JP2008039709A - Vector hysteresis magnetic field analysis method, vector hysteresis magnetic field analysis program, and recording medium - Google Patents

Vector hysteresis magnetic field analysis method, vector hysteresis magnetic field analysis program, and recording medium Download PDF

Info

Publication number
JP2008039709A
JP2008039709A JP2006217650A JP2006217650A JP2008039709A JP 2008039709 A JP2008039709 A JP 2008039709A JP 2006217650 A JP2006217650 A JP 2006217650A JP 2006217650 A JP2006217650 A JP 2006217650A JP 2008039709 A JP2008039709 A JP 2008039709A
Authority
JP
Japan
Prior art keywords
vector
magnetic field
magnetization
hysteresis
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006217650A
Other languages
Japanese (ja)
Inventor
Kenji Miyata
健治 宮田
Akira Ri
燦 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006217650A priority Critical patent/JP2008039709A/en
Publication of JP2008039709A publication Critical patent/JP2008039709A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a precise, high-speed vector hysteresis magnetic field analysis method requiring only less amount of memory. <P>SOLUTION: In a magnetic field analysis equation, related to magnetic vector potential with a magnetization vector as a source term, the estimation magnetization vector at certain time, is set, the amount of variation of the magnetic vector potential is obtained, the amount of variations in magnetic flux density is calculated from the amount, and a tensor for relating the amount of variations in an arbitrary scalar hysteresis model and a magnetization vector to that of a magnetic field vector is used together, thus the amount of variations in magnetization and magnetic fields from that of the magnetic flux density are calculated and the magnetization vector is updated. By repeating this process, the convergence solution of the magnetic vector potential that takes into consideration the vector hysteresis characteristics is obtained, and the convergence solution of the magnetization vector, and magnetic field vector is calculated. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、磁性材料のヒステリシス磁界解析の方法に係り、特に回転ヒステリシス現象を考慮したヒステリシス磁界解析方法に関するものである。   The present invention relates to a method for analyzing a hysteresis magnetic field of a magnetic material, and more particularly to a method for analyzing a hysteresis magnetic field in consideration of a rotational hysteresis phenomenon.

従来の汎用的なヒステリシス磁界解析方法の代表格として、磁気双極子集合モデルとしてのプライザッハモデルがあり、回転ヒステリシス現象を考慮したベクトルヒステリシスモデルとしてのベクトルプライザッハモデルが、例えば、文献I. D. Mayergoyz:
Mathematical Models of Hysteresis and their Applications、Springer-Verlag、New
York、2003等に示されている。また磁気異方性粒子モデルである別の代表的なベクトルヒステリシスモデルとしてStoner-Wholfarthモデルが、E. C. Stoner and E. P. Wholfarth:A mechanism of magnetic hysteresis in heterogeneous alloys、Phil. Trans. Roy. Soc.、vol. 240A、pp.599-642 (1948)等に示されている。この方法は、磁性材を多数の磁気双極子の集合体とみる統計モデルに基づいた解析方法である。
As a typical example of a conventional general-purpose hysteresis magnetic field analysis method, there is a Preisach model as a magnetic dipole set model, and a vector Preisach model as a vector hysteresis model considering a rotational hysteresis phenomenon is, for example, Document ID Mayergoyz:
Mathematical Models of Hysteresis and their Applications, Springer-Verlag, New
Shown in York, 2003, etc. The Stoner-Wholfarth model is another typical vector hysteresis model that is a magnetic anisotropic particle model, EC Stoner and EP Wholfarth: A mechanism of magnetic hysteresis in heterogeneous alloys, Phil. Trans. Roy. Soc., Vol. 240A, pp.599-642 (1948) etc. This method is an analysis method based on a statistical model in which a magnetic material is regarded as an assembly of a large number of magnetic dipoles.

I. D. Mayergoyz:Mathematical Models of Hysteresis and theirApplications、Springer-Verlag、New York、2003I. D. Mayergoyz: Mathematical Models of Hysteresis and theirApplications, Springer-Verlag, New York, 2003 E. C. Stoner and E. P. Wholfarth:A mechanism of magnetic hysteresis in heterogeneous alloys、Phil. Trans. Roy. Soc.、vol. 240A、pp. 599-642 (1948)E. C. Stoner and E. P. Wholfarth: A mechanism of magnetic hysteresis in heterogeneous alloys, Phil. Trans. Roy. Soc., Vol. 240A, pp. 599-642 (1948)

モータ,回転機,MRI等では、電磁鋼鈑,純鉄等の磁性体を使い、その磁性体は必ずヒステリシス磁気特性を有する。しかし、ヒステリシス磁気特性は解析するのが厄介なため、従来は、設計段階において、磁性体のヒステリシス磁気特性を直接考慮して磁場解析することはほとんどなかった。モータ,回転機,MRI等では、回転磁界あるいは回転振動磁界が存在するため、ヒステリシス磁気特性を解析するためには、回転磁界によるヒステリシス効果が考慮できるベクトルヒステリシスモデルを用いたヒステリシス磁界解析が必要である。   In motors, rotating machines, MRI, etc., magnetic materials such as electromagnetic steel plates and pure iron are used, and the magnetic materials always have hysteresis magnetic characteristics. However, since it is difficult to analyze the hysteresis magnetic characteristics, conventionally, there has been almost no magnetic field analysis in consideration of the hysteresis magnetic characteristics of the magnetic material at the design stage. In motors, rotating machines, MRI, etc., there is a rotating magnetic field or a rotating oscillating magnetic field, and in order to analyze the hysteresis magnetic characteristics, a hysteresis magnetic field analysis using a vector hysteresis model that can take into account the hysteresis effect due to the rotating magnetic field is necessary. is there.

文献I. D. Mayergoyz:Mathematical Models of Hysteresis and their Applications、Springer-Verlag、New York、2003やE. C. Stoner and E. P. Wholfarth:A mechanismof magnetic hysteresis in heterogeneous alloys、Phil. Trans. Roy. Soc.、vol.240A、pp.599-642 (1948)等に示されているように、ベクトルヒステリシスを記述するモデルは各種提案されている。しかし、従来のベクトルヒステリシスモデルは、1次元のスカラーヒステリシスモデルの考えを3次元空間に直接拡張しているため、スカラーヒステリシスモデルよりも膨大な消費メモリと計算時間を要する。   Literature ID Mayergoyz: Mathematical Models of Hysteresis and their Applications, Springer-Verlag, New York, 2003, EC Stoner and EP Wholfarth: A mechanismof magnetic hysteresis in heterogeneous alloys, Phil. Trans. Roy. Soc., Vol. 240A, pp. As shown in 599-642 (1948), various models for describing vector hysteresis have been proposed. However, since the conventional vector hysteresis model directly extends the idea of the one-dimensional scalar hysteresis model to a three-dimensional space, it requires much more memory and calculation time than the scalar hysteresis model.

モータ,回転機,MRI等を磁界解析する場合、一般的には有限要素法を用いて計算する。有限要素法では、解析領域を多くの要素に分割し、大規模な連立方程式を解いて解を求める。解析体系が複雑大規模になればなるほど、有限要素モデルにおける要素数は膨大になる。例えば、MRIのような形状が複雑な磁気回路においては百万あるいはそれ以上の要素を必要とする。このような場合、解析には膨大なメモリと計算時間を要する。このような状況で従来のベクトルヒステリシスモデルを用いると、ヒステリシス磁界解析にさらに膨大なメモリと計算時間が必要となり、実用的な計算は不可能な状況である。   When a magnetic field analysis is performed on a motor, a rotating machine, MRI, or the like, the calculation is generally performed using a finite element method. In the finite element method, an analysis region is divided into many elements, and a solution is obtained by solving a large-scale simultaneous equation. The more complex the analysis system, the greater the number of elements in the finite element model. For example, a magnetic circuit having a complicated shape such as MRI requires one or more elements. In such a case, analysis requires enormous memory and calculation time. When the conventional vector hysteresis model is used in such a situation, a huge amount of memory and calculation time are required for the hysteresis magnetic field analysis, and practical calculation is impossible.

