JP2008038882A - Boost pressure control mechanism for prime engine with supercharger - Google Patents

Boost pressure control mechanism for prime engine with supercharger Download PDF

Info

Publication number
JP2008038882A
JP2008038882A JP2006236664A JP2006236664A JP2008038882A JP 2008038882 A JP2008038882 A JP 2008038882A JP 2006236664 A JP2006236664 A JP 2006236664A JP 2006236664 A JP2006236664 A JP 2006236664A JP 2008038882 A JP2008038882 A JP 2008038882A
Authority
JP
Japan
Prior art keywords
valve
exhaust pipe
supercharger
electromagnet
prime mover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006236664A
Other languages
Japanese (ja)
Inventor
Fujio Inoue
冨士夫 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006236664A priority Critical patent/JP2008038882A/en
Publication of JP2008038882A publication Critical patent/JP2008038882A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Supercharger (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a prime engine with a supercharger ensuring high torque and high output throughout a wide rotation range of the prime engine by providing a boost pressure control mechanism controlling a boost pressure with respect to the supercharger. <P>SOLUTION: The boost pressure control mechanism is provided with an opening and closing valve 4 in an exhaust pipe between the prime engine and the supercharger, and it is composed of an opening and closing valve control device 14 managing opening closing operation of the opening and closing valve. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、原動機関が排出する排気ガスの圧力を利用して、原動機関におけるトルク及び出力の向上を図る過給器付き原動機関の過給圧制御機構に関する。  The present invention relates to a supercharging pressure control mechanism for a supercharged prime mover engine that uses the pressure of exhaust gas discharged from the prime mover engine to improve torque and output in the prime mover engine.

従来の過給器付き原動機関は、特に低速回転域において燃焼室より排出される排気ガス量や排気温度等の不足により排気ガス圧力が弱く、よって、タービン側のタービンブレードの回転が充分に立ち上らないため、タービンブレードと同一の回転軸の反対側に配置・固定されたコンプレッサー側のインペラも高回転に至らず、さらに過給器付き原動機関でガソリン式の場合では一般的に自然吸気式と比べ圧縮比を低く設定する傾向があるため、結果的に低速回転域で充分な回転トルクを確保しにくい等の欠点があった。  In the conventional turbocharged engine, the exhaust gas pressure is weak due to insufficient exhaust gas amount and exhaust temperature discharged from the combustion chamber, especially in the low speed rotation region, so that the turbine blades on the turbine side can sufficiently rotate. The compressor-side impeller, which is arranged and fixed on the opposite side of the same rotating shaft as the turbine blade, does not reach high rotation. Since the compression ratio tends to be set lower than that of the equation, there is a drawback that it is difficult to secure a sufficient rotational torque in the low speed rotation region as a result.

その対策として、タービン側のタービンブレードやコンプレッサー側のインペラの小径化・軽量化を図って対処していた。
しかし、小径化したタービンブレードは、低・中速回転域においては効果的であるが、高速回転域においては排気ガス流の抜けが制限され詰まり始めるため、過給圧が頭打ちとなり高出力を確保できず、また、高出力を確保するため、タービンブレードやコンプレッサーインペラの大径化を図ると高速回転域においては高出力を確保できるが、前述したように低・中速回転域に充分なトルクを確保できない等の欠点があった。
As countermeasures, the turbine blades on the turbine side and the impellers on the compressor side were reduced in size and weight.
However, turbine blades with a reduced diameter are effective in the low and medium speed range, but the exhaust gas flow is limited and starts to clog in the high speed range. In order to ensure high output, increasing the diameter of turbine blades and compressor impellers can ensure high output in the high-speed rotation range, but sufficient torque in the low and medium-speed rotation ranges as described above. There were disadvantages such as being unable to ensure.

発明が解決しようとしている課題Problems to be solved by the invention

上記間題点の対応策として、タービン側のタ−ビンブレード入口やコンプレッサー側のインペラ出口に複数枚の小翼を設け、原動機関の回転数に対応して連続的に最適な角度に可変し過給圧を制御する過給器が提案され実用化されているが、小翼の製造や小翼の支持部加工・駆動機構等の製造や組み立てが複雑になり、コストアップに繋がるなど間題点も生じていた。  As a countermeasure against the above-mentioned problems, a plurality of small blades are provided at the turbine blade turbine blade inlet and the compressor impeller outlet, and continuously variable to the optimum angle corresponding to the engine speed. A supercharger that controls the supercharging pressure has been proposed and put into practical use, but the manufacturing and assembly of the winglet and the wing support processing and drive mechanism are complicated, leading to increased costs. There were also points.

本発明は過給器付き原動機関における前述した問題に鑑みてなされたものであり、従来より製造されている汎用型の過給器を採用し、その過給器に対する過給圧を制御する過給圧制御機構を備えることによって、原動機関の広い回転域にわたって高トルク・高出力を確保する過給器付き原動機関を提供することを目的としている。  The present invention has been made in view of the above-described problems in a prime mover equipped with a supercharger, and employs a general-purpose supercharger manufactured in the past, and controls the supercharging pressure for the supercharger. An object of the present invention is to provide a supercharged prime mover engine that secures high torque and high output over a wide rotational range of the prime mover engine by providing a supply pressure control mechanism.

課題を解決するための手段Means for solving the problem

上記目的を達成するため、請求項1に記載の発明は、過給器付き原動機関において、前記原動機関と過給器間の排気管内に開閉弁を設けるとともに、前記開閉弁に連結し弁開閉を司る開閉弁制御装置から構成された過給圧制御機構を備えたことを特徴としている。  In order to achieve the above object, according to a first aspect of the present invention, in a prime mover with a supercharger, an open / close valve is provided in an exhaust pipe between the prime mover and the supercharger and is connected to the open / close valve to open / close the valve. And a supercharging pressure control mechanism constituted by an on-off valve control device for controlling

上記目的を達成するため、請求項2に記載の発明は、排気管外の開閉弁回転軸に回転軸中心を挟んで相対す位置にN極磁石とS極磁石をそれぞれ配置固定した磁石支持部を固定し、前記開閉弁回転時に共に回転する前記磁石支持部の前記N極磁石とS極磁石が描く円軌道面上と一定の間隔を保つ平面上に電磁石両端部が対面するように前記電磁石を固定した電磁石支持部を回転可能な状態で基部側に取り付け、前記電磁石支持部と基部側間に戻しばねを備えたことを特徴とする開閉弁の開閉作動を司る請求項1に記載の開閉弁制御装置。  In order to achieve the above object, the invention according to claim 2 is a magnet support portion in which an N-pole magnet and an S-pole magnet are respectively arranged and fixed at positions opposite to the on-off valve rotation shaft outside the exhaust pipe with the rotation shaft center interposed therebetween. The electromagnet so that both ends of the electromagnet face each other on a circular orbit surface drawn by the N-pole magnet and the S-pole magnet of the magnet support portion that rotate together when the on-off valve rotates. 2. The opening and closing operation according to claim 1, wherein an opening and closing operation of an opening and closing valve is provided, wherein an electromagnet support portion fixed to the base is rotatably attached to a base side and a return spring is provided between the electromagnet support portion and the base side. Valve control device.

発明の効果The invention's effect

請求項1に記載の発明によれば、原動機関と過給器間の排気管内に設けた開閉弁と、前記開閉弁に連結し弁開閉を司る開閉弁制御装置から構成された過給圧制御機構を備えた過給器付き原動機関は、排気管内に配置された開閉弁を設定された回転域で弁開閉を司る開閉弁制御装置によって連続的に開閉を繰り返すと、開閉弁閉時においては過給器上流の排気管内途中を閉止し、排気管内の開閉弁上流部に連続的に流れ込む排気ガスを留めて圧力を高め、また、開閉弁開時においては過給器上流の排気管内途中を開放し、排気管内の開閉弁上流部に留まり圧力の高まった排気ガスに燃焼室から連続的に排出され続ける排気ガスを加え併せ、さらに圧力を高めた排気ガスをタービン側のタービンブレードに流し込むことにより、タービンブレードが素早く回転を立ち上げると同時にタービンブレードと同一の回転軸の他端部に配置・固定されたコンプレッサー側のインペラも回転を素早く立ち上げるため、レスポンスの向上を図れ、インペラは吸入した空気を高回転によって得られる高い遠心力で加圧し吸気管経由で原動機関の燃焼室内へ高過給することができる。
そして、高過給された空気量に見合う量の燃料供給を行うことで燃焼時の爆発圧力は高まり、さらに続く回転においても同様な作動が繰り返し行なれることによって、原動機関における低速回転域のレスポンス・トルク出力等を向上させることができる。
According to the first aspect of the present invention, there is provided a supercharging pressure control comprising an on-off valve provided in an exhaust pipe between the driving engine and the supercharger, and an on-off valve controller connected to the on-off valve to control the opening and closing of the valve. When the on-off valve control device that controls opening and closing of the on-off valve disposed in the exhaust pipe continuously opens and closes by the on-off valve control device that controls the opening and closing of the on-off valve arranged in the exhaust pipe, Close the middle of the exhaust pipe upstream of the turbocharger to stop the exhaust gas flowing continuously to the upstream part of the open / close valve in the exhaust pipe to increase the pressure.When the open / close valve is open, the middle of the exhaust pipe upstream of the supercharger Open the exhaust gas, staying upstream of the on-off valve in the exhaust pipe, and adding exhaust gas that continues to be exhausted from the combustion chamber to the exhaust gas that has increased in pressure, and flowing the exhaust gas that has further increased pressure into the turbine blade on the turbine side By turbine blade Immediately start up the rotation and at the same time the compressor-side impeller placed and fixed at the other end of the same rotating shaft as the turbine blade can quickly start up the rotation, improving the response, and the impeller rotates the intake air at a high speed It is possible to pressurize with high centrifugal force obtained by the above and to supercharge the combustion chamber of the prime mover engine via the intake pipe.
And by supplying fuel in an amount corresponding to the amount of highly supercharged air, the explosion pressure at the time of combustion increases, and the same operation can be repeated in the subsequent rotation.・ Torque output can be improved.

