order to mix the electrolyte uniformly and quickly in the system. The temporary temperature is preferably in the range of 10 to 50 ° C. More preferably, it exists in the range of 20-40 degreeC, and it is especially preferable that it is 20-35 degreeC. When the temperature is lower than 10 ° C., it is difficult to perform coalescence, which is not preferable. On the other hand, when the temperature is higher than 50 ° C., the coalescence speed is increased, and aggregates and coarse particles are easily generated, which is not preferable. In the production method of the present invention, for example, colored resin fine particles can be produced by coalescence under a low temperature condition of 20 to 40 ° C.

次に、分離・乾燥工程の前に、コア/シェル構造を有する粒子を形成するシェル形成工程を実施してもよい。コアとなる着色樹脂微粒子を、着色樹脂微粒子を構成する樹脂のガラス転移温度よりも高いガラス転移温度を有する樹脂で被覆することにより、トナーの低温定着性と耐熱保存性を両立し、かつ、表面へのワックスの露出を防止して現像耐久性を高くすることができる。
シェル形成工程で使用するシェル形成用樹脂の乳化懸濁液は、着色剤やワックスを除去した樹脂だけとしてもよいし、荷電制御剤等を含んでもよい。シェル形成用樹脂の乳化懸濁液の作成方法は、シェル用樹脂が乳化された状態であればどのような方法で作成してもよいが、着色樹脂微粒子との相性から、着色樹脂溶液調製工程及び乳化工程と同様の操作により作成することが好ましい。すなわち、シェル形成用樹脂を有機溶剤に溶解させて得た樹脂溶液に、乳化剤、塩基性化合物、水を順次添加して、水性媒体中にシェル形成用樹脂が乳化された乳化懸濁液を調製する。
Next, a shell formation step for forming particles having a core / shell structure may be performed before the separation / drying step. By coating the core colored resin fine particles with a resin having a glass transition temperature higher than the glass transition temperature of the resin constituting the colored resin fine particles, the toner has both low-temperature fixability and heat-resistant storage stability, and the surface The development durability can be increased by preventing the wax from being exposed to the surface.
The emulsion suspension of the shell-forming resin used in the shell-forming step may be only the resin from which the colorant and wax have been removed, or may contain a charge control agent and the like. The method for preparing the emulsified suspension of the shell-forming resin may be prepared by any method as long as the resin for the shell is emulsified, but from the compatibility with the colored resin fine particles, the colored resin solution preparation step And it is preferable to prepare by the same operation as the emulsification step. That is, an emulsifier, a basic compound, and water are sequentially added to a resin solution obtained by dissolving a shell-forming resin in an organic solvent to prepare an emulsion suspension in which the shell-forming resin is emulsified in an aqueous medium. To do.

シェル乳化懸濁液中のシェル樹脂油滴は、サブミクロンのサイズにすることがこのましい。この油滴が着色樹脂微粒子表面に付着しシェル構造を形成する。着色樹脂微粒子とシェル樹脂油滴のサイズ比は30:1〜50:1程度であり、シェルの投入量にもよるがトナー中のシェル比率を5質量%程度と仮定すると、個数比は1:150〜1:250程度になる。そのため、シェル乳化懸濁液を添加し攪拌分散をした時には、着色樹脂微粒子1個の周りに150〜250個程度のシェル樹脂油滴が存在することになり、合一条件で攪拌をした時に、着色樹脂微粒子はまずシェル樹脂油滴と衝突し付着する。このとき、着色樹脂粒子分散液中の電解質の効果により、合一が進行する。
一方、シェル樹脂油滴が多すぎると油滴同士の衝突が多数発生してしまい、着色樹脂微粒子に付着せずに残存したり、着色樹脂微粒子に付着しても大粒子のまま付着し、シェル構造が不均一になりやすく、剥離しやすいものとなる。
The shell resin oil droplets in the shell emulsified suspension are preferably submicron in size. These oil droplets adhere to the surface of the colored resin fine particles to form a shell structure. The size ratio between the colored resin fine particles and the shell resin oil droplets is about 30: 1 to 50: 1, and the number ratio is 1: 5, assuming that the shell ratio in the toner is about 5% by mass, although it depends on the amount of shell input. 150 to 1: 250. Therefore, when the shell emulsification suspension is added and stirred and dispersed, there are about 150 to 250 shell resin oil droplets around one colored resin fine particle, and when stirring is performed under the coalescence conditions, The colored resin fine particles first collide with and adhere to the shell resin oil droplets. At this time, coalescence proceeds due to the effect of the electrolyte in the colored resin particle dispersion.
On the other hand, when there are too many shell resin oil droplets, many of the oil droplets collide with each other and remain without adhering to the colored resin fine particles, or even if adhering to the colored resin fine particles, they remain as large particles. The structure tends to be non-uniform and easily peeled off.

次いで更に電解質水溶液を添加して攪拌する。攪拌条件と使用される電解質は合一工程と同様である。電解質水溶液を添加することにより、シェル形成用樹脂微粒子がさらに不安定化され、前段で付着しきれなかった、液中に残存したシェル形成用樹脂油滴が大きくなり着色樹脂微粒子表面の固着されていき、シェルが形成される。
着色樹脂微粒子表面にシェル形成用樹脂微粒子を固着させるためには、シェル用乳化懸濁液を添加する前に、塩基性化合物を添加することが好ましい。塩基性化合物を添加することで、着色樹脂微粒子をさらに膨潤させ、シェル形成用樹脂微粒子を固着し易くする効果がある。
Next, an aqueous electrolyte solution is further added and stirred. The stirring conditions and the electrolyte used are the same as in the coalescing step. By adding the electrolyte aqueous solution, the shell-forming resin fine particles are further destabilized, and the shell-forming resin oil droplets remaining in the liquid that cannot be adhered in the previous stage are increased, and the surface of the colored resin fine particles is fixed. A shell is formed.
In order to fix the shell-forming resin fine particles to the surface of the colored resin fine particles, it is preferable to add a basic compound before adding the shell emulsion suspension. By adding the basic compound, there is an effect that the colored resin fine particles are further swollen and the shell-forming resin fine particles are easily fixed.

シェル形成工程では、有機溶剤により膨潤された着色樹脂微粒子及びシェル形成用樹脂油滴が衝突して粒子が成長していく。そのため、シェルはシェル形成用樹脂のガラス転移温度未満であっても形成することが可能となる。シェル形成用樹脂のガラス転移温度によっては30℃以下であってもシェルを形成することはできる。従って、シェル形成工程では加熱が必要とされず、当然、加熱後の冷却も必要ではないため、多大なエネルギーが消費されず、温度管理は簡単なものとなる。   In the shell forming step, the colored resin fine particles swollen by the organic solvent and the shell forming resin oil droplets collide with each other to grow the particles. Therefore, the shell can be formed even if it is lower than the glass transition temperature of the shell-forming resin. Depending on the glass transition temperature of the shell-forming resin, a shell can be formed even at 30 ° C. or lower. Therefore, heating is not required in the shell forming step, and naturally, cooling after heating is not required, so that a great deal of energy is not consumed and temperature management becomes simple.

粒子成長は、一定条件下ではほぼ一定の成長速度を保持するため、時間と粒径からブロットされた粒子成長曲線を作成することで表すことができる。その結果、その曲線より目標粒径の到達時間を推定することができる。また、水を添加することでシェル形成を停止させることが好ましい。シェル形成を停止する際の水の量は、着色樹脂溶液作製及びシェル形成用樹脂の乳化懸濁液作製の際に添加した有機溶剤量と関連する。固形分に対する有機溶剤量が多いほど、粒子内に取り込まれる有機溶剤量が相対的に多くなるので、より多量の水で膨潤を抑える必要がある。   Particle growth can be expressed by creating a blotted particle growth curve from time and particle size to maintain a nearly constant growth rate under certain conditions. As a result, the arrival time of the target particle diameter can be estimated from the curve. Moreover, it is preferable to stop shell formation by adding water. The amount of water when the shell formation is stopped is related to the amount of the organic solvent added during the preparation of the colored resin solution and the emulsion suspension of the shell forming resin. As the amount of the organic solvent relative to the solid content is larger, the amount of the organic solvent taken into the particles is relatively larger, so that it is necessary to suppress swelling with a larger amount of water.

必要に応じてシェル化された着色樹脂微粒子分散液は脱溶剤され、次の工程へと進む。脱溶剤は、低温条件下で速やかに行うために減圧下で攪拌しながら行うことが好ましい。脱溶剤に当たっては消泡剤の添加が好ましい。消泡剤としてはシリコーン系のエマルジョン形態のものが好ましい。シリコーン系の消泡剤としては、BY22−517、SH5503、SM5572F、BY28−503(東レ・ダウ・コーニングシリコーン社製)、KM75、KM89、KM98、KS604、KS538(信越化学工業社製)等がある。なかでも、物性への影響が少なく、消泡効果が高いものとしてBY22−517が好ましい。消泡剤量は、固形分に対し30〜100ppmが好ましい。   If necessary, the colored resin fine particle dispersion formed into a shell is desolvated and proceeds to the next step. The solvent removal is preferably carried out with stirring under reduced pressure in order to carry out quickly under low temperature conditions. In removing the solvent, an antifoaming agent is preferably added. The antifoaming agent is preferably in the form of a silicone emulsion. Examples of silicone-based antifoaming agents include BY22-517, SH5503, SM5572F, BY28-503 (manufactured by Toray Dow Corning Silicone), KM75, KM89, KM98, KS604, KS538 (manufactured by Shin-Etsu Chemical Co., Ltd.), and the like. . Of these, BY22-517 is preferred as having little influence on physical properties and a high defoaming effect. The amount of the antifoaming agent is preferably 30 to 100 ppm with respect to the solid content.

本発明のトナー粒子は、着色剤やワックスなどが結着樹脂に内包されていることが特徴であり、透過型電子顕微鏡等で観察することにより、着色剤やワックスなどを粒子内に内包されてほぼ均一に分散されていることが確認できる。
また、トナー粒子の形状は、粒子像分析装置(シスメックス製フロー式粒子像分析装置FPIA−1000)などによって求められ、円形度は、観察した粒子像の投影面積に相当する円の周囲の長さと観察した粒子の投影像の周囲の長さとの比で表した数値の平均値である平均円形度として表される。
トナー粒子の形状は、平均円形度は0.95以上であることが好ましく、0.96以上であることがより好ましく、0.97以上であることが更に好ましい。これは、平均円形度を0.97以上の略球形あるいは球形の形状とすることで粉体流動性の向上、転写効率が向上する。
The toner particles of the present invention are characterized in that a colorant or wax is encapsulated in a binder resin, and the colorant or wax is encapsulated in the particle by observation with a transmission electron microscope or the like. It can be confirmed that the particles are almost uniformly dispersed.
The shape of the toner particles is determined by a particle image analyzer (Sysmex flow type particle image analyzer FPIA-1000) or the like, and the degree of circularity is the circumference of a circle corresponding to the projected area of the observed particle image. It is expressed as an average circularity which is an average value of numerical values expressed as a ratio to the perimeter of the projected image of the observed particle.
Regarding the shape of the toner particles, the average circularity is preferably 0.95 or more, more preferably 0.96 or more, and further preferably 0.97 or more. This is because powder fluidity is improved and transfer efficiency is improved by making the average circularity into a substantially spherical shape or a spherical shape with 0.97 or more.

次に、分離・乾燥工程においては、着色樹脂微粒子を分離し、洗浄、脱水する。水性媒体からの分離、脱水は、遠心分離器、フィルタープレス、あるいはベルトフィルター等の分離手段で行うことができる。洗浄は、イオン交換水等を用いて固形分を攪拌しスラリー化し、脱水を繰り返すことで行う。次いで、粒子を乾燥させることによりトナー粒子を得ることができる。乾燥は、リボコーン型乾燥機(大川原製作所)、ナウタミキサー(ホソカワミクロン)等の混合真空乾燥機、流動層乾燥装置(大川原製作所)、振動流動層乾燥機(中央加工機)等の流動層型乾燥機で実施することできるが、これらの乾燥機に限定されない。   Next, in the separation / drying step, the colored resin fine particles are separated, washed and dehydrated. Separation and dehydration from the aqueous medium can be performed by a separation means such as a centrifugal separator, a filter press, or a belt filter. Washing is performed by stirring and solidifying the solid content using ion exchange water or the like and repeating dehydration. Next, toner particles can be obtained by drying the particles. Drying is a fluidized bed dryer such as a ribocorn dryer (Okawara Seisakusho), a mixed vacuum dryer such as Nauta Mixer (Hosokawa Micron), a fluidized bed dryer (Okawara Seisakusho), or a vibrating fluidized bed dryer (central processing machine). However, it is not limited to these dryers.

トナーの粒度分布については、ベックマンコールター社製マルチサイザーII型(アパーチャーチューブ径:100μm)による測定で、50%体積粒径/50%個数粒径(Dv/Dn)が1.20以下であることが好ましく、1.15以下であることがより好ましい。これは、1.10以下であると良好な画像が得られやすくなるためである。
トナーの50%体積平均粒径(Dv50)は3〜8μmとすることが好ましく、粒径が小さいトナーを用いることによって解像性や階調性が向上するだけでなく、印刷画像を形成するトナー層の厚みが薄くなり、定着に必要な熱量を減少させることができ、同時にトナー消費量が減少するという効果も得られる。
Regarding the particle size distribution of the toner, 50% volume particle size / 50% number particle size (Dv / Dn) is 1.20 or less as measured by Beckman Coulter Multisizer II type (aperture tube diameter: 100 μm). Is preferable, and it is more preferable that it is 1.15 or less. This is because it is easy to obtain a good image when it is 1.10 or less.
The toner preferably has a 50% volume average particle diameter (Dv50) of 3 to 8 μm, and the use of a toner having a small particle diameter not only improves resolution and gradation, but also forms a printed image. The thickness of the layer is reduced, the amount of heat required for fixing can be reduced, and at the same time, the toner consumption can be reduced.

本発明のトナーの結着樹脂として、本発明のポリエステル樹脂以外の樹脂を本発明のポリエステル樹脂と混合して使用してもよい。本発明のポリエステル樹脂以外の結着樹脂及びシェル形成用樹脂は特に限定されないが、架橋型ポリエステル樹脂、直鎖型ポリエステル樹脂であることが好ましく、以下の原料の中から選択される化合物を反応させることによって得られる。   As the binder resin of the toner of the present invention, a resin other than the polyester resin of the present invention may be mixed with the polyester resin of the present invention. The binder resin and the shell forming resin other than the polyester resin of the present invention are not particularly limited, but are preferably a cross-linked polyester resin or a linear polyester resin, and a compound selected from the following raw materials is reacted. Can be obtained.

架橋型ポリエステルは、2価塩基酸またはその誘導体と、2価アルコールと、架橋剤として多価化合物とを反応させることによって製造することが好ましい。特に、2価塩基酸またはその誘導体と、2価脂肪族多価アルコールと、架橋剤として多価エポキシ化合物とを反応させることによって製造することが好ましい。また、直鎖型ポリエステル樹脂は、2価塩基酸類と2価アルコールとを反応させることによって製造する。
架橋型ポリエステル樹脂と直鎖型ポリエステル樹脂とを製造する際に使用する2価塩基酸化合物、2価脂肪族アルコールとしては、本発明のポリエステル樹脂を製造する際に使用するものが挙げられる。
The crosslinked polyester is preferably produced by reacting a divalent basic acid or derivative thereof, a divalent alcohol, and a polyvalent compound as a crosslinking agent. In particular, it is preferable to produce by reacting a divalent basic acid or a derivative thereof, a divalent aliphatic polyhydric alcohol, and a polyvalent epoxy compound as a crosslinking agent. The linear polyester resin is produced by reacting a divalent basic acid with a dihydric alcohol.
Examples of the divalent basic acid compound and divalent aliphatic alcohol used when producing the crosslinked polyester resin and the linear polyester resin include those used when producing the polyester resin of the present invention.

架橋型ポリエステル樹脂と直鎖型ポリエステル樹脂の原料として、脂肪族アルコールを用いることにより、ワックス類との相溶性が良好となり、耐オフセット性が改良され好ましい。また、ポリエステル主鎖を軟質化することにより低温での定着性が改善される。架橋型のポリエステル樹脂を製造する際には、さらに架橋剤として多価エポキシ化合物を使用する。そのような化合物としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、エチレングリコールジグリシジルエーテル、ハイドロキノンジグリシジルエーテル、N,N−ジグリシジルアニリングリセリントリグリシジルエステル、トリメチロールプロパントリグリシジルエーテル、トリメチロールエタントリグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテル、テトラキス1,1,2,2 (P−ヒドロキシフェニル)エタンテトラグリシジルエーテル、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、エポキシ基を有するビニル化合物の重合体、あるいは共重合体、エポキシ化レゾルシノール−アセトン縮合物、部分エポキシ化ポリブタジエン、エポキシ基を有するビニル化合物の重合体、あるいは共重合体、半乾性もしくは乾性脂肪酸エステルエポキシ化合物などが挙げられる。上記の化合物の中でもビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、グリセリン・トリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、トリメチロールエタントリグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテルがより好適に用いられる。   By using an aliphatic alcohol as a raw material for the cross-linked polyester resin and the linear polyester resin, the compatibility with waxes is improved, and offset resistance is preferably improved. Moreover, fixing property at low temperature is improved by softening the polyester main chain. When producing a crosslinked polyester resin, a polyvalent epoxy compound is further used as a crosslinking agent. Examples of such compounds include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, ethylene glycol diglycidyl ether, hydroquinone diglycidyl ether, N, N-diglycidyl aniline lysine triglycidyl ester, Trimethylolpropane triglycidyl ether, trimethylolethane triglycidyl ether, pentaerythritol tetraglycidyl ether, tetrakis 1,1,2,2 (P-hydroxyphenyl) ethane tetraglycidyl ether, cresol novolac epoxy resin, phenol novolac epoxy resin A polymer or copolymer of an epoxy group-containing vinyl compound, an epoxidized resorcinol-acetone condensate, a partial epoxy Polybutadiene, polymers of vinyl compounds having an epoxy group, or a copolymer, such as semi-drying or drying fatty acid ester epoxy compound. Among the above compounds, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, cresol novolac type epoxy resin, phenol novolac type epoxy resin, glycerin / triglycidyl ether, trimethylolpropane triglycidyl ether, trimethylol Ethanetriglycidyl ether and pentaerythritol tetraglycidyl ether are more preferably used.

具体的には、ビスフェノールA型エポキシ樹脂の例として大日本インキ化学工業(株〉製エピクロン850、エピクロン1050、エピクロン2055、エピクロン3050などが、ビスフェノールF型エポキシ樹脂の例として大日本インキ化学工業(株)製エピクロン830、エピクロン520などが、オルソクレゾールノボラツグ型エポキシ樹脂の例として大日本インキ化学工業(株)製エピクロンN−660、N−665、N−667、N−670、N−673、N−680、N−690、N−695などが、フェノールノボラシク型エポキシ樹脂の例としては大日本インキ化学工業(株)製エピクロンN−740、N−770、N−775、N−865などが挙げられる。エポキシ基を有するビニル化合物の重合体あるいは共重合体としては、グリシジル(メタ)アタリレートのホモポリマーあるいはアクリル共重合体、スチレンとの共重合体が挙げられる。   Specific examples of bisphenol A type epoxy resins include Dainippon Ink Chemical Co., Ltd. Epicron 850, Epicron 1050, Epicron 2055, Epicron 3050, and the like. Epicron 830, Epicron 520, etc. manufactured by Dainippon Ink & Chemicals, Inc. as examples of orthocresol novolac type epoxy resins, N-660, N-665, N-667, N-670, N- 673, N-680, N-690, N-695, etc. are examples of phenol novolac type epoxy resins. Epiklon N-740, N-770, N-775, N-manufactured by Dainippon Ink & Chemicals, Inc. 865 etc. As a polymer or copolymer of a vinyl compound having an epoxy group, Examples thereof include a homopolymer of glycidyl (meth) acrylate, an acrylic copolymer, and a copolymer with styrene.

