JP2008039440A - Safety valve device and gas sampling container - Google Patents

Safety valve device and gas sampling container Download PDF

Info

Publication number
JP2008039440A
JP2008039440A JP2006210443A JP2006210443A JP2008039440A JP 2008039440 A JP2008039440 A JP 2008039440A JP 2006210443 A JP2006210443 A JP 2006210443A JP 2006210443 A JP2006210443 A JP 2006210443A JP 2008039440 A JP2008039440 A JP 2008039440A
Authority
JP
Japan
Prior art keywords
gas
safety valve
pressure
container
sampling container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006210443A
Other languages
Japanese (ja)
Inventor
Tsutomu Kikuchi
勉 菊地
Yoshiyo Kezuka
佳代 毛塚
Tetsuya Seki
哲也 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2006210443A priority Critical patent/JP2008039440A/en
Publication of JP2008039440A publication Critical patent/JP2008039440A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a safety valve device capable of preventing inverse diffusion when a safety valve is operated, and a gas sampling container capable of preventing the contamination of the sample gas in a gas sampling container even if the gas pressure in the gas sampling container is raised by any cause and the safety valve is operated. <P>SOLUTION: The safety valve device is equipped with the safety valve 17 which is mounted on the container (gas sampling container 11) and opened when the pressure in the container exceeds set pressure and the check valve 18 connected to the secondary side of the safety valve to permit only the flowing of a fluid from a safety valve and the set pressure for opening the check valve is set to the set pressure of the safety valve or below. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、安全弁装置及びガスサンプリング容器に関し、詳しくは、高圧ガスが充填されるガス容器に設けられる安全弁装置に関し、特に、分析用の微量空気成分をサンプリングするためのガスサンプリング容器用として最適な安全弁装置及び該安全弁装置を装着したガスサンプリング容器に関する。   The present invention relates to a safety valve device and a gas sampling container, and more particularly to a safety valve device provided in a gas container filled with high-pressure gas, and particularly suitable for a gas sampling container for sampling a trace air component for analysis. The present invention relates to a safety valve device and a gas sampling container equipped with the safety valve device.

高純度ガスの分析において、試料ガスを採取したガスサンプリング容器を分析機器設備のある場所へ運び、試料ガスの純度や試料ガス中の不純物濃度を測定することが行われている。この用途に用いられるガスサンプリング容器は、試料ガスを採取してから分析するまでの間に、なんらかの原因でガスサンプリング容器内のガスが汚染された場合、分析装置の信頼性が高くても、得られる分析結果全体の信頼性が損なわれるため、ガスサンプリング容器中の試料ガスの清浄度保持は重要な要素となる(例えば、特許文献1参照。)。   In the analysis of a high purity gas, a gas sampling container from which a sample gas is collected is transported to a place where analytical equipment is provided, and the purity of the sample gas and the impurity concentration in the sample gas are measured. The gas sampling container used for this purpose can be obtained even if the analyzer is highly reliable if the gas in the gas sampling container is contaminated for some reason between collection of the sample gas and analysis. Therefore, maintaining the cleanliness of the sample gas in the gas sampling container is an important factor (see, for example, Patent Document 1).

また、ガス容器内(ガス容器に接続した経路内を含む、以下、同様。)のガス圧力が一定値以上にならないように、ガス容器内のガス圧力が高くなる可能性のあるガス容器には安全弁が取り付けられている(例えば、特許文献2参照。)。
特開2000−171362号公報 特開2001−304498号公報
In order to prevent the gas pressure inside the gas container (including the inside of the path connected to the gas container, the same shall apply hereinafter) from exceeding a certain value, there is a possibility that the gas pressure in the gas container may increase. A safety valve is attached (see, for example, Patent Document 2).
JP 2000-171362 A JP 2001-304498 A

ガス容器内外の圧力差で作動する一般的な安全弁は、コイルスプリング等の付勢手段で弁体を容器側に付勢することにより閉弁状態を保ち、容器内のガス圧力が一定圧力を超えると、ガス圧力によって前記弁体を開弁方向に押動する構造を有しており、安全弁が作動(開弁)した直後はガス容器内のガスが外部に大量に排気されるため、安全弁を通過するガス流速は高速となっている。しかし、ガス容器内のガス圧力が次第に低下して一定圧力に近付くと、安全弁を通過するガス流速が低下するため、ガス容器外の雰囲気ガス、通常は空気が安全弁を逆方向に通過してガス容器内に拡散する現象、すなわち逆拡散が発生する。   A general safety valve that operates with a pressure difference between the inside and outside of a gas container keeps the valve closed by urging the valve body toward the container with an urging means such as a coil spring, and the gas pressure inside the container exceeds a certain pressure. And the valve body is pushed in the valve opening direction by the gas pressure, and immediately after the safety valve is activated (opened), a large amount of gas in the gas container is exhausted to the outside. The gas flow velocity passing through is high. However, when the gas pressure in the gas container gradually decreases and approaches a constant pressure, the gas flow rate passing through the safety valve decreases, so the atmospheric gas outside the gas container, usually air, passes through the safety valve in the reverse direction to gas. A phenomenon of diffusion into the container, that is, reverse diffusion occurs.

