JP2008037858A - Controlled release agent - Google Patents

Controlled release agent Download PDF

Info

Publication number
JP2008037858A
JP2008037858A JP2007042430A JP2007042430A JP2008037858A JP 2008037858 A JP2008037858 A JP 2008037858A JP 2007042430 A JP2007042430 A JP 2007042430A JP 2007042430 A JP2007042430 A JP 2007042430A JP 2008037858 A JP2008037858 A JP 2008037858A
Authority
JP
Japan
Prior art keywords
limonene
sustained
release agent
copolymer
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007042430A
Other languages
Japanese (ja)
Other versions
JP2008037858A5 (en
JP5458261B2 (en
Inventor
Kazue Tsutsumi
主計 堤
Kazuyuki Oji
一幸 尾路
Kazuaki Hata
和明 畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAWA INDUSTRY SUPPORT FOUND
Institute of National Colleges of Technologies Japan
Kagawa Industry Support Foundation
Original Assignee
KAGAWA INDUSTRY SUPPORT FOUND
Institute of National Colleges of Technologies Japan
Kagawa Industry Support Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAWA INDUSTRY SUPPORT FOUND, Institute of National Colleges of Technologies Japan, Kagawa Industry Support Foundation filed Critical KAGAWA INDUSTRY SUPPORT FOUND
Priority to JP2007042430A priority Critical patent/JP5458261B2/en
Publication of JP2008037858A publication Critical patent/JP2008037858A/en
Publication of JP2008037858A5 publication Critical patent/JP2008037858A5/ja
Application granted granted Critical
Publication of JP5458261B2 publication Critical patent/JP5458261B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a controlled release agent having excellent controlled release ability while having biodegradability. <P>SOLUTION: The controlled release agent is obtained by impregnating a base material comprising a polylactic acid copolymer obtained by polymerizing a prescribed proportion of L-lactide with a component of the subject of the controlled release. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、徐放対象成分を徐々に放出する徐放剤に関し、特に、徐放対象成分の保持材料に生分解性ポリマーを用いた徐放剤に関する。   The present invention relates to a sustained release agent that gradually releases a sustained release target component, and particularly to a sustained release agent that uses a biodegradable polymer as a holding material for the sustained release target component.

従来、例えば、農園や公園などにおける害虫・動物駆除には、農薬や忌避剤の散布など多大な労力を要してきた。これらの問題を解決する一手段として、例えば、忌避成分を徐々に放出し、長期間にわたりその効果を維持することが可能な徐放剤を挙げることができる。   Conventionally, for example, pest / animal control in farms and parks has required a great deal of labor, such as spraying of agricultural chemicals and repellents. As one means for solving these problems, there can be mentioned, for example, a sustained release agent capable of gradually releasing a repellent component and maintaining its effect over a long period of time.

特許文献1には、超臨界流体を用いて、性フェロモン剤を樹脂成形体又は溶融樹脂中に含浸させる技術が記載され、さらに環境面から基材に生分解性の樹脂を用いることが記載されている。   Patent Document 1 describes a technique in which a sex pheromone agent is impregnated into a resin molded body or a molten resin using a supercritical fluid, and further describes that a biodegradable resin is used for a substrate from the environmental aspect. ing.

特開2002−356403号公報JP 2002-356403 A

しかしながら、徐放対象成分を含浸させる基材として、生分解性ポリマーを用いた場合、生分解性ポリマーの分解により、効果的な徐放能を得ることができないことがあった。また、徐放対象成分を多量に含浸させることができず、効果的な徐放能を得ることができないことがあった。   However, when a biodegradable polymer is used as the base material to be impregnated with the sustained release target component, effective sustained release ability may not be obtained due to degradation of the biodegradable polymer. Moreover, the sustained release target component cannot be impregnated in a large amount, and effective sustained release ability may not be obtained.

本発明は、このような従来の実情に鑑みて提案されたものであり、生分解性を有しつつ、優れた徐放能を有する徐放剤を提供することを目的とする。   The present invention has been proposed in view of such conventional circumstances, and an object of the present invention is to provide a sustained-release agent having excellent degradability while having biodegradability.