さらに、前述したように素早く回転を立ち上げるタービンブレードと同一の回転軸の他端部に配置・固定されたインペラも同時に素早く回転の立ち上がりを図れるため、タービン側のタービンブレード並びにコンプレッサー側のインペラの外径寸法を大きく設定することが可能となり、大きく設定されたタービンブレードとインペラは、低速回転域においては前述した過給圧制御機構によって高いトルクを確保でき、また、中・高速回転域においては、大径のタービンブレードは排気ガスが詰らず流れるために高回転域まで回転上昇し、同時に同一の回転軸の他端部に配置・固定されたインペラも高回転域まで回転上昇し高回転によって得られる高い遠心力で加圧された空気を燃焼室内に高過給することができる。
よって、低速回転域から中・高速回転域まで幅広い回転域で過給圧を高められるため、広い回転域で高トルク・高出力を確保した原動機関を提供することができる。
Furthermore, since the impeller arranged and fixed at the other end of the same rotating shaft as the turbine blade that quickly starts rotating as described above can also start rotating quickly at the same time, the turbine blade on the turbine side and the impeller on the compressor side The outer diameter can be set to a large value, and the turbine blade and impeller that are set to a large size can secure high torque by the above-described supercharging pressure control mechanism in the low speed rotation range, and in the middle and high speed rotation range. The large-diameter turbine blades rotate up to a high rotation range because the exhaust gas flows without clogging, and at the same time, the impeller placed and fixed at the other end of the same rotating shaft also rotates up to the high rotation range and rotates at a high speed. The air pressurized with a high centrifugal force obtained by the above can be supercharged into the combustion chamber.
Therefore, the supercharging pressure can be increased in a wide rotation range from the low speed rotation range to the medium / high speed rotation range, so that it is possible to provide a prime mover engine that ensures high torque and high output in a wide rotation range.

また、特に始動直後やアイドリング時において開閉弁の開閉を繰り返し行うと、開閉弁閉時に燃焼室から排出され続ける排気ガスが排気管内の開閉弁上流部に一時的に留められるため、留められた排気ガスの温度によって開閉弁上流部の排気管が温められ、燃焼室から排出され続ける排気ガスの温度低下を軽減することができ、温度を保ち圧力の高い排気ガスは開閉弁開時に開閉弁下流部の過給器を素早く高回転に至らしめるとともに、過給器の下流部に配置された排気ガス浄化用触媒に対しても浄化効率の向上を図れる。  In addition, if the open / close valve is repeatedly opened and closed immediately after start-up or during idling, the exhaust gas that continues to be discharged from the combustion chamber when the open / close valve is closed is temporarily stopped at the upstream portion of the open / close valve in the exhaust pipe. The exhaust pipe upstream of the on-off valve is warmed by the gas temperature, and the temperature drop of the exhaust gas that continues to be discharged from the combustion chamber can be mitigated. This makes it possible to quickly bring the turbocharger to a high speed and to improve the purification efficiency for the exhaust gas purifying catalyst disposed in the downstream portion of the supercharger.

そして、請求項2に記載の発明によれば、排気管外の開閉弁回転軸に回転軸中心を挟んで相対す位置にN極磁石とS極磁石をそれぞれ配置固定した磁石支持部を固定し、前記開閉弁回転時に共に回転する前記磁石支持部の前記N極磁石とS極磁石が描く円軌道面上と一定の間隔を保つ平面上に電磁石両端部が対面するように前記電磁石を固定した電磁石支持部を回転可能な状態で基部側に取り付け、前記電磁石支持部と基部側間に戻しばねを備えたことを特徴とする開閉弁の開閉作動を司る請求項1に記載の開閉弁制御装置は、開閉弁制御装置における開閉弁開閉時の駆動力源として原動機関より排出される排気ガスの圧力を利用したため、モータやソレノイド等を採用した駆動力源に比べて制御や構造等の簡素化が図れ、安価に開閉弁の開閉作動を司る開閉弁制御装置を提供できる。  According to the second aspect of the present invention, the magnet support portion in which the N-pole magnet and the S-pole magnet are respectively arranged and fixed is fixed to the opening / closing valve rotation shaft outside the exhaust pipe with the rotation shaft center interposed therebetween. The electromagnet is fixed so that both ends of the electromagnet face each other on a circular raceway surface drawn by the N pole magnet and the S pole magnet of the magnet support portion that rotate together when the opening / closing valve rotates. 2. The on-off valve control device according to claim 1, wherein the electromagnet support portion is attached to the base side in a rotatable state, and a return spring is provided between the electromagnet support portion and the base side. Uses the pressure of exhaust gas exhausted from the prime mover as a driving force source when the on-off valve controller opens and closes the valve, simplifying control and structure compared to a driving force source employing a motor, solenoid, etc. Can be opened at low cost. It can provide a closing valve control apparatus which controls the operation.

以下、図を参照して本発明を実施する形態に係る過給器付き原動機関の過給圧制御機構の構成について説明する。
図1は請求項1に記載の発明に係る過給器付き原動機関における過給圧制御機構の第1の実施例の形態を示す構成説明図であり、図2は第1の実施例の形態を示す図1におけるA−A′断面部分を過給器側から見た構成説明図である。
1は原動機関。2及び3は前記原動機関1の燃焼室内で燃焼した後の排気ガスを大気側へ導くための排気管であり、2が原動機関1と後述する過給器8間に位置する前方側の排気管で、3が過給器8後方側に位置する排気管である。
4は前方側の排気管2内に配置された開閉弁で、開閉弁4に固定され一体化した弁軸5が前方側の排気管2に設けた軸受け部6a及び6bに回転自在に支持され、後述する開閉弁制御装置14によって駆動時に前方側の排気管2内の閉止・開放を行う。
そして、前記開閉弁4は、高圧状態の排気ガスを過給器8におけるタービン側7のハウジング内面9外周側から供給開始するようにタービン側7のハウジング内面9外周側から開き始め、始めに開いた開閉弁4一方が排気ガス流の流れる方向に移動するように回転する。
また、図2における開閉弁においては、図1に示す開閉弁の位置から90°回転した状態を示している。さらに、
Hereinafter, a configuration of a supercharging pressure control mechanism for a supercharged prime mover engine according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a structural explanatory view showing a first embodiment of a supercharging pressure control mechanism in a supercharged prime mover engine according to the first aspect of the present invention, and FIG. 2 is a first embodiment. FIG. 2 is a configuration explanatory view of a section taken along the line AA ′ in FIG.
1 is the engine. Reference numerals 2 and 3 denote exhaust pipes for guiding exhaust gas after combustion in the combustion chamber of the prime mover engine 1 to the atmosphere side. Reference numeral 2 denotes a front exhaust located between the prime mover engine 1 and a supercharger 8 described later. Reference numeral 3 denotes an exhaust pipe positioned on the rear side of the supercharger 8.
4 is an open / close valve disposed in the front exhaust pipe 2, and a valve shaft 5 fixed and integrated with the open / close valve 4 is rotatably supported by bearings 6a and 6b provided in the front exhaust pipe 2. Then, the opening / closing valve control device 14 described later closes / opens the exhaust pipe 2 on the front side during driving.
The on-off valve 4 starts to open from the outer peripheral side of the housing inner surface 9 of the turbine side 7 so as to start supplying high-pressure exhaust gas from the outer peripheral side of the housing inner surface 9 of the turbine side 7 in the supercharger 8. The one open / close valve 4 rotates so as to move in the flow direction of the exhaust gas flow.
Further, the on-off valve in FIG. 2 shows a state in which the on-off valve is rotated by 90 ° from the position of the on-off valve shown in FIG. further,

本実施例では軸受け部6a及び6bを排気管2の両側にそれぞれ設けたが、簡素化を図るため、軸受け部をいずれか一方の排気管片側のみに設定した実施例も考えられる。
また、本実施例では開閉弁4における弁軸5の軸受け部6a及び6bの配置位置を前方側排気管2の直径方向付近両側に設定したが、図3や図3におけるB−B′断面部の構成説明図である図4のように、原動機関が設定した回転域以上で回転し、開閉弁4aが前方側の排気管2a内を開放し続けている時、開閉弁4aが排気ガス流の妨げにならないように、開閉弁4aにおける弁軸5aの軸受け部6c及び6dを、前方側排気管2aの側面部延長上や側面部延長上付近に設定した他の実施例も考えられる。
前記開閉弁4や開閉弁4aでは原動機関が設定された回転域以内で回転している場合、一方向に連続回転させることによって前方側の排気管内の閉止・開放を繰り返し行う。
In the present embodiment, the bearing portions 6a and 6b are provided on both sides of the exhaust pipe 2, but for simplification, an embodiment in which the bearing portion is set only on one of the exhaust pipe one side is also conceivable.
Further, in this embodiment, the arrangement positions of the bearing portions 6a and 6b of the valve shaft 5 in the on-off valve 4 are set on both sides in the diametrical direction of the front side exhaust pipe 2, but the BB 'cross-sectional portion in FIG. 3 and FIG. When the on-off valve 4a continues to open in the exhaust pipe 2a on the front side, the on-off valve 4a continues to open the exhaust gas flow. Other embodiments in which the bearing portions 6c and 6d of the valve shaft 5a in the on-off valve 4a are set on the side portion extension of the front exhaust pipe 2a or in the vicinity of the side portion extension are also conceivable.
In the on-off valve 4 or on-off valve 4a, when the driving engine rotates within a set rotation range, the front exhaust pipe is repeatedly closed and opened by continuously rotating in one direction.

さらに、回5や図5におけるC−C′断面部の構成説明図である図6のように、弁軸5bの配置位置を開閉弁4bの一方端部に一体化するとともに、両軸受け部6e及び6fを前方側排気管2bの側面部に設定する他の実施例も考えられる。
前記開閉弁4bでは、原動機関が設定された回転域以内で回転している場合、図5における全開位置イと全閉位置ロ間の一定角度αA範囲内を往復運動することによって前方側の排気管2b内の閉止・開放を繰り返し行い、また、原動機関が設定された回転域以上で回転している場合においては、開閉弁4bが排気ガス流の妨げにならないように前方側の排気管2b内の側面に収納される。
Further, as shown in FIG. 6 which is a configuration explanatory view of the section 5 and CC ′ cross-section in FIG. 5, the arrangement position of the valve shaft 5b is integrated with one end portion of the on-off valve 4b, and both bearing portions 6e. Further, another embodiment in which 6f is set on the side surface portion of the front side exhaust pipe 2b is also conceivable.
In the on-off valve 4b, when the driving engine is rotating within a set rotation range, the exhaust on the front side is reciprocated within a range of a constant angle αA between the fully open position A and the fully closed position B in FIG. When the engine 2 is repeatedly closed and opened in the pipe 2b, and when the driving engine is rotating in the set rotation range or more, the front-side exhaust pipe 2b is provided so that the on-off valve 4b does not hinder the exhaust gas flow. It is stored on the inner side.