逆拡散によってガス容器内に拡散する空気量は微量であり、一般的に使用されているガスを充填したガス容器ではほとんど問題にならないが、前記ガスサンプリング容器の場合は、ガスサンプリング容器内の分析対象ガス成分と同種のガスが逆拡散によってガスサンプリング容器内の試料ガスに混入すると、試料ガスが汚染されて分析結果に大きな影響を及ぼすことになる。特に、分析対象ガスが数ppm以下の微量空気成分の場合、逆拡散によってガスサンプリング容器内の試料ガスに空気が混入することは絶対に避けるべきである。   The amount of air that diffuses into the gas container by back diffusion is very small, and it is not a problem for gas containers filled with commonly used gas. In the case of the gas sampling container, analysis in the gas sampling container When a gas of the same type as the target gas component is mixed into the sample gas in the gas sampling container by back diffusion, the sample gas is contaminated and greatly affects the analysis result. In particular, when the analysis target gas is a trace air component of several ppm or less, it should be absolutely avoided that air is mixed into the sample gas in the gas sampling container by back diffusion.

そこで本発明は、安全弁が作動したときの逆拡散を防止できる安全弁装置を提供するとともに、ガスサンプリング容器内のガス圧力が何らかの原因で上昇し、安全弁が作動したとしてもガスサンプリング容器内の試料ガスが汚染されることを防止できるガスサンプリング容器を提供することを目的としている。   Therefore, the present invention provides a safety valve device that can prevent back diffusion when the safety valve is activated, and the gas pressure in the gas sampling container rises for some reason and the sample gas in the gas sampling container is activated even if the safety valve is activated. An object of the present invention is to provide a gas sampling container that can prevent contamination of the gas.

上記目的を達成するため、本発明の安全弁装置及びガスサンプリング容器は、容器内のガス圧力が設定圧力を超えたときに開弁して容器内の圧力を設定圧力以下に保持する安全弁装置であって、前記容器に装着されて該容器内が前記設定圧力を超えたときに開弁する安全弁と、該安全弁の二次側に接続されて安全弁側からの流体の流通のみを許容する逆止弁とを備え、該逆止弁が開弁する設定圧力を、前記安全弁の設定圧力未満、好ましくは前記安全弁の設定圧力に対して20%以上設定圧力未満に設定したことを特徴としている。   In order to achieve the above object, the safety valve device and the gas sampling container of the present invention are safety valve devices that are opened when the gas pressure in the container exceeds the set pressure and keep the pressure in the container at or below the set pressure. A safety valve that is attached to the container and opens when the inside of the container exceeds the set pressure, and a check valve that is connected to the secondary side of the safety valve and allows only fluid to flow from the safety valve side The set pressure at which the check valve opens is set to be less than the set pressure of the safety valve, preferably 20% or more and less than the set pressure with respect to the set pressure of the safety valve.

また、本発明のガスサンプリング容器は、上記構成の安全弁装置を備えたことを特徴とし、特に、サンプリングするガスが分析用のガスであって、分析対象成分が微量空気成分であることを特徴としている。   Further, the gas sampling container of the present invention is characterized by including the safety valve device having the above-described configuration, and in particular, the gas to be sampled is an analysis gas, and the analysis target component is a trace air component. Yes.

本発明の安全弁装置は、容器内の圧力が安全弁の設定圧力を超えて上昇すると、まず、容器内のガス圧力によって安全弁が開弁し、容器内のガスが安全弁の二次側に流出する。安全弁の二次側に流出したガスは、安全弁の二次側と逆止弁の一次側との間の空間に一時的に滞留し、この滞留したガスの圧力が逆止弁の設定圧力を超えると逆止弁が開弁する。これにより、設定圧力を超えて圧力上昇した容器内のガスは、安全弁から逆止弁を経て容器外に放出される。   In the safety valve device of the present invention, when the pressure in the container rises above the set pressure of the safety valve, first, the safety valve is opened by the gas pressure in the container, and the gas in the container flows out to the secondary side of the safety valve. The gas that has flowed out to the secondary side of the safety valve temporarily stays in the space between the secondary side of the safety valve and the primary side of the check valve, and the pressure of this retained gas exceeds the set pressure of the check valve And the check valve opens. As a result, the gas in the container whose pressure has exceeded the set pressure is released from the safety valve to the outside of the container through the check valve.