本発明者らは、鋭意検討の結果、徐放対象成分を含浸させる生分解性ポリマーとして、L−ラクチドとε−カプロラクトンとの共重合体を用いることにより、徐放対象成分の含浸量を飛躍的に増加させることができることを見出し、本発明に至った。   As a result of intensive studies, the present inventors have made a significant leap in the amount of impregnation of the sustained release target component by using a copolymer of L-lactide and ε-caprolactone as the biodegradable polymer impregnated with the sustained release target component. The present invention has been found out that it can be increased.

また、L−ラクチドが所定の割合で重合されたポリ乳酸共重合体を用いることにより、徐放対象成分の含浸量を飛躍的に増加させることができることを見出し、本発明に至った。   Further, the inventors have found that the amount of impregnation of the sustained release target component can be dramatically increased by using a polylactic acid copolymer obtained by polymerizing L-lactide at a predetermined ratio, and the present invention has been achieved.

すなわち、本発明に係る徐放剤は、L−ラクチドとε−カプロラクトンとのモル比が65:35〜98:2の共重合体からなる基材に、徐放対象成分を含浸させてなることを特徴としている。   That is, the sustained release agent according to the present invention is obtained by impregnating a base material composed of a copolymer having a molar ratio of L-lactide and ε-caprolactone of 65:35 to 98: 2 with a component to be sustainedly released. It is characterized by.

また、本発明に係る徐放剤は、ポリ乳酸共重合体からなる基材に、徐放対象成分を含浸させてなる徐放剤であって、上記ポリ乳酸共重合体は、L−ラクチドが65〜98モル%の割合で重合されたものであることを特徴としている。   The sustained-release agent according to the present invention is a sustained-release agent obtained by impregnating a base material composed of a polylactic acid copolymer with a component to be sustained-released, and the polylactic acid copolymer contains L-lactide. It is characterized by being polymerized in a proportion of 65 to 98 mol%.

本発明によれば、徐放対象成分を含浸させる基材に、L−ラクチドとε−カプロラクトンとの共重合体を用いることにより、徐放対象成分の含浸量を向上させることができ、徐放期間内に高濃度の徐放対象成分を放出させることができる。   According to the present invention, by using a copolymer of L-lactide and ε-caprolactone for the base material impregnated with the sustained release target component, the amount of the sustained release target component impregnated can be improved. A high concentration sustained release target component can be released within a period.

以下、本発明の実施の形態について説明する。本発明の具体例として示す徐放剤は、L−ラクチド(以下、LLAと略す。)とε−カプロラクトン(以下、CLと略す。)との共重合体(以下、PLLACLと略す。)とからなる基材に徐放対象成分を含浸させるようにしたものである。また、L−ラクチドが所定の割合で重合されたポリ乳酸共重合体からなる基材に、徐放対象成分を含浸させるようにしたものである。   Embodiments of the present invention will be described below. The sustained-release agent shown as a specific example of the present invention is a copolymer of L-lactide (hereinafter abbreviated as LLA) and ε-caprolactone (hereinafter abbreviated as CL) (hereinafter abbreviated as PLLACL). The base material thus formed is impregnated with the sustained release target component. Further, a sustained release target component is impregnated into a base material made of a polylactic acid copolymer obtained by polymerizing L-lactide at a predetermined ratio.

LLAとCLとの共重合体は、LLAとCLとを開環重合することにより得られる。具体的には、所定量のLLAとCLとを、モノマーとしてシュレンクチューブに仕込み、触媒を加え、脱気とアルゴンガス置換をした後、所定温度のオイルバスにて開環重合させて合成する。   A copolymer of LLA and CL can be obtained by ring-opening polymerization of LLA and CL. Specifically, a predetermined amount of LLA and CL are charged into a Schlenk tube as monomers, a catalyst is added, deaeration and argon gas replacement are performed, and then ring-opening polymerization is performed in an oil bath at a predetermined temperature for synthesis.