さらに、従来のベクトルヒステリシスモデルにおいて共通した課題として、磁化の大きさが小さくなったときに、磁化回転したのかの判別が不明瞭であるということが挙げられる。磁化反転は理論上、磁化の大きさが0になることが必要条件であるが、計算機で解析する場合、時間ステップはある有限の幅をもつため、磁化の向きが180度近く変化したときに、磁化反転したのか、磁化が回転したのかの判別が困難になる。この磁化反転の判別を誤ると、その後のヒステリシス挙動に多大な影響を及ぼし、特にヒステリシス損の計算値が大きく違ってくる。従来のベクトルヒステリシス磁界解析は、この磁化反転の判別の不鮮明性がヒステリシス磁界解析の精度を大幅に低下させるという深刻な課題を抱えている。   Further, a common problem in the conventional vector hysteresis model is that it is unclear whether the magnetization has been rotated when the magnitude of the magnetization is reduced. Theoretically, magnetization reversal is a necessary condition that the magnitude of the magnetization becomes zero. However, when analyzing with a computer, the time step has a certain finite width, so when the magnetization direction changes nearly 180 degrees. Therefore, it is difficult to determine whether the magnetization is reversed or the magnetization is rotated. If this discrimination of magnetization reversal is mistaken, it will have a great influence on the subsequent hysteresis behavior, and the calculated value of hysteresis loss will differ greatly. The conventional vector hysteresis magnetic field analysis has a serious problem that the unclearness of the magnetization reversal determination greatly reduces the accuracy of the hysteresis magnetic field analysis.

本発明の一つの特徴は、ベクトルヒステリシス磁界解析方法において、磁界強度ベクトルの変動成分と、磁化ベクトルあるいは磁束密度ベクトルの変動成分とを関係づける2次あるいは3次のテンソルと任意のスカラーヒステリシスモデルとを用いることである。   One feature of the present invention is that in a vector hysteresis magnetic field analysis method, a second-order or third-order tensor that relates a fluctuation component of a magnetic field strength vector and a fluctuation component of a magnetization vector or a magnetic flux density vector, and an arbitrary scalar hysteresis model, Is to use.

なお、本発明のその他の特徴は本願特許請求の範囲に記載の通りである。   The other features of the present invention are as described in the claims.

あらゆるスカラーヒステリシスモデルを容易にベクトル化でき、回転ヒステリシスを伴う磁気ヒステリシス現象を高速高精度に解析できる。   All scalar hysteresis models can be easily vectorized, and magnetic hysteresis with rotational hysteresis can be analyzed with high speed and accuracy.

上記課題を達成するために本発明に関するヒステリシス磁界解析方法では、任意のスカラーヒステリシスモデルを関数的にベクトル化する方法を提供する。その前提として、ヒステリシスモデルをどのように磁場解析に適用するかについてまず説明する。   In order to achieve the above object, the hysteresis magnetic field analysis method according to the present invention provides a method of functionally vectorizing an arbitrary scalar hysteresis model. As a premise, how to apply the hysteresis model to the magnetic field analysis will be described first.

磁気ベクトルポテンシャルAを用いると、磁束密度Bならびに電界Eは   Using magnetic vector potential A, magnetic flux density B and electric field E are

Figure 2008039709
Figure 2008039709

Figure 2008039709
Figure 2008039709

と表現でき、アンペールの式は And Ampere's formula is

Figure 2008039709
Figure 2008039709

である。磁束密度Bと磁界Hならびに磁化Mとの関係は、真空透磁率μ0 を用いて It is. The relationship between the magnetic flux density B, the magnetic field H, and the magnetization M is determined using the vacuum permeability μ 0.

Figure 2008039709
Figure 2008039709

と書ける。(数1)(数2)(数3)(数4)より Can be written. (Equation 1) (Equation 2) (Equation 3) (Equation 4)

Figure 2008039709
Figure 2008039709

を得る。ある時刻tにおける解Aが求まったとすると、(数1)から磁束密度Bが求まる。これにより、前時刻に対する磁束密度の変動量ΔBが算出できる。ここで、磁化の変動量ΔMと磁界の変動量ΔHを関係づけるベクトルヒステリシスモデルを用いて、磁束密度の変動量ΔBから、磁化の変動量ΔMと磁界の変動量ΔHを求めることができる。磁化の変動量ΔMと磁界の変動量ΔHが求まると、各時刻における磁化Mと磁界Hが求められる。 Get. If the solution A at a certain time t is obtained, the magnetic flux density B is obtained from (Equation 1). Thereby, the fluctuation amount ΔB of the magnetic flux density with respect to the previous time can be calculated. Here, by using a vector hysteresis model that relates the magnetization fluctuation amount ΔM and the magnetic field fluctuation amount ΔH, the magnetization fluctuation amount ΔM and the magnetic field fluctuation amount ΔH can be obtained from the magnetic flux density fluctuation amount ΔB. When the magnetization variation ΔM and the magnetic field variation ΔH are obtained, the magnetization M and the magnetic field H at each time are obtained.

ここで、本発明の基本部分であるベクトルヒステリシスモデルについて説明する。磁化Mを基準にした座標系を考える。変動前の時刻t−Δtにおける磁化Mに平行な単位ベクトルをe1 とし磁化Mと磁界Hで構成される平面において、この平面に垂直でMとHのベクトル積M×Hの向きの単位ベクトルをe3 とおき、もうひとつの単位ベクトルe2
2=e3×e1 で定義する。単位ベクトルe1,e2,e3 の組は右手系を構成しており、場の変動量をこの直交座標系で表現する。このとき、単位ベクトルe1,e2,e3 の方向の変動量には、添え字をそれぞれ//,⊥1,⊥2を用いる。単位ベクトルe1,e2
3 の座標系において、磁化Mは(M,0,0)と表現され、磁化量Mは正負の値を持ちえるとする。一方、磁界Hの大きさHは非負量とする。前述の単位ベクトルe1 は磁化量Mが正のときの磁化の方向を向いている。単位ベクトルe1 と磁界Hのなす角度をθMHとおくと、磁界Hは単位ベクトルe1,e2,e3 の座標系において(HcosθMH, HsinθMH,0)と表現できる。
Here, a vector hysteresis model which is a basic part of the present invention will be described. Consider a coordinate system based on the magnetization M. A unit vector parallel to the magnetization M at time t−Δt before the change is e 1, and a unit vector in the direction of the vector product M × H perpendicular to this plane and perpendicular to this plane is M × H. Is defined as e 3 , and another unit vector e 2 is defined as e 2 = e 3 × e 1 . A set of unit vectors e 1 , e 2 , and e 3 constitutes a right-hand system, and the amount of field variation is expressed in this orthogonal coordinate system. At this time, the subscripts //, ⊥1, and ⊥2 are used for the amount of change in the direction of the unit vectors e 1 , e 2 , and e 3 , respectively. Unit vectors e 1 , e 2 ,
In the coordinate system of e 3 , the magnetization M is expressed as (M, 0, 0), and the magnetization amount M can have positive and negative values. On the other hand, the magnitude H of the magnetic field H is a non-negative amount. The aforementioned unit vector e 1 is oriented in the direction of magnetization when the magnetization amount M is positive. When the angle of the unit vector e 1 and the magnetic field H is denoted by theta MH, magnetic field H can be expressed in the coordinate system of the unit vectors e 1, e 2, e 3 and (Hcosθ MH, Hsinθ MH, 0 ).