また、図5及び図6のように、開閉弁4bを設定された回転域以内で全開位置イと全閉位置ロ間の一定角度αA範囲内を往復運動させて前方側の排気管2b内の閉止・開放を行う実施例では、特に原動機関がアイドリングや極低速回転域で回転している場合の開閉弁4bの開時位置を、図5における全開位置イまで開けずに全開位置イから全閉位置ロ側に移行させた位置ハに設定し、開角度を狭めた限定角度αB範囲内を往復運動させることによって、開閉弁4b開時における前方側排気管2b内の開閉弁4b開口部流路を狭めて排気ガス流速度を速め、速度を速めた排気ガス流をタービン側7aのタービンブレード10aに流し込んでタービンブレード10aと前記タービンブレード10aと同軸上に固定されたコンプレッサー側のインペラの回転力を維持する方法も考えられる。  Further, as shown in FIGS. 5 and 6, the on-off valve 4b is reciprocated within a range of a constant angle αA between the fully open position A and the fully closed position B within a set rotation range, so that the inside of the exhaust pipe 2b on the front side is reciprocated. In the embodiment in which the closing / opening is performed, the open position of the on-off valve 4b is not fully opened from the fully open position a in FIG. The flow of the opening of the opening / closing valve 4b in the front side exhaust pipe 2b when the opening / closing valve 4b is opened by reciprocating within the range of the limited angle αB with the opening angle narrowed. The exhaust gas flow speed is increased by narrowing the passage, and the increased exhaust gas flow is flowed into the turbine blade 10a on the turbine side 7a, and the turbine blade 10a and the compressor side impeller fixed coaxially with the turbine blade 10a. A method of maintaining the rotational force is also conceivable.

そして、前記各開閉弁4、4a、4bにおける弁軸5、5a、5bの回転中心線と後述する過給器8における回転軸13中心線間は、同一平面上に平行状態で設定する組み合わせ方から、同一平面上に挟み角を与えた組み合わせ方、さらに、否同一平面上に否平行状態で設定する組み合わせ方等色々な組み合わせ方が考えられるが、組み合わせ方においては過給器におけるタービン側のタービンブレードに対し、排気ガス流を最も効率良く供給できる方向に各開閉弁が開く等、各諸条件に適合した組み合わせ方に設定する。  Further, a combination method in which the rotation center lines of the valve shafts 5, 5 a, 5 b in the respective on-off valves 4, 4 a, 4 b and the rotation shaft 13 center line in the supercharger 8 described later are set in a parallel state on the same plane. Therefore, there are various combinations such as a combination method in which a sandwich angle is given on the same plane, and a combination method that is set in a non-parallel state on the same plane. For the turbine blades, the combination is set in accordance with various conditions, such as opening each on-off valve in the direction that can supply the exhaust gas flow most efficiently.

図1から図4における開閉弁4,4aの平面形状や断面形状においては各種形状が考えられ、平面形状では、図7のような円形状を基本形に、図8のような弁軸に対して縦長の楕円形状、図9のような弁軸に対して横長の楕円形状、そして、図10のような正方形状を基本形に、図11の弁軸に対して縦長の方形状、図12の弁軸に対して横長の方形状等が考えられ、さらに、図10、図11、図12のような方形状を基本形とした各開閉弁においては、各角部分を円弧状に成型した各開閉弁も考えられる。
また、前記各開閉弁における弁軸と直角方向の断面形状では、図13の直線状や図14のS字型形状、図15の細長い楕円状等が考えられ、開閉弁は前述した各種平面形状や各種断面形状を始め、他の各種平面形状や各種断面形状を加え各諸条件に最も適合した組み合わせ方に設定する。
さらに、図5及び図6における開閉弁4bの平面形状や断面形状では、基本的には上述した各種平面形状や各種断面形状の開閉弁の一方側と弁軸を一体化した形状に設定する。
Various shapes can be considered in the planar shape and cross-sectional shape of the on-off valves 4 and 4a in FIGS. 1 to 4, and the planar shape is based on a circular shape as shown in FIG. 7 and a valve shaft as shown in FIG. A vertically long elliptical shape, a horizontally long elliptical shape with respect to the valve shaft as shown in FIG. 9, and a square shape as shown in FIG. 10 as a basic shape, a vertically long rectangular shape with respect to the valve shaft as shown in FIG. A laterally long rectangular shape or the like is conceivable with respect to the shaft. Further, in each on-off valve based on the square shape as shown in FIGS. 10, 11 and 12, each on-off valve is formed by arc-shaped corner portions. Is also possible.
Further, the cross-sectional shape of each on-off valve in the direction perpendicular to the valve shaft may be the straight shape of FIG. 13, the S-shape of FIG. 14, the elongated oval shape of FIG. 15, or the like. In addition to various cross-sectional shapes, other various planar shapes and various cross-sectional shapes are added, and the combination method most suitable for each condition is set.
Furthermore, the planar shape and cross-sectional shape of the on-off valve 4b in FIGS. 5 and 6 are basically set to a shape in which one side of the on-off valve having the above-described various planar shapes and various cross-sectional shapes and the valve shaft are integrated.

そして、前記開閉弁4、4aが前方側の排気管2、2a内を回転する回転速度においては、一定速度式と可変速度式が考えられるが、一定速度式に設定した場合、前方側の排気管2、2aにおける内面と開閉弁4,4aにおける外周部間で構成される僅かな隙間を保って排気管内を閉止する割合と、それ以外の排気管内を開放する割合においては、排気量や圧縮比を始め、原動機関の仕様や組み合わせる過給器、さらに原動機関の使われ方等各諸条件を鑑みて設定する。  The rotational speed at which the on-off valves 4 and 4a rotate in the exhaust pipes 2 and 2a on the front side may be a constant speed type or a variable speed type. The ratio of closing the exhaust pipe while maintaining a slight gap formed between the inner surface of the pipes 2 and 2a and the outer periphery of the on-off valves 4 and 4a, and the ratio of opening the other exhaust pipes, The ratio is set in consideration of various conditions such as the specifications of the engine, the supercharger to be combined, and how the engine is used.

因みに、第1の実施例の図1におけるD−D′断面部の構成説明図である図16においては、開閉弁4における一方端部Dと他方端部Eを弁軸5の回転中心部Fを含んで一直線上に配置・設定し、そして、タービン側7のハウジング内面9外周側から排気ガスを供給するように、図16において開閉弁4を時計の回転方向と同方向に連続的に一定速度で回転させた時、排気管2内の閉止においては、開閉弁4の一方端部Dの位置が、排気管2内のGの位置に達した時、排気管2内面のHの位置とGの位置間側が閉止されるが、排気管2内面のIの位置とJの位置間側は開閉弁4の他方端部EがIの位置に達するまで引き続き開放され続け、開閉弁4の他方端部Eが、図16のおける位置から排気管2内面のIの位置に達した時、Iの位置とJの位置間側も閉止し排気管2内が閉止される。
次に、排気管2内の開放においては、開閉弁4の他方端部Eが排気管2内におけるIの位置を過ぎさらにJの位置を通過した後、排気管2内面のIの位置とJの位置間側が開放されが、排気管2内面のHの位置とGの位置間側は開閉弁4の一方端部DがHの位置に達し通過するまでは引き続き閉止され、開閉弁4の一方端部DがHの位置を通過した後、排気管2内面のHの位置とGの位置間側も開放され排気管2内が開放される。
そして、開閉弁4の一方端部Dが排気管2内におけるIの位置に達した時、再び排気管2内が閉止され、さらに開閉弁4の一方端部Dが排気管2内におけるJの位置に達し通過した後再び排気管2内が開放され、開閉弁4を連続的に回転させることによって閉止・開放が繰り返し行われる。
Incidentally, in FIG. 16 which is a configuration explanatory view of the DD ′ cross section in FIG. 1 of the first embodiment, the one end D and the other end E of the on-off valve 4 are connected to the rotation center F of the valve shaft 5. In FIG. 16, the on-off valve 4 is continuously fixed in the same direction as the clockwise direction so that exhaust gas is supplied from the outer peripheral side of the inner surface 9 of the housing 7 on the turbine side 7. When the exhaust pipe 2 is closed at a speed, when the position of the one end D of the on-off valve 4 reaches the position of G in the exhaust pipe 2, The side between the G positions is closed, but the position between the I position and the J position on the inner surface of the exhaust pipe 2 continues to be opened until the other end E of the on-off valve 4 reaches the I position. When the end E reaches the position I on the inner surface of the exhaust pipe 2 from the position shown in FIG. Positioned between side closed to the exhaust pipe 2 is closed.
Next, when the exhaust pipe 2 is opened, after the other end E of the on-off valve 4 passes the position I in the exhaust pipe 2 and further passes the position J, the position I of the inner surface of the exhaust pipe 2 and the position J However, the position between the H position on the inner surface of the exhaust pipe 2 and the position between the G position is closed until one end D of the on-off valve 4 reaches the H position and passes through. After the end D passes through the H position, the side between the H position and the G position on the inner surface of the exhaust pipe 2 is also opened, and the inside of the exhaust pipe 2 is opened.
When the one end D of the on-off valve 4 reaches the position I in the exhaust pipe 2, the inside of the exhaust pipe 2 is closed again, and the one end D of the on-off valve 4 is After reaching and passing the position, the inside of the exhaust pipe 2 is opened again, and the opening and closing valve 4 is continuously rotated to repeatedly close and open.

上述したように、開閉弁4開時においては、図16における排気管2内のHの位置とGの位置間側に対し、タービン側7のハウジンダ内面9外周側のIの位置とJの位置間側を早くに開くことにより、タービン側7のハウジング内面9の外周側へ先に高圧状態の排気ガスを供給し、さらに、略称A/R比におけるタービン入口のノズル面積中心部とタービンブレード10の中心部間の距離Rを長く取れるため、結果的に排気ガス流を自由渦に乗せてさらに速度を速めタービンブレード10に供給することができる。
また、図5及び図6における他の実施例で開閉弁4b開時においては、排気管2b内の弁軸5b側が常に閉止されるため、排気ガス流は排気管2b内の弁軸5b位置と反対側のタービン側7aのハウジング内面9aの外周側から排気ガスを供給するため、結果的に排気ガス流を自由渦に乗せてさらに速度を速めてタービンブレード10aに供給することができる。
As described above, when the on-off valve 4 is opened, the I position and the J position on the outer peripheral side 9 of the housing inner surface 9 on the turbine side 7 with respect to the position between the H position and the G position in the exhaust pipe 2 in FIG. By opening the space side early, exhaust gas in a high pressure state is first supplied to the outer peripheral side of the inner surface 9 of the housing on the turbine side 7, and the nozzle area center portion of the turbine inlet and the turbine blade 10 at the A / R ratio are abbreviated. As a result, it is possible to increase the speed of the exhaust gas flow on the free vortex and supply it to the turbine blade 10 as a result.
5 and 6, when the on-off valve 4b is opened, the valve shaft 5b side in the exhaust pipe 2b is always closed, so that the exhaust gas flow is the same as the position of the valve shaft 5b in the exhaust pipe 2b. Since the exhaust gas is supplied from the outer peripheral side of the housing inner surface 9a on the opposite turbine side 7a, the exhaust gas flow can be put on the free vortex and further supplied to the turbine blade 10a as a result.