ここで、PLLACLは、LLAとCLとのモル比が65:35〜98:2であることが好ましい。これにより、徐放対象成分の注入量を増加させることができる。つまり、徐放期間内に高濃度の徐放対象成分を放出させることが可能となる。   Here, as for PLLACL, it is preferable that the molar ratio of LLA and CL is 65: 35-98: 2. Thereby, the injection amount of the sustained release target component can be increased. That is, it becomes possible to release a high concentration sustained release target component within the sustained release period.

ポリ乳酸共重合体は、L−ラクチドが65〜98モル%の割合で重合されたものであることが好ましい。ポリ乳酸共重合体としては、ポリエステル共重合体、ポリエステルカーボネート共重合体、ポリエステルアミド共重合体、ポリエステルエーテル共重合体等を挙げることができる。また、ポリ乳酸共重合体は、L−ラクチドと、グリコリド、D,L−ラクチド、β−プロピオラクトン、γ−ブチロラクトン、δ−バレロラクトン、β−メチル−δ−バレロラクト、ε−カプロラクトン、DL−マバロノラクトン、エチレンカーボネート、トリメチレンカーボネート、1−メチルトリメチレンカーボネート、2,2−ジメチルトリメチレンカーボネート、テトラメチレンカーボネート、1,5−ジオキセパン−2−オン、モルフォリン−2,5−ジオン、3,6−ジメチルモルフォリン−2,5−ジオン、(R)−or(S)−3−メチル−4−オキサ−6−ヘキサノライド(MOHEL)、エチレンオキシド、5−メチル−5−ベンジロキシカルボニル−1,3−ジオキサン−2−オンから選択される1種または2種以上とから構成されることが好ましい。   The polylactic acid copolymer is preferably one in which L-lactide is polymerized in a proportion of 65 to 98 mol%. Examples of the polylactic acid copolymer include a polyester copolymer, a polyester carbonate copolymer, a polyester amide copolymer, and a polyester ether copolymer. Polylactic acid copolymers include L-lactide, glycolide, D, L-lactide, β-propiolactone, γ-butyrolactone, δ-valerolactone, β-methyl-δ-valerolacto, ε-caprolactone, DL -Mavalonolactone, ethylene carbonate, trimethylene carbonate, 1-methyltrimethylene carbonate, 2,2-dimethyltrimethylene carbonate, tetramethylene carbonate, 1,5-dioxepan-2-one, morpholine-2,5-dione, 3 , 6-Dimethylmorpholine-2,5-dione, (R) -or (S) -3-methyl-4-oxa-6-hexanolide (MOHEL), ethylene oxide, 5-methyl-5-benzyloxycarbonyl-1 , 3-dioxane-2-one or one or more selected from Configuration are preferably.

基材の形状は、目的に応じて成形することが好ましいが、注入量を増加させるためには、フィルム状であることが好ましい。   The shape of the substrate is preferably molded according to the purpose, but in order to increase the injection amount, it is preferably a film.

徐放対象成分としては、忌避成分、殺虫成分、香り成分等を用いることができる。具体的には、d−リモネン、メントン、メントール、プレゴン、カルボン、ネロリドール、テルピネオール、セドロール、ピレトリン、アレスリン、ヒドラメチルノン、ペルメトリン、フタルスリン、硫酸ニコチン、クマリン、ユーカリエキス、ラベンダーエキス、ハーブエキス、木酢液等を挙げることができる。また、抗菌成分として、ヒノキチオール、ワサオール、trans−2−ヘキセナール、trans−3−ヘキセナール、cis−3−ヘキセナール、カテキン、タケオール、ひまし油、10−ウンデセン酸、アリルカラシ油、イソチオシアン酸アリル、カプサイシン等を挙げることができる。   As the sustained release target component, a repellent component, an insecticidal component, a scent component, and the like can be used. Specifically, d-limonene, menthone, menthol, plegon, carvone, nerolidol, terpineol, cedrol, pyrethrin, allethrin, hydramethylnon, permethrin, phthalthrin, nicotine sulfate, coumarin, eucalyptus extract, lavender extract, herbal extract, An example is wood vinegar. Examples of antibacterial components include hinokitiol, wasaol, trans-2-hexenal, trans-3-hexenal, cis-3-hexenal, catechin, bamboool, castor oil, 10-undecenoic acid, allyl mustard oil, allyl isothiocyanate, capsaicin, etc. be able to.