この座標系における磁界の変動量をΔH//,ΔH⊥1,ΔH⊥2とおき、磁化の変動量をΔM//,ΔM⊥1,ΔM⊥2とおく。変動後の磁化M′と変動後の磁界H′は The magnetic field fluctuation amounts in this coordinate system are set as ΔH // , ΔH ⊥1 and ΔH H2 , and the magnetization fluctuation amounts are set as ΔM // , ΔM ⊥1 and ΔM ⊥2 . Magnetization M ′ after fluctuation and magnetic field H ′ after fluctuation are

Figure 2008039709
Figure 2008039709

Figure 2008039709
Figure 2008039709

と表せる。このとき、磁化の方向が変化するため、単位ベクトルe1,e2,e3 はe1′,e2′,e3′に変動する。単位ベクトルe1′は、高次の微小量を無視して、 It can be expressed. At this time, since the magnetization direction changes, the unit vectors e 1 , e 2 , e 3 change to e 1 ′, e 2 ′, e 3 ′. The unit vector e 1 ′ ignores high-order minute quantities,

Figure 2008039709
Figure 2008039709

と書ける。二次の微小項を無視すると、磁化の変動量の//成分は、変動後の座標系でも
ΔM//とおける。変動後の座標系でみた磁界の変動量の//成分をΔH//′とする。(数7)(数8)より、変動後の磁化M′に平行な磁界成分H//′は、二次の微小項を無視して、
Can be written. If the secondary minute term is ignored, the // component of the magnetization fluctuation amount can be ΔM // even in the coordinate system after the fluctuation. The // component of the fluctuation amount of the magnetic field as seen in the coordinate system after fluctuation is ΔH // '. From (Equation 7) and (Equation 8), the magnetic field component H // ′ parallel to the magnetization M ′ after the fluctuation ignores the secondary minute term,

Figure 2008039709
Figure 2008039709

と書ける。よって、H//′は、 Can be written. Therefore, H // ′ is

Figure 2008039709
Figure 2008039709

となる。ここで、磁化の回転をもたらすΔM⊥1,ΔM⊥2は磁界の変動量ΔH//
ΔH⊥1,ΔH⊥2に対して、ある関係づけをする。例えば、
It becomes. Here, ΔM ⊥1 and ΔM ⊥2 that cause the rotation of magnetization are magnetic field fluctuation amounts ΔH // ,
A relation is made to ΔH ⊥1 and ΔH ⊥2 . For example,

Figure 2008039709
Figure 2008039709

Figure 2008039709
Figure 2008039709

とする。ここに、xは、x=M/Hで定義される磁化率であり、α,μ,γは無次元量であり、M,H,θMH等の関数である。(数11)(数12)より、 And Here, x is a magnetic susceptibility defined by x = M / H, α, μ, and γ are dimensionless quantities, and are functions such as M, H, θ MH, and the like. From (Equation 11) and (Equation 12),

Figure 2008039709
Figure 2008039709

である。ここで、ΔH//′とΔM//を差分磁化率

Figure 2008039709
を用いて It is. Where ΔH // 'and ΔM // are the difference susceptibility
Figure 2008039709
Using

Figure 2008039709
Figure 2008039709

と関係づけられるので、(数13)(数14)より、 From (Equation 13) (Equation 14),

Figure 2008039709
Figure 2008039709

が得られる。 Is obtained.

(数11)(数12)(数15)を行列形式で表現すると、   When (Equation 11), (Equation 12), and (Equation 15) are expressed in matrix form,

Figure 2008039709
Figure 2008039709

となる。ここで、(数16)で示した磁化の変動量ΔM//,ΔM⊥1,ΔM⊥2を磁束密度の変動量ΔB//,ΔB⊥1,ΔB⊥2に置き換えると、 It becomes. Here, if the magnetization fluctuation amounts ΔM // , ΔM ⊥1 and ΔM ⊥2 shown in ( Equation 16) are replaced with magnetic flux density fluctuation amounts ΔB // , ΔB ⊥1 and ΔB ⊥2 ,

Figure 2008039709
Figure 2008039709

となる。これにΔM=ΔB−μ0 ΔHを用いて変形すると、磁束密度の変動量ΔBから、磁界の変動量ΔHと磁化の変動量ΔMが、つぎのように求められる。 It becomes. When the deformation is performed using ΔM = ΔB−μ 0 ΔH, the magnetic field fluctuation amount ΔH and the magnetization fluctuation amount ΔM are obtained from the magnetic flux density fluctuation amount ΔB as follows.

Figure 2008039709
Figure 2008039709

Figure 2008039709
Figure 2008039709

と書ける。ここに、 Can be written. here,

Figure 2008039709
Figure 2008039709

Figure 2008039709
Figure 2008039709

である。(数5)を用いて、磁気ベクトルポテンシャルAを求め、変動量ΔAが算出され、 It is. Using (Equation 5), the magnetic vector potential A is obtained, and the fluctuation amount ΔA is calculated.

Figure 2008039709
Figure 2008039709

より、磁束密度の変動量ΔBが求められる。さらに、磁束密度の変動量ΔBから(数18)より磁界強度の変動量ΔH、(数19)より磁化の変動量ΔMを求めることができ、その結果、磁束密度B,磁界H,磁化Mが得られる。 Thus, the fluctuation amount ΔB of the magnetic flux density is obtained. Further, the fluctuation amount ΔH of the magnetic field strength can be obtained from (Equation 18) from the fluctuation amount ΔB of the magnetic flux density, and the fluctuation amount ΔM of magnetization can be obtained from (Equation 19). As a result, the magnetic flux density B, magnetic field H, and magnetization M can be obtained. can get.

以下、フローチャート図を用いて本発明の第一実施例におけるヒステリシス磁界解析法の流れを説明する。   Hereinafter, the flow of the hysteresis magnetic field analysis method in the first embodiment of the present invention will be described with reference to a flowchart.

(数17)(数18)(数19)に登場するα,β,γは無次元量であり、M,H,
θMH等の関数であるが、この関数形の一例を示しておく。
Α, β, and γ appearing in (Equation 17), (Equation 18), and (Equation 19) are dimensionless quantities, and M, H,
An example of this function form is shown as a function such as θ MH .

Figure 2008039709
Figure 2008039709

Figure 2008039709
Figure 2008039709

Figure 2008039709
Figure 2008039709

Figure 2008039709
Figure 2008039709

ここに、h=H/Hs(H0),m=M/Ms(−Ms s)であり、θMHは磁化Mと磁界Hのなす角で0θMH πである。但し、磁化M<0のときはθMHは−MとHのなす角である。a1,a2,a3,b1,b2,b3,c1,c2,c3 は材料固有の磁気特性パラメータ(正値)である。また、演算子sgn(m) はmが非負のとき、1で負のとき−1の値をとる。また、min(a,b) は、a,bのうち小さい方の値をとることを意味する。なお、磁気飽和状態において回転ヒステリシス損が0になるためには、sinθMH=0 すなわちm>0のときθMH=0、m<0のときθMH=πになればよい。θMHの変動量ΔθMHの条件は、sgn(m)ΔθMH<0 である。ΔθMHは、 Here, h = H / H s (H > 0), m = M / M s (−M s < M < M s ), θ MH is an angle formed by the magnetization M and the magnetic field H, and 0 < θ MH < Π. However, when magnetization M <0, θ MH is an angle formed by −M and H. a 1 , a 2 , a 3 , b 1 , b 2 , b 3 , c 1 , c 2 , c 3 are magnetic characteristic parameters (positive values) specific to the material. The operator sgn (m) takes a value of 1 when m is non-negative and -1 when it is negative. Min (a, b) means taking the smaller value of a and b. In order to loss rotating hysteresis becomes zero in the magnetic saturation state, it may become a theta MH = [pi when theta MH = 0, m <0 when sin [theta MH = 0 i.e. m> 0. The condition of the variation amount θθ MH of θ MH is sgn (m) Δθ MH <0. Δθ MH is

Figure 2008039709
Figure 2008039709

ここに、Δh//=ΔH///H,Δh⊥1=ΔH⊥1/Hである。磁気飽和状態の最小磁界h=1でsgn(m)ΔθMH<0 でなければならない。そこで、h=1とおくと、 Here, Δh // = ΔH // / H, Δh ⊥1 = ΔH ⊥1 / H. Sgn (m) Δθ MH <0 with minimum magnetic field h = 1 in the magnetic saturation state. Therefore, if h = 1,

Figure 2008039709
Figure 2008039709

磁気飽和になるときはsgn(m)Δh//>0 であることを考慮すると、Δh//の項は磁化と磁界が平行になるように作用する。Δh⊥1の項についても同様に作用させるためには、 Considering that sgn (m) Δh // > 0 when magnetic saturation occurs, the term Δh // acts so that the magnetization and the magnetic field are parallel. In order to act on the term of Δh 作用 1 in the same way,

Figure 2008039709
Figure 2008039709

が必要である。m>0でθMH《1として、微小項展開すると、 is required. When m> 0 and θ MH << 1,

Figure 2008039709
Figure 2008039709

となり、これを満たすには、 And to satisfy this,

Figure 2008039709
Figure 2008039709

となる。m<0でπ−θMH《1としても同じ結果を得る。規格化磁界h=1で磁化と磁界が平行になれば、h1の磁気飽和状態では、(数16)において、β=δ=0,|α|=1,sinθMH=0となり、磁化遅れ要因はなくなり、磁化と磁界は常に平行である。 It becomes. The same result is obtained when m <0 and π−θ MH << 1. If the normalized magnetic field h = 1 and the magnetization and the magnetic field become parallel, in the magnetic saturation state where h > 1, β = δ = 0, | α | = 1, sinθ MH = 0 in (Equation 16), and the magnetization There is no delay factor, and magnetization and magnetic field are always parallel.