また、上述したエポキシ化合物は2種以上併用して用いることもでき、さらに、樹脂の変性剤として、以下に記載するモノエポキシ化合物を併せて用いることもできる。同時に使用することができるモノエポキシ化合物としては、例えばフェニルグリシジルエーテル、アルキルフェニルグリシジルエーテル、アルキルグリシジルエーテル、アルキルグリシジルエステル、アルキルフェノールアルキレンオキサイド付加物のグリシジルエーテル、α−オレフィンオキサイド、モノエポキシ脂肪酸アルキルエステルなどが挙げられる。
これらのモノエポキシ化合物を併用することにより定着性、高温での耐オフセット性が向上する。これらの中でも、特にアルキルグリシジルエステルがより好適に用いられる。具体的な例としてはカージュラE (シェルジャパン社製ネオデカン酸グリシジルエステル)が挙げられる。
Moreover, the epoxy compound mentioned above can also be used in combination of 2 or more types, Furthermore, the mono epoxy compound described below can also be used together as a modifier | denaturant of resin. Examples of the monoepoxy compound that can be used at the same time include phenyl glycidyl ether, alkylphenyl glycidyl ether, alkyl glycidyl ether, alkyl glycidyl ester, glycidyl ether of alkylphenol alkylene oxide adduct, α-olefin oxide, monoepoxy fatty acid alkyl ester, etc. Is mentioned.
By using these monoepoxy compounds in combination, fixability and resistance to offset at high temperatures are improved. Among these, alkyl glycidyl esters are particularly preferably used. A specific example is Cardura E (Neodecanoic acid glycidyl ester manufactured by Shell Japan).

架橋型ポリエステル樹脂と直鎖型ポリエステル樹脂とは、上述した原料成分を用いて、例えば触媒の存在下で脱水縮合反応あるいはエステル交換反応を行うことにより得ることができる。
上記反応を行う際の触媒としては、例えばテトラブチルチタネート、酸化亜鉛、酸化第一錫、ジブチル錫オキサイド、ジブチル錫ジラウレート、パラトルエンスルホン酸などを適宜使用することができる。
The cross-linked polyester resin and the linear polyester resin can be obtained, for example, by performing a dehydration condensation reaction or a transesterification reaction in the presence of a catalyst using the raw material components described above.
As the catalyst for performing the above reaction, for example, tetrabutyl titanate, zinc oxide, stannous oxide, dibutyltin oxide, dibutyltin dilaurate, paratoluenesulfonic acid, and the like can be used as appropriate.

本発明のトナーの樹脂成分に対して、本発明のポリエステル樹脂は30質量%以上含有されている必要がある。トナーの樹脂成分に対する、本発明のポリエステル樹脂の含有量が30質量%未満であると、トナーのVOC含有量が大きくなる。   The polyester resin of the present invention needs to be contained in an amount of 30% by mass or more based on the resin component of the toner of the present invention. When the content of the polyester resin of the present invention is less than 30% by mass relative to the resin component of the toner, the VOC content of the toner increases.

本発明のトナーの樹脂成分として、架橋型ポリエステル樹脂と直鎖型ポリエステル樹脂の混合物が使用される場合、その混合比は特に限定されないが、(架橋型ポリエステル樹脂の質量)/(直鎖型ポリエステル樹脂の質量)=5/95〜60/40が好ましく、10/90〜40/60であることがより好ましく、20/80〜40/60であることが特に好ましい。架橋型ポリエステル樹脂の比率が5質量%よりも少ないと、耐ホットオフセット性、合一速度、ワックスや着色剤などの分散性が低下するので好ましくない。また、架橋型ポリエステル樹脂の比率が60質量%よりも多いと、溶融粘度(T1/2温度)が上昇し、低温定着性が低下するので好ましくない。   When a mixture of a crosslinked polyester resin and a linear polyester resin is used as the resin component of the toner of the present invention, the mixing ratio is not particularly limited, but (mass of the crosslinked polyester resin) / (linear polyester) (Mass of resin) = 5/95 to 60/40 is preferable, 10/90 to 40/60 is more preferable, and 20/80 to 40/60 is particularly preferable. When the ratio of the cross-linked polyester resin is less than 5% by mass, the hot offset resistance, the coalescence speed, and the dispersibility of wax, colorant and the like are not preferable. On the other hand, when the ratio of the cross-linked polyester resin is more than 60% by mass, the melt viscosity (T1 / 2 temperature) increases and the low-temperature fixability decreases, which is not preferable.

本発明のポリエステル樹脂以外の架橋型ポリエステル樹脂のガラス転移温度は特に限定されないが、40〜90℃であることが好ましく、40〜80℃であることが特に好ましい。ガラス転移温度が40℃より低いと、トナーが保存、運搬、あるいはマシンの現像装置内部で高温下に晒された場合にブロッキング現象(熱凝集)を生じやすい。また、ガラス転移温度が90℃より高いと、低温定着性が低下するため好ましくない。   The glass transition temperature of the crosslinkable polyester resin other than the polyester resin of the present invention is not particularly limited, but is preferably 40 to 90 ° C, and particularly preferably 40 to 80 ° C. When the glass transition temperature is lower than 40 ° C., a blocking phenomenon (thermal aggregation) tends to occur when the toner is stored, transported, or exposed to a high temperature inside the developing device of the machine. On the other hand, if the glass transition temperature is higher than 90 ° C., the low-temperature fixability is lowered, which is not preferable.

本発明のポリエステル樹脂以外の直鎖型ポリエステル樹脂のガラス転移温度は特に限定されないが、35〜70℃であることが好ましく、40〜65℃であることが特に好ましい。ガラス転移温度が35℃より低いと、トナーが保存、運搬、あるいはマシンの現像装置内部で高温下に晒された場合にブロッキング現象(熱凝集)が生じやすい。また、ガラス転移温度が70℃より高いと、低湛定着性が低下するため好ましくない。   The glass transition temperature of the linear polyester resin other than the polyester resin of the present invention is not particularly limited, but is preferably 35 to 70 ° C, and particularly preferably 40 to 65 ° C. When the glass transition temperature is lower than 35 ° C., a blocking phenomenon (thermal aggregation) tends to occur when the toner is stored, transported, or exposed to a high temperature inside the developing device of the machine. On the other hand, if the glass transition temperature is higher than 70 ° C., the low wrinkle fixing property is lowered, which is not preferable.

また、本発明のポリエステル樹脂以外の架橋型ポリエステル樹脂の軟化点は特に限定されないが、150℃以上となっていることが好ましく、150℃〜220℃であることがより好ましく、170℃〜190℃であることが特に好ましい、これは、軟化点が150℃未満の場合は、トナーが凝集現象を生じやすくなるので保存時や印字の際にトラブルになりやすく、220℃を越える場合は、定着性が悪化しやすくなるためである。   The softening point of the cross-linked polyester resin other than the polyester resin of the present invention is not particularly limited, but is preferably 150 ° C. or higher, more preferably 150 ° C. to 220 ° C., and 170 ° C. to 190 ° C. It is particularly preferable that when the softening point is less than 150 ° C., the toner tends to cause agglomeration phenomenon, which is likely to cause trouble during storage or printing. It is because it becomes easy to get worse.

また、本発明のポリエステル樹脂以外の直鎖型ポリエスデル樹脂の軟化点は特に限定されないが、90℃以上となっていることが好ましく、90℃〜130℃であることがさらに好ましく、90℃〜110℃であることが特に好ましい。これは、架橋型ポリエステル樹脂と同様に、軟化点が90℃未満の場合は、ガラス転移温度が低下してしまい、トナーが凝集現象を生じやすくなるので保存時や印字の際にトラブルになりやすく、130℃を越える場合には定着性が悪化しやすくなるためである。
架橋型及び直鎖型ポリエステル樹脂の軟化点及びガラス転移温度は、本発明のポリエステル樹脂の軟化点及びガラス転移温度を測定する方法と同一の方法で測定される。
The softening point of the linear polyester resin other than the polyester resin of the present invention is not particularly limited, but is preferably 90 ° C or higher, more preferably 90 ° C to 130 ° C, and more preferably 90 ° C to 110 ° C. It is particularly preferable that the temperature is C. As with the cross-linked polyester resin, when the softening point is less than 90 ° C., the glass transition temperature is lowered, and the toner tends to cause aggregation phenomenon, which is likely to cause trouble during storage or printing. If the temperature exceeds 130 ° C., the fixability tends to deteriorate.
The softening point and glass transition temperature of the cross-linked and linear polyester resins are measured by the same method as the method for measuring the softening point and glass transition temperature of the polyester resin of the present invention.

本発明のトナーの製造方法において、着色樹脂溶液調製工程で導入することができるワックスとしては、ポリプロピレンワックス、ポリエチレンワックス、フィッシャートロフィッシュワックス等の炭化水素系ワックス類、合成エステルワックス類、カルナウバワックス、ライスワックス等の天然エステル系ワックス類の中から選択されるワックスを挙げることができる。中でも、カルナウバワックス、ライスワックス等の天然エステル系ワックス類、高アルコールと長鎖モノカルボン酸から得られる合成エステルワックス類、フィッシャートロフィッシュワックス等の炭化水素系ワックス類が好適である。合成エステルワックスとしては、例えば、WEP−5、WEP−7(日本油脂製)が挙げられる。ワックスの含有量はトナー全体に対して1〜40質量%の範囲が好ましい。ワックスの含有量がトナー全体に対して1質量%未満であると離型性が不十分となり、40質量%を超えるとトナー粒子表面にワックスが露出し易くなり、停電性や保存安定性が低下しやすくなる。   In the method for producing the toner of the present invention, waxes that can be introduced in the colored resin solution preparation step include hydrocarbon waxes such as polypropylene wax, polyethylene wax, and Fischer trophy fish wax, synthetic ester waxes, and carnauba wax. And waxes selected from natural ester waxes such as rice wax. Of these, natural ester waxes such as carnauba wax and rice wax, synthetic ester waxes obtained from a high alcohol and a long-chain monocarboxylic acid, and hydrocarbon waxes such as Fischer-Trofisch wax are suitable. Examples of the synthetic ester wax include WEP-5 and WEP-7 (manufactured by NOF Corporation). The wax content is preferably in the range of 1 to 40% by mass with respect to the total toner. If the wax content is less than 1% by mass with respect to the whole toner, the releasability becomes insufficient. It becomes easy to do.

着色樹脂溶液は帯電制御剤を混合して調製することができる。正帯電性電荷制御剤としては、特に限定はなく、トナー用として公知慣用のニグロシン染料、第4級アンモニウム化合物、オニウム化合物、トリフェニルメタン系化合物等が使用できる。また、アミノ基、イミノ基、N−ヘテロ環などの塩基性基含有化合物、例えば3級アミノ基含有スチレンアクリル樹脂なども正帯電性電荷制御剤としての効果があり、本発明の正帯電性電荷制御剤として、単独で、あるいは前記正帯電性電荷制御剤と併用して用いることができる。また、用途によっては、これら正帯電性電荷制御剤にアゾ染料金属錯体やサリチル酸誘導体金属錯塩などの負電荷制御剤を少量併用することも可能である。また、負帯電性電荷制御剤としては、トリメチルエタン系染料、サリチル酸の金属錯塩、ベンジル酸の金属錯塩、銅フタロシアニン、ペリレン、キナクリドン、アゾ系顔料、金属錯塩アゾ系染料、アゾクロムコンプレックス等の重金属含有酸性染料、カッリクスアレン型のフエノール系縮合物、環状ポリサッカライド、カルボキシル基および/またはスルホニル基を含有する樹脂、等が挙げられる。帯電制御剤の含有量はトナー全体に対して0.01〜10質量%であることが好ましく、特に0.1〜6質量%であることが好ましい。   The colored resin solution can be prepared by mixing a charge control agent. The positively chargeable charge control agent is not particularly limited, and known and commonly used nigrosine dyes, quaternary ammonium compounds, onium compounds, triphenylmethane compounds and the like can be used for toners. In addition, basic group-containing compounds such as amino groups, imino groups, and N-heterocycles, such as tertiary amino group-containing styrene acrylic resins, are also effective as a positively chargeable charge control agent. As a control agent, it can be used alone or in combination with the positively chargeable charge control agent. Depending on the application, a small amount of a negative charge control agent such as an azo dye metal complex or a salicylic acid derivative metal complex salt may be used in combination with these positively chargeable charge control agents. In addition, as the negatively chargeable charge control agent, heavy metals such as trimethylethane dyes, salicylic acid metal complexes, benzylic acid metal complexes, copper phthalocyanine, perylene, quinacridone, azo pigments, metal complex azo dyes, azochrome complexes, etc. Examples thereof include acidic dyes, calixarene-type phenol condensates, cyclic polysaccharides, resins containing carboxyl groups and / or sulfonyl groups, and the like. The content of the charge control agent is preferably 0.01 to 10% by mass, and particularly preferably 0.1 to 6% by mass with respect to the whole toner.

着色樹脂溶液調製工程において添加することができる着色剤の例を挙げると、黒色系着色剤としては、C.I.Pigment Black11等の鉄酸化物系顔料、C.I.Pigment Black12等の鉄−チタン複合酸化物系顔料、ファーネスブラック、チャンネルブラック、アセチレンブラック、サーマルブラック、ランプブラック等のカーボンブラックが挙げられる。   Examples of the colorant that can be added in the colored resin solution preparation step include C.I. I. Pigment Black 11 and other iron oxide pigments, C.I. I. Examples thereof include iron-titanium complex oxide pigments such as Pigment Black 12, and carbon black such as furnace black, channel black, acetylene black, thermal black, and lamp black.

青系の着色剤としては、フタロシアニン系のC.I.Pigment Blue1、2、15:1、15:2、15:3、15:4、15:6、15、16、17:1、27、28、29、56、60、63等があげられる。これらの中でも、C.I.Pigment Blue15:3、15、16、60が好ましく、C.I.Pigment Blue15:3、60がより好ましい。   Examples of blue colorants include phthalocyanine C.I. I. Pigment Blue 1, 2, 15: 1, 15: 2, 15: 3, 15: 4, 15: 6, 15, 16, 17: 1, 27, 28, 29, 56, 60, 63 and the like. Among these, C.I. I. Pigment Blue 15: 3, 15, 16, 60 are preferable. I. Pigment Blue 15: 3, 60 is more preferable.

黄色系着色剤としては、C.I.Pigment Yellow1、3、4、5、6、12、13、14、15、16、17、18、24、55、65、73、74、81、83、87、93、94、95、97、98、100、101、104、108、109、110、113、116、117、120、123、128、129、133、138、139、147、151、153、154、155、156、168、169、170、171、172、173、180、184、185等が挙げられる。これらの中でも、C.I.Pigment Yellow17、74、93、97、110、155、180が好ましく、C.I.Pigment Yellow74、93、97、180、184がより好ましく、C.I.Pigment Yellow93、97、180、184が更に好ましい。   Examples of yellow colorants include C.I. I. Pigment Yellow 1, 3, 4, 5, 6, 12, 13, 14, 15, 16, 17, 18, 24, 55, 65, 73, 74, 81, 83, 87, 93, 94, 95, 97, 98 , 100, 101, 104, 108, 109, 110, 113, 116, 117, 120, 123, 128, 129, 133, 138, 139, 147, 151, 153, 154, 155, 156, 168, 169, 170 , 171, 172, 173, 180, 184, 185 and the like. Among these, C.I. I. Pigment Yellow 17, 74, 93, 97, 110, 155 and 180 are preferable. I. Pigment Yellow 74, 93, 97, 180, and 184 are more preferable. I. Pigment Yellow 93, 97, 180, and 184 are more preferable.

赤色系着色剤としては、C.I.Pigment Red1、2、3、4、5、6、7、8、9、10、12、14、15、17、18、22、23、31、37、38、41、42、48:1、48:2、48:3、48:4、49:1、49:2、50:1、52:1、52:2、53:1、54、57:1、58:4、60:1、63:1、63:2、64:1、65、66、67、68、81、83、88、90、90:1、112、114、115、122、123、133、144、146、147、149、150、151、166、168、170、171、172、174、175、176、177、178、179、184、185、187、188、189、190、193、194、202、208、209、214、216、220、221、224、242、243、243:1、245、246、247等が挙げられる。これらの中でも、C.I.Pigment Red48:1、48:2、48:3、48:4、53:1、57:1、122、184、209が好ましく、C.I.Pigment Red57:1、122、184、209が更に好ましい。   Examples of red colorants include C.I. I. Pigment Red 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 17, 18, 22, 23, 31, 37, 38, 41, 42, 48: 1, 48 : 2, 48: 3, 48: 4, 49: 1, 49: 2, 50: 1, 52: 1, 52: 2, 53: 1, 54, 57: 1, 58: 4, 60: 1, 63 : 1, 63: 2, 64: 1, 65, 66, 67, 68, 81, 83, 88, 90, 90: 1, 112, 114, 115, 122, 123, 133, 144, 146, 147, 149 , 150, 151, 166, 168, 170, 171, 172, 174, 175, 176, 177, 178, 179, 184, 185, 187, 188, 189, 190, 193, 194, 202, 208, 209, 214 216, 220, 221, 2 4,242,243,243: 1,245,246,247, and the like. Among these, C.I. I. Pigment Red 48: 1, 48: 2, 48: 3, 48: 4, 53: 1, 57: 1, 122, 184, 209 are preferred. I. Pigment Red 57: 1, 122, 184, and 209 are more preferable.

着色剤の含有量は、トナー全体に対して、1〜20質量%であることが好ましく、2〜18質量%であることがより好ましく、2〜15質量%であることが更に好ましい。これらの着色剤は1種又は2種以上を組み合わせて使用することができる。   The content of the colorant is preferably 1 to 20% by mass, more preferably 2 to 18% by mass, and still more preferably 2 to 15% by mass with respect to the whole toner. These colorants can be used alone or in combination of two or more.

本発明の製造方法によって製造したトナー粒子は、シリカ、チタニア等の微粒子、あるいはそれらを疎水化処理したものを外添剤として添加して、流動性、静電性等を調製することができる。また、得られたトナー粒子は一成分トナーとして用いることができるが、キャリアを混合することによって二成分トナーとしても利用することができる。   The toner particles produced by the production method of the present invention can be adjusted in fluidity, electrostatic property, etc. by adding fine particles such as silica and titania or those hydrophobized to these as external additives. The obtained toner particles can be used as a one-component toner, but can also be used as a two-component toner by mixing a carrier.

(架橋型ポリエステル樹脂の合成1)
テレフタル酸 9.06質量部
イソフタル酸 3.90質量部
エチレングリコール 2.54質量部
ネオペンチルグリコール 4.26質量部
テトラブチルチタネート 0.10質量部
エピクロン830 0.30質量部
(大日本インキ化学工業製ビスフェノールF型エポキシ樹脂エポキシ当量170(g/eq)
カージュラE 0.10質量部
(シェルジャパン製アルキルグリシジルエステル)エポキシ当量250(g/eq)
以上の原料をステンレス製50Lの反応釜に入れ、常圧窒素気流下にて200℃で透明な樹脂が得られるまで12時間反応を行った。その後、温度を240℃にして30Torrまで減圧して脱気を5時間行った。得られた重合体は、無色の固体であり、DSC測定法によるガラス転移温度65℃、フローテスターによる軟化点(T1/2)が178℃、VOC含有量が8ppmであった。該重合体を以下「H1」と呼ぶ。
(Synthesis of cross-linked polyester resin 1)
Terephthalic acid 9.06 parts by mass Isophthalic acid 3.90 parts by mass Ethylene glycol 2.54 parts by mass Neopentyl glycol 4.26 parts by mass Tetrabutyl titanate 0.10 parts by mass Epicron 830 0.30 parts by mass (Dainippon Ink & Chemicals, Inc. Bisphenol F type epoxy resin, epoxy equivalent 170 (g / eq)
Cardura E 0.10 parts by mass (Shell Japan alkyl glycidyl ester) epoxy equivalent 250 (g / eq)
The above raw materials were put into a stainless steel 50 L reaction kettle and reacted for 12 hours at 200 ° C. under a normal pressure nitrogen stream until a transparent resin was obtained. Then, the temperature was reduced to 240 ° C. and the pressure was reduced to 30 Torr, and deaeration was performed for 5 hours. The obtained polymer was a colorless solid, and had a glass transition temperature of 65 ° C. by a DSC measurement method, a softening point (T1 / 2) by a flow tester of 178 ° C., and a VOC content of 8 ppm. The polymer is hereinafter referred to as “H1”.