徐放対象成分のPLLACLへの注入法は、一般的な混練法や溶媒溶解法を用いることができるが、超臨界流体を用いた超臨界注入法を用いることが好ましい。これにより、低沸点化合物を注入することができる。また、溶媒溶解法のように、残存有機溶媒や溶媒除去時の徐放対象成分の揮発が問題となることがない。   As a method for injecting the sustained release target component into PLLACL, a general kneading method or a solvent dissolution method can be used, but a supercritical injection method using a supercritical fluid is preferably used. Thereby, a low boiling point compound can be inject | poured. In addition, unlike the solvent dissolution method, volatilization of the residual organic solvent and the sustained release target component at the time of solvent removal does not become a problem.

超臨界流体を用いた超臨界注入法は、具体的には、基材と徐放対象成分とを高圧セルに封入し、所定の温度及び圧力に設定するとともに、例えば二酸化炭素を高圧セルに供給した後、超臨界二酸化炭素の状態にし、この状態を所定時間放置して、徐放対象成分の担持を行うものである。そして、徐放対象成分担持後、背圧弁を解放し圧力を低下させることによって超臨界二酸化炭素を気体の状態に戻し、基材から放散除去し、徐放対象成分が担持された基材を得る。なお、超臨界流体は、徐放対象成分の沸点、LLAとCLとの共重合体の融点等に応じて、二酸化炭素(臨界温度:304.1K,臨界圧力:7.38MPa)、エタン(臨界温度:305.45K,臨界圧力:18.7MPa)、窒素(臨界温度:126K,臨界圧力:3.4MPa)等を用いることができる。   Specifically, in the supercritical injection method using a supercritical fluid, the base material and the sustained release target component are enclosed in a high pressure cell, set to a predetermined temperature and pressure, and, for example, carbon dioxide is supplied to the high pressure cell. After that, the state of supercritical carbon dioxide is set, and this state is left for a predetermined time to carry the sustained release target component. Then, after supporting the sustained release target component, the supercritical carbon dioxide is returned to the gaseous state by releasing the back pressure valve and reducing the pressure, and the base material on which the sustained release target component is supported is obtained. . The supercritical fluid is carbon dioxide (critical temperature: 304.1 K, critical pressure: 7.38 MPa), ethane (critical) depending on the boiling point of the sustained release target component, the melting point of the copolymer of LLA and CL, and the like. Temperature (305.45 K, critical pressure: 18.7 MPa), nitrogen (critical temperature: 126 K, critical pressure: 3.4 MPa), or the like can be used.

以下、実施例を挙げて本発明をさらに説明する。なお、本発明はこれらの実施例に限定されるものではない。   Hereinafter, the present invention will be further described with reference to examples. The present invention is not limited to these examples.

注入試験
L−ラクチド(以下、LLAと略す。)とε−プロラクトン(以下、CLと略す。)との共重合体(以下、PLLACLと略す。)からなる基材、ポリL−ラクチド(以下、PLLAと略す。)からなる基材、及びポリブチレンサクシネートアジペート(以下、PBSAと略す。)からなる基材に、それぞれ徐放対象成分として市販のd−リモネンを含浸させた。d−リモネンは、柑橘類の果皮やスギの木などに含まれているテルペン系炭化水素であり、一般に昆虫などに対して忌避成分効果を有する。
Injection substrate L-lactide (hereinafter abbreviated as LLA) and ε-prolactone (hereinafter abbreviated as CL) copolymer (hereinafter referred to as PLLACL) base material, poly L-lactide (hereinafter abbreviated as PLLA) , And a substrate made of polybutylene succinate adipate (hereinafter abbreviated as PBSA), were each impregnated with commercially available d-limonene as a sustained release target component. d-Limonene is a terpene hydrocarbon that is contained in citrus peels and cedar trees, and generally has a repellent effect on insects and the like.