βが(数24)の形でsgn(ΔH//)を含み、δが(数26)の形でsgn(ΔH⊥1) を含むということは、ΔH//やΔH⊥1 が正負に振動すると、磁化Mの方向が磁界Hの方向に次第に近づくことを意味する。しかし、(数16)は、いかなる小さな磁界振動でも、磁化Mの方向が磁界Hの方向に近づくモデルになっているが、現実は、ヒステリシスには「摩擦」による一時的な拘束があり、ある程度の活性化レベル以上でないと磁化Mの方向は変動しない。このため、必要に応じて、(数19)で得られた磁化の角度変化を有効にしない遊び領域を設ける。これにより、有限な磁界振動成分に磁化方向が変化しない遊びをもつことになり、より現実的な解析に近づける。 β includes sgn (ΔH // ) in the form of ( Equation 24) and δ includes sgn (ΔH ⊥1 ) in the form of ( Equation 26), which means that ΔH // and ΔH ⊥1 vibrate positively or negatively. Then, it means that the direction of the magnetization M gradually approaches the direction of the magnetic field H. However, (Equation 16) is a model in which the direction of the magnetization M approaches the direction of the magnetic field H in any small magnetic field vibration, but in reality, the hysteresis is temporarily constrained by “friction”, and to some extent The direction of magnetization M does not fluctuate unless the activation level is higher than. For this reason, a play area that does not make the change in the angle of magnetization obtained in (Equation 19) effective is provided as necessary. As a result, the finite magnetic field vibration component has a play in which the magnetization direction does not change, which is closer to a more realistic analysis.

α,βの関数形の別の一例を示しておく。このモデルでは、磁化と磁界のなす角度θMHが最大摩擦トルクに相当する角度θMH max に達すると、磁化に働くトルクと最大摩擦トルクが等しくなると考える。一方、θMH<θMH max では、磁化回転は、磁化現象のみで決まると考える。磁化と磁界がなす角θMHの変動量ΔθMHを磁界の大きさの変動量ΔHと磁界の回転方向の変動量ΔHθを用いて Another example of the function form of α and β will be shown. In this model, consider magnetization and the angle theta MH magnetic field reaches the angle theta MH max corresponding to the maximum friction torque, and the torque and the maximum friction torque acting on the magnetization equal. On the other hand, when θ MHMH max , it is considered that the magnetization rotation is determined only by the magnetization phenomenon. The amount of change Δθ MH of the angle θ MH between the magnetization and the magnetic field is calculated using the amount of change ΔH in the magnitude of the magnetic field and the amount of change ΔH θ in the rotation direction of the magnetic field.

Figure 2008039709
Figure 2008039709

と表す。ここで、 It expresses. here,

Figure 2008039709
Figure 2008039709

Figure 2008039709
Figure 2008039709

と書けるので、(数32)より、 From (Equation 32),

Figure 2008039709
Figure 2008039709

となる。ここで、便宜上、s=sinθMH,c=cosθMHとおくと、 It becomes. Here, for convenience, if s = sin θ MH and c = cos θ MH ,

Figure 2008039709
Figure 2008039709

Figure 2008039709
Figure 2008039709

と書ける。(数10)(数14)(数35)(数36)より、M=M//を考慮して、 Can be written. From (Equation 10), (Equation 14), (Equation 35), and (Equation 36), considering M = M //

Figure 2008039709
Figure 2008039709

磁化に働くトルクTは The torque T acting on the magnetization is

Figure 2008039709
Figure 2008039709

と書けるので、トルク変動量ΔTは、 Since the torque fluctuation amount ΔT is

Figure 2008039709
Figure 2008039709

(数32)(数38)より、 From (Expression 32) and (Expression 38),

Figure 2008039709
Figure 2008039709

ここで、摩擦トルクをTf とし、Tf がスカラーヒステリシス空間を形成するMおよび
//の関数とする。このときTf の変動量ΔTfは、(数36)(数38)を用いると
Here, the friction torque is T f and T f is a function of M and H // forming a scalar hysteresis space. Fluctuation amount [Delta] T f of the time T f is the use of (Expression 36) (number 38)

Figure 2008039709
Figure 2008039709

と書ける。θMH=θMH maxのとき、(数41)に示したトルクの変動量ΔTとこのΔTf が等しいとして、ΔHとΔHθに関する係数を比較すると、 Can be written. When θ MH = θ MH max , assuming that the torque fluctuation amount ΔT shown in (Equation 41) is equal to this ΔT f , the coefficients related to ΔH and ΔH θ are compared.

Figure 2008039709
Figure 2008039709

Figure 2008039709
Figure 2008039709

が得られる。 Is obtained.

(数16)(数35)(数36)(数37)より、   From (Expression 16), (Expression 35), (Expression 36), and (Expression 37),

Figure 2008039709
Figure 2008039709

Figure 2008039709
Figure 2008039709

を得る。(数43)(数44)を代入すると、 Get. Substituting (Equation 43) and (Equation 44),

Figure 2008039709
Figure 2008039709

Figure 2008039709
Figure 2008039709

を得る。磁気飽和状態では摩擦は0になるので、(数42)において、ΔHの係数

Figure 2008039709
は0になる。磁気飽和状態でs=0であることを考慮すると、
Figure 2008039709
が得られる。この点を考慮すると、磁気飽和状態でβ=0になることがわかる。また、このとき、M>0でc=1となりα=1が得られ、M<0でc=−1となりα=−1が得られる。これは、磁気飽和状態において磁界と磁化は平行にふるまうことを意味し、
(数47)(数48)は理にかなった式になっている。 Get. Since the friction is zero in the magnetic saturation state, the coefficient of ΔH in (Equation 42)
Figure 2008039709
Becomes 0. Considering that s = 0 in the magnetic saturation state,
Figure 2008039709
Is obtained. Considering this point, it can be seen that β = 0 in the magnetic saturation state. At this time, when M> 0, c = 1 and α = 1 is obtained, and when M <0, c = −1 and α = −1 is obtained. This means that the magnetic field and magnetization behave in parallel in the magnetic saturation state,
(Expression 47) (Expression 48) is a reasonable expression.

ここで、θMH=θMH maxになると、磁化は磁界の回転に完全に追随すると考えると、
(数32)のΔθHの係数であるGは0になる。よって、(数48)において、Tf H=0になり、(数48)のβは
Here, when θ MH = θ MH max , the magnetization will completely follow the rotation of the magnetic field.
G which is a coefficient of Δθ H in (Expression 32) is 0. Therefore, in (Equation 48), T f H = 0, and β in (Equation 48) is

Figure 2008039709
Figure 2008039709

となる。磁気飽和状態では、

Figure 2008039709
なので、β=0になるのは自明である。 It becomes. In the magnetic saturation state,
Figure 2008039709
Therefore, it is obvious that β = 0.

なお、ここで用いる摩擦トルクTf は、角周波数ωの回転磁界において回転ヒステリシス損Wrot を測定すれば、Tf=Wrot/ωより求めることができる。 The friction torque T f used here can be obtained from T f = W rot / ω by measuring the rotational hysteresis loss W rot in a rotating magnetic field with an angular frequency ω.