(架橋型ポリエステル樹脂の合成2)
テレフタル酸 3.90質量部
イソフタル酸 9.06質量部
ネオペンチルグリコール 4.26質量部
エチレングリコール 2.54質量部
テトラブチルチタネート 0.10質量部
エピクロン830 0.30質量部
(大日本インキ化学工業(株)製ビスフェノールF型エポキシ樹脂 エポキシ当量170g/eq)
カージュラE 0.10質量部
(シェルジャパン製アルキルグリシジルエステル エポキシ当量250g/eq)
以上の原料をステンレス製50Lの反応釜に入れ、常圧窒素気流下にて200℃で透明な樹脂が得られるまで12時間反応を行った。その後、温度を240℃にして30Torrまで減圧して脱気を5時間行った。得られた重合体は、無色の固体であり、DSC測定法によるガラス転移温度60℃、フローテスターによる軟化点(T1/2)が178℃、VOC含有量が27ppmであった。該重合体を以下「H2」と呼ぶ。
(Synthesis of cross-linked polyester resin 2)
Terephthalic acid 3.90 parts by mass Isophthalic acid 9.06 parts by mass Neopentyl glycol 4.26 parts by mass Ethylene glycol 2.54 parts by mass Tetrabutyl titanate 0.10 parts by mass Epicron 830 0.30 parts by mass (Dainippon Ink & Chemicals, Inc. Bisphenol F type epoxy resin (Epoxy equivalent 170g / eq)
0.10 parts by weight of Cardura E (Shell Japan alkyl glycidyl ester epoxy equivalent 250 g / eq)
The above raw materials were put into a stainless steel 50 L reaction kettle and reacted for 12 hours at 200 ° C. under a normal pressure nitrogen stream until a transparent resin was obtained. Then, the temperature was reduced to 240 ° C. and the pressure was reduced to 30 Torr, and deaeration was performed for 5 hours. The obtained polymer was a colorless solid, and had a glass transition temperature of 60 ° C. by a DSC measurement method, a softening point (T1 / 2) by a flow tester of 178 ° C., and a VOC content of 27 ppm. The polymer is hereinafter referred to as “H2”.

(直鎖型ポリエステル樹脂の合成1)
テレフタル酸 7.97質量部
イソフタル酸 5.31質量部
エチレングリコール 2.86質量部
ネオペンチルグリコール 4.80質量部
テトラブチルチタネート 0.10質量部
以上の原料をステンレス製50Lの反応釜に入れ、常圧窒素気流下にて200℃で透明な樹脂が得られるまで12時間反応を行った。その後、温度を210℃にして30Torrまで減圧して脱気を2時間行った。得られた重合体は、無色の固体であり、DSC測定法によるガラス転移温度55℃、フローテスターによる軟化点(T1/2)が107℃、VOC含有量が25ppmであった。該重合体を以下「L2」と呼ぶ。
(Synthesis of linear polyester resin 1)
Terephthalic acid 7.97 parts by mass Isophthalic acid 5.31 parts by mass Ethylene glycol 2.86 parts by mass Neopentyl glycol 4.80 parts by mass Tetrabutyl titanate 0.10 parts by mass or more of raw materials are placed in a 50 L stainless steel reaction kettle. The reaction was carried out for 12 hours at 200 ° C. under a normal pressure nitrogen stream until a transparent resin was obtained. Then, the temperature was reduced to 210 ° C. and the pressure was reduced to 30 Torr, and deaeration was performed for 2 hours. The obtained polymer was a colorless solid, and had a glass transition temperature of 55 ° C. by a DSC measurement method, a softening point (T1 / 2) by a flow tester of 107 ° C., and a VOC content of 25 ppm. The polymer is hereinafter referred to as “L2”.

(直鎖型ポリエステル樹脂の合成2)
テレフタル酸 7.97質量部
イソフタル酸 5.31質量部
エチレングリコール 2.86質量部
ネオペンチルグリコール 4.80質量部
テトラブチルチタネート 0.10質量部
以上の原料をステンレス製50Lの反応釜に入れ、常圧窒素気流下にて200℃で透明な樹脂が得られるまで12時間反応を行った。その後、温度を210℃にして30Torrまで減圧して脱気を1時間行った。得られた重合体は、無色の固体であり、DSC測定法によるガラス転移温度47℃、フローテスターによる軟化点(T1/2)が95℃、VOC含有量が200ppmであった。該重合体を以下「L5」と呼ぶ。
(Synthesis of linear polyester resin 2)
Terephthalic acid 7.97 parts by mass Isophthalic acid 5.31 parts by mass Ethylene glycol 2.86 parts by mass Neopentyl glycol 4.80 parts by mass Tetrabutyl titanate 0.10 parts by mass or more of raw materials are placed in a 50 L stainless steel reaction kettle. The reaction was carried out for 12 hours at 200 ° C. under a normal pressure nitrogen stream until a transparent resin was obtained. Thereafter, the temperature was reduced to 210 ° C. and the pressure was reduced to 30 Torr, and deaeration was performed for 1 hour. The obtained polymer was a colorless solid, and had a glass transition temperature of 47 ° C. by a DSC measurement method, a softening point (T1 / 2) by a flow tester of 95 ° C., and a VOC content of 200 ppm. The polymer is hereinafter referred to as “L5”.

(直鎖型ポリエステル樹脂の合成3)
テレフタル酸 53.1質量部
イソフタル酸 79.7質量部
エチレングリコール 26.0質量部
ネオペンチルグリコール 43.7質量部
テトラブチルチタネート 0.05質量部
以上の原料をステンレス製50Lの反応釜に入れ、常圧窒素気流下にて200℃で透明な樹脂が得られるまで17時間反応を行った。その後、温度を210℃にして30Torrまで減圧して脱気を4時間行った。得られた重合体は、無色の固体であり、DSC測定法によるガラス転移温度46℃、フローテスターによる軟化点(T1/2)が95℃、VOC含有量が142ppmであった。該重合体を以下「L27」と呼ぶ。
(Synthesis of linear polyester resin 3)
Terephthalic acid 53.1 parts by mass Isophthalic acid 79.7 parts by mass Ethylene glycol 26.0 parts by mass Neopentyl glycol 43.7 parts by mass Tetrabutyl titanate 0.05 parts by mass or more of raw materials were placed in a stainless steel 50 L reaction kettle, The reaction was carried out for 17 hours under a normal pressure nitrogen stream until a transparent resin was obtained at 200 ° C. Then, the temperature was reduced to 210 ° C. and the pressure was reduced to 30 Torr, and deaeration was performed for 4 hours. The obtained polymer was a colorless solid, and had a glass transition temperature of 46 ° C. by a DSC measurement method, a softening point (T1 / 2) by a flow tester of 95 ° C., and a VOC content of 142 ppm. The polymer is hereinafter referred to as “L27”.

(直鎖型ポリエステル樹脂の合成4)
テレフタル酸 53.1質量部
イソフタル酸 79.7質量部
エチレングリコール 26.0質量部
ネオペンチルグリコール 43.7質量部
テトラブチルチタネート 0.05質量部
以上の原料をステンレス製50Lの反応釜に入れ、常圧窒素気流下にて200℃で透明な樹脂が得られるまで17時間反応を行った。その後、温度を210℃にして30Torrまで減圧して脱気を3時間行った。得られた重合体は、無色の固体であり、DSC測定法によるガラス転移温度36℃、フローテスターによる軟化点(T1/2)が87℃、VOC含有量が165ppmであった。該重合体を以下「L19」と呼ぶ。
(Synthesis of linear polyester resin 4)
Terephthalic acid 53.1 parts by mass Isophthalic acid 79.7 parts by mass Ethylene glycol 26.0 parts by mass Neopentyl glycol 43.7 parts by mass Tetrabutyl titanate 0.05 parts by mass or more of raw materials were placed in a stainless steel 50 L reaction kettle, The reaction was carried out for 17 hours under a normal pressure nitrogen stream until a transparent resin was obtained at 200 ° C. Then, the temperature was reduced to 210 ° C. and the pressure was reduced to 30 Torr, and deaeration was performed for 3 hours. The obtained polymer was a colorless solid, and had a glass transition temperature of 36 ° C. by a DSC measurement method, a softening point (T1 / 2) by a flow tester of 87 ° C., and a VOC content of 165 ppm. The polymer is hereinafter referred to as “L19”.

(直鎖型ポリエステル樹脂の合成5)
テレフタル酸 53.1質量部
イソフタル酸 79.7質量部
エチレングリコール 26.0質量部
ネオペンチルグリコール 43.7質量部
テトラブチルチタネート 0.05質量部
以上の原料をステンレス製50Lの反応釜に入れ、常圧窒素気流下にて200℃で透明な樹脂が得られるまで17時間反応を行った。その後、温度を210℃にして30Torrまで減圧して脱気を5時間行った。得られた重合体は、無色の固体であり、DSC測定法によるガラス転移温度49℃、フローテスターによる軟化点(T1/2)が98℃、VOC含有量が50ppmであった。該重合体を以下「L21」と呼ぶ。
(Synthesis of linear polyester resin 5)
Terephthalic acid 53.1 parts by mass Isophthalic acid 79.7 parts by mass Ethylene glycol 26.0 parts by mass Neopentyl glycol 43.7 parts by mass Tetrabutyl titanate 0.05 parts by mass or more of raw materials were placed in a stainless steel 50 L reaction kettle, The reaction was carried out for 17 hours under a normal pressure nitrogen stream until a transparent resin was obtained at 200 ° C. Thereafter, the temperature was reduced to 210 ° C. and the pressure was reduced to 30 Torr, and deaeration was performed for 5 hours. The obtained polymer was a colorless solid, and had a glass transition temperature of 49 ° C. by a DSC measurement method, a softening point (T1 / 2) by a flow tester of 98 ° C., and a VOC content of 50 ppm. The polymer is hereinafter referred to as “L21”.

(直鎖型ポリエステル樹脂の合成6)
イソフタル酸 132.8質量部
エチレングリコール 26.0質量部
ネオペンチルグリコール 43.7質量部
以上の原料をステンレス製50Lの反応釜に入れ、常圧窒素気流下にて200℃で透明な樹脂が得られるまで18時間反応を行った。その後、温度を210℃にして30Torrまで減圧して脱気を6時間行った。得られた重合体は、無色の固体であり、DSC測定法によるガラス転移温度46℃、フローテスターによる軟化点(T1/2)が95℃、VOC含有量が130ppmであった。該重合体を以下「L20」と呼ぶ。
(Synthesis of linear polyester resin 6)
Isophthalic acid 132.8 parts by mass Ethylene glycol 26.0 parts by mass Neopentyl glycol 43.7 parts by mass of raw materials are put into a stainless steel 50 L reaction kettle to obtain a transparent resin at 200 ° C. under a normal pressure nitrogen stream. The reaction was allowed to proceed for 18 hours. Then, the temperature was reduced to 210 ° C. and the pressure was reduced to 30 Torr, and deaeration was performed for 6 hours. The obtained polymer was a colorless solid, and had a glass transition temperature of 46 ° C. by a DSC measurement method, a softening point (T1 / 2) by a flow tester of 95 ° C., and a VOC content of 130 ppm. The polymer is hereinafter referred to as “L20”.

直鎖型ポリエステル樹脂L2、L5、L27、L19、L21、L20、架橋型ポリエステル樹脂H1及びH2の軟化点1/2、ガラス転移温度Tg及びVOC含有量(TVOC)を表1に示す。   Table 1 shows the softening point 1/2, the glass transition temperature Tg, and the VOC content (TVOC) of the linear polyester resins L2, L5, L27, L19, L21, L20, and the crosslinked polyester resins H1 and H2.

Figure 2008040285
Figure 2008040285

本発明の具体例である直鎖型ポリエステル樹脂L27、L19、L21及びL20は、直鎖型ポリエステル樹脂L2及びL5よりも触媒の使用量が半分以下で、かつ脱気時間が2倍以上長いものである。直鎖型ポリエステル樹脂L27、L19、L21及びL20は、直鎖型ポリエステル樹脂L2よりも軟化点及びガラス転移温度が低いものである。また、直鎖型ポリエステル樹脂L27、L19、L21及びL20と、直鎖型ポリエステル樹脂L5は軟化点及びガラス転移温度は同程度のものであるが、直鎖型ポリエステル樹脂L27、L19、L21及びL20のVOC含有量は、直鎖型ポリエステル樹脂L5のVOC含有量よりも少ない。   The linear polyester resins L27, L19, L21, and L20, which are specific examples of the present invention, are less than half the amount of catalyst used and more than double the degassing time than the linear polyester resins L2 and L5. is there. The linear polyester resins L27, L19, L21 and L20 have a softening point and a glass transition temperature lower than those of the linear polyester resin L2. The linear polyester resins L27, L19, L21 and L20 and the linear polyester resin L5 have the same softening point and glass transition temperature, but the linear polyester resins L27, L19, L21 and L20 are the same. The VOC content is less than the VOC content of the linear polyester resin L5.

(実施例1)
(ワックスマスター溶液の調製)
カルナウバワックス(カルナウバワックス1号、加藤洋行輸入品)30質量部と直鎖型ポリエステル樹脂L2 70質量部とメチルエチルケトン150質量部とをデスパーで予備混合した後、スターミルLMZ−10(アシザワファインデック社製)で微細化し、固形分含有量40質量%のワックスマスター溶液を調製した。ワックスマスター溶液の組成は、L2/ワックス/メチルエチルケトン=28/12/60である。
(Example 1)
(Preparation of wax master solution)
Carnauba wax (Carnauba wax No. 1, imported by Yoko Kato) 30 parts by mass, linear polyester resin L2 70 parts by mass and methyl ethyl ketone 150 parts by mass were premixed with Desper and then Starmill LMZ-10 (Ashizawa Finedec And a wax master solution having a solid content of 40% by mass was prepared. The composition of the wax master solution is L2 / wax / methyl ethyl ketone = 28/12/60.

(着色剤マスターチップの調製)
Ket Blue 111(大日本インキ化学工業(株)製シアン顔料、C.I.Pgiment B−15:3)2000質量部と直鎖型ポリエステル樹脂L2 2000質量部をST/A0羽根をセットした20Lヘンシェルミキサー(三井鉱山(株)製)へ投入し、698min-1で2分間攪拌し混合物を得た。該混合物をニーデクスMOS140−800(三井鉱山(株)製オープンロール連続押出混練機)を用いて溶融混練しマスターチップを作成した。得られたマスターチップを、直鎖型ポリエステル樹脂L2及びメチルエチルケトンで希釈し、400倍の光学顕微鏡で着色剤の分散状態、粗大粒子の有無を観察したところ、着色剤は均一に分散し、粗大粒子はなかった。
(Preparation of colorant master chip)
20L Henschel set with 2000 parts by mass of Ket Blue 111 (Cyan Pigment manufactured by Dainippon Ink and Chemicals, Inc., CI Pigment B-15: 3) and 2000 parts by mass of a linear polyester resin L2 The mixture was put into a mixer (Mitsui Mine Co., Ltd.) and stirred at 698 min −1 for 2 minutes to obtain a mixture. The mixture was melt-kneaded using a kneedex MOS140-800 (an open roll continuous extrusion kneader manufactured by Mitsui Mining Co., Ltd.) to prepare a master chip. The obtained master chip was diluted with linear polyester resin L2 and methyl ethyl ketone, and when the dispersion state of the colorant and the presence or absence of coarse particles were observed with a 400 times optical microscope, the colorant was uniformly dispersed and coarse particles There was no.

(着色樹脂溶液の調製)
上記ワックスマスター溶液22.5質量部、着色剤マスターチップ3.78質量部、架橋型ポリエステル樹脂H2 4.48質量部、直鎖型ポリエステル樹脂L27 9.74質量部及びメチルエチルケトン7.79質量部を40〜45℃の範囲で翼径230mmのデスパー(アサダ鉄工所(株)製)を使用して777min-1で2時間混合し、溶解・分散を行った。得られた混合物は、更にメチルエチルケトンを加え、固形分含有量を65質量%に調整し、乳化剤としてドデシルベンゼンスルホン酸系乳化剤(第一工業製薬製 ネオゲンSC−F)0.22質量部を添加、溶解・分散して着色樹脂溶液を調製した(工程A)。
(Preparation of colored resin solution)
22.5 parts by mass of the above wax master solution, 3.78 parts by mass of the colorant master chip, 4.48 parts by mass of the cross-linked polyester resin H2, 9.74 parts by mass of the linear polyester resin L27 and 7.79 parts by mass of methyl ethyl ketone. Using a desper (manufactured by Asada Iron Works Co., Ltd.) having a blade diameter of 230 mm in the range of 40 to 45 ° C., the mixture was mixed at 777 min −1 for 2 hours for dissolution and dispersion. The resulting mixture was further added methyl ethyl ketone, the solid content was adjusted to 65% by mass, and 0.22 parts by mass of dodecylbenzenesulfonic acid-based emulsifier (Daiichi Kogyo Seiyaku Neogen SC-F) was added as an emulsifier. A colored resin solution was prepared by dissolving and dispersing (Step A).

(乳化工程)
攪拌翼として翼径230mmのデスパーを有する円筒型の容器に着色樹脂溶液を41.54質量部(固形分27質量部)を仕込み、次いで1規定アンモニア水4質量部を加えて777min-1で攪拌した後、温度を35℃に調整した。次いで、攪拌速度を1100min-1に変更して38.25質量部の脱イオン水を10質量部/minで滴下して乳化懸濁液を作製した。この時の攪拌翼の周速は13.2m/sであった。脱イオン水を添加していくにつれ、系の粘度は上昇していったが、水は滴下と同時に系内に取り込まれ攪拌混合は均一であった。脱イオン水を26質量部添加した後、粘度の急激な低下が観測された(転相乳化)。さらに残りの脱イオン水を所定量添加した後、乳化懸濁液を光学顕微鏡で観察すると、樹脂は溶解しており、顔料とワックスの微粒子が分散している状態が観察された(工程B)。未乳化物は観察されなかった。顔料、ワックスの微粒子は水性媒体中に安定に分散していることから、微粒子表面には樹脂が吸着していると考えられる。
(Emulsification process)
A cylindrical container having a blade with a blade diameter of 230 mm as a stirring blade is charged with 41.54 parts by mass (27 parts by mass of solid content) of a colored resin solution, and then 4 parts by mass of 1N ammonia water is added and stirred at 777 min −1 . Then, the temperature was adjusted to 35 ° C. Subsequently, the stirring speed was changed to 1100 min −1 and 38.25 parts by mass of deionized water was added dropwise at 10 parts by mass / min to prepare an emulsified suspension. The peripheral speed of the stirring blade at this time was 13.2 m / s. As deionized water was added, the viscosity of the system increased, but water was taken into the system at the same time as the dropwise addition, and stirring and mixing were uniform. After adding 26 parts by weight of deionized water, a sharp drop in viscosity was observed (phase inversion emulsification). Further, when a predetermined amount of the remaining deionized water was added and the emulsion suspension was observed with an optical microscope, it was observed that the resin was dissolved and the pigment and wax fine particles were dispersed (step B). . No unemulsified material was observed. Since the pigment and wax fine particles are stably dispersed in the aqueous medium, it is considered that the resin is adsorbed on the surfaces of the fine particles.

(合一工程)
次いで、翼径340mmのマックスブレンド翼(登録商標、住友重機械工業製)付属の円筒容器に、上記縣濁液を移送した後、攪拌速度を85min-1に保持したまま、温度を26℃に調整した。その後回転数を120min-1に調整し、3.5質量%の硫酸ナトリウム水溶液10.8質量部を、1質量部/minで滴下し、滴下終了5分後、回転数85min-1で5分間、65min-1で5分間攪拌し、47min-1で20分間攪拌を継続した。このときの撹拌翼の周速は0.47m/sであった。引き続き、回転数を120min-1に調整し、濃度5.0質量%の硫酸ナトリウム水溶液を1質量部/minで2質量部滴下し、滴下終了5分後、回転数85min-1で5分間、65min-1で5分間攪拌し、47min-1で攪拌を継続し、粒径4.5μmになったところで、85min-1にし30分間撹拌した。
(Joint process)
Next, after the suspension was transferred to a cylindrical container attached to a Max Blend blade (registered trademark, manufactured by Sumitomo Heavy Industries) with a blade diameter of 340 mm, the temperature was maintained at 26 ° C. while maintaining the stirring speed at 85 min −1. It was adjusted. Thereafter, the rotational speed was adjusted to 120 min −1 , 10.8 parts by mass of a 3.5 mass% sodium sulfate aqueous solution was added dropwise at 1 part by mass / min, and 5 minutes after the completion of dropping, the rotational speed was 85 min −1 for 5 minutes. , 65 min −1 for 5 minutes, and 47 min −1 for 20 minutes. The peripheral speed of the stirring blade at this time was 0.47 m / s. Subsequently, the rotational speed was adjusted to 120 min −1 , 2 parts by mass of a sodium sulfate aqueous solution having a concentration of 5.0 mass% was dropped at 1 part by mass / min, and 5 minutes after the completion of dropping, the rotational speed was 85 min −1 for 5 minutes. The mixture was stirred at 65 min −1 for 5 minutes and then continued at 47 min −1 . When the particle size became 4.5 μm, the mixture was stirred at 85 min −1 for 30 minutes.