容器内の圧力が低下して安全弁を通過するガスの流量が低下し、安全弁を通過するガス量と逆止弁を通過するガス量との関係で安全弁と逆止弁との間の空間のガス圧力が逆止弁の設定圧力以下になると、安全弁が開弁状態のまま逆止弁が間欠的に開閉して容器内のガスの放出が継続される。   The gas in the space between the safety valve and the check valve is related to the amount of gas passing through the safety valve and the amount of gas passing through the check valve due to the pressure in the container decreasing and the flow rate of gas passing through the safety valve decreasing. When the pressure is equal to or lower than the set pressure of the check valve, the check valve is intermittently opened and closed while the safety valve is open, and the gas in the container is continuously released.

したがって、容器内圧力の上昇によって安全弁装置が作動すると、安全弁が開弁することによって容器内のガス圧力が安全弁の設定圧力以下になり、安全弁の二次側と逆止弁の一次側との間の空間のガス圧力は、逆止弁の設定圧力と同等乃至僅かに低い圧力となる。   Therefore, when the safety valve device is activated due to an increase in the pressure inside the container, the gas pressure in the container becomes lower than the set pressure of the safety valve by opening the safety valve, and between the secondary side of the safety valve and the primary side of the check valve. The gas pressure in the space is equal to or slightly lower than the set pressure of the check valve.

この安全弁装置の作動時に、逆止弁の開弁状態で微量の外気(空気)が逆止弁の一次側に逆拡散したとしても、安全弁と逆止弁との間の前記空間内に混入する空気量は微量であるから、この空間内のガスが安全弁を通って容器内に逆拡散しても、容器内に混入する空気量は極めて微量なものとなる。   Even when a small amount of outside air (air) is diffused back to the primary side of the check valve when the check valve is opened, the safety valve device is mixed into the space between the safety valve and the check valve. Since the amount of air is very small, even if the gas in this space passes back through the safety valve into the container, the amount of air mixed into the container becomes extremely small.

すなわち、前記容器がガスサンプリング容器であり、該ガスサンプリング容器内に、分析対象が微量の空気成分(窒素、酸素、アルゴン等)である試料ガスをサンプリングする場合、ガスサンプリング容器に前記安全弁装置を設けておくことにより、ガスサンプリング容器内のガス圧力を一定圧力以下に保てるとともに、ガスサンプリング容器内のガス圧力が上昇して安全弁が作動しても、ガスサンプリング容器内に空気成分が混入することはほとんどなく、精度、信頼性の高い分析を行うことができる。   That is, when the sample is a gas sampling container, and the sample gas whose analysis object is a minute amount of air components (nitrogen, oxygen, argon, etc.) is sampled in the gas sampling container, the safety valve device is provided in the gas sampling container. By providing it, the gas pressure in the gas sampling container can be kept below a certain pressure, and even if the gas pressure in the gas sampling container rises and the safety valve is activated, air components are mixed in the gas sampling container. There is almost no analysis, and analysis with high accuracy and reliability can be performed.

図1は本発明の安全弁装置を装着したガスサンプリング容器の一形態例を示す説明図である。   FIG. 1 is an explanatory view showing one embodiment of a gas sampling container equipped with the safety valve device of the present invention.

このガスサンプリング容器11は、従来から用いられている流通式サンプラーと呼ばれるもので、所定の直径及び長さを有する容器部12の両端に、弁13,13を備えた試料ガス経路14,14がそれぞれ設けられている。さらに、容器部12には、圧力計15と安全弁装置16とが設けられている。   This gas sampling container 11 is a so-called flow-through sampler that has been used in the past. Sample gas paths 14 and 14 having valves 13 and 13 are provided at both ends of a container part 12 having a predetermined diameter and length. Each is provided. Further, the vessel portion 12 is provided with a pressure gauge 15 and a safety valve device 16.