(実施例1)PLLACLからなる直径約4mmのペレット状の基材にd−リモネン(一級、和光純薬工業(株)社製)を含浸させた。PLLACLは、所定量のLLA((3S)-cis-3,6-Dimethyl-1,4-dioxane-2,5-dione:Sigma-Aldrich社製)とCL(特級、和光純薬工業(株)社製)とを、モノマーとしてシュレンクチューブ(φ16mm×110mm:二葉理化製作所社製)に仕込み、触媒としてStannous 2-Ethyl-Hexanoate(Sigma-Aldrich社製)を加え、脱気とアルゴンガス置換をした後、120℃のオイルバスにて24時間開環重合させて合成した。この共重合体の組成比(LLA/CL)をH NMR(核磁気共鳴装置:JNM-ECP400、日本電子(株)社製)により測定したところ、73/27であった。 (Example 1) A pellet-shaped substrate made of PLLACL having a diameter of about 4 mm was impregnated with d-limonene (first grade, manufactured by Wako Pure Chemical Industries, Ltd.). PLLACL consists of a predetermined amount of LLA ((3S) -cis-3,6-Dimethyl-1,4-dioxane-2,5-dione: Sigma-Aldrich) and CL (special grade, Wako Pure Chemical Industries, Ltd.) Was added to a Schlenk tube (φ16 mm × 110 mm: manufactured by Futaba Rika Seisakusho Co., Ltd.) as a monomer, Stannous 2-Ethyl-Hexanoate (manufactured by Sigma-Aldrich) was added as a catalyst, and deaeration and argon gas replacement were performed. Thereafter, ring-opening polymerization was performed in an oil bath at 120 ° C. for 24 hours to synthesize. The composition ratio (LLA / CL) of this copolymer was 73/27 as measured by 1 H NMR (nuclear magnetic resonance apparatus: JNM-ECP400, manufactured by JEOL Ltd.).

PLLACLへのd−リモネンの注入は、超臨界二酸化炭素流体装置((株)AKICO社製)により実施した。ステンレス製耐圧容器(0.5L)にPLLACL10g、及び耐圧容器内の濃度が4.0g/Lになるようにd−リモネンをセットし、超臨界二酸化炭素(scCO)雰囲気下(温度40〜100℃、圧力20MPa)で3時間攪拌(100rpm)した。その後、圧力を3時間かけて緩やかに減圧し、サンプルを耐圧容器から取り出し、重量を測定した。注入処理後のサンプルには、d−リモネンの他に二酸化炭素が含まれているため、d−リモネンの注入量をH NMR(核磁気共鳴装置:JNM-ECP400、日本電子(株)社製)により測定した。 The injection of d-limonene into PLLACL was performed using a supercritical carbon dioxide fluid device (manufactured by AKICO). In a stainless steel pressure vessel (0.5 L), PLLACL 10 g and d-limonene are set so that the concentration in the pressure vessel becomes 4.0 g / L, and in a supercritical carbon dioxide (scCO 2 ) atmosphere (temperature 40 to 100). The mixture was stirred (100 rpm) at 3 ° C. for 3 hours. Thereafter, the pressure was gradually reduced over 3 hours, the sample was taken out from the pressure vessel, and the weight was measured. Since the sample after the injection treatment contains carbon dioxide in addition to d-limonene, the injection amount of d-limonene is 1 H NMR (nuclear magnetic resonance apparatus: JNM-ECP400, manufactured by JEOL Ltd.) ).

(比較例1)基材にPLLA(三井化学(株)社製)を用いた以外は、実施例1と同様にしてd−リモネンを注入した。   (Comparative Example 1) d-Limonene was injected in the same manner as in Example 1 except that PLLA (manufactured by Mitsui Chemicals, Inc.) was used as the base material.