(シェル用乳化懸濁液の調製工程)
メチルエチルケトン7.33質量部、架橋型ポリエステル樹脂H1 6質量部を35〜40℃の範囲で翼径135mmのデスパー(アサダ鉄工所(株)製)を使用して1200min-1で30分間混合、その後アニオン性乳化剤ネオゲンSC−F(第一工業製薬(株)製)0.033質量部を添加し30分混合し溶解・分散液を得た。次いで1規定アンモニア水1.765質量部を加えて攪拌した後、温度を35℃に調整した。次いで、攪拌速度を1550min-1に変更して13.83質量部の脱イオン水を0.6質量部/minで滴下して乳化懸濁液を作製した。この時の攪拌翼の周速は11m/sであった。脱イオン水を添加していくにつれ、系の粘度は上昇していったが、水は滴下と同時に系内に取り込まれ攪拌混合は均一であった。脱イオン水を10質量部添加した後、粘度の急激な低下が観測された(転相乳化)。さらに残りの脱イオン水を所定量添加した後、乳化懸濁液を光学顕微鏡で観察すると、樹脂は溶解しており、未乳化物は観察されなかった(工程C)。
(Preparation process of emulsion suspension for shell)
Mixing 7.33 parts by mass of methyl ethyl ketone and 6 parts by mass of cross-linked polyester resin H1 in a range of 35 to 40 ° C. using a desper with a blade diameter of 135 mm (manufactured by Asada Iron Works Co., Ltd.) at 1200 min −1 for 30 minutes, then 0.033 parts by mass of anionic emulsifier Neogen SC-F (Daiichi Kogyo Seiyaku Co., Ltd.) was added and mixed for 30 minutes to obtain a solution / dispersion. Next, 1.765 parts by mass of 1N aqueous ammonia was added and stirred, and the temperature was adjusted to 35 ° C. Next, the stirring speed was changed to 1550 min −1 and 13.83 parts by mass of deionized water was added dropwise at 0.6 parts by mass / min to prepare an emulsified suspension. The peripheral speed of the stirring blade at this time was 11 m / s. As deionized water was added, the viscosity of the system increased, but water was taken into the system at the same time as the dropwise addition, and stirring and mixing were uniform. After adding 10 parts by weight of deionized water, a sharp drop in viscosity was observed (phase inversion emulsification). Further, when a predetermined amount of the remaining deionized water was added and the emulsion suspension was observed with an optical microscope, the resin was dissolved and no unemulsified product was observed (Step C).

(シェル化工程)
工程Bにおいて、回転数120min-1にし、粒径4.5μmの着色樹脂微粒子に工程Cで得られたシェル用乳化懸濁液5.46質量部を、0.5質量部/minで滴下し、回転数75min-1で10分間保持した。次に、回転数を120min-1にし、上記を2回繰り返した(計3回添加)。その後、回転数を120min-1に調整し、5質量%の硫酸ナトリウム水溶液1.2質量部を、1質量部/minで滴下し、滴下終了5分後、回転数85min-1で5分間、65min-1で5分間攪拌し、47min-1で15分間撹拌後、脱イオン水10質量部を添加し合一を停止した。
(Shelling process)
In Step B, the rotational speed was 120 min −1 , and 5.46 parts by mass of the emulsion suspension for shell obtained in Step C was added dropwise to colored resin fine particles having a particle diameter of 4.5 μm at 0.5 parts by mass / min. For 10 minutes at a rotational speed of 75 min −1 . Next, the number of revolutions was set to 120 min −1 and the above was repeated twice (added three times in total). Thereafter, the rotational speed was adjusted to 120 min −1 , 1.2 parts by mass of a 5 mass% sodium sulfate aqueous solution was dropped at 1 part by mass / min, and 5 minutes after the completion of the dropping, the rotational speed was 85 min −1 for 5 minutes. and stirred at 65min -1 5 minutes, the mixture was stirred at 47min -1 15 minutes to stop the combined deionized water were added 10 parts by weight.

(分離・乾燥工程)
その後、消泡剤BY22−517(東レ・ダウコーニング・シリコーン(株)製)を0.006質量部添加後、回収量が35質量部となるまで減圧下、メチルエチルケトン及び水を留去した。脱溶剤後のスラリーは、固液分離と再分散による洗浄を繰り返した後、バスケット型遠心分離器により脱溶剤した着色樹脂微粒子分散液を得た。その後、リボコーン混合真空乾燥機により乾燥を行い、トナー母粒子とした。このトナー母粒子をミクロトームで切断した断面を透過型電子顕微鏡で観察するとコア/シェル構造が確認できた。遠心分離機のろ液は透明であった。
(Separation and drying process)
Thereafter, after adding 0.006 parts by mass of antifoaming agent BY22-517 (manufactured by Toray Dow Corning Silicone Co., Ltd.), methyl ethyl ketone and water were distilled off under reduced pressure until the recovered amount became 35 parts by mass. The slurry after the solvent removal was repeatedly washed by solid-liquid separation and redispersion, and then a colored resin fine particle dispersion obtained by removing the solvent with a basket type centrifuge was obtained. Then, it dried with the ribocorn mixing vacuum dryer, and it was set as the toner mother particle. A core / shell structure was confirmed by observing a cross-section of the toner base particles with a microtome with a transmission electron microscope. The centrifuge filtrate was clear.

(実施例2)
(ワックスマスター溶液の調製)
カルナウバワックス(カルナウバワックス1号、加藤洋行輸入品)30質量部と直鎖型ポリエステル樹脂L27 70質量部とメチルエチルケトン150質量部とをデスパーで予備混合した後、スターミルLMZ−10(アシザワファインデック社製)で微細化し、固形分含有量40質量%のワックスマスター溶液を調製した。ワックスマスター溶液の組成は、L27/ワックス/メチルエチルケトン=28/12/60である。
(Example 2)
(Preparation of wax master solution)
Carnauba wax (Carnauba wax No. 1, imported by Kato Yoko) 30 parts by mass, linear polyester resin L27 70 parts by mass and methyl ethyl ketone 150 parts by mass were premixed with Desper and then Starmill LMZ-10 (Ashizawa Finedeck) And a wax master solution having a solid content of 40% by mass was prepared. The composition of the wax master solution is L27 / wax / methyl ethyl ketone = 28/12/60.

(着色剤マスターチップの調製)
Ket Blue 111(大日本インキ化学工業(株)製シアン顔料、C.I.Pgiment B−15:3)2000質量部と直鎖型ポリエステル樹脂L27 2000質量部をST/A0羽根をセットした20Lヘンシェルミキサー(三井鉱山(株)製)へ投入し、698min-1で2分間攪拌し混合物を得た。該混合物をニーデクスMOS140−800(三井鉱山(株)製オープンロール連続押出混練機)を用いて溶融混練しマスターチップを作成した。得られたマスターチップを、直鎖型ポリエステル樹脂L27及びメチルエチルケトンで希釈し、400倍の光学顕微鏡で着色剤の分散状態、粗大粒子の有無を観察したところ、着色剤は均一に分散し、粗大粒子はなかった。
(Preparation of colorant master chip)
Ket Blue 111 (Dai Nippon Ink Chemical Co., Ltd., cyan pigment, CI Pigment B-15: 3) 2000 parts by mass and linear polyester resin L27 2000 parts by mass 20 L Henschel set with ST / A0 blades The mixture was put into a mixer (manufactured by Mitsui Mining Co., Ltd.) and stirred for 2 minutes at 698 min −1 to obtain a mixture. The mixture was melt-kneaded using a kneedex MOS140-800 (an open roll continuous extrusion kneader manufactured by Mitsui Mining Co., Ltd.) to prepare a master chip. The obtained master chip was diluted with the linear polyester resin L27 and methyl ethyl ketone, and when the dispersion state of the colorant and the presence or absence of coarse particles were observed with a 400 times optical microscope, the colorant was uniformly dispersed and coarse particles were observed. There was no.

(着色樹脂溶液の調製)
上記ワックスマスター溶液22.5質量部、着色剤マスターチップ3.78質量部、架橋型ポリエステル樹脂H2 4.48質量部、直鎖型ポリエステル樹脂L27 9.74質量部及びメチルエチルケトン7.79質量部を40〜45℃の範囲で翼径230mmのデスパー(アサダ鉄工所(株)製)を使用して777min-1で2時間混合し、溶解・分散を行った。得られた混合物は、更にメチルエチルケトンを加え、固形分含有量を65質量%に調整し、乳化剤としてドデシルベンゼンスルホン酸系乳化剤(第一工業製薬製 ネオゲンSC−F)0.22質量部を添加、溶解・分散して着色樹脂溶液を調製した(工程A)。
(Preparation of colored resin solution)
22.5 parts by mass of the above wax master solution, 3.78 parts by mass of the colorant master chip, 4.48 parts by mass of the cross-linked polyester resin H2, 9.74 parts by mass of the linear polyester resin L27 and 7.79 parts by mass of methyl ethyl ketone. Using a desper (manufactured by Asada Iron Works Co., Ltd.) having a blade diameter of 230 mm in the range of 40 to 45 ° C., the mixture was mixed at 777 min −1 for 2 hours for dissolution and dispersion. The resulting mixture was further added methyl ethyl ketone, the solid content was adjusted to 65% by mass, and 0.22 parts by mass of dodecylbenzenesulfonic acid-based emulsifier (Daiichi Kogyo Seiyaku Neogen SC-F) was added as an emulsifier. A colored resin solution was prepared by dissolving and dispersing (Step A).

(乳化工程)
攪拌翼として翼径230mmのデスパーを有する円筒型の容器に着色樹脂溶液を41.54質量部(固形分27質量部)を仕込み、次いで1規定アンモニア水4質量部を加えて777min-1で攪拌した後、温度を35℃に調整した。次いで、攪拌速度を1100min-1に変更して38.25質量部の脱イオン水を10質量部/minで滴下して乳化懸濁液を作製した。この時の攪拌翼の周速は13.2m/sであった。脱イオン水を添加していくにつれ、系の粘度は上昇していったが、水は滴下と同時に系内に取り込まれ攪拌混合は均一であった。脱イオン水を26質量部添加した後、粘度の急激な低下が観測された(転相乳化)。さらに残りの脱イオン水を所定量添加した後、乳化懸濁液を光学顕微鏡で観察すると、樹脂は溶解しており、顔料とワックスの微粒子が分散している状態が観察された(工程B)。未乳化物は観察されなかった。顔料、ワックスの微粒子は水性媒体中に安定に分散していることから、微粒子表面には樹脂が吸着していると考えられる。
(Emulsification process)
A cylindrical container having a blade with a blade diameter of 230 mm as a stirring blade is charged with 41.54 parts by mass (27 parts by mass of solid content) of a colored resin solution, and then 4 parts by mass of 1N ammonia water is added and stirred at 777 min −1 . Then, the temperature was adjusted to 35 ° C. Subsequently, the stirring speed was changed to 1100 min −1 and 38.25 parts by mass of deionized water was added dropwise at 10 parts by mass / min to prepare an emulsified suspension. The peripheral speed of the stirring blade at this time was 13.2 m / s. As deionized water was added, the viscosity of the system increased, but water was taken into the system at the same time as the dropwise addition, and stirring and mixing were uniform. After adding 26 parts by weight of deionized water, a sharp drop in viscosity was observed (phase inversion emulsification). Further, when a predetermined amount of the remaining deionized water was added and the emulsion suspension was observed with an optical microscope, it was observed that the resin was dissolved and the pigment and wax fine particles were dispersed (step B). . No unemulsified material was observed. Since the pigment and wax fine particles are stably dispersed in the aqueous medium, it is considered that the resin is adsorbed on the surfaces of the fine particles.

(合一工程)
次いで、翼径340mmのマックスブレンド翼(登録商標、住友重機械工業製)付属の円筒容器に、上記縣濁液を移送した後、攪拌速度を85min-1に保持したまま、温度を26℃に調整した。その後回転数を120min-1に調整し、3.5質量%の硫酸ナトリウム水溶液10.8質量部を、1質量部/minで滴下し、滴下終了5分後、回転数85min-1で5分間、65min-1で5分間攪拌し、47min-1で20分間攪拌を継続した。このときの撹拌翼の周速は0.47m/sであった。引き続き、回転数を120min-1に調整し、濃度5.0質量%の硫酸ナトリウム水溶液を1質量部/minで2質量部滴下し、滴下終了5分後、回転数85min-1で5分間、65min-1で5分間攪拌し、47min-1で攪拌を継続し、粒径4.5μmになったところで、85min-1にし30分間撹拌した。
(Joint process)
Next, after the suspension was transferred to a cylindrical container attached to a Max Blend blade (registered trademark, manufactured by Sumitomo Heavy Industries) with a blade diameter of 340 mm, the temperature was maintained at 26 ° C. while maintaining the stirring speed at 85 min −1. It was adjusted. Thereafter, the rotational speed was adjusted to 120 min −1 , 10.8 parts by mass of a 3.5 mass% sodium sulfate aqueous solution was added dropwise at 1 part by mass / min, and 5 minutes after the completion of dropping, the rotational speed was 85 min −1 for 5 minutes. , 65 min −1 for 5 minutes, and 47 min −1 for 20 minutes. The peripheral speed of the stirring blade at this time was 0.47 m / s. Subsequently, the rotational speed was adjusted to 120 min −1 , 2 parts by mass of a sodium sulfate aqueous solution having a concentration of 5.0 mass% was dropped at 1 part by mass / min, and 5 minutes after the completion of dropping, the rotational speed was 85 min −1 for 5 minutes. The mixture was stirred at 65 min −1 for 5 minutes and then continued at 47 min −1 . When the particle size became 4.5 μm, the mixture was stirred at 85 min −1 for 30 minutes.

(シェル用乳化懸濁液の調製工程)
メチルエチルケトン7.33質量部、架橋型ポリエステル樹脂H1 6質量部を35〜40℃の範囲で翼径135mmのデスパー(アサダ鉄工所(株)製)を使用して1200min-1で30分間混合、その後アニオン性乳化剤ネオゲンSC−F(第一工業製薬(株)製)0.033質量部を添加し30分混合し溶解・分散液を得た。次いで1規定アンモニア水1.765質量部を加えて攪拌した後、温度を35℃に調整した。次いで、攪拌速度を1550min-1に変更して13.83質量部の脱イオン水を0.6質量部/minで滴下して乳化懸濁液を作製した。この時の攪拌翼の周速は11m/sであった。脱イオン水を添加していくにつれ、系の粘度は上昇していったが、水は滴下と同時に系内に取り込まれ攪拌混合は均一であった。脱イオン水を10質量部添加した後、粘度の急激な低下が観測された(転相乳化)。さらに残りの脱イオン水を所定量添加した後、乳化懸濁液を光学顕微鏡で観察すると、樹脂は溶解しており、未乳化物は観察されなかった(工程C)。
(Preparation process of emulsion suspension for shell)
Mixing 7.33 parts by mass of methyl ethyl ketone and 6 parts by mass of cross-linked polyester resin H1 in a range of 35 to 40 ° C. using a desper with a blade diameter of 135 mm (manufactured by Asada Iron Works Co., Ltd.) at 1200 min −1 for 30 minutes, then 0.033 parts by mass of anionic emulsifier Neogen SC-F (Daiichi Kogyo Seiyaku Co., Ltd.) was added and mixed for 30 minutes to obtain a solution / dispersion. Next, 1.765 parts by mass of 1N aqueous ammonia was added and stirred, and the temperature was adjusted to 35 ° C. Next, the stirring speed was changed to 1550 min −1 and 13.83 parts by mass of deionized water was added dropwise at 0.6 parts by mass / min to prepare an emulsified suspension. The peripheral speed of the stirring blade at this time was 11 m / s. As deionized water was added, the viscosity of the system increased, but water was taken into the system at the same time as the dropwise addition, and stirring and mixing were uniform. After adding 10 parts by weight of deionized water, a sharp drop in viscosity was observed (phase inversion emulsification). Further, when a predetermined amount of the remaining deionized water was added and the emulsion suspension was observed with an optical microscope, the resin was dissolved and no unemulsified product was observed (Step C).

(シェル化工程)
工程Bにおいて、回転数120min-1にし、粒径4.5μmの着色樹脂微粒子に工程Cで得られたシェル用乳化懸濁液5.46質量部を、0.5質量部/minで滴下し、回転数75min-1で10分間保持した。次に、回転数を120min-1にし、上記を2回繰り返した(計3回添加)。その後、回転数を120min-1に調整し、5質量%の硫酸ナトリウム水溶液1.2質量部を、1質量部/minで滴下し、滴下終了5分後、回転数85min-1で5分間、65min-1で5分間攪拌し、47min-1で15分間撹拌後、脱イオン水10質量部を添加し合一を停止した。
(Shelling process)
In Step B, the rotational speed was 120 min −1 , and 5.46 parts by mass of the emulsion suspension for shell obtained in Step C was added dropwise to colored resin fine particles having a particle diameter of 4.5 μm at 0.5 parts by mass / min. For 10 minutes at a rotational speed of 75 min −1 . Next, the number of revolutions was set to 120 min −1 and the above was repeated twice (added three times in total). Thereafter, the rotational speed was adjusted to 120 min −1 , 1.2 parts by mass of a 5 mass% sodium sulfate aqueous solution was dropped at 1 part by mass / min, and 5 minutes after the completion of the dropping, the rotational speed was 85 min −1 for 5 minutes. and stirred at 65min -1 5 minutes, the mixture was stirred at 47min -1 15 minutes to stop the combined deionized water were added 10 parts by weight.

(分離・乾燥工程)
その後、消泡剤BY22−517(東レ・ダウコーニング・シリコーン(株)製)を0.006質量部添加後、回収量が35質量部となるまで減圧下、メチルエチルケトン及び水を留去した。脱溶剤後のスラリーは、固液分離と再分散による洗浄を繰り返した後、バスケット型遠心分離器により脱溶剤した着色樹脂微粒子分散液を得た。その後、リボコーン混合真空乾燥機により乾燥を行い、トナー母粒子とした。このトナー母粒子をミクロトームで切断した断面を透過型電子顕微鏡で観察するとコア/シェル構造が確認できた。遠心分離機のろ液は透明であった。
(Separation and drying process)
Thereafter, after adding 0.006 parts by mass of antifoaming agent BY22-517 (manufactured by Toray Dow Corning Silicone Co., Ltd.), methyl ethyl ketone and water were distilled off under reduced pressure until the recovered amount became 35 parts by mass. The slurry after the solvent removal was repeatedly washed by solid-liquid separation and redispersion, and then a colored resin fine particle dispersion obtained by removing the solvent with a basket type centrifuge was obtained. Then, it dried with the ribocorn mixing vacuum dryer, and it was set as the toner mother particle. A core / shell structure was confirmed by observing a cross-section of the toner base particles with a microtome with a transmission electron microscope. The centrifuge filtrate was clear.

(実施例3)
(ワックスマスター溶液の調製)
カルナウバワックス(カルナウバワックス1号、加藤洋行輸入品)30質量部と直鎖型ポリエステル樹脂L19 70質量部とメチルエチルケトン150質量部とをデスパーで予備混合した後、スターミルLMZ−10(アシザワファインデック社製)で微細化し、固形分含有量40質量%のワックスマスター溶液を調製した。ワックスマスター溶液の組成は、L19/ワックス/メチルエチルケトン=28/12/60である。
(Example 3)
(Preparation of wax master solution)
Carnauba wax (Carnauba wax No. 1, imported by Yoko Kato) 30 parts by mass, linear polyester resin L19 70 parts by mass and methyl ethyl ketone 150 parts by mass were premixed with Desper and then Starmill LMZ-10 (Ashizawa Finedeck) And a wax master solution having a solid content of 40% by mass was prepared. The composition of the wax master solution is L19 / wax / methyl ethyl ketone = 28/12/60.