安全弁装置16は、容器部12に取り付けられた安全弁17と、この安全弁17の二次側(ガス放出側)に接続した安全弁17側からの流体の流通のみを許容する逆止弁18とからなるものであって、安全弁17は、ガスサンプリング容器内11内のガス圧力が、該安全弁17の設定圧力を超えたときに開弁してガスサンプリング容器11内のガスを安全弁17の二次側に放出し、逆止弁18は、安全弁17の二次側に放出されたガスの圧力が、該逆止弁18の設定圧力を超えたときに開弁し、安全弁17の二次側と逆止弁18の一次側との間の空間に一時的に滞留したガスを逆止弁18の二次側、すなわち外部に放出するように形成されている。   The safety valve device 16 includes a safety valve 17 attached to the container portion 12 and a check valve 18 that allows only fluid flow from the safety valve 17 side connected to the secondary side (gas release side) of the safety valve 17. The safety valve 17 is opened when the gas pressure in the gas sampling container 11 exceeds the set pressure of the safety valve 17 and the gas in the gas sampling container 11 is moved to the secondary side of the safety valve 17. The check valve 18 opens and opens when the pressure of the gas released to the secondary side of the safety valve 17 exceeds the set pressure of the check valve 18. The gas temporarily staying in the space between the primary side of the valve 18 is formed to be discharged to the secondary side of the check valve 18, that is, to the outside.

前記安全弁17の設定圧力(安全弁設定圧力)は、ガスサンプリング容器11や弁13の耐圧性能等に応じてあらかじめ設定されている。一方、逆止弁18の設定圧力(逆止弁設定圧力)は、安全弁設定圧力未満に設定する。すなわち、この逆止弁設定圧力を安全弁設定圧力以上に設定すると、安全弁17が作動して開弁しても、逆止弁18が開弁しない状態になることがあり、ガスサンプリング容器11内を一定圧力以下に保つことができなくなる。逆止弁設定圧力の下限は、安全弁17や逆止弁18の口径、安全弁設定圧力の値によっても異なるが、逆止弁18が僅かな圧力差で開弁すると、開弁時に外気が逆止弁18の二次側から一次側に逆拡散する可能性が大きくなるので、0.1MPa(ゲージ圧、以下同様)以上、好ましくは0.2MPa以上に設定すればよく、安全弁設定圧力との関係からは、安全弁設定圧力に対して逆止弁設定圧力を20%以上の値に設定することが望ましく、20%未満では顕著な効果が見られないが、20%以上の場合には、通常の逆拡散によるリーク量を半分以下に抑えることができる。   The set pressure (safety valve set pressure) of the safety valve 17 is set in advance according to the pressure resistance performance of the gas sampling container 11 and the valve 13. On the other hand, the set pressure of the check valve 18 (check valve set pressure) is set to be less than the safety valve set pressure. That is, if the check valve set pressure is set to be equal to or higher than the safety valve set pressure, the check valve 18 may not open even if the safety valve 17 is activated and opened. It becomes impossible to keep below a certain pressure. The lower limit of the check valve set pressure varies depending on the diameter of the safety valve 17 and the check valve 18 and the value of the safety valve set pressure. If the check valve 18 is opened with a slight pressure difference, the outside air is not checked when the valve is opened. Since the possibility of back diffusion from the secondary side to the primary side of the valve 18 increases, it may be set to 0.1 MPa (gauge pressure, the same applies hereinafter), preferably 0.2 MPa or more, and the relationship with the safety valve set pressure. From the above, it is desirable to set the check valve set pressure to a value of 20% or more with respect to the safety valve set pressure, and if it is less than 20%, no significant effect is seen, but if it is 20% or more, The amount of leakage due to despreading can be suppressed to less than half.

このように、安全弁17の二次側に、該安全弁17の設定圧力よりも低い設定圧力の逆止弁18を接続した安全弁装置16は、ガスサンプリング容器11内の圧力が前記安全弁設定圧力を超えると、ガスサンプリング容器11内のガス圧力によって安全弁17が開弁し、ガスサンプリング容器11内のガスが安全弁17の二次側に流出する。安全弁17の二次側に流出したガスは、安全弁11の二次側と逆止弁18の一次側との間を接続するための継手等の空間部分に一時的に滞留し、この空間部分に滞留したガスの圧力が前記逆止弁設定圧力を超えると逆止弁18が開弁する。これにより、ガスサンプリング容器11にあらかじめ設定された圧力を超えて容器内圧力が上昇すると、ガスサンプリング容器11内のガスは、安全弁17から逆止弁18を経て外部に放出される。   Thus, in the safety valve device 16 in which the check valve 18 having a set pressure lower than the set pressure of the safety valve 17 is connected to the secondary side of the safety valve 17, the pressure in the gas sampling container 11 exceeds the set pressure of the safety valve. Then, the safety valve 17 is opened by the gas pressure in the gas sampling container 11, and the gas in the gas sampling container 11 flows out to the secondary side of the safety valve 17. The gas that has flowed out to the secondary side of the safety valve 17 temporarily stays in a space portion such as a joint for connecting the secondary side of the safety valve 11 and the primary side of the check valve 18, and enters the space portion. When the pressure of the accumulated gas exceeds the check valve set pressure, the check valve 18 is opened. As a result, when the internal pressure of the gas sampling container 11 rises exceeding a preset pressure in the gas sampling container 11, the gas in the gas sampling container 11 is released from the safety valve 17 through the check valve 18 to the outside.