前記開閉弁4、4a、4bは高温の排気ガス流中に晒されるため、耐熱性に優れた材質で製作され、また、設定された回転域以上での回転域における弁停止時においては、排気ガスの流れる方向と平行な状態で前記開閉弁4、4a、4bを停止させて高温の排気ガス流に対処した。
さらに、図16のように、開閉弁先方の温度上昇を軽減する目的で、開閉弁4の弁停止位置前方の排気管2内に保護翼15を設置しておくとよい。
Since the on-off valves 4, 4 a, 4 b are exposed to a high-temperature exhaust gas flow, they are made of a material having excellent heat resistance, and when the valve is stopped in a rotation range above the set rotation range, The on-off valves 4, 4 a, 4 b were stopped in a state parallel to the gas flow direction to cope with the hot exhaust gas flow.
Further, as shown in FIG. 16, for the purpose of reducing the temperature rise ahead of the on-off valve, a protective blade 15 may be installed in the exhaust pipe 2 in front of the valve stop position of the on-off valve 4.

そして図1に戻って、8は過給器で、原動機関1が排出する排気ガス圧力でタービン側7のタービンブレード10を強制的に高回転に至らしめ、さらにタービンブレード10と同一の回転軸13他端部に配置・固定されたコンプレッサー側11のインペラ12を高回転に至らしめることにより、前期インペラ12が吸入した空気を高回転による遠心力で加圧し原動機関1の燃焼室内に過給する。  Returning to FIG. 1, reference numeral 8 denotes a supercharger that forcibly brings the turbine blade 10 on the turbine side 7 to high rotation by the exhaust gas pressure discharged from the prime mover engine 1, and the same rotating shaft as the turbine blade 10. 13 The impeller 12 on the compressor side 11 disposed and fixed at the other end is brought to high rotation, so that the air sucked by the impeller 12 in the previous period is pressurized with centrifugal force by high rotation and supercharged into the combustion chamber of the prime mover 1 To do.

14は前記開閉弁4、4a、4bの開閉を司る開開弁制御装置で、前記開閉弁4、4a、4bと棒軸16等で連結し、そして原動機関1が予め設定された回転域内で回転している間、前方側の排気管2、2a、2b内を閉止と開放が繰り返し行われるように、前方側の排気管2、2a内に配置した開閉弁4、4aを連続回転運動させ、また、前方側の排気管2b内に配置した開閉弁4bを一定角往復運動させる。  Reference numeral 14 denotes an opening / closing control device that controls the opening / closing of the on-off valves 4, 4a, 4b. The on-off valves 4, 4a, 4b are connected to the on-off valves 4, 4a, 4b by rod shafts 16 and the like. During the rotation, the on-off valves 4 and 4a arranged in the front exhaust pipes 2 and 2a are continuously rotated so that the front exhaust pipes 2 and 2b are repeatedly closed and opened. Further, the open / close valve 4b disposed in the exhaust pipe 2b on the front side is reciprocated by a constant angle.

そして、開閉弁制御装置14は、原動機関1の回転数信号や過給圧信号を始め、冷却水信号、吸入空気量信号等、各種情報信号を収集し、収集した各種情報信号を元に開閉弁4、4a、4bの開閉の開始時期や停止時期、原動機関1の回転数当たりの開閉弁4、4a、4bの開閉回数、さらに開閉弁4、4a、4bの停止位置等を判断・処理する機能を有すことが望ましい。
前記開閉弁制御装置14が開閉弁4、4a、4bの開閉の開始時期と判断した時、開閉弁制御装置14における駆動力源に開閉弁開閉の開始信号を流し、また、開閉弁4、4a、4bの開閉の停止時期と判断した時、開閉弁制御装置14における駆動力源に開閉弁開閉の停止と、開閉弁4、4a、4bを排気ガス流に対して平行状態で停止させる信号を流す。
さらに、前記開閉弁制御装置14が原動機関1の回転数に対する開閉弁4、4a、4bの開閉回数を増減すると判断した時、開閉弁制御装置14の駆動力源に開閉弁4、4a、4bの開閉回数の増減を指示する信号を流す。
但し、上述した各種機能を有すことは望ましいが、上述した各種機能から限定した単数または限定した複数の機能を実行する他の開閉弁制御装置も充分に考えられ、機能やコスト等、目的に適した開閉弁制御装置を採用することは勿論である。
The on-off valve control device 14 collects various information signals such as a rotation speed signal and a supercharging pressure signal of the driving engine 1, a cooling water signal, an intake air amount signal, etc., and opens and closes based on the collected various information signals. Judgment and processing of opening and closing timings of the valves 4, 4 a and 4 b, the number of opening and closing times of the on-off valves 4, 4 a and 4 b per rotation speed of the driving engine 1, and the stop positions of the on-off valves 4, 4 a and 4 b It is desirable to have a function to
When the on / off valve control device 14 determines that the on / off valves 4, 4a and 4b are to be opened / closed, an on / off valve on / off start signal is sent to the driving force source in the on / off valve control device 14 and the on / off valves 4 and 4a. When it is determined that the opening / closing stop time of 4b is determined, a signal for stopping the opening / closing valve opening / closing and stopping the opening / closing valves 4, 4a, 4b in parallel with the exhaust gas flow is used as a driving force source in the opening / closing valve control device 14. Shed.
Further, when the on-off valve control device 14 determines to increase or decrease the number of on-off valves 4, 4a, 4b with respect to the rotational speed of the prime mover 1, the on-off valve 4, 4a, 4b is used as a driving force source of the on-off valve control device 14. A signal for instructing increase / decrease in the number of times of opening / closing is sent.
However, although it is desirable to have the various functions described above, other on-off valve control devices that execute a single function or a plurality of limited functions defined from the various functions described above are sufficiently conceivable. Of course, a suitable on-off valve control device is employed.

また、前記開閉弁制御装置14は、原動機関の中央制御装置として従来より採用され、上記各信号の他にノッキング信号やクランク角度信号等から原動機関全体の制御を司る原動機関中央制御装置に判断・処理機能をあわせもたせ開閉弁4、4a、4bの開閉を司る方法も考えられる。  The on-off valve control device 14 is conventionally employed as a central control device for a driving engine, and is determined by the driving engine central control device that controls the entire driving engine from a knocking signal, a crank angle signal, and the like in addition to the above signals. A method of controlling the opening / closing of the on-off valves 4, 4a, 4b by combining processing functions is also conceivable.

前記開閉弁制御装置14における開閉弁4、4a、4b開閉の駆動力源としてはモータやソレノイド等の採用が考えられ、モータを採用した場合では、例えば、モータに速度検出機能や位置検出機能を備えておくと原動機関の回転数当たりの開閉弁開閉回数や停止位置等を制御しやすく、さらにステッピング式モータを採用すると供給するパルス数によって原動機関の回転数当たりの開閉弁開閉回数や停止位置や停止時間等を制御しやすく、また、閉止時及び開放時においては、開閉弁を一時停止させることも可能となり、特に開放時では、開閉弁が排気ガス流を妨げない位置に素早く移動させることによって、排気ガスを効率よくタービン側のタービンブレードへ流し込むことができる。  As the driving force source for opening / closing the on-off valves 4, 4a, 4b in the on-off valve control device 14, a motor, a solenoid or the like can be considered. When a motor is used, for example, the motor has a speed detection function and a position detection function. When equipped, it is easy to control the number of open / close valves and stop positions per revolution of the engine, and if a stepping motor is used, the number of open / close valves and stop positions per revolution of the engine will depend on the number of pulses supplied. It is easy to control the stop time, etc., and it is possible to temporarily stop the on-off valve when it is closed and open, and especially when it is open, the on-off valve can be quickly moved to a position that does not interfere with the exhaust gas flow. Thus, the exhaust gas can be efficiently poured into the turbine blade on the turbine side.

但し、図5及び図6の実施例における開閉弁4bをモータで開閉する場合には、モータの出力軸にクランク機構を取り付けモータの回転運動をクランク機構で往復運動に変換して、開閉弁4bを図5における全開位置イと全閉位置ロ間の一定角度αA範囲内を往復運動させ前方側の排気管2b内の閉止・開放を行うことが考えられるが、機構が複雑でコスト・アップになるために、モータに変えソレノイドを採用しソレノイドの往復運動によって開閉弁4bの開閉を行うと良い。
さらに、開閉弁4、4aをソレノイドで開閉する場合にも両者間にクランク機構等を介在させるため構造が複雑でコスト・アップになるために、ソレノイドに変えモータを採用しモータの回転運動によって開閉弁4、4aの開閉を行うと良い。
However, when the on-off valve 4b in the embodiment of FIGS. 5 and 6 is opened / closed by a motor, a crank mechanism is attached to the output shaft of the motor, and the rotary motion of the motor is converted into reciprocating motion by the crank mechanism. Can be reciprocated within the range of a constant angle αA between the fully open position A and the fully closed position B in FIG. 5 to close and open the exhaust pipe 2b on the front side, but the mechanism is complicated and the cost is increased. Therefore, it is preferable to use a solenoid instead of the motor and open and close the on-off valve 4b by reciprocating movement of the solenoid.
Furthermore, when the on-off valves 4 and 4a are opened and closed by a solenoid, a crank mechanism is interposed between the two, so the structure is complicated and the cost is increased. The valves 4 and 4a may be opened and closed.

17はコンプレッサー側11のインペラ12で加圧した空気を原動機関1の燃焼室内へ導くための吸気管である。  Reference numeral 17 denotes an intake pipe for guiding the air pressurized by the impeller 12 on the compressor side 11 into the combustion chamber of the prime mover engine 1.