(比較例2)基材にPBSA(昭和高分子(株)社製)を用いた以外は、実施例1と同様にしてd−リモネンを注入した。   (Comparative Example 2) d-Limonene was injected in the same manner as in Example 1 except that PBSA (manufactured by Showa Polymer Co., Ltd.) was used as the substrate.

実施例1及び比較例1,2の実験結果を表1に示す。   The experimental results of Example 1 and Comparative Examples 1 and 2 are shown in Table 1.

Figure 2008037858
Figure 2008037858

基材にPLLA、PBSAを用いた場合は、注入量がそれぞれ1.03%、0.51%であったのに対し、PLLACLを用いた場合は、注入量が3.07%であり、PLLAを用いた場合に比べ、同条件化で約3倍もの注入量があった。   When PLLA and PBSA were used as the base material, the injection amounts were 1.03% and 0.51%, respectively, whereas when PLLACL was used, the injection amount was 3.07%. Compared to the case of using, the injection amount was about 3 times under the same conditions.

また、表2にPLLACL、PLLA及びPBSAの熱的特性を示す。これらの熱的特性は、DSC(示差走査熱量計:Thermo plus2/DSC8230、(株)リガク社製)により測定した。   Table 2 shows the thermal characteristics of PLLACL, PLLA and PBSA. These thermal characteristics were measured by DSC (Differential Scanning Calorimeter: Thermo plus2 / DSC8230, manufactured by Rigaku Corporation).

Figure 2008037858
Figure 2008037858

PLLACLは、ポリマーの結晶度を表す融解熱が、3種類のポリマーの中で最も低く(21.1J/g)、ガラス転移点が23.9℃と処理温度よりも低くなっていることから、scCO雰囲気下での処理条件の他に、ポリマーの結晶度、融点、ガラス転移点が注入量に大きく影響していることが確認できた。PBSAへの注入量が最も低くなった理由としては、PBSAの融点やガラス転移点が、3種類のポリマーの中で最も低く、ポリマーの結晶度を表す融解熱が最も高くなっているためだと考えられる。なお、PLLAの融点(167.1℃)とガラス転移点(55.9度)は、これらの中で最も高く、何れも注入処理温度より高い。 PLLACL has the lowest heat of fusion representing the crystallinity of the polymer (21.1 J / g) and the glass transition point is 23.9 ° C., which is lower than the processing temperature. In addition to the treatment conditions in the scCO 2 atmosphere, it was confirmed that the crystallinity, melting point, and glass transition point of the polymer greatly affected the injection amount. The reason why the injection amount into PBSA is the lowest is that the melting point and glass transition point of PBSA are the lowest among the three types of polymers and the heat of fusion representing the crystallinity of the polymer is the highest. Conceivable. Note that the melting point (167.1 ° C.) and the glass transition point (55.9 degrees) of PLLA are the highest among these, and both are higher than the injection processing temperature.

d−リモネン濃度、処理時間及び温度に対する注入量の影響
注入量に関する因子を検討した。なお、ここでは、基材にPLLAを用いて試験を行った。
Influence of injection amount on d-limonene concentration, treatment time and temperature Factors related to injection amount were investigated. Here, the test was performed using PLLA as a base material.

(参照例1)PLLA(三井化学(株)社製)からなる基材を直径約4mmのペレット状に成形し、d−リモネン(一級、和光純薬工業(株)社製)を含浸させた。   (Reference Example 1) A base material made of PLLA (made by Mitsui Chemicals, Inc.) was formed into a pellet having a diameter of about 4 mm and impregnated with d-limonene (first grade, manufactured by Wako Pure Chemical Industries, Ltd.). .