一方、θMH<θMH maxの場合、磁化に働くトルクは最大摩擦トルクよりも小さいため、トルクによる磁化回転効果は働かなくなり、磁界の変動成分による磁化現象のみが残ると考える。磁界の変動成分のうち、ΔH//は磁化の大きさの変動にのみ寄与し、磁化回転には寄与しなくなる。唯一磁化回転に寄与するのは、磁界の磁化に垂直な変動成分ΔH⊥1のみである。従って、 On the other hand, when θ MHMH max , the torque acting on the magnetization is smaller than the maximum friction torque, so the magnetization rotation effect due to the torque does not work, and only the magnetization phenomenon due to the magnetic field fluctuation component remains. Among the fluctuation components of the magnetic field, ΔH // contributes only to the fluctuation of the magnitude of magnetization and does not contribute to the magnetization rotation. The only component that contributes to the magnetization rotation is the fluctuation component ΔH ⊥1 perpendicular to the magnetization of the magnetic field. Therefore,

Figure 2008039709
Figure 2008039709

となる。ここに、x0 は磁化に垂直な⊥1方向の磁化率である。このとき、F,Gは、 It becomes. Here, x 0 is the magnetic susceptibility in the ⊥1 direction perpendicular to the magnetization. At this time, F and G are

Figure 2008039709
Figure 2008039709

となる。磁化現象並びに磁界回転の先行性を考慮すると、0<G<1でなければならず、x0<|x|が必須条件となる。 It becomes. Considering the magnetization phenomenon and the precedence of the magnetic field rotation, 0 <G <1 must be satisfied, and x 0 <| x | is an essential condition.

図1は本発明における解析システムの一例を示す。本解析システムは、計算機100,表示装置101,記憶媒体102から構成される。ここでは、記憶媒体102を明示するために、計算機100の外に出しているが、計算機100内部に記憶媒体102を設置しても良い。本解析システムを用いて、例えば、本発明の第1の実施形態として図2で説明する処理を実行する。   FIG. 1 shows an example of an analysis system according to the present invention. The analysis system includes a computer 100, a display device 101, and a storage medium 102. Here, in order to clearly show the storage medium 102, the storage medium 102 is taken out of the computer 100, but the storage medium 102 may be installed inside the computer 100. For example, the processing described in FIG. 2 is executed as the first embodiment of the present invention using this analysis system.

図2は本発明の第1の実施例として、(数5)を基本解析式とするヒステリシス磁界解析法の流れを示す。第1ステップ11において、前時刻における磁化を呼び出し、そのデータを離散化した(数5)の右辺に代入する。第2ステップ12において、離散化した
(数5)を数値解析して、時刻tにおける磁気ベクトルポテンシャルAを求める。第3ステップ13において、磁気ベクトルポテンシャルの変動量ΔAを算出し、(数22)を用いて磁束密度の変動量ΔBを求める。第4ステップ14において、磁束密度の変動量ΔBから、(数18)(数19)を用いて磁化の変動量ΔMと磁界の変動量ΔHを求め、磁化Mと磁界Hを算出する。判定ステップ10で磁化Mが収束したかどうかを判定し、収束していなければ、第5ステップ15において、磁化Mを離散化した(数5)の右辺に代入し、第2ステップ12にもどって、上記の処理を再度繰り返す。判定ステップ10で磁化Mが収束すれば、第6ステップ16において、磁性体における磁化Mと磁界Hを記憶媒体
102に記憶する。その後、次の時刻の計算に移行する。
FIG. 2 shows a flow of a hysteresis magnetic field analysis method using (Equation 5) as a basic analytical expression as a first embodiment of the present invention. In the first step 11, the magnetization at the previous time is called and the data is discretized and assigned to the right side of (Equation 5). In the second step 12, the discretized (Equation 5) is numerically analyzed to obtain the magnetic vector potential A at time t. In the third step 13, the fluctuation amount ΔA of the magnetic vector potential is calculated, and the fluctuation amount ΔB of the magnetic flux density is obtained using (Equation 22). In the fourth step 14, the magnetization fluctuation amount ΔM and the magnetic field fluctuation amount ΔH are obtained from the magnetic flux density fluctuation amount ΔB using (Equation 18) and (Equation 19), and the magnetization M and the magnetic field H are calculated. In the determination step 10, it is determined whether or not the magnetization M has converged. If it has not converged, in the fifth step 15, the magnetization M is substituted into the right side of the discretized (Equation 5), and the second step 12 is returned. The above processing is repeated again. If the magnetization M converges in the determination step 10, the magnetization M and the magnetic field H in the magnetic material are stored in the storage medium 102 in the sixth step 16. Thereafter, the process proceeds to the calculation of the next time.

本発明の第2の実施例を説明する。本実施例では、(数5)とは別の方程式を用いる。前時刻におけるAをA0として、(数5)の両辺からrot(rotA0) を引くと、 A second embodiment of the present invention will be described. In this embodiment, an equation different from (Equation 5) is used. When A at the previous time is A 0 and rot (rotA 0 ) is subtracted from both sides of (Equation 5),

Figure 2008039709
Figure 2008039709

となる。(数5)を用いた本発明の第1の実施例と同様に、磁化Mの初期値として前時刻における値を用い、磁化Mを更新しながら、磁界Hと磁化Mを求める。 It becomes. As in the first embodiment of the present invention using (Equation 5), the value at the previous time is used as the initial value of the magnetization M, and the magnetic field H and the magnetization M are obtained while updating the magnetization M.

図3は本実施例におけるヒステリシス磁界解析法の流れを示す。第1ステップ21において、前時刻における磁化を呼び出し、そのデータを離散化した(数52)の右辺に代入する。第2ステップ22において、離散化した(数52)を数値解析して、時刻tにおける磁気ベクトルポテンシャルの変動量ΔAを求める。第3ステップ23において、(数22)を用いて磁気ベクトルポテンシャルの変動量ΔAから磁束密度の変動量ΔBを求める。第4ステップ24において、磁束密度の変動量ΔBから、(数18)(数19)を用いて磁化の変動量ΔMと磁界の変動量ΔHを求め、磁化Mと磁界Hを算出する。判定ステップ
20で磁化Mが収束したかどうかを判定し、収束していなければ、第5ステップ25において、磁化Mを離散化した(数52)の右辺に代入し、第2ステップ22にもどって、上記の処理を再度繰り返す。判定ステップ20で磁化Mが収束すれば、第6ステップ26において、磁性体における磁化Mと磁界Hを記憶媒体102に記憶する。その後、次の時刻の計算に移行する。
FIG. 3 shows the flow of the hysteresis magnetic field analysis method in this embodiment. In the first step 21, the magnetization at the previous time is called and the data is substituted into the right side of the discretized (Equation 52). In the second step 22, the discretized (Equation 52) is numerically analyzed to obtain the fluctuation amount ΔA of the magnetic vector potential at time t. In the third step 23, the fluctuation amount ΔB of the magnetic flux density is obtained from the fluctuation amount ΔA of the magnetic vector potential using (Equation 22). In the fourth step 24, the magnetization fluctuation amount ΔM and the magnetic field fluctuation amount ΔH are obtained from the magnetic flux density fluctuation amount ΔB using (Equation 18) and (Equation 19), and the magnetization M and the magnetic field H are calculated. In the determination step 20, it is determined whether or not the magnetization M has converged. If it has not converged, in the fifth step 25, the magnetization M is substituted into the right side of the discretized (Equation 52), and the second step 22 is returned. The above processing is repeated again. If the magnetization M converges in the determination step 20, the magnetization M and the magnetic field H in the magnetic material are stored in the storage medium 102 in the sixth step 26. Thereafter, the process proceeds to the calculation of the next time.

本実施例特有の効果は、磁気ベクトルポテンシャルの変動量ΔAが前時刻に近い値のとき、解の収束が比較的速いということである。ヒステリシス磁界解析ではコイル電流を時間的に変動させる場合が多く、コイル電流が単調に増加あるいは減少している場合、磁気ベクトルポテンシャルの変動量ΔAは前時刻に近い値になる場合がよくあり、この効果は大きい。   The effect peculiar to the present embodiment is that the convergence of the solution is relatively fast when the fluctuation amount ΔA of the magnetic vector potential is a value close to the previous time. In the hysteresis magnetic field analysis, the coil current is often fluctuated with time, and when the coil current monotonously increases or decreases, the fluctuation amount ΔA of the magnetic vector potential is often close to the previous time. The effect is great.