次に、原動機関1と過給器8間の排気系に対する開閉弁の配置位置に関して他の実施例を説明する。
例えば、図17の第1の本実施例では、従来より製造・販売されている汎用型の過給器を採用する目的のために、前方側の排気管2後部に弁軸5の軸受け部6a,6bを設け、その軸受け部6a,6bに弁軸5を回転自在に取り付けた後、弁軸5に開閉弁4を螺子や嵌合等で固定して一体化し、さらに、前記前方側の排気管2後部と過給器8のタービン側7入口部の両者端部間をバンド18等の締め具やボルト・ナットで一体固定化したが、過給器側のタービンハウジング前方部内側に弁軸の軸受け部を設け、その軸受け部に弁軸を回転自在に取り付けた後、弁軸に開閉弁を螺子や嵌合等で固定して一体化し、さらに、過給器側のタービンハウジング前部と前方側の排気管後部間をバンド等の締め具やボルト・ナット等の止め具で一体固定化する他の実施例も考えられ、前者では、過給器は汎用品を採用し、開閉弁関係の部分においては、原動機関に最も適した専用部品として原動機関の製造メーカーにおいてアッセンブリーで開発・製造することができ、また、後者では、過給器の製造メーカーにおいて開閉弁関係の部分を含んだアッセンブリーで開発・製造できる利点がある。
Next, another embodiment of the arrangement position of the on-off valve with respect to the exhaust system between the prime mover engine 1 and the supercharger 8 will be described.
For example, in the first embodiment of FIG. 17, the bearing portion 6a of the valve shaft 5 is provided at the rear portion of the exhaust pipe 2 on the front side for the purpose of adopting a general-purpose supercharger manufactured and sold conventionally. , 6b, and the valve shaft 5 is rotatably attached to the bearing portions 6a, 6b, and the on-off valve 4 is fixed to and integrated with the valve shaft 5 with screws or fittings. The space between both ends of the rear part of the pipe 2 and the inlet part of the turbine side 7 of the turbocharger 8 is integrally fixed with a fastener such as a band 18 or a bolt / nut. After the valve shaft is rotatably attached to the bearing portion, the on-off valve is fixed to the valve shaft by screwing or fitting, and is further integrated with the turbine housing front portion on the supercharger side. The rear exhaust pipe rear part is integrally fixed with fasteners such as bands and bolts and nuts. In the former case, the turbocharger adopts a general-purpose product, and in the part related to the on-off valve, it is developed and manufactured by the engine manufacturer as an exclusive part most suitable for the engine. In the latter case, there is an advantage that the turbocharger manufacturer can develop and manufacture an assembly including a part related to the on-off valve.

さらに、図18のように、組み付け後において前方側の排気管2c後部と過給器8のタービン側7前部の両者端部間に挟まれて配置・固定される中排気管2dを設け、その前記中排気管2dに、予め開閉弁4cの弁軸5cの軸受け部6g及び6hを設けるとともに、その軸受け部6g及び6hに回転自在に取り付けた弁軸5cに開閉弁4cを螺子や嵌合等で固定して製造しておき、前方側の排気管2c、中排気管2d、過給器8三者を組み付ける他の実施例も考えられる。そして前記中排気管2dの長さは、少なくとも開閉弁4c回転時において、中排気管2dの内面と開閉弁4c外周部間で構成される僅かな隙間を保って排気管内を閉止する部分が含まれる長さに設定されている。
また、原動機関1の運転中に軸受け部6g及び6hを熱の影響から保護する目的で、前方側の排気管2c後方部と中排気管2d前方部間、さらに、中排気管2d後方部と過給器8のタービン側7入口部間には、遮熱機能を有すガスケットを挟んで組み付け、開閉弁4cの弁軸5cと軸受け部6g及び6h間が継続的に円滑に回転するように対処した。
Further, as shown in FIG. 18, there is provided an intermediate exhaust pipe 2d that is disposed and fixed between both ends of the rear side of the exhaust pipe 2c on the front side and the front side of the turbine side 7 of the supercharger 8 after assembly, In the middle exhaust pipe 2d, bearing portions 6g and 6h of the valve shaft 5c of the on-off valve 4c are provided in advance, and the on-off valve 4c is screwed or fitted to the valve shaft 5c rotatably attached to the bearing portions 6g and 6h. Other embodiments in which the front exhaust pipe 2c, the middle exhaust pipe 2d, and the supercharger 8 are assembled are also conceivable. The length of the middle exhaust pipe 2d includes a portion that closes the inside of the exhaust pipe while maintaining a slight gap formed between the inner surface of the middle exhaust pipe 2d and the outer periphery of the on-off valve 4c at least when the on-off valve 4c rotates. The length is set.
Further, for the purpose of protecting the bearing portions 6g and 6h from the influence of heat during operation of the prime mover 1, between the rear portion of the front exhaust pipe 2c and the front portion of the middle exhaust pipe 2d, and further, the rear portion of the middle exhaust pipe 2d, A gasket having a heat shielding function is sandwiched between the turbine 7 inlets of the supercharger 8 so that the valve shaft 5c of the on-off valve 4c and the bearings 6g and 6h continuously and smoothly rotate. Dealed with.

そして、図5や図6のように開閉弁4bを連続的に一定角度を往復運動させて、前方側の排気管2b内を開閉する場合においては、図5におけるC−C′を分割線とし、分割線C−C′左側部分を前方側の排気管2bで構成し、分割線C−C′右側をタービンハウジングで構成し、前記タービンハウジング前端部に弁軸5bの軸受け部6e及び6fを設け、前記軸受け部6e及び6fに弁軸5bを回転自在に配置し開閉弁4bを固定した後、両者をバンド等の締め具やボルト・ナット等の止め具で一体固定化する他の実施例も考えられる。  5 and 6, when the opening and closing valve 4b is continuously reciprocated at a constant angle to open and close the exhaust pipe 2b on the front side, CC 'in FIG. 5 is taken as a dividing line. The left part of the dividing line CC ′ is constituted by the front exhaust pipe 2b, the right part of the dividing line CC ′ is constituted by the turbine housing, and the bearing parts 6e and 6f of the valve shaft 5b are provided at the front end of the turbine housing. Another embodiment in which the valve shaft 5b is rotatably disposed on the bearing portions 6e and 6f and the on-off valve 4b is fixed, and then the both are integrally fixed with a fastener such as a band or a stopper such as a bolt / nut. Is also possible.

また、前述した各開閉弁4、4a、4bにおいては、各弁軸5、5a、5bを螺子や嵌合等で一体化したが、これに限らず、予め弁軸部分を一体構造で製造した弁軸付開閉弁4dも充分に考えられ、弁軸5dを一体化した弁軸付開閉弁4dでは、図19の実施例のように、前方側の排気管2e後端部と過給器8aにおけるタービンハウジング19前端部間で構成する連結部分E−E′に、開閉弁4dに一体化した弁軸5d用の各軸受け部6i及び6jを設け、前記各軸受け部6i及び6jに弁軸付開閉弁4dを配置した後に前方側の排気管2e後端部とタービンハウジング19前端部の両者を併せて螺子・ナットや固定バンド等で一体化し、さらに、開閉弁制御装置の駆動力源と連結する棒軸16aの軸受け部20付きの蓋21を嵌着や螺嵌して排気ガスの漏れを防止した。
そして、開閉弁4dに一体化した弁軸5dの一方に凸部又は凹部を設け、また、棒軸16a側先端には前記弁軸5d一方に設けた凸部又は凹部に緩嵌する凹部又は凸部を設け、両者を連結した。
Further, in each of the on-off valves 4, 4a, 4b described above, the valve shafts 5, 5a, 5b are integrated by screws or fittings. However, the present invention is not limited to this, and the valve shaft portion is manufactured in an integrated structure in advance. The valve shaft-equipped on / off valve 4d is also sufficiently considered. In the valve shaft-equipped on / off valve 4d in which the valve shaft 5d is integrated, as shown in the embodiment of FIG. 19, the front exhaust pipe 2e rear end and the supercharger 8a are used. In the connecting portion EE ′ formed between the front end portions of the turbine housing 19 in FIG. 1, bearing portions 6i and 6j for the valve shaft 5d integrated with the on-off valve 4d are provided, and the bearing portions 6i and 6j are provided with valve shafts. After disposing the on-off valve 4d, the rear end of the exhaust pipe 2e on the front side and the front end of the turbine housing 19 are integrated together with screws, nuts, a fixing band, etc., and further connected to the driving force source of the on-off valve controller. Fitting or screwing the lid 21 with the bearing portion 20 of the rod shaft 16a To prevent leakage of exhaust gas Te.
A convex portion or a concave portion is provided on one side of the valve shaft 5d integrated with the on-off valve 4d, and a concave portion or a convex portion that is loosely fitted to the convex portion or concave portion provided on the one side of the valve shaft 5d is provided at the tip of the rod shaft 16a. The part was provided and both were connected.

次に、過給圧制御機構の作動について説明する。
図1において、過給圧制御機構における開閉弁制御装置14が、原動機関1の回転数信号や過給圧信号を始めとして、冷却水信号、吸入空気量信号等、各種情報信号を収集し、収集した各種情報信号から原動機関1が予め設定された回転域内で回転していると判断した時、前方側の排気管2内を閉止状態と開放状態が繰り返されるように、前方側の排気管2内に配置した開閉弁4を開閉弁制御装置14の駆動力源によって連続的に回転運動または一定角度を往復運動させる。
Next, the operation of the supercharging pressure control mechanism will be described.
In FIG. 1, the on-off valve control device 14 in the supercharging pressure control mechanism collects various information signals such as a cooling water signal, an intake air amount signal, etc., including a rotation speed signal and a supercharging pressure signal of the driving engine 1, When it is determined from the collected information signals that the prime mover engine 1 is rotating within a preset rotation range, the exhaust pipe on the front side is repeatedly closed and opened in the exhaust pipe 2 on the front side. 2 is continuously rotated or reciprocated at a constant angle by the driving force source of the on-off valve controller 14.

前方側の排気管2内が開閉弁4によって閉じられた時、前方側の排気管2内は閉止されて、排気管2内の開閉弁4上流部に連続的に流れ込む排気ガスが留められ排気管2内の圧力が高まる。  When the front side exhaust pipe 2 is closed by the on-off valve 4, the front side exhaust pipe 2 is closed, and the exhaust gas continuously flowing into the upstream part of the on-off valve 4 in the exhaust pipe 2 is stopped and exhausted. The pressure in the pipe 2 increases.