ガスサンプリング容器11内の圧力が低下して安全弁17を通過するガスの流量が低下し、安全弁17を通過するガス量と逆止弁18を通過するガス量との関係で前記空間部分のガス圧力が逆止弁設定圧力より低くなると、安全弁17が開弁状態のまま逆止弁18が間欠的に開閉してガスサンプリング容器11内のガスの放出が継続され、最終的にガスサンプリング容器11内は一定圧力以下に保持される。   The pressure in the gas sampling container 11 decreases, the flow rate of the gas passing through the safety valve 17 decreases, and the gas pressure in the space portion is related to the amount of gas passing through the safety valve 17 and the amount of gas passing through the check valve 18. Becomes lower than the check valve set pressure, the check valve 18 is intermittently opened and closed while the safety valve 17 is open, and the gas sampling container 11 continues to release the gas. Is kept below a certain pressure.

したがって、ガスサンプリング容器11内のガス圧力の上昇によって安全弁装置16が作動すると、安全弁17が開弁することによってガスサンプリング容器11内のガス圧力が安全弁設定圧力以下になり、安全弁17の二次側と逆止弁18の一次側との間の前記空間部分のガス圧力は、逆止弁設定圧力と同等乃至僅かに低い圧力となる。   Accordingly, when the safety valve device 16 is activated due to an increase in the gas pressure in the gas sampling container 11, the safety valve 17 is opened, so that the gas pressure in the gas sampling container 11 becomes lower than the safety valve set pressure, and the secondary side of the safety valve 17. And the primary side of the check valve 18 have a gas pressure equal to or slightly lower than the check valve set pressure.

この安全弁装置16の作動時に、逆止弁18が開弁した状態で微量の空気が逆止弁18の一次側に逆拡散したとしても、安全弁17と逆止弁18との間の前記空間部分内に混入する空気量は微量であるから、この空間部分内のガスが安全弁17を通ってガスサンプリング容器11内に逆拡散しても、ガスサンプリング容器11内の試料ガスに混入する空気量は極めて微量なものとなる。すなわち、このような安全弁装置16を設けたガスサンプリング容器11は、何らかの原因でガスサンプリング容器11内のガス圧力が上昇しても、安全弁装置16が作動することによってガスサンプリング容器11内のガス圧力を一定圧力以下に保てるとともに、分析対象が数ppm以下の微量の空気成分(窒素、酸素、アルゴン等)である試料ガスをサンプリングしたガスサンプリング容器11の安全弁装置16が作動しても、ガスサンプリング容器11内に空気成分が混入して試料ガスが汚染されることがほとんどないため、前記空気成分の微量分析を高精度で行うことができ、分析結果の信頼性も高めることができる。   Even when a small amount of air is reversely diffused to the primary side of the check valve 18 when the check valve 18 is opened when the safety valve device 16 is operated, the space portion between the safety valve 17 and the check valve 18 is used. Since the amount of air mixed in is very small, the amount of air mixed into the sample gas in the gas sampling container 11 is not limited even if the gas in this space portion is reversely diffused into the gas sampling container 11 through the safety valve 17. It becomes a very small amount. That is, in the gas sampling container 11 provided with such a safety valve device 16, even if the gas pressure in the gas sampling container 11 rises for some reason, the gas pressure in the gas sampling container 11 is activated by operating the safety valve device 16. Gas sampling even when the safety valve device 16 of the gas sampling container 11 that samples a sample gas that is a trace amount of air component (nitrogen, oxygen, argon, etc.) of several ppm or less is operated. Since the sample gas is hardly contaminated by the air component mixed into the container 11, the micro analysis of the air component can be performed with high accuracy, and the reliability of the analysis result can be improved.