本発明の第3の実施例を説明する。本実施例でも、(数5)とは別の方程式を用いる。(数5)を変動量の式に変換する。時刻tと時刻t−Δtの(数5)を両辺引くと、   A third embodiment of the present invention will be described. In this embodiment, an equation different from (Equation 5) is used. (Equation 5) is converted into an expression of variation. If both sides of time t and time t−Δt (Equation 5) are subtracted,

Figure 2008039709
Figure 2008039709

となる。(数53)により、磁化の変動量ΔMを更新しながら解ΔAを求め、磁界Hと磁化Mを求める。 It becomes. From Equation 53, the solution ΔA is obtained while updating the magnetization fluctuation amount ΔM, and the magnetic field H and the magnetization M are obtained.

図4は本実施例におけるヒステリシス磁界解析方法の流れを示す。第1ステップ31において、前時刻における磁化を呼び出し、そのデータを離散化した(数53)の右辺に代入する。第2ステップ32において、離散化した(数53)を数値解析して、時刻tにおける磁気ベクトルポテンシャルの変動量ΔAを求める。第3ステップ33において、(数22)を用いて磁気ベクトルポテンシャルの変動量ΔAから磁束密度の変動量ΔBを求める。第4ステップ34において、磁束密度の変動量ΔBから、(数18)(数19)を用いて磁化の変動量ΔMと磁界の変動量ΔHを求め、磁化Mと磁界Hを算出する。判定ステップ30で磁化Mが収束したかどうかを判定し、収束していなければ、第5ステップ35において、磁化の変動量ΔMを離散化した(数53)の右辺に代入し、第2ステップ32にもどって、上記の処理を再度繰り返す。判定ステップ30で磁化Mが収束すれば、第6ステップ36において、磁性体における磁化Mと磁界Hを記憶媒体102に記憶する。その後、次の時刻の計算に移行する。   FIG. 4 shows the flow of the hysteresis magnetic field analysis method in this embodiment. In the first step 31, the magnetization at the previous time is called, and the data is discretized and assigned to the right side of (Equation 53). In the second step 32, the discretized (Equation 53) is numerically analyzed to obtain the fluctuation amount ΔA of the magnetic vector potential at time t. In the third step 33, the fluctuation amount ΔB of the magnetic flux density is obtained from the fluctuation amount ΔA of the magnetic vector potential using (Equation 22). In the fourth step 34, the magnetization fluctuation amount ΔM and the magnetic field fluctuation amount ΔH are obtained from the magnetic flux density fluctuation amount ΔB using (Equation 18) and (Equation 19), and the magnetization M and the magnetic field H are calculated. In the determination step 30, it is determined whether or not the magnetization M has converged. If it has not converged, in the fifth step 35, the magnetization fluctuation amount ΔM is substituted into the right side of the discretized (Equation 53), and the second step 32. Return to the above process and repeat. If the magnetization M converges in the determination step 30, the magnetization M and the magnetic field H in the magnetic material are stored in the storage medium 102 in the sixth step 36. Thereafter, the process proceeds to the calculation of the next time.

本実施例特有の効果は、コイル電流が単調に増加あるいは減少している場合、磁気ベクトルポテンシャルの変動量ΔAならびに磁化の変動量ΔMの初期値として前時刻の値を用いると、解の収束が極めて速いということである。   The effect peculiar to the present embodiment is that when the coil current monotonously increases or decreases, if the values of the previous time are used as the initial values of the magnetic vector potential fluctuation amount ΔA and the magnetization fluctuation amount ΔM, the convergence of the solution is achieved. It is extremely fast.

本発明の第4の実施例を説明する。本実施例でも、(数5)とは別の方程式を用いる。時刻tおよび前時刻t−Δtにおける2個のアンペールの式を列記すると、   A fourth embodiment of the present invention will be described. In this embodiment, an equation different from (Equation 5) is used. When two ampere equations at time t and previous time t−Δt are listed,

Figure 2008039709
Figure 2008039709

Figure 2008039709
Figure 2008039709

ここで、添え字0は前時刻t−Δtにおける量であることを示す。(数54)から(数55)を引き、ΔH=H−H0 を用いると、 Here, the subscript 0 indicates an amount at the previous time t−Δt. When (Expression 55) is subtracted from (Expression 54) and ΔH = H−H 0 is used,

Figure 2008039709
Figure 2008039709

Figure 2008039709
Figure 2008039709

の2種類の式が得られる。ともに左辺は(数54)(数55)の左辺同士を引いたものであるが、右辺に関して言えば、(数56)は、(数54)(数55)の右辺同士を引いたもので、(数57)は、(数54)の右辺から(数55)の左辺を引いたものになっている。ここで、(数57)に関しては、rotH0 の取り扱いに関して、二通りの表現方法がある。ひとつは、H0 =ν0(B0−M0)を用いて、 The following two types of equations are obtained. Both left sides are obtained by subtracting the left sides of (Equation 54) and (Equation 55), but regarding the right side, (Equation 56) is obtained by subtracting the right sides of (Equation 54) and (Equation 55). (Equation 57) is obtained by subtracting the left side of (Equation 55) from the right side of (Equation 54). Here, regarding (Equation 57), there are two ways of expressing the handling of rotH 0 . One uses H 0 = ν 0 (B 0 −M 0 ),

Figure 2008039709
Figure 2008039709

と表せる。ここに、ν0は真空透磁率の逆数である。また、 It can be expressed. Here, ν 0 is the reciprocal of the vacuum permeability. Also,

Figure 2008039709
Figure 2008039709

Figure 2008039709
Figure 2008039709

を用いて、 Using,

Figure 2008039709
Figure 2008039709

と書ける。ここに、上添え字0は初期時刻t=0における量であることを示す。(数56)(数57)において、

Figure 2008039709
とおくと、 Can be written. Here, the superscript 0 indicates the amount at the initial time t = 0. (Equation 56) (Equation 57)
Figure 2008039709
After all,

Figure 2008039709
Figure 2008039709

ここに、差分磁気抵抗率テンソル

Figure 2008039709
は(数18)右辺のテンソルを(x,y,z)座標系に変換したものであり、 Where the differential magnetic resistivity tensor
Figure 2008039709
(Expression 18) is obtained by converting the right-side tensor to the (x, y, z) coordinate system.

Figure 2008039709
Figure 2008039709

と記述され、(e1x,e1y,e1z),(e2x,e2y,e2z),(e3x,e3y,e3z)は、それぞれ前述の単位ベクトルe1,e2,e3 の(x,y,z)成分である。また、右辺bはつぎの3通りのいずれを使用してもよい。 (E 1x , e 1y , e 1z ), (e 2x , e 2y , e 2z ), (e 3x , e 3y , e 3z ) are respectively the unit vectors e 1 , e 2 , e 3 is an (x, y, z) component. Moreover, any of the following three types may be used for the right side b.

Figure 2008039709
Figure 2008039709

図5は本実施例におけるヒステリシス磁界解析方法の流れを示す。第1ステップ41において、離散化した(数62)を数値解析して、時刻tにおける磁気ベクトルポテンシャルの変動量ΔAを求める。第2ステップ42において、(数22)を用いて磁気ベクトルポテンシャルの変動量ΔAから磁束密度の変動量ΔBを求める。第3ステップ43において、磁束密度の変動量ΔBから、(数18)(数19)を用いて磁化の変動量ΔMと磁界の変動量ΔHを求め、磁化Mと磁界Hを算出する。判定ステップ40で磁化Mが収束したかどうかを判定し、収束していなければ、第4ステップ44において、(数61)に示した差分磁気抵抗率テンソル

Figure 2008039709
を更新して、第1ステップ41にもどって、上記の処理を再度繰り返す。判定ステップ
40で磁化Mが収束すれば、第5ステップ45において、磁性体における磁化Mと磁界Hを記憶媒体102に記憶する。その後、次の時刻の計算に移行する。 FIG. 5 shows the flow of the hysteresis magnetic field analysis method in this embodiment. In the first step 41, the discretized (Equation 62) is numerically analyzed to obtain the fluctuation amount ΔA of the magnetic vector potential at time t. In the second step 42, the fluctuation amount ΔB of the magnetic flux density is obtained from the fluctuation amount ΔA of the magnetic vector potential using (Equation 22). In the third step 43, the magnetization fluctuation amount ΔM and the magnetic field fluctuation amount ΔH are obtained from the magnetic flux density fluctuation amount ΔB using (Equation 18) and (Equation 19), and the magnetization M and the magnetic field H are calculated. In the determination step 40, it is determined whether or not the magnetization M has converged. If not, in the fourth step 44, the differential magnetic resistivity tensor shown in (Equation 61).
Figure 2008039709
, And return to the first step 41 to repeat the above process again. If the magnetization M converges in the determination step 40, the magnetization M and the magnetic field H in the magnetic material are stored in the storage medium 102 in the fifth step 45. Thereafter, the process proceeds to the calculation of the next time.