そして、開閉弁4が開かれた時、排気管2内の開閉弁4上流部に留まり圧力の高まった排気ガスにさらに燃焼室から連続的に排出され続ける排気ガスが加わり続ける排気ガス流が、タービンハウジング内面9外周側へ素早く供給されてタービンブレード10側に流れ込むことにより、タービンブレード10は素早く回転を立ち上げ、同時にタービンブレード10と同一の回転軸13の他端部に配置・固定されたコンプレッサー側11のインペラ12も回転が素早く立ち上がるため、レスポンスの向上を図れ、インペラ12は高回転によって得られる高い遠心力で吸入した空気を加圧し吸気管17を経由して原動機関1の燃焼室内へ過給する。  When the on-off valve 4 is opened, an exhaust gas flow that continues to be added to the exhaust gas that remains in the upstream portion of the on-off valve 4 in the exhaust pipe 2 and that continues to be exhausted from the combustion chamber is increased. By being quickly supplied to the outer peripheral side of the inner surface 9 of the turbine housing and flowing into the turbine blade 10 side, the turbine blade 10 quickly started rotating, and at the same time, placed and fixed to the other end of the same rotating shaft 13 as the turbine blade 10. Since the rotation of the impeller 12 on the compressor side 11 quickly rises, the response can be improved, and the impeller 12 pressurizes the air sucked by the high centrifugal force obtained by the high rotation and pressurizes the intake chamber 17 through the combustion chamber of the prime mover engine 1. Supercharge to.

そして、開閉弁4が再び閉じられ排気管2内を閉止している間も排気管2内開放時において高圧の排気ガスがタービン側7のタービンブレード10に供給されていたため、共に回転するタービンブレード10と回転軸13及びインペラ12はそれぞれの慣性力によって瞬時に回転を低下させることなく引き続き回転が維持され、コンプレッサー側11のインペラ12は引き続き過給状態を保ち続けることができる。  Even when the on-off valve 4 is closed again and the exhaust pipe 2 is closed, the high-pressure exhaust gas is supplied to the turbine blade 10 on the turbine side 7 when the exhaust pipe 2 is opened. 10, the rotary shaft 13 and the impeller 12 are continuously maintained in rotation without instantaneously decreasing the rotation due to their respective inertial forces, and the impeller 12 on the compressor side 11 can continue to maintain the supercharged state.

さらに、排気管2内が閉止されている間、開閉弁4下流の排気管3内を流れる排気ガス流はそのまま流れ続けようとする慣性力の影響で排気管3内の圧力は低下し、連続的に流れ込み圧力が高まる開閉弁4上流部との圧力差が拡大している。
再び開閉弁4が開き排気管2内が開放された時、高圧の排気ガスは圧力の低下した開閉弁4下流側のタービンブレード10に勢いよく流れ込み、タービンブレード10が回転を高めると同時に同軸上を回転するインペラ11も高回転によって得られる高い遠心力で吸入した空気を加圧し原動機関1の燃焼室内へ高過給し続ける。
Further, while the exhaust pipe 2 is closed, the exhaust gas flow flowing in the exhaust pipe 3 downstream of the on-off valve 4 is continuously reduced and the pressure in the exhaust pipe 3 decreases due to the influence of inertial force. Therefore, the pressure difference from the upstream portion of the on-off valve 4 where the flow-in pressure increases is increased.
When the on-off valve 4 is opened again and the inside of the exhaust pipe 2 is opened, the high-pressure exhaust gas flows into the turbine blade 10 on the downstream side of the on-off valve 4 where the pressure has decreased, and the turbine blade 10 increases its rotation and is coaxial. The impeller 11 that rotates is also pressurized with high centrifugal force obtained by high rotation and continues to be supercharged into the combustion chamber of the prime mover engine 1.

そして、燃焼室内に高過給された空気量に見合う量の燃料供給を行うことにより、燃焼室内の爆発圧力が高まり、力強くピストンを押し下げることによってトルクを向上させ、さらに、燃焼室内から排出される排気ガスも圧力の高い状態で排出されるため、再び開閉弁4が開放された時、タービンブレード10側に勢いよく流れ込み、タービンブレード10の回転を高めると同時にインペラ11の回転もさらに高まり、高い遠心力で吸入した空気を加圧し原動機関1の燃焼室内へ高過給し続ける。。
以下、続く回転時においても同様な作動が繰り返し行なわれ、結果的に原動機関1における低速回転域のトルク出力と低速回転域のレスポンスの向上を図ることができる。
Then, by supplying the fuel in an amount corresponding to the amount of air supercharged in the combustion chamber, the explosion pressure in the combustion chamber is increased, and the torque is improved by pushing down the piston with force, and further exhausted from the combustion chamber. Since the exhaust gas is also discharged in a high pressure state, when the on-off valve 4 is opened again, it flows into the turbine blade 10 side vigorously, increasing the rotation of the turbine blade 10 and at the same time further increasing the rotation of the impeller 11. The air sucked by the centrifugal force is pressurized and continuously supercharged into the combustion chamber of the prime mover 1. .
Thereafter, the same operation is repeatedly performed during the subsequent rotation, and as a result, the torque output in the low-speed rotation region and the response in the low-speed rotation region in the prime mover 1 can be improved.

また、過給圧制御機構14を備えたことにより、タービンブレード10と同一の回転軸13の他端部に配置・固定したインペラ12の素早い回転の立ち上げを図れるため、タービン側7のタービンブレード10並びにコンプレッサー側11のインペラ12の外径寸法を大きく設定することが可能となり、大きく設定されたタービンブレード10とインペラ12は、低速回転域においては、前述した過給圧制御機構14によって高いトルクを確保し、さらに、中・高速回転域においては、大径化したタービンブレード10は排気ガスが詰らず流れるため高回転域までスムーズに回転上昇し、同時に同一の回転軸13の他端部に配置・固定したインペラ12も高回転域までスムーズに回転上昇するため、高い過給圧を燃焼室内に供給することができる。
以上のように、原動機関と過給器間の排気管内に開閉弁を設け、前記開閉弁に連結し弁開閉を司る開閉弁制御装置から構成された過給圧制御機構を備えたことによって、低速回転域から中・高速回転域まで幅広い回転域において過給圧を高められるため、広い回転域で高トルク・高出力を確保し、また、レスポンスの向上を図れ、延いては燃費や環境に配慮した原動機関を提供することができる。
In addition, since the supercharging pressure control mechanism 14 is provided, the impeller 12 disposed and fixed at the other end of the same rotating shaft 13 as the turbine blade 10 can be quickly started up. 10 and the outer diameter dimension of the impeller 12 on the compressor side 11 can be set to be large, and the turbine blade 10 and the impeller 12 that are set large have a high torque by the above-described supercharging pressure control mechanism 14 in the low speed rotation range. In addition, in the middle and high speed rotation regions, the turbine blade 10 having a large diameter flows smoothly up to the high rotation region because the exhaust gas flows without clogging, and at the same time, the other end portion of the same rotating shaft 13. Since the impeller 12 placed and fixed in the shaft also smoothly rotates up to a high rotation range, a high supercharging pressure can be supplied into the combustion chamber. That.
As described above, by providing an on / off valve in the exhaust pipe between the prime mover and the supercharger, and having a supercharging pressure control mechanism that is connected to the on / off valve and configured to control the on / off valve control device, Since the boost pressure can be increased in a wide range of rotations from low speed to medium and high speeds, high torque and high output can be secured in a wide range of rotations, and response can be improved. It is possible to provide a consideration engine.

そして、上述した各実施例では、開閉弁制御装置14における各開閉弁開閉時の駆動力源として、モータやソレノイド等を採用した場合について説明したが、他の駆動力源の採用も充分に考えられ、図20及び図20におけるF−F′断面部を示す図21は、原動機関より排出され続ける排気ガスの圧力を開閉弁開閉時の駆動力源に利用した請求項1に記載の開閉弁制御装置の実施例である。    In each of the above-described embodiments, the case where a motor, a solenoid, or the like is employed as a driving force source when the on-off valve control device 14 opens / closes each opening / closing valve has been described. FIG. 21 showing the FF ′ cross section in FIGS. 20 and 20 is an on-off valve according to claim 1, wherein the pressure of the exhaust gas continuously discharged from the driving engine is used as a driving force source when the on-off valve is opened and closed. It is an Example of a control apparatus.

構成は、図20のように、前方側の排気管2f外に突出する開閉弁4eの回転軸5e一方に、回転軸中心を挟んで相対す位置にN極磁石とS極磁石をそれぞれ配置固定した磁石支持部22を固定し、そして、前記開閉弁4e回転時に共に回転する前記磁石支持部22のN極磁石とS極磁石が描く同一の円軌道面上と一定の間隔を保つ平面上に電磁石23の両端部24a及び24bが対面・配置されるように、前記電磁石23を固定した電磁石支持部25を基部側26に戻しばね27を介して回転可能な状態で取り付けた。  As shown in FIG. 20, an N-pole magnet and an S-pole magnet are arranged and fixed at a position facing the rotation shaft 5e of the on-off valve 4e protruding outside the exhaust pipe 2f on the front side with the rotation shaft center therebetween. On the same circular raceway surface drawn by the N-pole magnet and the S-pole magnet of the magnet support portion 22 that rotate together when the on-off valve 4e rotates, and on a plane that maintains a certain distance The electromagnet support 25 to which the electromagnet 23 was fixed was attached to the base side 26 in a rotatable state via a return spring 27 so that both ends 24a and 24b of the electromagnet 23 face each other.

そして、原動機関停止時における前記電磁石支持部25の定位置は、原動機関始動後において排気ガス流をタービンハウジング内面の外周側より供給できるように、図21のように開閉弁4e一方がタービンハウジング内面の外周側と同方向に開いて停止するとともに、排気ガス流の流れる矢印方向と同方向に回転する位置に設定され、戻しばね27は非弾装状態で電磁石支持部25と基部側26間に介在し、その戻しばね27の弾力を抵抗力に電磁石支持部25を基部側26の定位置に停止させ続けておく。
さらに、開閉弁4eは、定位置で停止する電磁石支持部25における電磁石23の両端部24a及び24bに相対す位置に配置・停止させた磁石支持部22のN極磁石とS極磁石の磁力が電磁石23の両端部24a及び24bを吸引し続けることによって定位置を保ち続ける。
また、回転可能な状態で基部側26に取り付けられた前記電磁石支持部25は、原動機関がある回転域に達した時、アクセル系と連動して全開方向に回転し始め、排気管2f内を流れる排気ガス流に対する開閉弁4eの迎角を可変する。
The position of the electromagnet support 25 when the prime mover is stopped is such that one of the on-off valves 4e is connected to the turbine housing as shown in FIG. 21 so that the exhaust gas flow can be supplied from the outer peripheral side of the inner surface of the turbine housing after the prime mover is started. It opens and stops in the same direction as the outer peripheral side of the inner surface, and is set at a position that rotates in the same direction as the arrow direction in which the exhaust gas flows, and the return spring 27 is in a non-elastic state between the electromagnet support 25 and the base side 26. The electromagnet support portion 25 is stopped at a fixed position on the base side 26 by using the elastic force of the return spring 27 as a resistance force.
Further, the opening / closing valve 4e has a magnetic force of the N-pole magnet and the S-pole magnet of the magnet support portion 22 disposed and stopped at positions opposed to both ends 24a and 24b of the electromagnet 23 in the electromagnet support portion 25 that stops at a fixed position. By continuing to attract both ends 24a and 24b of the electromagnet 23, the home position is maintained.
In addition, the electromagnet support portion 25 attached to the base side 26 in a rotatable state starts to rotate in the fully open direction in conjunction with the accelerator system when the driving engine reaches a certain rotation range, and passes through the exhaust pipe 2f. The angle of attack of the on-off valve 4e with respect to the flowing exhaust gas flow is varied.