図1に示す構造で、容器部12の内容積が6リットルのガスサンプリング容器11に設定圧力を0.7MPaとした安全弁17(千代田精機製)のみを設け、ガスサンプリング容器11内に0.9MPaの高純度酸素ガス(窒素濃度1ppm未満)を一方の試料ガス経路14から導入した。   In the structure shown in FIG. 1, only a safety valve 17 (manufactured by Chiyoda Seiki Co., Ltd.) having a set pressure of 0.7 MPa is provided in a gas sampling container 11 having an internal volume of the container 12 of 6 liters, and 0.9 MPa in the gas sampling container 11. High-purity oxygen gas (nitrogen concentration of less than 1 ppm) was introduced from one sample gas path 14.

高純度酸素ガスの導入圧力が安全弁17の設定圧力より高いことから、0.7MPaを超えた時点で安全弁17が作動し、ガスサンプリング容器11内の酸素ガスを大気中に放出してガスサンプリング容器11内が0.7MPaに低下したときに安全弁17が閉弁して酸素ガスの放出が終了した。このときのガスサンプリング容器11内の窒素濃度をガスクロマトグラフ分析計で分析した。   Since the introduction pressure of the high purity oxygen gas is higher than the set pressure of the safety valve 17, the safety valve 17 is activated when the pressure exceeds 0.7 MPa, and the oxygen gas in the gas sampling container 11 is released into the atmosphere to release the gas sampling container. When the inside of 11 decreased to 0.7 MPa, the safety valve 17 was closed and the release of oxygen gas was completed. The nitrogen concentration in the gas sampling container 11 at this time was analyzed with a gas chromatograph analyzer.

この実験を4回繰り返した結果、窒素濃度は、それぞれ4ppm、3ppm、6ppm、3ppm(平均4ppm)であり、安全弁17からの逆拡散によって大気中の窒素がガスサンプリング容器11内の試料ガス(高純度酸素ガス)に混入し、試料ガスを汚染していることが判明した。   As a result of repeating this experiment four times, the nitrogen concentrations were 4 ppm, 3 ppm, 6 ppm, and 3 ppm (average 4 ppm), respectively, and the nitrogen in the atmosphere was converted into the sample gas (high) in the gas sampling container 11 by back diffusion from the safety valve 17. It was found that the sample gas was contaminated with the pure oxygen gas).

次に、前記安全弁17の後段に、逆止弁18(スウェッジロック社製CPAタイプ)を継手を介して接続し、逆止弁18の設定圧力を0〜0.6MPaに設定して前記同様の実験を行った。なお、安全弁17と逆止弁18との間の継手部分にも圧力計を設け、安全弁17の二次側と逆止弁18の一次側との間の空間のガス圧力を測定した。   Next, a check valve 18 (CPA type manufactured by Swagelok Co., Ltd.) is connected to the rear stage of the safety valve 17 via a joint, and the set pressure of the check valve 18 is set to 0 to 0.6 MPa, as described above. The experiment was conducted. A pressure gauge was also provided at the joint between the safety valve 17 and the check valve 18, and the gas pressure in the space between the secondary side of the safety valve 17 and the primary side of the check valve 18 was measured.

ガスサンプリング容器11内に0.9MPaの高純度酸素ガスを導入すると、圧力計15の測定値が0.7MPaを超えた時点で安全弁17が作動し、ガスサンプリング容器11内の高純度酸素ガスが安全弁17から放出され、安全弁17と逆止弁18との間の継手部分に溜まり、この継手部分のガス圧力が逆止弁18の設定圧力を超えたときに逆止弁18が作動した。   When high-purity oxygen gas of 0.9 MPa is introduced into the gas sampling container 11, the safety valve 17 is activated when the measured value of the pressure gauge 15 exceeds 0.7 MPa, and the high-purity oxygen gas in the gas sampling container 11 is The check valve 18 was released when it was discharged from the safety valve 17 and accumulated in the joint portion between the safety valve 17 and the check valve 18, and the gas pressure in the joint portion exceeded the set pressure of the check valve 18.

これにより、ガスサンプリング容器11内の高純度酸素ガスは、安全弁17から継手部分を通り、逆止弁18を通って大気中に放出された。ガスサンプリング容器11内のガス圧力が安全弁17の設定圧力である0.7MPaに低下したときに安全弁17が閉弁し、継手部分のガス圧力が逆止弁18の設定圧力になったときに逆止弁18も閉弁した。   As a result, the high-purity oxygen gas in the gas sampling container 11 was released from the safety valve 17 through the joint portion and through the check valve 18 into the atmosphere. The safety valve 17 closes when the gas pressure in the gas sampling container 11 drops to 0.7 MPa, which is the set pressure of the safety valve 17, and reverses when the gas pressure at the joint becomes the set pressure of the check valve 18. The stop valve 18 was also closed.