本実施例でも、磁気ベクトルポテンシャルの変動量ΔAを求めるという観点では、前述の第2,第3の実施例と同じであるが、本事例では、未知量である磁化Mや磁化の変動量ΔMが右辺にない。このため、本実施例特有の効果として、解ΔAを求める際の反復回数が少なくて済むという効果がある。   This embodiment is also the same as the second and third embodiments described above from the viewpoint of obtaining the magnetic vector potential fluctuation amount ΔA. Is not on the right side. For this reason, as an effect peculiar to the present embodiment, there is an effect that the number of iterations for obtaining the solution ΔA can be reduced.

以上説明した本発明に関るヒステリシス磁界解析方法によれば、ΔM//とΔH//′の関係は従来のいかなるスカラーヒステリシスモデルでも表現できるため、あらゆるスカラーヒステリシスモデルを容易にベクトル化でき、回転ヒステリシスを伴う磁気ヒステリシス現象を高速高精度に解析できるという効果がある。 According to the hysteresis magnetic field analysis method related to the present invention described above, since the relationship between ΔM // and ΔH // 'can be expressed by any conventional scalar hysteresis model, any scalar hysteresis model can be easily vectorized and rotated. The magnetic hysteresis phenomenon with hysteresis can be analyzed with high speed and high accuracy.

本発明における解析システムの一例を示す図。The figure which shows an example of the analysis system in this invention. 本発明の第1の実施例であるヒステリシス磁界解析の流れを示す図。The figure which shows the flow of the hysteresis magnetic field analysis which is 1st Example of this invention. 本発明の第2の実施例であるヒステリシス磁界解析の流れを示す図。The figure which shows the flow of the hysteresis magnetic field analysis which is the 2nd Example of this invention. 本発明の第3の実施例であるヒステリシス磁界解析の流れを示す図。The figure which shows the flow of the hysteresis magnetic field analysis which is the 3rd Example of this invention. 本発明の第4の実施例であるヒステリシス磁界解析の流れを示す図。The figure which shows the flow of the hysteresis magnetic field analysis which is the 4th Example of this invention.

符号の説明Explanation of symbols

10…第1の実施例における収束判定処理、11…第1の実施例におけるステップ1、12…第1の実施例におけるステップ2、13…第1の実施例におけるステップ3、14…第1の実施例におけるステップ4、15…第1の実施例におけるステップ5、16…第1の実施例におけるステップ6、20…第2の実施例における収束判定処理、21…第2の実施例におけるステップ1、22…第2の実施例におけるステップ2、23…第2の実施例におけるステップ3、24…第2の実施例におけるステップ4、25…第2の実施例におけるステップ5、26…第2の実施例におけるステップ6、30…第3の実施例における収束判定処理、31…第3の実施例におけるステップ1、32…第3の実施例におけるステップ2、33…第3の実施例におけるステップ3、34…第3の実施例におけるステップ4、35…第3の実施例におけるステップ5、36…第3の実施例におけるステップ6、40…第4の実施例における収束判定処理、41…第4の実施例におけるステップ1、42…第4の実施例におけるステップ2、43…第4の実施例におけるステップ3、44…第4の実施例におけるステップ4、45…第4の実施例におけるステップ5、100…解析システムの一例における計算機、101…解析システムの一例における表示装置、102…解析システムの一例における記憶媒体。

10: Convergence determination process in the first embodiment, 11: Step 1, 12 in the first embodiment, 12: Step 2, 13 in the first embodiment, 13: Step 3, 14 in the first embodiment, 1st. Steps 4 and 15 in the embodiment, Steps 5 and 16 in the first embodiment, Steps 6 and 20 in the first embodiment, convergence determination processing in the second embodiment, 21... Step 1 in the second embodiment. , 22 ... step 2 in the second embodiment, 23 ... step 3 in the second embodiment, 24 ... step 4, 25 in the second embodiment, steps 25, 26 in the second embodiment, 26 ... second Steps 6 and 30 in the embodiment ... Convergence determination processing in the third embodiment, 31 ... Steps 1 and 32 in the third embodiment, Steps 2 and 33 in the third embodiment, 3rd Steps 3 and 34 in the example Steps 4 and 35 in the third embodiment Steps 5 and 36 in the third embodiment Steps 36 and 36 in the third embodiment Steps 40 and 40 in the third embodiment Convergence determination processing in the fourth embodiment 41 ... Step 1 in the fourth embodiment, 42 ... Step 2, in the fourth embodiment, 43 ... Step 3, in the fourth embodiment, 44 ... Step 4, 45 in the fourth embodiment, 45 ... Fourth implementation Steps 5 and 100 in the example: a computer in an example of the analysis system, 101: a display device in the example of the analysis system, 102: a storage medium in the example of the analysis system.

Claims (13)