PLLAへのd−リモネンの注入は、超臨界二酸化炭素流体装置((株)AKICO社製)により実施した。ステンレス製耐圧容器(0.5L)にPLLA10g、及び耐圧容器内の濃度が1.0g/Lになるようにd−リモネンをセットし、超臨界二酸化炭素(scCO)雰囲気下(温度40℃、圧力20MPa)で3時間攪拌(100rpm)した。その後、圧力を3時間かけて緩やかに減圧し、サンプルを耐圧容器から取り出し、重量を測定した。注入処理後のサンプルには、d−リモネンの他に二酸化炭素が含まれているため、d−リモネンの注入量をH NMR(核磁気共鳴装置:JNM-ECP400、日本電子(株)社製)により測定した。 The injection of d-limonene into PLLA was performed with a supercritical carbon dioxide fluid device (manufactured by AKICO). In a stainless steel pressure vessel (0.5 L), PLLA 10 g and d-limonene are set so that the concentration in the pressure vessel is 1.0 g / L, and the atmosphere is supercritical carbon dioxide (scCO 2 ) (temperature 40 ° C., The mixture was stirred (100 rpm) for 3 hours at a pressure of 20 MPa. Thereafter, the pressure was gradually reduced over 3 hours, the sample was taken out from the pressure vessel, and the weight was measured. Since the sample after the injection treatment contains carbon dioxide in addition to d-limonene, the injection amount of d-limonene is 1 H NMR (nuclear magnetic resonance apparatus: JNM-ECP400, manufactured by JEOL Ltd.) ).

(参照例2)ステンレス製耐圧容器(0.5L)内の濃度が2.0g/Lになるようにd−リモネンをセットした以外は、参照例1と同様にしてd−リモネンを注入した。   (Reference Example 2) d-limonene was injected in the same manner as in Reference Example 1 except that d-limonene was set so that the concentration in the stainless steel pressure vessel (0.5 L) was 2.0 g / L.

(参照例3)ステンレス製耐圧容器(0.5L)内の濃度が4.0g/Lになるようにd−リモネンをセットした以外は、参照例1と同様にしてd−リモネンを注入した。   (Reference Example 3) d-Limonene was injected in the same manner as in Reference Example 1 except that d-limonene was set so that the concentration in the stainless steel pressure vessel (0.5 L) was 4.0 g / L.

(参照例4)ステンレス製耐圧容器(0.5L)にPLLA25g、及び耐圧容器内の濃度が5.0g/Lになるようにd−リモネンをセットした以外は、参照例1と同様にしてd−リモネンを注入した。   (Reference Example 4) d in the same manner as Reference Example 1 except that 25 g of PLLA and d-limonene were set so that the concentration in the pressure vessel became 5.0 g / L in a stainless steel pressure vessel (0.5 L). -Limonene was injected.

(参照例5)ステンレス製耐圧容器(0.5L)にPLLA20g、及び耐圧容器内の濃度が4.0g/Lになるようにd−リモネンをセットし、注入処理(40℃、20MPa、3時間)を2回実施した以外は、参照例1と同様にしてd−リモネンを注入した。   (Reference Example 5) PLLA 20 g and d-limonene are set in a pressure vessel of stainless steel (0.5 L) so that the concentration in the pressure vessel becomes 4.0 g / L, and injection treatment (40 ° C., 20 MPa, 3 hours) ) Was carried out in the same manner as in Reference Example 1 except that d-limonene was injected.

(参照例6)ステンレス製耐圧容器(0.5L)内の濃度が1.7g/Lになるようにd−リモネンをセットし、温度75℃の超臨界二酸化炭素(scCO)雰囲気下で処理した以外は、参照例1と同様にしてd−リモネンを注入した。 Reference Example 6 d-Limonene is set so that the concentration in the stainless steel pressure vessel (0.5 L) is 1.7 g / L, and the treatment is performed in a supercritical carbon dioxide (scCO 2 ) atmosphere at a temperature of 75 ° C. Except that, d-limonene was injected in the same manner as in Reference Example 1.

(参照例7)ステンレス製耐圧容器(0.5L)内の濃度が2.0g/Lになるようにd−リモネンをセットし、温度100℃の超臨界二酸化炭素(scCO)雰囲気下で処理した以外は、参照例1と同様にしてd−リモネンを注入した。 (Reference Example 7) d-limonene is set so that the concentration in the stainless steel pressure vessel (0.5 L) is 2.0 g / L, and the treatment is performed in a supercritical carbon dioxide (scCO 2 ) atmosphere at a temperature of 100 ° C. Except that, d-limonene was injected in the same manner as in Reference Example 1.