(着色剤マスターチップの調製)
Ket Blue 111(大日本インキ化学工業(株)製シアン顔料、C.I.Pgiment B−15:3)2000質量部と直鎖型ポリエステル樹脂L19 2000質量部をST/A0羽根をセットした20Lヘンシェルミキサー(三井鉱山(株)製)へ投入し、698min-1で2分間攪拌し混合物を得た。該混合物をニーデクスMOS140−800(三井鉱山(株)製オープンロール連続押出混練機)を用いて溶融混練しマスターチップを作成した。得られたマスターチップを、直鎖型ポリエステル樹脂L19及びメチルエチルケトンで希釈し、400倍の光学顕微鏡で着色剤の分散状態、粗大粒子の有無を観察したところ、着色剤は均一に分散し、粗大粒子はなかった。
(Preparation of colorant master chip)
Ket Blue 111 (Dai Nippon Ink Chemical Co., Ltd. cyan pigment, CI Pigment B-15: 3) 2000 parts by mass and linear polyester resin L19 2000 parts by mass 20 L Henschel set with ST / A0 blades The mixture was put into a mixer (manufactured by Mitsui Mining Co., Ltd.) and stirred for 2 minutes at 698 min −1 to obtain a mixture. The mixture was melt-kneaded using a kneedex MOS140-800 (an open roll continuous extrusion kneader manufactured by Mitsui Mining Co., Ltd.) to prepare a master chip. The obtained master chip was diluted with linear polyester resin L19 and methyl ethyl ketone, and the dispersion state of the colorant and the presence or absence of coarse particles were observed with a 400-fold optical microscope. The colorant was uniformly dispersed and coarse particles There was no.

(着色樹脂溶液の調製)
上記ワックスマスター溶液22.5質量部、着色剤マスターチップ3.78質量部、架橋型ポリエステル樹脂H2 4.48質量部、直鎖型ポリエステル樹脂L19 9.74質量部及びメチルエチルケトン7.79質量部を40〜45℃の範囲で翼径230mmのデスパー(アサダ鉄工所(株)製)を使用して777min-1で2時間混合し、溶解・分散を行った。得られた混合物は、更にメチルエチルケトンを加え、固形分含有量を65質量%に調整し、乳化剤としてドデシルベンゼンスルホン酸系乳化剤(第一工業製薬製 ネオゲンSC−F)0.22質量部を添加、溶解・分散して着色樹脂溶液を調製した(工程A)。
(Preparation of colored resin solution)
22.5 parts by mass of the wax master solution, 3.78 parts by mass of the colorant master chip, 4.48 parts by mass of the cross-linked polyester resin H2, 9.74 parts by mass of the linear polyester resin L19, and 7.79 parts by mass of methyl ethyl ketone. Using a desper (manufactured by Asada Iron Works Co., Ltd.) having a blade diameter of 230 mm in the range of 40 to 45 ° C., the mixture was mixed at 777 min −1 for 2 hours for dissolution and dispersion. The resulting mixture was further added methyl ethyl ketone, the solid content was adjusted to 65% by mass, and 0.22 parts by mass of dodecylbenzenesulfonic acid-based emulsifier (Daiichi Kogyo Seiyaku Neogen SC-F) was added as an emulsifier. A colored resin solution was prepared by dissolving and dispersing (Step A).

(乳化工程)
攪拌翼として翼径230mmのデスパーを有する円筒型の容器に着色樹脂溶液を41.54質量部(固形分27質量部)を仕込み、次いで1規定アンモニア水4.5質量部を加えて777min-1で攪拌した後、温度を35℃に調整した。次いで、攪拌速度を1100min-1に変更して38.25質量部の脱イオン水を10質量部/minで滴下して乳化懸濁液を作製した。この時の攪拌翼の周速は13.2m/sであった。脱イオン水を添加していくにつれ、系の粘度は上昇していったが、水は滴下と同時に系内に取り込まれ攪拌混合は均一であった。脱イオン水を26質量部添加した後、粘度の急激な低下が観測された(転相乳化)。さらに残りの脱イオン水を所定量添加した後、乳化懸濁液を光学顕微鏡で観察すると、樹脂は溶解しており、顔料とワックスの微粒子が分散している状態が観察された(工程B)。未乳化物は観察されなかった。顔料、ワックスの微粒子は水性媒体中に安定に分散していることから、微粒子表面には樹脂が吸着していると考えられる。
(Emulsification process)
A cylindrical container having a blade with a blade diameter of 230 mm as a stirring blade was charged with 41.54 parts by mass (27 parts by mass of solid content) of the colored resin solution, and then 4.5 parts by mass of 1N ammonia water was added to 777 min −1. And the temperature was adjusted to 35 ° C. Subsequently, the stirring speed was changed to 1100 min −1 and 38.25 parts by mass of deionized water was added dropwise at 10 parts by mass / min to prepare an emulsified suspension. The peripheral speed of the stirring blade at this time was 13.2 m / s. As deionized water was added, the viscosity of the system increased, but water was taken into the system at the same time as the dropwise addition, and stirring and mixing were uniform. After adding 26 parts by weight of deionized water, a sharp drop in viscosity was observed (phase inversion emulsification). Further, when a predetermined amount of the remaining deionized water was added and the emulsion suspension was observed with an optical microscope, it was observed that the resin was dissolved and the pigment and wax fine particles were dispersed (step B). . No unemulsified material was observed. Since the pigment and wax fine particles are stably dispersed in the aqueous medium, it is considered that the resin is adsorbed on the surfaces of the fine particles.

(合一工程)
次いで、翼径340mmのマックスブレンド翼(登録商標、住友重機械工業製)付属の円筒容器に、上記縣濁液を移送した後、攪拌速度を85min-1に保持したまま、温度を26℃に調整した。その後回転数を120min-1に調整し、3.5質量%の硫酸ナトリウム水溶液10.8質量部を、1質量部/minで滴下し、滴下終了5分後、回転数85min-1で5分間、65min-1で5分間攪拌し、47min-1で20分間攪拌を継続した。このときの撹拌翼の周速は0.47m/sであった。引き続き、回転数を120min-1に調整し、濃度5.0質量%の硫酸ナトリウム水溶液を1質量部/minで2質量部滴下し、滴下終了5分後、回転数85min-1で5分間、65min-1で5分間攪拌し、47min-1で攪拌を継続し、粒径4.5μmになったところで、85min-1にし30分間撹拌した。
(Joint process)
Next, after the suspension was transferred to a cylindrical container attached to a Max Blend blade (registered trademark, manufactured by Sumitomo Heavy Industries) with a blade diameter of 340 mm, the temperature was maintained at 26 ° C. while maintaining the stirring speed at 85 min −1. It was adjusted. Thereafter, the rotational speed was adjusted to 120 min −1 , 10.8 parts by mass of a 3.5 mass% sodium sulfate aqueous solution was added dropwise at 1 part by mass / min, and 5 minutes after the completion of dropping, the rotational speed was 85 min −1 for 5 minutes. , 65 min −1 for 5 minutes, and 47 min −1 for 20 minutes. The peripheral speed of the stirring blade at this time was 0.47 m / s. Subsequently, the rotational speed was adjusted to 120 min −1 , 2 parts by mass of a sodium sulfate aqueous solution having a concentration of 5.0 mass% was dropped at 1 part by mass / min, and 5 minutes after the completion of dropping, the rotational speed was 85 min −1 for 5 minutes. The mixture was stirred at 65 min −1 for 5 minutes and then continued at 47 min −1 . When the particle size became 4.5 μm, the mixture was stirred at 85 min −1 for 30 minutes.

(シェル用乳化懸濁液の調製工程)
メチルエチルケトン7.33質量部、架橋型ポリエステル樹脂H1 6質量部を35〜40℃の範囲で翼径135mmのデスパー(アサダ鉄工所(株)製)を使用して1200min-1で30分間混合、その後アニオン性乳化剤ネオゲンSC−F(第一工業製薬(株)製)0.033質量部を添加し30分混合し溶解・分散液を得た。次いで1規定アンモニア水1.765質量部を加えて攪拌した後、温度を35℃に調整した。次いで、攪拌速度を1550min-1に変更して13.83質量部の脱イオン水を0.6質量部/minで滴下して乳化懸濁液を作製した。この時の攪拌翼の周速は11m/sであった。脱イオン水を添加していくにつれ、系の粘度は上昇していったが、水は滴下と同時に系内に取り込まれ攪拌混合は均一であった。脱イオン水を10質量部添加した後、粘度の急激な低下が観測された(転相乳化)。さらに残りの脱イオン水を所定量添加した後、乳化懸濁液を光学顕微鏡で観察すると、樹脂は溶解しており、未乳化物は観察されなかった(工程C)。
(Preparation process of emulsion suspension for shell)
Mixing 7.33 parts by mass of methyl ethyl ketone and 6 parts by mass of cross-linked polyester resin H1 in a range of 35 to 40 ° C. using a desper with a blade diameter of 135 mm (manufactured by Asada Iron Works Co., Ltd.) at 1200 min −1 for 30 minutes, then 0.033 parts by mass of anionic emulsifier Neogen SC-F (Daiichi Kogyo Seiyaku Co., Ltd.) was added and mixed for 30 minutes to obtain a solution / dispersion. Next, 1.765 parts by mass of 1N aqueous ammonia was added and stirred, and the temperature was adjusted to 35 ° C. Next, the stirring speed was changed to 1550 min −1 and 13.83 parts by mass of deionized water was added dropwise at 0.6 parts by mass / min to prepare an emulsified suspension. The peripheral speed of the stirring blade at this time was 11 m / s. As deionized water was added, the viscosity of the system increased, but water was taken into the system at the same time as the dropwise addition, and stirring and mixing were uniform. After adding 10 parts by weight of deionized water, a sharp drop in viscosity was observed (phase inversion emulsification). Further, when a predetermined amount of the remaining deionized water was added and the emulsion suspension was observed with an optical microscope, the resin was dissolved and no unemulsified product was observed (Step C).

(シェル化工程)
工程Bにおいて、回転数120min-1にし、粒径4.5μmの着色樹脂微粒子に工程Cで得られたシェル用乳化懸濁液5.21質量部を、0.5質量部/minで滴下し、回転数75min-1で10分間保持した。次に、回転数を120min-1にし、上記を2回繰り返した(計3回添加)。その後、回転数を120min-1に調整し、5質量%の硫酸ナトリウム水溶液1.2質量部を、1質量部/minで滴下し、滴下終了5分後、回転数85min-1で5分間、65min-1で5分間攪拌し、47min-1で15分間撹拌後、脱イオン水10質量部を添加し合一を停止した。
(Shelling process)
In Step B, the rotational speed was 120 min −1 , and 5.21 parts by mass of the emulsified suspension for shell obtained in Step C was added dropwise to colored resin fine particles having a particle diameter of 4.5 μm at 0.5 parts by mass / min. For 10 minutes at a rotational speed of 75 min −1 . Next, the number of revolutions was set to 120 min −1 and the above was repeated twice (added three times in total). Thereafter, the rotational speed was adjusted to 120 min −1 , 1.2 parts by mass of a 5 mass% sodium sulfate aqueous solution was dropped at 1 part by mass / min, and 5 minutes after the completion of the dropping, the rotational speed was 85 min −1 for 5 minutes. and stirred at 65min -1 5 minutes, the mixture was stirred at 47min -1 15 minutes to stop the combined deionized water were added 10 parts by weight.

(分離・乾燥工程)
その後、消泡剤BY22−517(東レ・ダウコーニング・シリコーン(株)製)を0.006質量部添加後、回収量が35質量部となるまで減圧下、メチルエチルケトン及び水を留去した。脱溶剤後のスラリーは、固液分離と再分散による洗浄を繰り返した後、バスケット型遠心分離器により脱溶剤した着色樹脂微粒子分散液を得た。その後、リボコーン混合真空乾燥機により乾燥を行い、トナー母粒子とした。このトナー母粒子をミクロトームで切断した断面を透過型電子顕微鏡で観察するとコア/シェル構造が確認できた。遠心分離機のろ液は透明であった。
(Separation and drying process)
Thereafter, after adding 0.006 parts by mass of antifoaming agent BY22-517 (manufactured by Toray Dow Corning Silicone Co., Ltd.), methyl ethyl ketone and water were distilled off under reduced pressure until the recovered amount became 35 parts by mass. The slurry after the solvent removal was repeatedly washed by solid-liquid separation and redispersion, and then a colored resin fine particle dispersion obtained by removing the solvent with a basket type centrifuge was obtained. Then, it dried with the ribocorn mixing vacuum dryer, and it was set as the toner mother particle. A core / shell structure was confirmed by observing a cross-section of the toner base particles with a microtome with a transmission electron microscope. The centrifuge filtrate was clear.

(実施例4)
(ワックスマスター溶液の調製)
カルナウバワックス(カルナウバワックス1号、加藤洋行輸入品)30質量部と直鎖型ポリエステル樹脂L20 70質量部とメチルエチルケトン150質量部とをデスパーで予備混合した後、スターミルLMZ−10(アシザワファインデック社製)で微細化し、固形分含有量40質量%のワックスマスター溶液を調製した。ワックスマスター溶液の組成は、L20/ワックス/メチルエチルケトン=28/12/60である。
Example 4
(Preparation of wax master solution)
Carnauba wax (Carnauba wax No. 1, imported by Yoko Kato) 30 parts by mass, linear polyester resin L20 70 parts by mass and methyl ethyl ketone 150 parts by mass were premixed with Desper and then Starmill LMZ-10 (Ashizawa Finedeck) And a wax master solution having a solid content of 40% by mass was prepared. The composition of the wax master solution is L20 / wax / methyl ethyl ketone = 28/12/60.

(着色剤マスターチップの調製)
Ket Blue 111(大日本インキ化学工業(株)製シアン顔料、C.I.Pgiment B−15:3)2000質量部と直鎖型ポリエステル樹脂L20 2000質量部をST/A0羽根をセットした20Lヘンシェルミキサー(三井鉱山(株)製)へ投入し、698min-1で2分間攪拌し混合物を得た。該混合物をニーデクスMOS140−800(三井鉱山(株)製オープンロール連続押出混練機)を用いて溶融混練しマスターチップを作成した。得られたマスターチップを、直鎖型ポリエステル樹脂L20及びメチルエチルケトンで希釈し、400倍の光学顕微鏡で着色剤の分散状態、粗大粒子の有無を観察したところ、着色剤は均一に分散し、粗大粒子はなかった。
(Preparation of colorant master chip)
Ket Blue 111 (Dai Nippon Ink Chemical Co., Ltd. Cyan Pigment, CI Pigment B-15: 3) 2000 parts by mass and linear polyester resin L20 2000 parts by mass 20 L Henschel set with ST / A0 blades The mixture was put into a mixer (manufactured by Mitsui Mining Co., Ltd.) and stirred for 2 minutes at 698 min −1 to obtain a mixture. The mixture was melt-kneaded using a kneedex MOS140-800 (an open roll continuous extrusion kneader manufactured by Mitsui Mining Co., Ltd.) to prepare a master chip. The obtained master chip was diluted with the linear polyester resin L20 and methyl ethyl ketone, and when the dispersion state of the colorant and the presence or absence of coarse particles were observed with a 400 × optical microscope, the colorant was uniformly dispersed and coarse particles There was no.

(着色樹脂溶液の調製)
上記ワックスマスター溶液22.5質量部、着色剤マスターチップ3.78質量部、架橋型ポリエステル樹脂H2 4.48質量部、直鎖型ポリエステル樹脂L20 9.74質量部及びメチルエチルケトン7.79質量部を40〜45℃の範囲で翼径230mmのデスパー(アサダ鉄工所(株)製)を使用して777min-1で2時間混合し、溶解・分散を行った。得られた混合物は、更にメチルエチルケトンを加え、固形分含有量を65質量%に調整し、乳化剤としてドデシルベンゼンスルホン酸系乳化剤(第一工業製薬製 ネオゲンSC−F)0.22質量部を添加、溶解・分散して着色樹脂溶液を調製した(工程A)。
(Preparation of colored resin solution)
22.5 parts by weight of the above wax master solution, 3.78 parts by weight of the colorant master chip, 4.48 parts by weight of the cross-linked polyester resin H2, 9.74 parts by weight of the linear polyester resin L20 and 7.79 parts by weight of methyl ethyl ketone. Using a desper (manufactured by Asada Iron Works Co., Ltd.) having a blade diameter of 230 mm in the range of 40 to 45 ° C., the mixture was mixed at 777 min −1 for 2 hours for dissolution and dispersion. The resulting mixture was further added methyl ethyl ketone, the solid content was adjusted to 65% by mass, and 0.22 parts by mass of dodecylbenzenesulfonic acid-based emulsifier (Daiichi Kogyo Seiyaku Neogen SC-F) was added as an emulsifier. A colored resin solution was prepared by dissolving and dispersing (Step A).

(乳化工程)
攪拌翼として翼径230mmのデスパーを有する円筒型の容器に着色樹脂溶液を41.54質量部(固形分27質量部)を仕込み、次いで1規定アンモニア水4質量部を加えて777min-1で攪拌した後、温度を35℃に調整した。次いで、攪拌速度を1100min-1に変更して38.25質量部の脱イオン水を10質量部/minで滴下して乳化懸濁液を作製した。この時の攪拌翼の周速は13.2m/sであった。脱イオン水を添加していくにつれ、系の粘度は上昇していったが、水は滴下と同時に系内に取り込まれ攪拌混合は均一であった。脱イオン水を26質量部添加した後、粘度の急激な低下が観測された(転相乳化)。さらに残りの脱イオン水を所定量添加した後、乳化懸濁液を光学顕微鏡で観察すると、樹脂は溶解しており、顔料とワックスの微粒子が分散している状態が観察された(工程B)。未乳化物は観察されなかった。顔料、ワックスの微粒子は水性媒体中に安定に分散していることから、微粒子表面には樹脂が吸着していると考えられる。
(Emulsification process)
A cylindrical container having a blade with a blade diameter of 230 mm as a stirring blade is charged with 41.54 parts by mass (27 parts by mass of solid content) of a colored resin solution, and then 4 parts by mass of 1N ammonia water is added and stirred at 777 min −1 . Then, the temperature was adjusted to 35 ° C. Subsequently, the stirring speed was changed to 1100 min −1 and 38.25 parts by mass of deionized water was added dropwise at 10 parts by mass / min to prepare an emulsified suspension. The peripheral speed of the stirring blade at this time was 13.2 m / s. As deionized water was added, the viscosity of the system increased, but water was taken into the system at the same time as the dropwise addition, and stirring and mixing were uniform. After adding 26 parts by weight of deionized water, a sharp drop in viscosity was observed (phase inversion emulsification). Further, when a predetermined amount of the remaining deionized water was added and the emulsion suspension was observed with an optical microscope, it was observed that the resin was dissolved and the pigment and wax fine particles were dispersed (step B). . No unemulsified material was observed. Since the pigment and wax fine particles are stably dispersed in the aqueous medium, it is considered that the resin is adsorbed on the surfaces of the fine particles.