逆止弁18の設定圧力を変えて、各設定圧力にて5回ずつ実験を行い、ガスサンプリング容器11内の高純度酸素ガス中に含まれる窒素濃度をそれぞれ分析した。各設定圧力における分析結果の平均値を図2に示す。   The experiment was performed five times at each set pressure while changing the set pressure of the check valve 18, and the nitrogen concentration contained in the high purity oxygen gas in the gas sampling vessel 11 was analyzed. The average value of the analysis results at each set pressure is shown in FIG.

図2から明らかなように、逆止弁18の設定圧力が0MPa、実際には0MPaより僅かに高い圧力であるが逆止弁としての機能はほとんど発揮していない状態では、逆拡散を十分に防止することができず、逆止弁18を設けた効果がほとんど得られていないことが分かる。すなわち、安全弁17の二次側に、僅かな圧力差(0.1MPa未満)で開弁するような弁、例えば、安全弁17内にゴミ等が入るのを防止するための弁を設けた程度では、逆拡散を十分に防止できないことが分かる。   As is clear from FIG. 2, when the set pressure of the check valve 18 is 0 MPa, which is actually slightly higher than 0 MPa, but the function as the check valve is hardly exhibited, the reverse diffusion is sufficiently performed. It cannot be prevented that the effect of providing the check valve 18 is hardly obtained. That is, to the extent that a valve that opens with a slight pressure difference (less than 0.1 MPa), for example, a valve for preventing dust or the like from entering the safety valve 17 is provided on the secondary side of the safety valve 17. It can be seen that despreading cannot be sufficiently prevented.

逆止弁18の設定圧力を0.1MPaにすると逆拡散を防止する効果が現れ、設定圧力が0.2MPaになると逆拡散の防止効果が明らかになり、設定圧力を0.3MPa以上にすると、逆拡散が防止されてガスサンプリング容器11内の高純度酸素ガスが大気中の窒素で汚染されていないことが分かる。   When the set pressure of the check valve 18 is set to 0.1 MPa, an effect of preventing back diffusion appears. When the set pressure becomes 0.2 MPa, the effect of preventing back diffusion becomes clear, and when the set pressure is set to 0.3 MPa or more, It can be seen that the reverse diffusion is prevented and the high-purity oxygen gas in the gas sampling container 11 is not contaminated with nitrogen in the atmosphere.

この結果から、逆止弁18の設定圧力を0.1MPa以上にすれば逆拡散防止効果が得られ、さらに、設定圧力を0.2MPa以上にすることによって十分な逆拡散防止効果が得られ、特に、設定圧力を0.3MPa以上にすることによって逆拡散を確実に防止できることが分かる。   From this result, if the set pressure of the check valve 18 is 0.1 MPa or more, a reverse diffusion prevention effect can be obtained, and further, if the set pressure is 0.2 MPa or more, a sufficient back diffusion prevention effect can be obtained, In particular, it can be seen that the reverse diffusion can be reliably prevented by setting the set pressure to 0.3 MPa or more.

本発明の安全弁装置を装着したガスサンプリング容器の一形態例を示す説明図である。It is explanatory drawing which shows one example of a gas sampling container equipped with the safety valve apparatus of this invention. 実施例1における逆止弁の設定圧力と窒素濃度分析値との関係を示す図である。It is a figure which shows the relationship between the setting pressure of a non-return valve in Example 1, and a nitrogen concentration analysis value.

符号の説明Explanation of symbols

11…ガスサンプリング容器、12…容器部、13…弁、14…試料ガス経路、15…圧力計、16…安全弁装置、17…安全弁、18…逆止弁   DESCRIPTION OF SYMBOLS 11 ... Gas sampling container, 12 ... Container part, 13 ... Valve, 14 ... Sample gas path, 15 ... Pressure gauge, 16 ... Safety valve apparatus, 17 ... Safety valve, 18 ... Check valve

Claims (4)