磁界強度ベクトルの変動成分と、磁化ベクトルあるいは磁束密度ベクトルの変動成分とを関係づける2次あるいは3次のテンソルと任意のスカラーヒステリシスモデルとを用いることを特徴とするベクトルヒステリシス磁界解析方法。   A vector hysteresis magnetic field analysis method using a second-order or third-order tensor and an arbitrary scalar hysteresis model that relate a fluctuation component of a magnetic field strength vector to a fluctuation component of a magnetization vector or a magnetic flux density vector. 磁界ベクトルの磁化ベクトルへの射影成分と磁化の大きさを関係づける任意のスカラーヒステリシスモデルを用いて磁化の大きさを求め、磁化ベクトルの向きの変化を磁界の変動成分で求めることを特徴とするベクトルヒステリシス磁界解析方法。   It is characterized in that the magnitude of magnetization is obtained using an arbitrary scalar hysteresis model that correlates the magnitude of magnetization with the projection component of the magnetic field vector onto the magnetization vector, and the change in the direction of the magnetization vector is obtained with the fluctuation component of the magnetic field. Vector hysteresis magnetic field analysis method. 請求項2において、磁化ベクトルの向きの変化を磁界の変動成分の線形結合で求めることを特徴とするベクトルヒステリシス磁界解析方法。   3. The vector hysteresis magnetic field analysis method according to claim 2, wherein a change in the direction of the magnetization vector is obtained by linear combination of fluctuation components of the magnetic field. 請求項1乃至請求項3までの何れかにおいて、磁化がある有限な磁界振動成分に反応しない遊びをもつことを特徴とするベクトルヒステリシス磁界解析方法。   4. The vector hysteresis magnetic field analysis method according to claim 1, wherein the magnetic hysteresis magnetic field has a play that does not react to a certain finite magnetic field vibration component. 請求項1乃至請求項4の何れかにおいて、前記スカラーヒステリシスモデルに関して、磁化ベクトルの大きさを特徴づけるスカラー成分に負の値を許容し、磁化ベクトルの向きとして、該スカラー成分が正のときの磁化ベクトルの向きと定義し、この磁化ベクトルの向きへの磁界ベクトルの射影成分と磁化ベクトルに関する該スカラー成分の2つの量からなる空間においてスカラーヒステリシスモデルを構成することを特徴とするベクトルヒステリシス磁界解析方法。   5. The scalar hysteresis model according to claim 1, wherein a negative value is allowed for a scalar component that characterizes the magnitude of the magnetization vector, and the direction of the magnetization vector is positive when the scalar component is positive. A vector hysteresis magnetic field analysis characterized in that a scalar hysteresis model is formed in a space defined by the direction of the magnetization vector and consisting of two quantities of the projection component of the magnetic field vector in the direction of the magnetization vector and the scalar component related to the magnetization vector. Method. 請求項3において、磁化ベクトルの向きの変化と磁界の変動成分の線形結合における係数が、磁界の大きさ、負の値を許容する磁化の大きさ、ならびに磁化ベクトルと磁界ベクトルのなす角度の関数であることを特徴とするベクトルヒステリシス磁界解析方法。   4. The function according to claim 3, wherein the coefficient in the linear combination of the change in direction of the magnetization vector and the fluctuation component of the magnetic field is a function of the magnitude of the magnetic field, the magnitude of magnetization that allows negative values, and the angle between the magnetization vector and the magnetic field vector. A vector hysteresis magnetic field analysis method characterized by: 請求項1乃至請求項6の何れかにおいて、前記磁界解析方法が有限要素法であることを特徴とするベクトルヒステリシス磁界解析方法。   7. The vector hysteresis magnetic field analysis method according to claim 1, wherein the magnetic field analysis method is a finite element method. 請求項7において、磁性体に誘起される磁化ベクトルを反復更新しながら、各時刻の磁気ベクトルポテンシャルの解を求めることを特徴とするベクトルヒステリシス磁界解析方法。   8. The vector hysteresis magnetic field analysis method according to claim 7, wherein a solution of the magnetic vector potential at each time is obtained while repetitively updating the magnetization vector induced in the magnetic material. 請求項7において、磁性体に誘起される磁化ベクトルの変動量を反復更新しながら、各時刻の磁気ベクトルポテンシャルの変動量を求めることを特徴とするベクトルヒステリシス磁界解析方法。   8. The vector hysteresis magnetic field analysis method according to claim 7, wherein the fluctuation amount of the magnetic vector potential at each time is obtained while the fluctuation amount of the magnetization vector induced in the magnetic material is repeatedly updated. 請求項7において、差分磁気抵抗率テンソルを用いて、磁化ベクトルの変動量を反復更新しながら、各時刻の磁気ベクトルポテンシャルの変動量を求めることを特徴とするベクトルヒステリシス磁界解析方法。   8. The vector hysteresis magnetic field analysis method according to claim 7, wherein the fluctuation amount of the magnetic vector potential at each time is obtained while the fluctuation amount of the magnetization vector is repeatedly updated using a differential magnetic resistivity tensor. コンピュータに請求項1乃至請求項10のいずれかの処理を実行させることを特徴とするベクトルヒステリシス磁界解析プログラム。   A vector hysteresis magnetic field analysis program for causing a computer to execute the processing according to any one of claims 1 to 10. 請求項11において、回転ヒステリシス損特性データの入力を要求することを特徴とするベクトルヒステリシス磁界解析プログラム。   12. The vector hysteresis magnetic field analysis program according to claim 11, which requests input of rotational hysteresis loss characteristic data. 請求項11乃至請求項12の何れかの記載のプログラムを記録したコンピュータ読み取り可能な記録媒体。   A computer-readable recording medium on which the program according to any one of claims 11 to 12 is recorded.
JP2006217650A 2006-08-10 2006-08-10 Vector hysteresis magnetic field analysis method, vector hysteresis magnetic field analysis program, and recording medium Pending JP2008039709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006217650A JP2008039709A (en) 2006-08-10 2006-08-10 Vector hysteresis magnetic field analysis method, vector hysteresis magnetic field analysis program, and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006217650A JP2008039709A (en) 2006-08-10 2006-08-10 Vector hysteresis magnetic field analysis method, vector hysteresis magnetic field analysis program, and recording medium

Publications (1)

Publication Number Publication Date
JP2008039709A true JP2008039709A (en) 2008-02-21

Family

ID=39174871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006217650A Pending JP2008039709A (en) 2006-08-10 2006-08-10 Vector hysteresis magnetic field analysis method, vector hysteresis magnetic field analysis program, and recording medium

Country Status (1)

Country Link
JP (1) JP2008039709A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010072711A (en) * 2008-09-16 2010-04-02 Hitachi Ltd High speed magnetic field analyzing method, high speed magnetic field analyzing program, and recording medium
JP2013131071A (en) * 2011-12-21 2013-07-04 Fujitsu Ltd Program, apparatus and method for magnetic body property analysis
CN106563645A (en) * 2016-11-01 2017-04-19 上海师范大学 Intelligent piezoelectric film sensor sorting method based on tensor decomposition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004184233A (en) * 2002-12-03 2004-07-02 Nippon Steel Corp Field analysis method, system, computer program and computer readable storage medium
JP2005083764A (en) * 2003-09-04 2005-03-31 Hitachi Ltd Hysteresis magnetic field analysis method and system
JP2005207900A (en) * 2004-01-23 2005-08-04 Hitachi Ltd Magnetic field analysis method, magnetic field analysis program, and recording medium for recording magnetic field analysis program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004184233A (en) * 2002-12-03 2004-07-02 Nippon Steel Corp Field analysis method, system, computer program and computer readable storage medium
JP2005083764A (en) * 2003-09-04 2005-03-31 Hitachi Ltd Hysteresis magnetic field analysis method and system
JP2005207900A (en) * 2004-01-23 2005-08-04 Hitachi Ltd Magnetic field analysis method, magnetic field analysis program, and recording medium for recording magnetic field analysis program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010072711A (en) * 2008-09-16 2010-04-02 Hitachi Ltd High speed magnetic field analyzing method, high speed magnetic field analyzing program, and recording medium
JP2013131071A (en) * 2011-12-21 2013-07-04 Fujitsu Ltd Program, apparatus and method for magnetic body property analysis
CN106563645A (en) * 2016-11-01 2017-04-19 上海师范大学 Intelligent piezoelectric film sensor sorting method based on tensor decomposition

Similar Documents

Publication Publication Date Title
JP5906717B2 (en) Magnetic substance characteristic analysis program, magnetic substance characteristic analyzing apparatus, and magnetic substance characteristic analyzing method
JP5915157B2 (en) Magnetic substance characteristic analysis program, magnetic substance characteristic analyzing apparatus, and magnetic substance characteristic analyzing method
US11703553B2 (en) Magnetic field analysis device, analysis method, and computer readable medium storing program
WO2017017716A1 (en) Magnetic field analysis calculation method, circuit calculation model program using magnetic field analysis calculation method, and recording medium with said program
JP2008039709A (en) Vector hysteresis magnetic field analysis method, vector hysteresis magnetic field analysis program, and recording medium
Weise et al. Optimal magnet design for Lorentz force eddy-current testing
JP6610346B2 (en) Magnetic property analyzing apparatus, magnetic property analyzing method, and computer program
JP5570307B2 (en) Analysis apparatus and analysis method
JP2008275403A (en) Magnetic anisotropy magnetic field analysis method
JP6540193B2 (en) INFORMATION PROCESSING APPARATUS, PROGRAM, AND INFORMATION PROCESSING METHOD
Li et al. Analysis and design of electrical machines with material uncertainties in iron and permanent magnet
Lee Structural design optimization of electric motors to improve torque performance
JP5039003B2 (en) High-speed magnetic field analysis method, high-speed magnetic field analysis program, and recording medium
US11574082B1 (en) Partial simulation model creation, simulation and post-processing for rotational machines
JP5236599B2 (en) Magnetic field analyzer and method of operating magnetic field analyzer
Krebs et al. Overlapping finite elements for arbitrary surfaces in 3-D
JP2018181161A (en) Magnetic material simulation program, magnetic material simulation device, and magnetic material simulation method
JP2005172525A (en) Magnetic field analysis method, magnetic field analysis system, and computer program
JP2011244623A (en) Coupled analysis system, analysis system and coupled analysis method
JP7057235B2 (en) Divided magnet eddy current loss analysis method
JP4410541B2 (en) Magnetostriction analyzer, magnetostriction analysis method, computer program, and computer-readable recording medium
Qian et al. Triangular Ising model with nearest-and next-nearest-neighbor couplings in a field
JP5460181B2 (en) Magnetic field analyzer and method of operating magnetic field analyzer
Chow Control of hysteresis in the Landau-Lifshitz equation
JP2022142146A (en) Analysis device, analysis method, and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110322