(合一工程)
次いで、翼径340mmのマックスブレンド翼(登録商標、住友重機械工業製)付属の円筒容器に、上記縣濁液を移送した後、攪拌速度を85min-1に保持したまま、温度を26℃に調整した。その後回転数を120min-1に調整し、3.5質量%の硫酸ナトリウム水溶液10.8質量部を、1質量部/minで滴下し、滴下終了5分後、回転数85min-1で5分間、65min-1で5分間攪拌し、47min-1で20分間攪拌を継続した。このときの撹拌翼の周速は0.47m/sであった。引き続き、回転数を120min-1に調整し、濃度5.0質量%の硫酸ナトリウム水溶液を1質量部/minで2質量部滴下し、滴下終了5分後、回転数85min-1で5分間、65min-1で5分間攪拌し、47min-1で攪拌を継続し、粒径4.5μmになったところで、85min-1にし30分間撹拌した。
(Joint process)
Next, after the suspension was transferred to a cylindrical container attached to a Max Blend blade (registered trademark, manufactured by Sumitomo Heavy Industries) with a blade diameter of 340 mm, the temperature was maintained at 26 ° C. while maintaining the stirring speed at 85 min −1. It was adjusted. Thereafter, the rotational speed was adjusted to 120 min −1 , 10.8 parts by mass of a 3.5 mass% sodium sulfate aqueous solution was added dropwise at 1 part by mass / min, and 5 minutes after the completion of dropping, the rotational speed was 85 min −1 for 5 minutes. , 65 min −1 for 5 minutes, and 47 min −1 for 20 minutes. The peripheral speed of the stirring blade at this time was 0.47 m / s. Subsequently, the rotational speed was adjusted to 120 min −1 , 2 parts by mass of a sodium sulfate aqueous solution having a concentration of 5.0 mass% was dropped at 1 part by mass / min, and 5 minutes after the completion of dropping, the rotational speed was 85 min −1 for 5 minutes. The mixture was stirred at 65 min −1 for 5 minutes and then continued at 47 min −1 . When the particle size became 4.5 μm, the mixture was stirred at 85 min −1 for 30 minutes.

(シェル用乳化懸濁液の調製工程)
メチルエチルケトン7.33質量部、架橋型ポリエステル樹脂H1 6質量部を35〜40℃の範囲で翼径135mmのデスパー(アサダ鉄工所(株)製)を使用して1200min-1で30分間混合、その後アニオン性乳化剤ネオゲンSC−F(第一工業製薬(株)製)0.033質量部を添加し30分混合し溶解・分散液を得た。次いで1規定アンモニア水1.765質量部を加えて攪拌した後、温度を35℃に調整した。次いで、攪拌速度を1550min-1に変更して13.83質量部の脱イオン水を0.6質量部/minで滴下して乳化懸濁液を作製した。この時の攪拌翼の周速は11m/sであった。脱イオン水を添加していくにつれ、系の粘度は上昇していったが、水は滴下と同時に系内に取り込まれ攪拌混合は均一であった。脱イオン水を10質量部添加した後、粘度の急激な低下が観測された(転相乳化)。さらに残りの脱イオン水を所定量添加した後、乳化懸濁液を光学顕微鏡で観察すると、樹脂は溶解しており、未乳化物は観察されなかった(工程C)。
(Preparation process of emulsion suspension for shell)
Mixing 7.33 parts by mass of methyl ethyl ketone and 6 parts by mass of cross-linked polyester resin H1 in a range of 35 to 40 ° C. using a desper with a blade diameter of 135 mm (manufactured by Asada Iron Works Co., Ltd.) at 1200 min −1 for 30 minutes, then 0.033 parts by mass of anionic emulsifier Neogen SC-F (Daiichi Kogyo Seiyaku Co., Ltd.) was added and mixed for 30 minutes to obtain a solution / dispersion. Next, 1.765 parts by mass of 1N aqueous ammonia was added and stirred, and the temperature was adjusted to 35 ° C. Next, the stirring speed was changed to 1550 min −1 and 13.83 parts by mass of deionized water was added dropwise at 0.6 parts by mass / min to prepare an emulsified suspension. The peripheral speed of the stirring blade at this time was 11 m / s. As deionized water was added, the viscosity of the system increased, but water was taken into the system at the same time as the dropwise addition, and stirring and mixing were uniform. After adding 10 parts by weight of deionized water, a sharp drop in viscosity was observed (phase inversion emulsification). Further, when a predetermined amount of the remaining deionized water was added and the emulsion suspension was observed with an optical microscope, the resin was dissolved and no unemulsified product was observed (Step C).

(シェル化工程)
工程Bにおいて、回転数120min-1にし、粒径4.5μmの着色樹脂微粒子に工程Cで得られたシェル用乳化懸濁液5.21質量部を、0.5質量部/minで滴下し、回転数75min-1で10分間保持した。次に、回転数を120min-1にし、上記を2回繰り返した(計3回添加)。その後、回転数を120min-1に調整し、5質量%の硫酸ナトリウム水溶液1.2質量部を、1質量部/minで滴下し、滴下終了5分後、回転数85min-1で5分間、65min-1で5分間攪拌し、47min-1で15分間撹拌後、脱イオン水10質量部を添加し合一を停止した。
(Shelling process)
In Step B, the rotational speed was 120 min −1 , and 5.21 parts by mass of the emulsified suspension for shell obtained in Step C was added dropwise to colored resin fine particles having a particle diameter of 4.5 μm at 0.5 parts by mass / min. For 10 minutes at a rotational speed of 75 min −1 . Next, the number of revolutions was set to 120 min −1 and the above was repeated twice (added three times in total). Thereafter, the rotational speed was adjusted to 120 min −1 , 1.2 parts by mass of a 5 mass% sodium sulfate aqueous solution was dropped at 1 part by mass / min, and 5 minutes after the completion of the dropping, the rotational speed was 85 min −1 for 5 minutes. and stirred at 65min -1 5 minutes, the mixture was stirred at 47min -1 15 minutes to stop the combined deionized water were added 10 parts by weight.

(分離・乾燥工程)
その後、消泡剤BY22−517(東レ・ダウコーニング・シリコーン(株)製)を0.006質量部添加後、回収量が35質量部となるまで減圧下、メチルエチルケトン及び水を留去した。脱溶剤後のスラリーは、固液分離と再分散による洗浄を繰り返した後、バスケット型遠心分離器により脱溶剤した着色樹脂微粒子分散液を得た。その後、リボコーン混合真空乾燥機により乾燥を行い、トナー母粒子とした。このトナー母粒子をミクロトームで切断した断面を透過型電子顕微鏡で観察するとコア/シェル構造が確認できた。遠心分離機のろ液は透明であった。
(Separation and drying process)
Thereafter, after adding 0.006 parts by mass of antifoaming agent BY22-517 (manufactured by Toray Dow Corning Silicone Co., Ltd.), methyl ethyl ketone and water were distilled off under reduced pressure until the recovered amount became 35 parts by mass. The slurry after the solvent removal was repeatedly washed by solid-liquid separation and redispersion, and then a colored resin fine particle dispersion obtained by removing the solvent with a basket type centrifuge was obtained. Then, it dried with the ribocorn mixing vacuum dryer, and it was set as the toner mother particle. A core / shell structure was confirmed by observing a cross-section of the toner base particles with a microtome with a transmission electron microscope. The centrifuge filtrate was clear.

(実施例5)
(ワックスマスター溶液の調製)
カルナウバワックス(カルナウバワックス1号、加藤洋行輸入品)30質量部と直鎖型ポリエステル樹脂L21 70質量部とメチルエチルケトン150質量部とをデスパーで予備混合した後、スターミルLMZ−10(アシザワファインデック社製)で微細化し、固形分含有量40質量%のワックスマスター溶液を調製した。ワックスマスター溶液の組成は、L21/ワックス/メチルエチルケトン=28/12/60である。
(Example 5)
(Preparation of wax master solution)
Carnauba wax (Carnauba wax No. 1, imported by Yoko Kato) 30 parts by mass, linear polyester resin L21 70 parts by mass and methyl ethyl ketone 150 parts by mass were premixed with Desper and then Starmill LMZ-10 (Ashizawa Finedeck) And a wax master solution having a solid content of 40% by mass was prepared. The composition of the wax master solution is L21 / wax / methyl ethyl ketone = 28/12/60.

(着色剤マスターチップの調製)
Ket Blue 111(大日本インキ化学工業(株)製シアン顔料、C.I.Pgiment B−15:3)2000質量部と直鎖型ポリエステル樹脂L21 2000質量部をST/A0羽根をセットした20Lヘンシェルミキサー(三井鉱山(株)製)へ投入し、698min-1で2分間攪拌し混合物を得た。該混合物をニーデクスMOS140−800(三井鉱山(株)製オープンロール連続押出混練機)を用いて溶融混練しマスターチップを作成した。得られたマスターチップを、直鎖型ポリエステル樹脂L21及びメチルエチルケトンで希釈し、400倍の光学顕微鏡で着色剤の分散状態、粗大粒子の有無を観察したところ、着色剤は均一に分散し、粗大粒子はなかった。
(Preparation of colorant master chip)
20L Henschel set with 2000 parts by weight of Ket Blue 111 (Dai Nippon Ink Chemical Co., Ltd., cyan pigment, CI Pigment B-15: 3) and 2000 parts by weight of linear polyester resin L21. The mixture was put into a mixer (manufactured by Mitsui Mining Co., Ltd.) and stirred for 2 minutes at 698 min −1 to obtain a mixture. The mixture was melt-kneaded using a kneedex MOS140-800 (an open roll continuous extrusion kneader manufactured by Mitsui Mining Co., Ltd.) to prepare a master chip. The obtained master chip was diluted with linear polyester resin L21 and methyl ethyl ketone, and when the dispersion state of the colorant and the presence or absence of coarse particles were observed with a 400 × optical microscope, the colorant was uniformly dispersed and coarse particles were observed. There was no.

(着色樹脂溶液の調製)
上記ワックスマスター溶液22.5質量部、着色剤マスターチップ3.78質量部、架橋型ポリエステル樹脂H2 4.48質量部、直鎖型ポリエステル樹脂L20 9.74質量部及びメチルエチルケトン7.79質量部を40〜45℃の範囲で翼径230mmのデスパー(アサダ鉄工所(株)製)を使用して777min-1で2時間混合し、溶解・分散を行った。得られた混合物は、更にメチルエチルケトンを加え、固形分含有量を65質量%に調整し、乳化剤としてドデシルベンゼンスルホン酸系乳化剤(第一工業製薬製 ネオゲンSC−F)0.22質量部を添加、溶解・分散して着色樹脂溶液を調製した(工程A)。
(Preparation of colored resin solution)
22.5 parts by weight of the above wax master solution, 3.78 parts by weight of the colorant master chip, 4.48 parts by weight of the cross-linked polyester resin H2, 9.74 parts by weight of the linear polyester resin L20 and 7.79 parts by weight of methyl ethyl ketone. Using a desper (manufactured by Asada Iron Works Co., Ltd.) having a blade diameter of 230 mm in the range of 40 to 45 ° C., the mixture was mixed at 777 min −1 for 2 hours for dissolution and dispersion. The resulting mixture was further added methyl ethyl ketone, the solid content was adjusted to 65% by mass, and 0.22 parts by mass of dodecylbenzenesulfonic acid-based emulsifier (Daiichi Kogyo Seiyaku Neogen SC-F) was added as an emulsifier. A colored resin solution was prepared by dissolving and dispersing (Step A).

(乳化工程)
攪拌翼として翼径230mmのデスパーを有する円筒型の容器に着色樹脂溶液を41.54質量部(固形分27質量部)を仕込み、次いで1規定アンモニア水4質量部を加えて777min-1で攪拌した後、温度を35℃に調整した。次いで、攪拌速度を1100min-1に変更して38.25質量部の脱イオン水を10質量部/minで滴下して乳化懸濁液を作製した。この時の攪拌翼の周速は13.2m/sであった。脱イオン水を添加していくにつれ、系の粘度は上昇していったが、水は滴下と同時に系内に取り込まれ攪拌混合は均一であった。脱イオン水を26質量部添加した後、粘度の急激な低下が観測された(転相乳化)。さらに残りの脱イオン水を所定量添加した後、乳化懸濁液を光学顕微鏡で観察すると、樹脂は溶解しており、顔料とワックスの微粒子が分散している状態が観察された(工程B)。未乳化物は観察されなかった。顔料、ワックスの微粒子は水性媒体中に安定に分散していることから、微粒子表面には樹脂が吸着していると考えられる。
(Emulsification process)
A cylindrical container having a blade with a blade diameter of 230 mm as a stirring blade is charged with 41.54 parts by mass (27 parts by mass of solid content) of a colored resin solution, and then 4 parts by mass of 1N ammonia water is added and stirred at 777 min −1 . Then, the temperature was adjusted to 35 ° C. Subsequently, the stirring speed was changed to 1100 min −1 and 38.25 parts by mass of deionized water was added dropwise at 10 parts by mass / min to prepare an emulsified suspension. The peripheral speed of the stirring blade at this time was 13.2 m / s. As deionized water was added, the viscosity of the system increased, but water was taken into the system at the same time as the dropwise addition, and stirring and mixing were uniform. After adding 26 parts by weight of deionized water, a sharp drop in viscosity was observed (phase inversion emulsification). Further, when a predetermined amount of the remaining deionized water was added and the emulsion suspension was observed with an optical microscope, it was observed that the resin was dissolved and the pigment and wax fine particles were dispersed (step B). . No unemulsified material was observed. Since the pigment and wax fine particles are stably dispersed in the aqueous medium, it is considered that the resin is adsorbed on the surfaces of the fine particles.

(合一工程)
次いで、翼径340mmのマックスブレンド翼(登録商標、住友重機械工業製)付属の円筒容器に、上記縣濁液を移送した後、攪拌速度を85min-1に保持したまま、温度を26℃に調整した。その後回転数を120min-1に調整し、3.5質量%の硫酸ナトリウム水溶液10.8質量部を、1質量部/minで滴下し、滴下終了5分後、回転数85min-1で5分間、65min-1で5分間攪拌し、47min-1で20分間攪拌を継続した。このときの撹拌翼の周速は0.47m/sであった。引き続き、回転数を120min-1に調整し、濃度5.0質量%の硫酸ナトリウム水溶液を1質量部/minで2質量部滴下し、滴下終了5分後、回転数85min-1で5分間、65min-1で5分間攪拌し、47min-1で攪拌を継続し、粒径4.5μmになったところで、85min-1にし30分間撹拌した。
(Joint process)
Next, after the suspension was transferred to a cylindrical container attached to a Max Blend blade (registered trademark, manufactured by Sumitomo Heavy Industries) with a blade diameter of 340 mm, the temperature was maintained at 26 ° C. while maintaining the stirring speed at 85 min −1. It was adjusted. Thereafter, the rotational speed was adjusted to 120 min −1 , 10.8 parts by mass of a 3.5 mass% sodium sulfate aqueous solution was added dropwise at 1 part by mass / min, and 5 minutes after the completion of dropping, the rotational speed was 85 min −1 for 5 minutes. , 65 min −1 for 5 minutes, and 47 min −1 for 20 minutes. The peripheral speed of the stirring blade at this time was 0.47 m / s. Subsequently, the rotational speed was adjusted to 120 min −1 , 2 parts by mass of a sodium sulfate aqueous solution having a concentration of 5.0 mass% was dropped at 1 part by mass / min, and 5 minutes after the completion of dropping, the rotational speed was 85 min −1 for 5 minutes. The mixture was stirred at 65 min −1 for 5 minutes and then continued at 47 min −1 . When the particle size became 4.5 μm, the mixture was stirred at 85 min −1 for 30 minutes.

(シェル用乳化懸濁液の調製工程)
メチルエチルケトン7.33質量部、架橋型ポリエステル樹脂H1 6質量部を35〜40℃の範囲で翼径135mmのデスパー(アサダ鉄工所(株)製)を使用して1200min-1で30分間混合、その後アニオン性乳化剤ネオゲンSC−F(第一工業製薬(株)製)0.033質量部を添加し30分混合し溶解・分散液を得た。次いで1規定アンモニア水1.765質量部を加えて攪拌した後、温度を35℃に調整した。次いで、攪拌速度を1550min-1に変更して13.83質量部の脱イオン水を0.6質量部/minで滴下して乳化懸濁液を作製した。この時の攪拌翼の周速は11m/sであった。脱イオン水を添加していくにつれ、系の粘度は上昇していったが、水は滴下と同時に系内に取り込まれ攪拌混合は均一であった。脱イオン水を10質量部添加した後、粘度の急激な低下が観測された(転相乳化)。さらに残りの脱イオン水を所定量添加した後、乳化懸濁液を光学顕微鏡で観察すると、樹脂は溶解しており、未乳化物は観察されなかった(工程C)。
(Preparation process of emulsion suspension for shell)
Mixing 7.33 parts by mass of methyl ethyl ketone and 6 parts by mass of cross-linked polyester resin H1 in a range of 35 to 40 ° C. using a desper with a blade diameter of 135 mm (manufactured by Asada Iron Works Co., Ltd.) at 1200 min −1 for 30 minutes, then 0.033 parts by mass of anionic emulsifier Neogen SC-F (Daiichi Kogyo Seiyaku Co., Ltd.) was added and mixed for 30 minutes to obtain a solution / dispersion. Next, 1.765 parts by mass of 1N aqueous ammonia was added and stirred, and the temperature was adjusted to 35 ° C. Next, the stirring speed was changed to 1550 min −1 and 13.83 parts by mass of deionized water was added dropwise at 0.6 parts by mass / min to prepare an emulsified suspension. The peripheral speed of the stirring blade at this time was 11 m / s. As deionized water was added, the viscosity of the system increased, but water was taken into the system at the same time as the dropwise addition, and stirring and mixing were uniform. After adding 10 parts by weight of deionized water, a sharp drop in viscosity was observed (phase inversion emulsification). Further, when a predetermined amount of the remaining deionized water was added and the emulsion suspension was observed with an optical microscope, the resin was dissolved and no unemulsified product was observed (Step C).

(シェル化工程)
工程Bにおいて、回転数120min-1にし、粒径4.5μmの着色樹脂微粒子に工程Cで得られたシェル用乳化懸濁液5.21質量部を、0.5質量部/minで滴下し、回転数75min-1で10分間保持した。次に、回転数を120min-1にし、上記を2回繰り返した(計3回添加)。その後、回転数を120min-1に調整し、5質量%の硫酸ナトリウム水溶液1.2質量部を、1質量部/minで滴下し、滴下終了5分後、回転数85min-1で5分間、65min-1で5分間攪拌し、47min-1で15分間撹拌後、脱イオン水10質量部を添加し合一を停止した。
(Shelling process)
In Step B, the rotational speed was 120 min −1 , and 5.21 parts by mass of the emulsified suspension for shell obtained in Step C was added dropwise to colored resin fine particles having a particle diameter of 4.5 μm at 0.5 parts by mass / min. For 10 minutes at a rotational speed of 75 min −1 . Next, the number of revolutions was set to 120 min −1 and the above was repeated twice (added three times in total). Thereafter, the rotational speed was adjusted to 120 min −1 , 1.2 parts by mass of a 5 mass% sodium sulfate aqueous solution was dropped at 1 part by mass / min, and 5 minutes after the completion of the dropping, the rotational speed was 85 min −1 for 5 minutes. and stirred at 65min -1 5 minutes, the mixture was stirred at 47min -1 15 minutes to stop the combined deionized water were added 10 parts by weight.

(分離・乾燥工程)
その後、消泡剤BY22−517(東レ・ダウコーニング・シリコーン(株)製)を0.006質量部添加後、回収量が35質量部となるまで減圧下、メチルエチルケトン及び水を留去した。脱溶剤後のスラリーは、固液分離と再分散による洗浄を繰り返した後、バスケット型遠心分離器により脱溶剤した着色樹脂微粒子分散液を得た。その後、リボコーン混合真空乾燥機により乾燥を行い、トナー母粒子とした。このトナー母粒子をミクロトームで切断した断面を透過型電子顕微鏡で観察するとコア/シェル構造が確認できた。遠心分離機のろ液は透明であった。
(Separation and drying process)
Thereafter, after adding 0.006 parts by mass of antifoaming agent BY22-517 (manufactured by Toray Dow Corning Silicone Co., Ltd.), methyl ethyl ketone and water were distilled off under reduced pressure until the recovered amount became 35 parts by mass. The slurry after the solvent removal was repeatedly washed by solid-liquid separation and redispersion, and then a colored resin fine particle dispersion obtained by removing the solvent with a basket type centrifuge was obtained. Then, it dried with the ribocorn mixing vacuum dryer, and it was set as the toner mother particle. A core / shell structure was confirmed by observing a cross-section of the toner base particles with a microtome with a transmission electron microscope. The centrifuge filtrate was clear.