次に作動について説明する。
原動機関を始動するためにイグッニション・オフの状態からイグッニション・オンの状態にした時、同時に電磁石23に電流供給を開始し、電磁石の両端部24a及び24bを磁化し、開閉弁4eを設定した定位置に引き続き停止させておく。
但し、磁石支持部22にそれぞれ配置固定したN極磁石とS極磁石の磁力によって開閉弁4eを設定した定位置に引き続き停止させることが可能であれば、電磁石23に電流供給をする必要は無い。
そして、スターター等による原動機関始動後に電磁石23への電流供給を停止し、排気ガスの圧力で開閉弁4eを図21において時計の回転方向と同方向に回転させる。また、この時、開閉弁4eの回転数の最適化を図るために電磁石23に電流を供給する方法も考えられる。
回転する開閉弁4eは前方側の排気管2f内を閉止と開放を繰り返し行い、上述した実施例と同様な効果を得ることができる。
Next, the operation will be described.
When the ignition engine is switched from the ignition-off state to the ignition-on state in order to start the prime mover, current supply to the electromagnet 23 is started at the same time, both ends 24a and 24b of the electromagnet are magnetized, and the on-off valve 4e is set. Continue to stop in position.
However, it is not necessary to supply current to the electromagnet 23 as long as the stop valve 4e can be continuously stopped at the set position by the magnetic force of the N pole magnet and the S pole magnet respectively arranged and fixed on the magnet support portion 22. .
Then, the current supply to the electromagnet 23 is stopped after the starting engine is started by a starter or the like, and the on-off valve 4e is rotated in the same direction as the clockwise direction in FIG. 21 by the pressure of the exhaust gas. At this time, a method of supplying a current to the electromagnet 23 may be considered in order to optimize the rotation speed of the on-off valve 4e.
The rotating on-off valve 4e repeatedly closes and opens the inside of the exhaust pipe 2f on the front side, and can obtain the same effect as the above-described embodiment.

次に、原動機関の回転数が設定した回転域上限を過ぎ中速回転域に達した時、再び電磁石23に電流を供給し始めて電磁石両端部24a及び24bを磁化し、磁石支持部22に配置固定したN極磁石とS極磁石を吸引し、回転する磁石支持部22及び開閉弁4eを定位置で停止させ、タービンハウジング内面の外周側へ高圧状態の排気ガスを供給して略称A/R比におけるタービン入口のノズル面積中心部とタービンブレードの中心部間の距離Rを長く取り、排気ガス流を自由渦に乗せて速度を速めてタービンブレードに供給する。  Next, when the rotational speed of the driving engine passes the upper limit of the set rotational range and reaches the medium speed rotational range, the current is again supplied to the electromagnet 23 to magnetize the electromagnet both ends 24a and 24b and arrange them on the magnet support 22 The fixed N-pole magnet and S-pole magnet are attracted, the rotating magnet support 22 and the on-off valve 4e are stopped at fixed positions, and high-pressure exhaust gas is supplied to the outer peripheral side of the inner surface of the turbine housing. In the ratio, the distance R between the center of the nozzle area at the turbine inlet and the center of the turbine blade is increased, and the exhaust gas flow is put on the free vortex to increase the speed and is supplied to the turbine blade.

さらに、原動機関の回転数が中速回転以上になった時、排気ガス流が滑らかにタービンブレードへ流れるように、アクセル系に連動する電磁石支持部25を戻しばね27の弾力に抗して時計の回転方向と同方向に回転させ、連動する開閉弁4eを排気ガス流と同方向の全開位置まで回転させる。
この時、電磁石23に電流を供給し続け、電磁石支持部25に固定した電磁石23の両端部24a及び24bの磁力と磁石支持部22に配置固定したN極磁石とS極磁石の磁力によって両者を一体化して同方向に回転させる。
Further, when the rotational speed of the prime mover engine becomes higher than the medium speed, the electromagnet support 25 linked to the accelerator system is counteracted by the elasticity of the return spring 27 so that the exhaust gas flow smoothly flows to the turbine blade. The interlocking on-off valve 4e is rotated to the fully open position in the same direction as the exhaust gas flow.
At this time, the current is continuously supplied to the electromagnet 23, and both are generated by the magnetic forces of the both end portions 24 a and 24 b of the electromagnet 23 fixed to the electromagnet support portion 25 and the magnetic forces of the N-pole magnet and the S-pole magnet arranged and fixed on the magnet support portion 22. Integrate and rotate in the same direction.

また、アクセル等を戻して原動機関の回転数を低下させ、中・高速回転から再び中速回転域になった時、電磁石支持部25は戻しばね27の弾力によって定位置まで戻され、磁力で一体化して連動する磁石支持部22も戻され、開閉弁4eが定位置で停止する。  Also, when the accelerator is returned to lower the rotational speed of the prime mover and the medium / high speed rotation is changed to the middle speed rotation range again, the electromagnet support portion 25 is returned to a fixed position by the elasticity of the return spring 27, and the magnetic force The magnet support part 22 integrated and interlocked is also returned, and the on-off valve 4e stops at a fixed position.

さらに、原動機関の回転数が設定した回転域に入ると電磁石23への電流供給を停止し、排気ガスの圧力によって開閉弁4eを図21における時計の回転方向と同方向に回転させる。
回転する開閉弁4eは閉止と開放を繰り返し行い、上述した実施例と同様な効果を得ることができる。
Further, when the rotational speed of the prime mover engine enters the set rotation range, the current supply to the electromagnet 23 is stopped, and the on-off valve 4e is rotated in the same direction as the clockwise direction in FIG.
The rotating on-off valve 4e is repeatedly closed and opened, and the same effect as the above-described embodiment can be obtained.

そして、原動機関停止時にイグッニション・オフの信号を受けた時、回転する開閉弁4eを定位置で停止させるため、電磁石23に一定時間電流供給が行える遅延回路から電磁石23に電流供給し磁石支持部22を定位置で停止させ、前記磁石支持部22と連動する開閉弁4eを定位置で停止させる。
原動機関が停止した後は、定位置で停止する電磁石支持部25の電磁石両端部24a及び24bを磁石支持部22に配置固定したN極磁石とS極磁石の磁力で吸引し続け、開閉弁4eを定位置に停止させその状態を保ち、原動機関の再始動時に備える。
以上のように、開閉弁の回転軸にN極磁石とS極磁石をそれぞれ配置固定した磁石支持部を固定し、前記開閉弁回転時に前記N極磁石とS極磁石が描く円軌道面上と一定の間隔を保つ平面上に電磁石両端部が対面するように前記電磁石を固定した電磁石支持部を回転可能な状態で基部側に取り付け、前記電磁石支持部と基部側間に戻しばねを備えたことによって、低速回転域から中・高速回転域まで幅広い回転域において過給圧を高められるため、広い回転域で高トルク・高出力を確保し、また、レスポンスの向上を図れ延いては燃費や環境に配慮した原動機関を提供することができる。
When an ignition-off signal is received when the driving engine is stopped, the rotating on-off valve 4e is stopped at a fixed position, so that a current is supplied to the electromagnet 23 from a delay circuit that can supply current to the electromagnet 23 for a certain period of time. 22 is stopped at a fixed position, and the on-off valve 4e interlocked with the magnet support portion 22 is stopped at a fixed position.
After the prime mover is stopped, the electromagnet ends 24a and 24b of the electromagnet support 25 that stops at a fixed position continue to be attracted by the magnetic force of the N-pole magnet and the S-pole magnet arranged and fixed on the magnet support 22, and the on-off valve 4e The engine is stopped at a fixed position and kept in this state to prepare for restarting the engine.
As described above, the magnet support portion in which the N-pole magnet and the S-pole magnet are respectively arranged and fixed is fixed to the rotation shaft of the on-off valve, and on the circular raceway surface drawn by the N-pole magnet and the S-pole magnet when the on-off valve rotates. An electromagnet support portion fixed to the electromagnet so that both ends of the electromagnet face each other on a plane maintaining a certain distance is attached to the base side in a rotatable state, and a return spring is provided between the electromagnet support portion and the base side. Can boost the boost pressure in a wide range of rotation from low to mid- and high-speed ranges, ensuring high torque and high output over a wide range of rotations, and improving response to fuel economy and environment It is possible to provide an engine that considers

さらに、本発明による過給器付き原動機関の過給圧制御機構においてはガソリン式やディーゼル式等のレシプロ型、バンケル式等のロータリー型は勿論、他の各種原動機関にも採用でき、さらに、液体酸素・液体水素系を始めとするロケット型エンジン等の燃料ポンプとしての採用も充分に考えられる。  Furthermore, in the supercharging pressure control mechanism of a prime mover with a supercharger according to the present invention, it can be adopted not only in a reciprocating type such as a gasoline type or a diesel type, but also in a rotary type such as a bankel type, Adoption as a fuel pump for rocket-type engines such as liquid oxygen / liquid hydrogen is also conceivable.

尚、本発明による過給器付き原動機関の過給圧制御機構に関しては、本発明の趣旨を逸脱することにない範囲で適宜変更可能であり、そして、本発明が該改変されたものに及ぶことは当然である。  Incidentally, the supercharging pressure control mechanism of the prime mover-equipped engine according to the present invention can be appropriately changed without departing from the gist of the present invention, and the present invention extends to the modified one. It is natural.