容器内のガス圧力が設定圧力を超えたときに開弁して容器内の圧力を設定圧力以下に保持する安全弁装置であって、前記容器に装着されて該容器内が前記設定圧力を超えたときに開弁する安全弁と、該安全弁の二次側に接続されて安全弁側からの流体の流通のみを許容する逆止弁とを備え、該逆止弁が開弁する設定圧力を、前記安全弁の設定圧力未満に設定したことを特徴とする安全弁装置。   A safety valve device that opens when the gas pressure in the container exceeds the set pressure and keeps the pressure in the container at or below the set pressure, and is attached to the container and the inside of the container exceeds the set pressure. A safety valve that is sometimes opened, and a check valve that is connected to the secondary side of the safety valve and allows only fluid flow from the safety valve side, and the safety valve has a set pressure that opens the check valve. A safety valve device that is set to a pressure lower than the set pressure. 前記逆止弁が開弁する設定圧力は、前記安全弁の設定圧力に対して20%以上に設定されていることを特徴とする請求項1記載の安全弁装置。   The safety valve device according to claim 1, wherein a set pressure at which the check valve opens is set to 20% or more with respect to a set pressure of the safety valve. 請求項1又は2記載の安全弁装置を備えたことを特徴とするガスサンプリング容器。   A gas sampling container comprising the safety valve device according to claim 1. サンプリングするガスが分析用のガスであって、分析対象成分が微量空気成分であることを特徴とする請求項3記載のガスサンプリング容器。   The gas sampling container according to claim 3, wherein the gas to be sampled is an analysis gas, and the analysis target component is a trace air component.
JP2006210443A 2006-08-02 2006-08-02 Safety valve device and gas sampling container Pending JP2008039440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006210443A JP2008039440A (en) 2006-08-02 2006-08-02 Safety valve device and gas sampling container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006210443A JP2008039440A (en) 2006-08-02 2006-08-02 Safety valve device and gas sampling container

Publications (1)

Publication Number Publication Date
JP2008039440A true JP2008039440A (en) 2008-02-21

Family

ID=39174642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006210443A Pending JP2008039440A (en) 2006-08-02 2006-08-02 Safety valve device and gas sampling container

Country Status (1)

Country Link
JP (1) JP2008039440A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101755190B1 (en) 2014-12-15 2017-07-06 이와타니 산교 가부시키가이샤 Sample collection device and sample collection method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101755190B1 (en) 2014-12-15 2017-07-06 이와타니 산교 가부시키가이샤 Sample collection device and sample collection method
US9869614B2 (en) 2014-12-15 2018-01-16 Iwatani Corporation Sampling apparatus and sampling method

Similar Documents

Publication Publication Date Title
US7600439B1 (en) Apparatus and method for storage of atmospheric sample for eventual chemical analysis
Zhu et al. Determination of trace levels of mercury in aqueous solutions by inductively coupled plasma atomic emission spectrometry: elimination of the ‘memory effect’
US7867779B2 (en) System and method comprising same for measurement and/or analysis of particles in gas stream
WO2007001968A3 (en) Measuring small quantities of fluid
US9588023B2 (en) Sampling container for collection of fluids
WO2017138646A1 (en) Three-component simultaneous analysis device and three-component simultaneous analysis method
JP2008039440A (en) Safety valve device and gas sampling container
CN112782264B (en) Device and method for detecting and calibrating trace harmful gas in closed space
TW201518727A (en) Liquid-free sample traps and analytical method for measuring trace level acidic and basic AMC
Brown et al. Diffusive sampling using tube-type samplers
Kim et al. Determination of carbon disulfide in natural waters by adsorbent preconcentration and gas chromatography with flame photometric detection
Su et al. Online solid phase extraction using a PVC-packed minicolumn coupled with ICP-MS for determination of trace multielements in complicated matrices
EP1830173A1 (en) System and method for measurement and/or analysis of particles in gas stream
US8191437B2 (en) Gas sample collection and analysis
Ferlin et al. A very simple and fast analytical method for atmospheric particulate-bound mercury determination
US20100255604A1 (en) Sample introduction solutions and methods
JP4455227B2 (en) Method for measuring gas isotope abundance ratio and system therefor
EP3959500A1 (en) Device for collecting a sample of elements of interest present as traces in a pressurised gas
Adams et al. Optical molecular fluorescence determination of ultra-trace beryllium in occupational and environmental samples using highly alkaline conditions
Hallberg et al. A diffusive sampler of gaseous pollutants by collection in liquid media
John Thoracic and Respirable Particulate Mass Samplers: Current Status and Future Needs
Larsson et al. Studies of transport and collection characteristics of gaseous mercury in natural gases using amalgamation and isotope dilution analysis
JP3053504B2 (en) Gas analyzer
Groves et al. Evaluation of a fluorometric method for measuring low concentrations of ammonia in ambient air
RU2408863C1 (en) Sample container for taking samples of human expired air on molecular markers