(実施例6)
(ワックスマスター溶液の調製)
カルナウバワックス(カルナウバワックス1号、加藤洋行輸入品)30質量部と直鎖型ポリエステル樹脂L27 70質量部とメチルエチルケトン150質量部とをデスパーで予備混合した後、スターミルLMZ−10(アシザワファインデック社製)で微細化し、固形分含有量40質量%のワックスマスター溶液を調製した。ワックスマスター溶液の組成は、L27/ワックス/メチルエチルケトン=28/12/60である。
(Example 6)
(Preparation of wax master solution)
Carnauba wax (Carnauba wax No. 1, imported by Kato Yoko) 30 parts by mass, linear polyester resin L27 70 parts by mass and methyl ethyl ketone 150 parts by mass were premixed with Desper and then Starmill LMZ-10 (Ashizawa Finedeck) And a wax master solution having a solid content of 40% by mass was prepared. The composition of the wax master solution is L27 / wax / methyl ethyl ketone = 28/12/60.

(着色剤マスターチップの調製)
Ket Blue 111(大日本インキ化学工業(株)製シアン顔料、C.I.Pgiment B−15:3)2000質量部と直鎖型ポリエステル樹脂L27 2000質量部をST/A0羽根をセットした20Lヘンシェルミキサー(三井鉱山(株)製)へ投入し、698min-1で2分間攪拌し混合物を得た。該混合物をニーデクスMOS140−800(三井鉱山(株)製オープンロール連続押出混練機)を用いて溶融混練しマスターチップを作成した。得られたマスターチップを、直鎖型ポリエステル樹脂L27及びメチルエチルケトンで希釈し、400倍の光学顕微鏡で着色剤の分散状態、粗大粒子の有無を観察したところ、着色剤は均一に分散し、粗大粒子はなかった。
(Preparation of colorant master chip)
Ket Blue 111 (Dai Nippon Ink Chemical Co., Ltd., cyan pigment, CI Pigment B-15: 3) 2000 parts by mass and linear polyester resin L27 2000 parts by mass 20 L Henschel set with ST / A0 blades The mixture was put into a mixer (manufactured by Mitsui Mining Co., Ltd.) and stirred for 2 minutes at 698 min −1 to obtain a mixture. The mixture was melt-kneaded using a kneedex MOS140-800 (an open roll continuous extrusion kneader manufactured by Mitsui Mining Co., Ltd.) to prepare a master chip. The obtained master chip was diluted with the linear polyester resin L27 and methyl ethyl ketone, and when the dispersion state of the colorant and the presence or absence of coarse particles were observed with a 400 times optical microscope, the colorant was uniformly dispersed and coarse particles were observed. There was no.

(着色樹脂溶液の調製)
上記ワックスマスター溶液22.5質量部、着色剤マスターチップ3.78質量部、架橋型ポリエステル樹脂H2 4.48質量部、直鎖型ポリエステル樹脂L27 9.74質量部及びメチルエチルケトン7.79質量部を40〜45℃の範囲で翼径230mmのデスパー(アサダ鉄工所(株)製)を使用して777min-1で2時間混合し、溶解・分散を行った。得られた混合物は、更にメチルエチルケトンを加え、固形分含有量を65質量%に調整し、乳化剤としてドデシルベンゼンスルホン酸系乳化剤(第一工業製薬製 ネオゲンSC−F)0.22質量部を添加、溶解・分散して着色樹脂溶液を調製した(工程A)。
(Preparation of colored resin solution)
22.5 parts by mass of the above wax master solution, 3.78 parts by mass of the colorant master chip, 4.48 parts by mass of the cross-linked polyester resin H2, 9.74 parts by mass of the linear polyester resin L27 and 7.79 parts by mass of methyl ethyl ketone. Using a desper (manufactured by Asada Iron Works Co., Ltd.) having a blade diameter of 230 mm in the range of 40 to 45 ° C., the mixture was mixed at 777 min −1 for 2 hours for dissolution and dispersion. The resulting mixture was further added methyl ethyl ketone, the solid content was adjusted to 65% by mass, and 0.22 parts by mass of dodecylbenzenesulfonic acid-based emulsifier (Daiichi Kogyo Seiyaku Neogen SC-F) was added as an emulsifier. A colored resin solution was prepared by dissolving and dispersing (Step A).

(乳化工程)
攪拌翼として翼径230mmのデスパーを有する円筒型の容器に着色樹脂溶液を41.54質量部(固形分27質量部)を仕込み、次いで1規定アンモニア水4質量部を加えて777min-1で攪拌した後、温度を35℃に調整した。次いで、攪拌速度を1100min-1に変更して38.25質量部の脱イオン水を10質量部/minで滴下して乳化懸濁液を作製した。この時の攪拌翼の周速は13.2m/sであった。脱イオン水を添加していくにつれ、系の粘度は上昇していったが、水は滴下と同時に系内に取り込まれ攪拌混合は均一であった。脱イオン水を26質量部添加した後、粘度の急激な低下が観測された(転相乳化)。さらに残りの脱イオン水を所定量添加した後、乳化懸濁液を光学顕微鏡で観察すると、樹脂は溶解しており、顔料とワックスの微粒子が分散している状態が観察された(工程B)。未乳化物は観察されなかった。顔料、ワックスの微粒子は水性媒体中に安定に分散していることから、微粒子表面には樹脂が吸着していると考えられる。
(Emulsification process)
A cylindrical container having a blade with a blade diameter of 230 mm as a stirring blade is charged with 41.54 parts by mass (27 parts by mass of solid content) of a colored resin solution, and then 4 parts by mass of 1N ammonia water is added and stirred at 777 min −1 . Then, the temperature was adjusted to 35 ° C. Subsequently, the stirring speed was changed to 1100 min −1 and 38.25 parts by mass of deionized water was added dropwise at 10 parts by mass / min to prepare an emulsified suspension. The peripheral speed of the stirring blade at this time was 13.2 m / s. As deionized water was added, the viscosity of the system increased, but water was taken into the system at the same time as the dropwise addition, and stirring and mixing were uniform. After adding 26 parts by weight of deionized water, a sharp drop in viscosity was observed (phase inversion emulsification). Further, when a predetermined amount of the remaining deionized water was added and the emulsion suspension was observed with an optical microscope, it was observed that the resin was dissolved and the pigment and wax fine particles were dispersed (step B). . No unemulsified material was observed. Since the pigment and wax fine particles are stably dispersed in the aqueous medium, it is considered that the resin is adsorbed on the surfaces of the fine particles.

(合一工程)
次いで、翼径340mmのマックスブレンド翼(登録商標、住友重機械工業製)付属の円筒容器に、上記縣濁液を移送した後、攪拌速度を85min-1に保持したまま、温度を26℃に調整した。その後回転数を120min-1に調整し、3.5質量%の硫酸ナトリウム水溶液10.8質量部を、1質量部/minで滴下し、滴下終了5分後、回転数85min-1で5分間、65min-1で5分間攪拌し、47min-1で20分間攪拌を継続した。このときの撹拌翼の周速は0.47m/sであった。引き続き、回転数を120min-1に調整し、濃度5.0質量%の硫酸ナトリウム水溶液を1質量部/minで2質量部滴下し、滴下終了5分後、回転数85min-1で5分間、65min-1で5分間攪拌し、47min-1で攪拌を継続し、粒径4.5μmになったところで、85min-1にし30分間撹拌した。
(Joint process)
Next, after the suspension was transferred to a cylindrical container attached to a Max Blend blade (registered trademark, manufactured by Sumitomo Heavy Industries) with a blade diameter of 340 mm, the temperature was maintained at 26 ° C. while maintaining the stirring speed at 85 min −1. It was adjusted. Thereafter, the rotational speed was adjusted to 120 min −1 , 10.8 parts by mass of a 3.5 mass% sodium sulfate aqueous solution was added dropwise at 1 part by mass / min, and 5 minutes after the completion of dropping, the rotational speed was 85 min −1 for 5 minutes. , 65 min −1 for 5 minutes, and 47 min −1 for 20 minutes. The peripheral speed of the stirring blade at this time was 0.47 m / s. Subsequently, the rotational speed was adjusted to 120 min −1 , 2 parts by mass of a sodium sulfate aqueous solution having a concentration of 5.0 mass% was dropped at 1 part by mass / min, and 5 minutes after the completion of dropping, the rotational speed was 85 min −1 for 5 minutes. The mixture was stirred at 65 min −1 for 5 minutes and then continued at 47 min −1 . When the particle size became 4.5 μm, the mixture was stirred at 85 min −1 for 30 minutes.

(分離・乾燥工程)
その後、消泡剤BY22−517(東レ・ダウコーニング・シリコーン(株)製)を0.006質量部添加後、回収量が35質量部となるまで減圧下、メチルエチルケトン及び水を留去した。脱溶剤後のスラリーは、固液分離と再分散による洗浄を繰り返した後、バスケット型遠心分離器により脱溶剤した着色樹脂微粒子分散液を得た。その後、リボコーン混合真空乾燥機により乾燥を行い、トナー母粒子とした。
(Separation and drying process)
Thereafter, after adding 0.006 parts by mass of antifoaming agent BY22-517 (manufactured by Toray Dow Corning Silicone Co., Ltd.), methyl ethyl ketone and water were distilled off under reduced pressure until the recovered amount became 35 parts by mass. The slurry after the solvent removal was repeatedly washed by solid-liquid separation and redispersion, and then a colored resin fine particle dispersion obtained by removing the solvent with a basket type centrifuge was obtained. Then, it dried with the ribocorn mixing vacuum dryer, and it was set as the toner mother particle.

(比較例1)
(ワックスマスター溶液の調製)
カルナウバワックス(カルナウバワックス1号、加藤洋行輸入品)30質量部と直鎖型ポリエステル樹脂L5 70質量部とメチルエチルケトン150質量部とをデスパーで予備混合した後、スターミルLMZ−10(アシザワファインデック社製)で微細化し、固形分含有量40質量%のワックスマスター溶液を調製した。ワックスマスター溶液の組成は、L5/ワックス/メチルエチルケトン=28/12/60である。
(Comparative Example 1)
(Preparation of wax master solution)
Carnauba wax (Carnauba wax No. 1, imported by Yoko Kato) 30 parts by mass, linear polyester resin L5 70 parts by mass and methyl ethyl ketone 150 parts by mass were premixed with Desper, and then Starmill LMZ-10 (Ashizawa Finedeck) And a wax master solution having a solid content of 40% by mass was prepared. The composition of the wax master solution is L5 / wax / methyl ethyl ketone = 28/12/60.

(着色剤マスターチップの調製)
Ket Blue 111(大日本インキ化学工業(株)製シアン顔料、C.I.Pgiment B−15:3)2000質量部と直鎖型ポリエステル樹脂L5 2000質量部をST/A0羽根をセットした20Lヘンシェルミキサー(三井鉱山(株)製)へ投入し、698min-1で2分間攪拌し混合物を得た。該混合物をニーデクスMOS140−800(三井鉱山(株)製オープンロール連続押出混練機)を用いて溶融混練しマスターチップを作成した。得られたマスターチップを、直鎖型ポリエステル樹脂L5及びメチルエチルケトンで希釈し、400倍の光学顕微鏡で着色剤の分散状態、粗大粒子の有無を観察したところ、着色剤は均一に分散し、粗大粒子はなかった。
(Preparation of colorant master chip)
20L Henschel set with 2000 parts by mass of Ket Blue 111 (Dai Nippon Ink Chemical Co., Ltd., cyan pigment, CI Pigment B-15: 3) and 2000 parts by mass of linear polyester resin L5. The mixture was put into a mixer (manufactured by Mitsui Mining Co., Ltd.) and stirred for 2 minutes at 698 min −1 to obtain a mixture. The mixture was melt-kneaded using a kneedex MOS140-800 (an open roll continuous extrusion kneader manufactured by Mitsui Mining Co., Ltd.) to prepare a master chip. The obtained master chip was diluted with linear polyester resin L5 and methyl ethyl ketone, and when the dispersion state of the colorant and the presence or absence of coarse particles were observed with a 400 times optical microscope, the colorant was uniformly dispersed and coarse particles There was no.

(着色樹脂溶液の調製)
上記ワックスマスター溶液22.5質量部、着色剤マスターチップ3.78質量部、架橋型ポリエステル樹脂H2 4.48質量部、直鎖型ポリエステル樹脂L5 9.74質量部及びメチルエチルケトン7.79質量部を40〜45℃の範囲で翼径230mmのデスパー(アサダ鉄工所(株)製)を使用して777min-1で2時間混合し、溶解・分散を行った。得られた混合物は、更にメチルエチルケトンを加え、固形分含有量を65質量%に調整し、乳化剤としてドデシルベンゼンスルホン酸系乳化剤(第一工業製薬製 ネオゲンSC−F)0.22質量部を添加、溶解・分散して着色樹脂溶液を調製した(工程A)。
(Preparation of colored resin solution)
22.5 parts by mass of the above wax master solution, 3.78 parts by mass of the colorant master chip, 4.48 parts by mass of the cross-linked polyester resin H2, 9.74 parts by mass of the linear polyester resin L5 and 7.79 parts by mass of methyl ethyl ketone. Using a desper (manufactured by Asada Iron Works Co., Ltd.) having a blade diameter of 230 mm in the range of 40 to 45 ° C., the mixture was mixed at 777 min −1 for 2 hours for dissolution and dispersion. The resulting mixture was further added methyl ethyl ketone, the solid content was adjusted to 65% by mass, and 0.22 parts by mass of dodecylbenzenesulfonic acid-based emulsifier (Daiichi Kogyo Seiyaku Neogen SC-F) was added as an emulsifier. A colored resin solution was prepared by dissolving and dispersing (Step A).

(乳化工程)
攪拌翼として翼径230mmのデスパーを有する円筒型の容器に着色樹脂溶液を41.54質量部(固形分27質量部)を仕込み、次いで1規定アンモニア水4質量部を加えて777min-1で攪拌した後、温度を35℃に調整した。次いで、攪拌速度を1100min-1に変更して38.25質量部の脱イオン水を10質量部/minで滴下して乳化懸濁液を作製した。この時の攪拌翼の周速は13.2m/sであった。脱イオン水を添加していくにつれ、系の粘度は上昇していったが、水は滴下と同時に系内に取り込まれ攪拌混合は均一であった。脱イオン水を26質量部添加した後、粘度の急激な低下が観測された(転相乳化)。さらに残りの脱イオン水を所定量添加した後、乳化懸濁液を光学顕微鏡で観察すると、樹脂は溶解しており、顔料とワックスの微粒子が分散している状態が観察された(工程B)。未乳化物は観察されなかった。顔料、ワックスの微粒子は水性媒体中に安定に分散していることから、微粒子表面には樹脂が吸着していると考えられる。
(Emulsification process)
A cylindrical container having a blade with a blade diameter of 230 mm as a stirring blade is charged with 41.54 parts by mass (27 parts by mass of solid content) of a colored resin solution, and then 4 parts by mass of 1N ammonia water is added and stirred at 777 min −1 . Then, the temperature was adjusted to 35 ° C. Subsequently, the stirring speed was changed to 1100 min −1 and 38.25 parts by mass of deionized water was added dropwise at 10 parts by mass / min to prepare an emulsified suspension. The peripheral speed of the stirring blade at this time was 13.2 m / s. As deionized water was added, the viscosity of the system increased, but water was taken into the system at the same time as the dropwise addition, and stirring and mixing were uniform. After adding 26 parts by weight of deionized water, a sharp drop in viscosity was observed (phase inversion emulsification). Further, when a predetermined amount of the remaining deionized water was added and the emulsion suspension was observed with an optical microscope, it was observed that the resin was dissolved and the pigment and wax fine particles were dispersed (step B). . No unemulsified material was observed. Since the pigment and wax fine particles are stably dispersed in the aqueous medium, it is considered that the resin is adsorbed on the surfaces of the fine particles.

(合一工程)
次いで、翼径340mmのマックスブレンド翼(登録商標、住友重機械工業製)付属の円筒容器に、上記縣濁液を移送した後、攪拌速度を85min-1に保持したまま、温度を26℃に調整した。その後回転数を120min-1に調整し、3.5質量%の硫酸ナトリウム水溶液10.8質量部を、1質量部/minで滴下し、滴下終了5分後、回転数85min-1で5分間、65min-1で5分間攪拌し、47min-1で20分間攪拌を継続した。このときの撹拌翼の周速は0.47m/sであった。引き続き、回転数を120min-1に調整し、濃度5.0質量%の硫酸ナトリウム水溶液を1質量部/minで2質量部滴下し、滴下終了5分後、回転数85min-1で5分間、65min-1で5分間攪拌し、47min-1で攪拌を継続し、粒径4.5μmになったところで、85min-1にし30分間撹拌した。
(Joint process)
Next, after the suspension was transferred to a cylindrical container attached to a Max Blend blade (registered trademark, manufactured by Sumitomo Heavy Industries) with a blade diameter of 340 mm, the temperature was maintained at 26 ° C. while maintaining the stirring speed at 85 min −1. It was adjusted. Thereafter, the rotational speed was adjusted to 120 min −1 , 10.8 parts by mass of a 3.5 mass% sodium sulfate aqueous solution was added dropwise at 1 part by mass / min, and 5 minutes after the completion of dropping, the rotational speed was 85 min −1 for 5 minutes. , 65 min −1 for 5 minutes, and 47 min −1 for 20 minutes. The peripheral speed of the stirring blade at this time was 0.47 m / s. Subsequently, the rotational speed was adjusted to 120 min −1 , 2 parts by mass of a sodium sulfate aqueous solution having a concentration of 5.0 mass% was dropped at 1 part by mass / min, and 5 minutes after the completion of dropping, the rotational speed was 85 min −1 for 5 minutes. The mixture was stirred at 65 min −1 for 5 minutes and then continued at 47 min −1 . When the particle size became 4.5 μm, the mixture was stirred at 85 min −1 for 30 minutes.

(シェル用乳化懸濁液の調製工程)
メチルエチルケトン7.33質量部、架橋型ポリエステル樹脂H1 6質量部を35〜40℃の範囲で翼径135mmのデスパー(アサダ鉄工所(株)製)を使用して1200min-1で30分間混合、その後アニオン性乳化剤ネオゲンSC−F(第一工業製薬(株)製)0.033質量部を添加し30分混合し溶解・分散液を得た。次いで1規定アンモニア水1.765質量部を加えて攪拌した後、温度を35℃に調整した。次いで、攪拌速度を1550min-1に変更して13.83質量部の脱イオン水を0.6質量部/minで滴下して乳化懸濁液を作製した。この時の攪拌翼の周速は11m/sであった。脱イオン水を添加していくにつれ、系の粘度は上昇していったが、水は滴下と同時に系内に取り込まれ攪拌混合は均一であった。脱イオン水を10質量部添加した後、粘度の急激な低下が観測された(転相乳化)。さらに残りの脱イオン水を所定量添加した後、乳化懸濁液を光学顕微鏡で観察すると、樹脂は溶解しており、未乳化物は観察されなかった(工程C)。
(Preparation process of emulsion suspension for shell)
Mixing 7.33 parts by mass of methyl ethyl ketone and 6 parts by mass of cross-linked polyester resin H1 in a range of 35 to 40 ° C. using a desper with a blade diameter of 135 mm (manufactured by Asada Iron Works Co., Ltd.) at 1200 min −1 for 30 minutes, then 0.033 parts by mass of anionic emulsifier Neogen SC-F (Daiichi Kogyo Seiyaku Co., Ltd.) was added and mixed for 30 minutes to obtain a solution / dispersion. Next, 1.765 parts by mass of 1N aqueous ammonia was added and stirred, and the temperature was adjusted to 35 ° C. Next, the stirring speed was changed to 1550 min −1 and 13.83 parts by mass of deionized water was added dropwise at 0.6 parts by mass / min to prepare an emulsified suspension. The peripheral speed of the stirring blade at this time was 11 m / s. As deionized water was added, the viscosity of the system increased, but water was taken into the system at the same time as the dropwise addition, and stirring and mixing were uniform. After adding 10 parts by weight of deionized water, a sharp drop in viscosity was observed (phase inversion emulsification). Further, when a predetermined amount of the remaining deionized water was added and the emulsion suspension was observed with an optical microscope, the resin was dissolved and no unemulsified product was observed (Step C).