請求項1記載の発明に係る過給器付き原動機関における過給圧制御機構の第1の実施例の形態を示す構成説明図。  BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram showing a configuration of a first embodiment of a supercharging pressure control mechanism in a supercharged prime mover engine according to the first aspect of the present invention; 第1の実施例の形態を示す図1におけるA−A′断面部分を過給器側から見た構成説明図。  Structure explanatory drawing which looked at the AA 'cross section part in FIG. 1 which shows the form of a 1st Example from the supercharger side. 開閉弁における弁軸の軸受け部を前方側排気管の側面部延長上や側面部延長上付近に設定した他の実施例の形態を示す構成説明図。  Structure explanatory drawing which shows the form of the other Example which set the bearing part of the valve shaft in an on-off valve on the side part extension of the front side exhaust pipe, or on the side part extension vicinity. 図3におけるB−B′断面部の構成説明図。  Structure explanatory drawing of the BB 'cross section in FIG. 弁軸の配置位置を開閉弁の一方端部に一体化するとともに、両軸受け部を前方側排気管の側面部に設定する他の実施例の形態を示す構成説明図。  The structure explanatory drawing which shows the form of the other Example which integrates the arrangement position of a valve shaft in the one end part of an on-off valve, and sets both bearing parts to the side part of a front side exhaust pipe. 図5におけるC−C′断面部の構成説明図。  FIG. 6 is a configuration explanatory view of a CC ′ cross section in FIG. 5. 開閉弁における平面形状が円形状の実施例を示す外観図。  The external view which shows the Example whose planar shape in an on-off valve is circular. 開閉弁における平面形状が縦長楕円形状の実施例を示す外観図。  The external view which shows the Example whose planar shape in an on-off valve is a vertically long ellipse shape. 開閉弁における平面形状が横長楕円形状の実施例を示す外観図。  The external view which shows the Example whose planar shape in an on-off valve is a horizontally long ellipse shape. 開閉弁における平面形状が正方形状の実施例を示す外観図。  The external view which shows the Example whose planar shape in an on-off valve is square shape. 開閉弁における平面形状が縦長方形状の実施例を示す外観図。  The external view which shows the Example whose planar shape in an on-off valve is a vertical rectangular shape. 開閉弁における平面形状が横長方形状の実施例を示す外観図。  The external view which shows the Example whose planar shape in an on-off valve is a horizontal rectangular shape. 開閉弁における断面形状が直線形状の実施例を示す外観図。  The external view which shows the Example whose cross-sectional shape in an on-off valve is a linear shape. 開閉弁における断面形状がS字形状の実施例を示す外観図。  The external view which shows the Example whose cross-sectional shape in an on-off valve is S-shaped. 開閉弁における断面形状が細長い楕円型形状の実施例を示す外観図。  The external view which shows the Example whose cross-sectional shape in an on-off valve is an elongate elliptical shape. 図1におけるD−D′断面部の構成説明図で、且つ、開閉弁回転時における前方側の排気管内の閉止と開放を示す断面構成説明図。  FIG. 2 is a configuration explanatory view of a DD ′ cross section in FIG. 1 and a cross-sectional configuration explanatory view showing closing and opening in the exhaust pipe on the front side when the on-off valve rotates. 第1の実施例の形態を示す図1における開閉弁及びタービン側付近の拡大構成説明図。  Explanatory drawing explanatory drawing of the on-off valve and turbine side vicinity in FIG. 1 which shows the form of a 1st Example. 前方側の排気管と過給器間に中排気管を設け、前記中排気管に開閉弁を配置し、前記前方側の排気管と中排気管、過給器から成る他の構成の排気系の実施例を示す構成説明図。  An intermediate exhaust pipe is provided between the front exhaust pipe and the supercharger, an open / close valve is disposed in the intermediate exhaust pipe, and an exhaust system having another configuration including the front exhaust pipe, the intermediate exhaust pipe, and the supercharger The structure explanatory view showing the example. 前方側の排気管と過給器間の連結部分に開閉弁を配置した他の構成の排気系の実施例を示す構成説明図。  Structure explanatory drawing which shows the Example of the exhaust system of the other structure which has arrange | positioned the on-off valve in the connection part between the exhaust pipe of the front side, and a supercharger. 排気ガスの圧力を開閉弁開閉時の駆動力源に利用した請求項2に記載の発明に係る第1の実施例を示す構成説明図である。  FIG. 3 is a configuration explanatory view showing a first embodiment according to the invention of claim 2 in which the pressure of exhaust gas is used as a driving force source when the on-off valve is opened and closed. 図20におけるF−F′断面部から矢印の方向を見た構成説明図。  FIG. 21 is an explanatory diagram of the configuration when the direction of the arrow is viewed from the FF ′ cross section in FIG. 20.

符号の説明Explanation of symbols

1 原動機関
2、2a、2b、2c、2d、2e、2f 前方側の排気管
3 後方側の排気管
4、4a、4b、4c、4d、4e 開閉弁
5、5a、5b、5c、5d、5e 弁軸
6a、6b、6c、6d、6e、6f、6g、6h、6i、6j 軸受け部
7、7a タービン側
8、8a 過給器
9、9a、9b、9c タービン側ハウジング内面
10、10a、10b タービンブレード
11 コンプレサー側
12 コンプレサー側のインペラ
13 過給器の回転軸
14 開閉弁制御装置
15 保護翼
16、16a 棒軸
17 吸気管
18 固定バンド
19 タービン側ハウジング
20 棒軸の軸受け部
21 蓋
22 磁石支持部
23 電磁石
24a、24b 電磁石の両端部
25 電磁石支持部
26 基部側
27 戻しばね
1 prime mover engine 2, 2a, 2b, 2c, 2d, 2e, 2f front exhaust pipe 3 rear exhaust pipes 4, 4a, 4b, 4c, 4d, 4e on-off valves 5, 5a, 5b, 5c, 5d, 5e Valve shaft 6a, 6b, 6c, 6d, 6e, 6f, 6g, 6h, 6i, 6j Bearing portion 7, 7a Turbine side 8, 8a Turbocharger 9, 9a, 9b, 9c Turbine side housing inner surface 10, 10a, 10b Turbine blade 11 Compressor side 12 Compressor side impeller 13 Supercharger rotating shaft 14 On-off valve control device 15 Protective vanes 16 and 16a Rod shaft 17 Intake pipe 18 Fixed band 19 Turbine side housing 20 Rod shaft bearing portion 21 Lid 22 Magnet support portion 23 Electromagnets 24a, 24b Both end portions 25 of electromagnet Electromagnet support portion 26 Base side 27 Return spring

Claims (2)

排気管途中に過給機を設けた原動機関において、前記原動機関と過給機間の排気管内に開閉弁を設けるとともに前記開閉弁の開閉作動を司る開閉弁制御装置から構成されたことを特徴とする過給機付き原動機関の過給圧制御機構。  In a prime mover engine provided with a supercharger in the middle of an exhaust pipe, an open / close valve is provided in the exhaust pipe between the prime mover engine and the supercharger, and the open / close valve control device controls the open / close operation of the open / close valve. The supercharging pressure control mechanism of a prime mover with a supercharger. 排気管外の開閉弁回転軸に回転軸中心を挟んで相対す位置にN極磁石とS極磁石をそれぞれ配置固定した磁石支持部を固定し、前記開閉弁回転時に共に回転する前記磁石支持部の前記N極磁石とS極磁石が描く円軌道面上と一定の間隔を保つ平面上に電磁石両端部が対面するように前記電磁石を固定した電磁石支持部を回転可能な状態で基部側に取り付け、前記電磁石支持部と基部側間に戻しばねを備えたことを特徴とする開閉弁の開閉作動を司る請求項1に記載の開閉弁制御装置。  The magnet support part which fixes the N pole magnet and the S pole magnet which are respectively arranged and fixed to a position opposed to the on / off valve rotation axis outside the exhaust pipe with the rotation axis center therebetween, and rotates together with the on / off valve rotation. The electromagnet support, to which the electromagnet is fixed, is attached to the base side in a rotatable state so that both ends of the electromagnet face each other on a circular raceway surface drawn by the N-pole magnet and the S-pole magnet. The on-off valve control device according to claim 1, wherein a return spring is provided between the electromagnet support portion and the base side to control the on-off operation of the on-off valve.
JP2006236664A 2006-08-06 2006-08-06 Boost pressure control mechanism for prime engine with supercharger Pending JP2008038882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006236664A JP2008038882A (en) 2006-08-06 2006-08-06 Boost pressure control mechanism for prime engine with supercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006236664A JP2008038882A (en) 2006-08-06 2006-08-06 Boost pressure control mechanism for prime engine with supercharger

Publications (1)

Publication Number Publication Date
JP2008038882A true JP2008038882A (en) 2008-02-21

Family

ID=39174175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006236664A Pending JP2008038882A (en) 2006-08-06 2006-08-06 Boost pressure control mechanism for prime engine with supercharger

Country Status (1)

Country Link
JP (1) JP2008038882A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101436039B1 (en) * 2014-04-23 2014-09-01 고월특수강주식회사 Rotary variable valve for car muffler

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101436039B1 (en) * 2014-04-23 2014-09-01 고월특수강주식회사 Rotary variable valve for car muffler

Similar Documents

Publication Publication Date Title
JP5136701B2 (en) Control device for an internal combustion engine with a supercharger
RU2718397C2 (en) Reduced load from axial force in turbocompressor
US9303650B2 (en) Introduction of exhaust gas recirculation at a compressor blade trailing edge
RU152164U1 (en) TURBOCHARGED ENGINE SYSTEM
RU155007U1 (en) TURBOCHARGER SYSTEM AND ENGINE SYSTEM
US8820071B2 (en) Integrated compressor housing and inlet
KR101578840B1 (en) Aparatus for Increase Combustion Efficiency
JP2006189049A (en) Device for imparting whirling motion on air flow for supplying turbo-charged internal combustion engine
RU149938U1 (en) MULTI-STAGE TURBOCHARGER (OPTIONS)
US20130014503A1 (en) Housing assembly for forced air induction system
JP2012149588A (en) Controller for internal combustion engine
JP2007231906A (en) Multi-cylinder engine
US20160252095A1 (en) Axial compressor with a magnetic stepper or servo motor
JP2008038882A (en) Boost pressure control mechanism for prime engine with supercharger
US20170218892A1 (en) Gas compressor pressure relief noise reduction
JP2009162151A (en) Intake-air controller of internal combustion engine
JP5737161B2 (en) Control device for supercharged engine
US20140271165A1 (en) Variable a/r turbine housing
JP5682245B2 (en) Low pressure loop EGR device
JPH07279677A (en) Centrifugal supercharger
JP2015059568A (en) Control device of engine with supercharger
JP6391027B2 (en) Engine charge system
JP4412030B2 (en) Intake device for turbocharged engine
JP2010185314A (en) Supercharging control device
JP2012154195A (en) Structure of return path