(シェル化工程)
工程Bにおいて、回転数120min-1にし、粒径4.5μmの着色樹脂微粒子に工程Cで得られたシェル用乳化懸濁液5.21質量部を、0.5質量部/minで滴下し、回転数75min-1で10分間保持した。次に、回転数を120min-1にし、上記を2回繰り返した(計3回添加)。その後、回転数を120min-1に調整し、5質量%の硫酸ナトリウム水溶液1.2質量部を、1質量部/minで滴下し、滴下終了5分後、回転数85min-1で5分間、65min-1で5分間攪拌し、47min-1で15分間撹拌後、脱イオン水10質量部を添加し合一を停止した。
(Shelling process)
In Step B, the rotational speed was 120 min −1 , and 5.21 parts by mass of the emulsified suspension for shell obtained in Step C was added dropwise to colored resin fine particles having a particle diameter of 4.5 μm at 0.5 parts by mass / min. For 10 minutes at a rotational speed of 75 min −1 . Next, the number of revolutions was set to 120 min −1 and the above was repeated twice (added three times in total). Thereafter, the rotational speed was adjusted to 120 min −1 , 1.2 parts by mass of a 5 mass% sodium sulfate aqueous solution was dropped at 1 part by mass / min, and 5 minutes after the completion of the dropping, the rotational speed was 85 min −1 for 5 minutes. and stirred at 65min -1 5 minutes, the mixture was stirred at 47min -1 15 minutes to stop the combined deionized water were added 10 parts by weight.

(分離・乾燥工程)
その後、消泡剤BY22−517(東レ・ダウコーニング・シリコーン(株)製)を0.006質量部添加後、回収量が35質量部となるまで減圧下、メチルエチルケトン及び水を留去した。脱溶剤後のスラリーは、固液分離と再分散による洗浄を繰り返した後、バスケット型遠心分離器により脱溶剤した着色樹脂微粒子分散液を得た。その後、リボコーン混合真空乾燥機により乾燥を行い、トナー母粒子とした。このトナー母粒子をミクロトームで切断した断面を透過型電子顕微鏡で観察するとコア/シェル構造が確認できた。遠心分離機のろ液は透明であった。
(Separation and drying process)
Thereafter, after adding 0.006 parts by mass of antifoaming agent BY22-517 (manufactured by Toray Dow Corning Silicone Co., Ltd.), methyl ethyl ketone and water were distilled off under reduced pressure until the recovered amount became 35 parts by mass. The slurry after the solvent removal was repeatedly washed by solid-liquid separation and redispersion, and then a colored resin fine particle dispersion obtained by removing the solvent with a basket type centrifuge was obtained. Then, it dried with the ribocorn mixing vacuum dryer, and it was set as the toner mother particle. A core / shell structure was confirmed by observing a cross-section of the toner base particles with a microtome with a transmission electron microscope. The centrifuge filtrate was clear.

(比較例2)
(ワックスマスター溶液の調製)
カルナウバワックス(カルナウバワックス1号、加藤洋行輸入品)30質量部と直鎖型ポリエステル樹脂L5 70質量部とメチルエチルケトン150質量部とをデスパーで予備混合した後、スターミルLMZ−10(アシザワファインデック社製)で微細化し、固形分含有量40質量%のワックスマスター溶液を調製した。ワックスマスター溶液の組成は、L5/ワックス/メチルエチルケトン=28/12/60である。
(Comparative Example 2)
(Preparation of wax master solution)
Carnauba wax (Carnauba wax No. 1, imported by Yoko Kato) 30 parts by weight, 70 parts by weight of linear polyester resin L5 and 150 parts by weight of methyl ethyl ketone were premixed with Desper and then Starmill LMZ-10 (Ashizawa Finedeck) And a wax master solution having a solid content of 40% by mass was prepared. The composition of the wax master solution is L5 / wax / methyl ethyl ketone = 28/12/60.

(着色剤マスターチップの調製)
Ket Blue 111(大日本インキ化学工業(株)製シアン顔料、C.I.Pgiment B−15:3)2000質量部と直鎖型ポリエステル樹脂L5 2000質量部をST/A0羽根をセットした20Lヘンシェルミキサー(三井鉱山(株)製)へ投入し、698min-1で2分間攪拌し混合物を得た。該混合物をニーデクスMOS140−800(三井鉱山(株)製オープンロール連続押出混練機)を用いて溶融混練しマスターチップを作成した。得られたマスターチップを、直鎖型ポリエステル樹脂L5及びメチルエチルケトンで希釈し、400倍の光学顕微鏡で着色剤の分散状態、粗大粒子の有無を観察したところ、着色剤は均一に分散し、粗大粒子はなかった。
(Preparation of colorant master chip)
Ket Blue 111 (Dai Nippon Ink Chemical Co., Ltd., cyan pigment, CI Pigment B-15: 3) 2000 parts by mass and linear polyester resin L5 2000 parts by mass 20 L Henschel set with ST / A0 blades The mixture was put into a mixer (manufactured by Mitsui Mining Co., Ltd.) and stirred for 2 minutes at 698 min −1 to obtain a mixture. The mixture was melt-kneaded using a kneedex MOS140-800 (an open roll continuous extrusion kneader manufactured by Mitsui Mining Co., Ltd.) to prepare a master chip. The obtained master chip was diluted with the linear polyester resin L5 and methyl ethyl ketone, and when the dispersion state of the colorant and the presence or absence of coarse particles were observed with a 400-fold optical microscope, the colorant was uniformly dispersed and coarse particles There was no.

(着色樹脂溶液の調製)
上記ワックスマスター溶液22.5質量部、着色剤マスターチップ3.78質量部、架橋型ポリエステル樹脂H2 4.48質量部、直鎖型ポリエステル樹脂L5 9.74質量部及びメチルエチルケトン7.79質量部を40〜45℃の範囲で翼径230mmのデスパー(アサダ鉄工所(株)製)を使用して777min-1で2時間混合し、溶解・分散を行った。得られた混合物は、更にメチルエチルケトンを加え、固形分含有量を65質量%に調整し、乳化剤としてドデシルベンゼンスルホン酸系乳化剤(第一工業製薬製 ネオゲンSC−F)0.22質量部を添加、溶解・分散して着色樹脂溶液を調製した(工程A)。
(Preparation of colored resin solution)
22.5 parts by mass of the above wax master solution, 3.78 parts by mass of the colorant master chip, 4.48 parts by mass of the cross-linked polyester resin H2, 9.74 parts by mass of the linear polyester resin L5 and 7.79 parts by mass of methyl ethyl ketone. Using a desper (manufactured by Asada Iron Works Co., Ltd.) having a blade diameter of 230 mm in the range of 40 to 45 ° C., the mixture was mixed at 777 min −1 for 2 hours for dissolution and dispersion. The resulting mixture was further added methyl ethyl ketone, the solid content was adjusted to 65% by mass, and 0.22 parts by mass of dodecylbenzenesulfonic acid-based emulsifier (Daiichi Kogyo Seiyaku Neogen SC-F) was added as an emulsifier. A colored resin solution was prepared by dissolving and dispersing (Step A).

(乳化工程)
攪拌翼として翼径230mmのデスパーを有する円筒型の容器に着色樹脂溶液を41.54質量部(固形分27質量部)を仕込み、次いで1規定アンモニア水4質量部を加えて777min-1で攪拌した後、温度を35℃に調整した。次いで、攪拌速度を1100min-1に変更して38.25質量部の脱イオン水を10質量部/minで滴下して乳化懸濁液を作製した。この時の攪拌翼の周速は13.2m/sであった。脱イオン水を添加していくにつれ、系の粘度は上昇していったが、水は滴下と同時に系内に取り込まれ攪拌混合は均一であった。脱イオン水を26質量部添加した後、粘度の急激な低下が観測された(転相乳化)。さらに残りの脱イオン水を所定量添加した後、乳化懸濁液を光学顕微鏡で観察すると、樹脂は溶解しており、顔料とワックスの微粒子が分散している状態が観察された(工程B)。未乳化物は観察されなかった。顔料、ワックスの微粒子は水性媒体中に安定に分散していることから、微粒子表面には樹脂が吸着していると考えられる。
(Emulsification process)
A cylindrical container having a blade with a blade diameter of 230 mm as a stirring blade is charged with 41.54 parts by mass (27 parts by mass of solid content) of the colored resin solution, and then 4 parts by mass of 1N ammonia water is added and stirred at 777 min −1 . Then, the temperature was adjusted to 35 ° C. Subsequently, the stirring speed was changed to 1100 min −1 and 38.25 parts by mass of deionized water was added dropwise at 10 parts by mass / min to prepare an emulsified suspension. The peripheral speed of the stirring blade at this time was 13.2 m / s. As deionized water was added, the viscosity of the system increased, but water was taken into the system at the same time as the dropwise addition, and stirring and mixing were uniform. After adding 26 parts by weight of deionized water, a sharp drop in viscosity was observed (phase inversion emulsification). Further, when a predetermined amount of the remaining deionized water was added and the emulsion suspension was observed with an optical microscope, it was observed that the resin was dissolved and the pigment and wax fine particles were dispersed (step B). . No unemulsified material was observed. Since the pigment and wax fine particles are stably dispersed in the aqueous medium, it is considered that the resin is adsorbed on the surfaces of the fine particles.

(合一工程)
次いで、翼径340mmのマックスブレンド翼(登録商標、住友重機械工業製)付属の円筒容器に、上記縣濁液を移送した後、攪拌速度を85min-1に保持したまま、温度を26℃に調整した。その後回転数を120min-1に調整し、3.5質量%の硫酸ナトリウム水溶液10.8質量部を、1質量部/minで滴下し、滴下終了5分後、回転数85min-1で5分間、65min-1で5分間攪拌し、47min-1で20分間攪拌を継続した。このときの撹拌翼の周速は0.47m/sであった。引き続き、回転数を120min-1に調整し、濃度5.0質量%の硫酸ナトリウム水溶液を1質量部/minで2質量部滴下し、滴下終了5分後、回転数85min-1で5分間、65min-1で5分間攪拌し、47min-1で攪拌を継続し、粒径4.5μmになったところで、85min-1にし30分間撹拌した。
(Joint process)
Next, after the suspension was transferred to a cylindrical container attached to a Max Blend blade (registered trademark, manufactured by Sumitomo Heavy Industries) with a blade diameter of 340 mm, the temperature was maintained at 26 ° C. while maintaining the stirring speed at 85 min −1. It was adjusted. Thereafter, the rotational speed was adjusted to 120 min −1 , 10.8 parts by mass of a 3.5 mass% sodium sulfate aqueous solution was added dropwise at 1 part by mass / min, and 5 minutes after the completion of dropping, the rotational speed was 85 min −1 for 5 minutes. , 65 min −1 for 5 minutes, and 47 min −1 for 20 minutes. The peripheral speed of the stirring blade at this time was 0.47 m / s. Subsequently, the rotational speed was adjusted to 120 min −1 , 2 parts by mass of a sodium sulfate aqueous solution having a concentration of 5.0 mass% was dropped at 1 part by mass / min, and 5 minutes after the completion of dropping, the rotational speed was 85 min −1 for 5 minutes. The mixture was stirred at 65 min −1 for 5 minutes and then continued at 47 min −1 . When the particle size became 4.5 μm, the mixture was stirred at 85 min −1 for 30 minutes.

(分離・乾燥工程)
その後、消泡剤BY22−517(東レ・ダウコーニング・シリコーン(株)製)を0.006質量部添加後、回収量が35質量部となるまで減圧下、メチルエチルケトン及び水を留去した。脱溶剤後のスラリーは、固液分離と再分散による洗浄を繰り返した後、バスケット型遠心分離器により脱溶剤した着色樹脂微粒子分散液を得た。その後、リボコーン混合真空乾燥機により乾燥を行い、トナー母粒子とした。
(Separation and drying process)
Thereafter, after adding 0.006 parts by mass of antifoaming agent BY22-517 (manufactured by Toray Dow Corning Silicone Co., Ltd.), methyl ethyl ketone and water were distilled off under reduced pressure until the recovered amount became 35 parts by mass. The slurry after the solvent removal was repeatedly washed by solid-liquid separation and redispersion, and then a colored resin fine particle dispersion obtained by removing the solvent with a basket type centrifuge was obtained. Then, it dried with the ribocorn mixing vacuum dryer, and it was set as the toner mother particle.

実施例1〜6、比較例1及び2で得られたトナー母粒子の粒径、Dv/Dn(体積平均径/個数平均径)、平均円形度、軟化点T1/2、ガラス転移温度Tg及びVOC含有量TVOCを表2に示す。   The particle size, Dv / Dn (volume average diameter / number average diameter), average circularity, softening point T1 / 2, glass transition temperature Tg, and toner base particles obtained in Examples 1 to 6 and Comparative Examples 1 and 2 Table 2 shows the VOC content TVOC.

Figure 2008040285
Figure 2008040285

本発明のポリエステル樹脂を含む実施例1〜6のトナー母粒子と、本発明のポリエステル樹脂よりもVOC含有量が多いポリエステル樹脂を含む比較例1及び2のトナー母粒子は、軟化点及びガラス転移温度は同程度のものである。しかしながら、実施例1〜6のトナー母粒子のVOC含有量は、比較例1及び2のトナー母粒子のVOC含有量よりもかなり低い。従って、本発明のポリエステル樹脂を使用することにより、従来のトナーと同程度の軟化点及びガラス転移温度を有し、VOC含有量は低いトナーを得られることがわかる。   The toner base particles of Examples 1 to 6 containing the polyester resin of the present invention and the toner base particles of Comparative Examples 1 and 2 containing a polyester resin having a higher VOC content than the polyester resin of the present invention have a softening point and a glass transition. The temperature is comparable. However, the VOC content of the toner base particles of Examples 1 to 6 is considerably lower than the VOC content of the toner base particles of Comparative Examples 1 and 2. Therefore, it can be seen that by using the polyester resin of the present invention, a toner having a softening point and a glass transition temperature comparable to those of a conventional toner and a low VOC content can be obtained.

Claims (5)

樹脂成分として軟化点が90〜100℃、ガラス転移温度が35〜50℃かつ揮発性有機化合物含有量が170ppm以下である熱可塑性ポリエステル樹脂を使用していることを特徴とするトナー。 A toner comprising a thermoplastic polyester resin having a softening point of 90 to 100 ° C., a glass transition temperature of 35 to 50 ° C. and a volatile organic compound content of 170 ppm or less as a resin component. 熱可塑性ポリエステル樹脂が、樹脂成分に対して30質量%以上含有されることを特徴とする請求項1に記載のトナー。 The toner according to claim 1, wherein the thermoplastic polyester resin is contained in an amount of 30% by mass or more based on the resin component. 請求項1に記載の熱可塑性ポリエステル樹脂が含有される結着樹脂、ワックス及び着色剤を有機溶剤中に溶解あるいは分散させて着色樹脂溶液を得る工程、着色樹脂溶液に塩基性化合物、水を順次添加して、水性媒体中に着色樹脂溶液を乳化させる工程、調製した乳化懸濁液に電解質水溶液を添加し、当該乳化懸濁液中の分散質を合一させることにより着色樹脂微粒子を生成させて粒子形成を行う工程、減圧下で有機溶剤を除去した後に、着色樹脂微粒子を水性媒体中から分離、洗浄し、乾燥させる工程を経て生産されることを特徴とする請求項2に記載の静電荷像現像用トナー。 A step of obtaining a colored resin solution by dissolving or dispersing a binder resin, a wax and a colorant containing the thermoplastic polyester resin according to claim 1 in an organic solvent, a basic compound and water sequentially in the colored resin solution Adding, emulsifying the colored resin solution in an aqueous medium, adding an aqueous electrolyte solution to the prepared emulsion suspension, and combining the dispersoids in the emulsion suspension to produce colored resin fine particles. The method according to claim 2, wherein the particles are produced through a step of forming particles, a step of separating, washing and drying the colored resin fine particles from the aqueous medium after removing the organic solvent under reduced pressure. Toner for charge image development. コアシェル構造を有することを特徴とする請求項1ないし3のいずれかに記載のトナー。 4. The toner according to claim 1, wherein the toner has a core-shell structure. 揮発性有機化合物含有量が50ppm以下であることを特徴とする請求項1ないし4のいずれかに記載のトナー。 The toner according to claim 1, wherein the volatile organic compound content is 50 ppm or less.
JP2006216426A 2006-08-09 2006-08-09 Toner Withdrawn JP2008040285A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006216426A JP2008040285A (en) 2006-08-09 2006-08-09 Toner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006216426A JP2008040285A (en) 2006-08-09 2006-08-09 Toner

Publications (1)

Publication Number Publication Date
JP2008040285A true JP2008040285A (en) 2008-02-21

Family

ID=39175343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006216426A Withdrawn JP2008040285A (en) 2006-08-09 2006-08-09 Toner

Country Status (1)

Country Link
JP (1) JP2008040285A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011069927A (en) * 2009-09-24 2011-04-07 Fuji Xerox Co Ltd Electrophotographic toner, method for manufacturing the same, electrophotographic developer, toner cartridge, process cartridge, and image forming apparatus
US8236471B2 (en) 2008-12-22 2012-08-07 Fuji Xerox Co., Ltd. Toner for developing electrostatic charge image, developer for developing an electrostatic charge image, toner cartridge, process cartridge, and image forming apparatus
JP2014199430A (en) * 2013-03-11 2014-10-23 三洋化成工業株式会社 Toner binder and toner composition
JP2015092240A (en) * 2013-10-02 2015-05-14 三洋化成工業株式会社 Toner binder and toner composition
JP2017048389A (en) * 2015-09-04 2017-03-09 三菱レイヨン株式会社 Polyester resin for toner and toner
JP2019095781A (en) * 2017-11-24 2019-06-20 三洋化成工業株式会社 Method for producing toner
JP2019172755A (en) * 2018-03-27 2019-10-10 三菱ケミカル株式会社 Method for producing polyester resin for toner

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8236471B2 (en) 2008-12-22 2012-08-07 Fuji Xerox Co., Ltd. Toner for developing electrostatic charge image, developer for developing an electrostatic charge image, toner cartridge, process cartridge, and image forming apparatus
JP2011069927A (en) * 2009-09-24 2011-04-07 Fuji Xerox Co Ltd Electrophotographic toner, method for manufacturing the same, electrophotographic developer, toner cartridge, process cartridge, and image forming apparatus
JP2014199430A (en) * 2013-03-11 2014-10-23 三洋化成工業株式会社 Toner binder and toner composition
JP2015092240A (en) * 2013-10-02 2015-05-14 三洋化成工業株式会社 Toner binder and toner composition
JP2017048389A (en) * 2015-09-04 2017-03-09 三菱レイヨン株式会社 Polyester resin for toner and toner
JP2019095781A (en) * 2017-11-24 2019-06-20 三洋化成工業株式会社 Method for producing toner
JP2019172755A (en) * 2018-03-27 2019-10-10 三菱ケミカル株式会社 Method for producing polyester resin for toner

Similar Documents

Publication Publication Date Title
JP2002351140A (en) Method for manufacturing electrostatic charge image developing toner and method for forming image by using the toner
JP5097568B2 (en) Method for producing toner for electrophotography
JP2008040285A (en) Toner
JP2008089670A (en) Method of manufacturing electrostatic charge image developing toner
JP2008209455A (en) Method for producing toner particle
JP2005049394A (en) Method for manufacturing electrostatic charge image developing toner
JP2008040286A (en) Toner
JP2003122051A (en) Method of manufacturing electrostatic charge image developing toner
KR102171000B1 (en) Method for manufacturing electrostatic charge image developing toner
JP2008225325A (en) Method of manufacturing electrostatic charge image developing toner
JP4844746B2 (en) Toner manufacturing method
JP4761064B2 (en) Toner manufacturing method
JP4761206B2 (en) Method for producing toner for developing electrostatic image
JP4048942B2 (en) Method for producing toner for developing electrostatic image
JP2006178054A (en) Method for manufacturing electrostatic image developing toner
JP4247669B2 (en) Toner for developing electrostatic image and method for producing the same
JP4761205B2 (en) Method for producing toner for developing electrostatic image
JP2008241874A (en) Method for manufacturing toner for electrostatic charge image development
JP2007127928A (en) Method for manufacturing toner for electrostatic image development
JP2008241873A (en) Method for manufacturing toner for electrostatic charge image development
JP2008107375A (en) Method for manufacturing toner for electrostatic charge image development
JP4830724B2 (en) toner
JP4356600B2 (en) Method for producing toner for developing electrostatic image
JP4844747B2 (en) Toner production method
JP2006285137A (en) Method for manufacturing toner for electrostatic charge image development

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091110