これら参照例1〜7の実験結果を表3に示す。   The experimental results of these reference examples 1 to 7 are shown in Table 3.

Figure 2008037858
Figure 2008037858

参照例1におけるd―リモネンの注入量は、0.25%であったが、d−リモネン濃度を2倍にして同条件で処理したところ、注入量は2倍になっていた(参照例2)。さらに、参照例2のポリマー量とd−リモネン濃度をそれぞれ2.5倍にして実験を行ったところ、注入量は3.3倍になった(参照例4)。これより、ポリマー量とd−リモネン量を増加することにより、注入量がより増加することが確認できた。   The injection amount of d-limonene in Reference Example 1 was 0.25%, but when the d-limonene concentration was doubled and the treatment was performed under the same conditions, the injection amount was doubled (Reference Example 2). ). Furthermore, when the experiment was carried out by increasing the polymer amount and d-limonene concentration of Reference Example 2 by 2.5 times, the injection amount was 3.3 times (Reference Example 4). From this, it was confirmed that the injection amount was further increased by increasing the polymer amount and the d-limonene amount.

また、処理回数を増やした場合のd−リモネンの注入量について検討した。参照例4のように、ポリマー量25g、d−リモネン濃度5.0g/Lで処理(40℃、20MPa、3h)した場合、注入量は1.68%であった。さらに、ポリマー量20g、d−リモネン濃度4.0g/Lの条件で処理を2回行ったところ、ポリマー量とd−リモネン量を低くしたにもかかわらず、注入量は1.99%にまで増加していた(参照例5)。これにより、処理時間を長くすることにより、注入量が増加することが確認できた。   Further, the amount of d-limonene injected when the number of treatments was increased was examined. As in Reference Example 4, when the treatment was performed at a polymer amount of 25 g and a d-limonene concentration of 5.0 g / L (40 ° C., 20 MPa, 3 h), the injection amount was 1.68%. Furthermore, when the treatment was performed twice under the conditions of a polymer amount of 20 g and a d-limonene concentration of 4.0 g / L, the injection amount reached 1.99% even though the polymer amount and d-limonene amount were lowered. It increased (Reference Example 5). Thereby, it was confirmed that the injection amount increased by extending the processing time.

また、温度の影響について検討すると、ポリマー量10g、d−リモネン濃度2.0g/Lで処理(40℃、20MPa、3h)した場合、注入量は0.51%であったが(参照例2)、温度を75℃、100℃と上げることにより、注入量がそれぞれ1.05%(参照例6)、1.59%(参照例7)と増加していることから、処理温度が注入量に大きく影響を及ぼすことが確認できた。   Further, when the influence of temperature was examined, when the treatment was performed at a polymer amount of 10 g and a d-limonene concentration of 2.0 g / L (40 ° C., 20 MPa, 3 h), the injection amount was 0.51% (Reference Example 2 ) By increasing the temperature to 75 ° C. and 100 ° C., the injection amounts increased to 1.05% (Reference Example 6) and 1.59% (Reference Example 7), respectively. It has been confirmed that it has a great influence on

ポリマーの形状に対する注入量の影響
また、ポリマーの形状がd−リモネンの注入量に及ぼす影響についても検討した。上記参照例1〜7では、直径約4mmの略円柱のペレット状であったが、参照例8〜11では、フィルム状のPLLAを基材として用いて注入試験を行った。
The influence of the injection amount on the polymer shape and the influence of the polymer shape on the injection amount of d-limonene were also examined. In the above Reference Examples 1 to 7, the shape was a substantially cylindrical pellet having a diameter of about 4 mm. In Reference Examples 8 to 11, an injection test was performed using film-like PLLA as a base material.

(参照例8)PLLA(三井化学(株)社製)からなる基材を厚さ50μmのフィルム状に成形し、d−リモネン(一級、和光純薬工業(株)社製)を含浸させた。   (Reference Example 8) A base material made of PLLA (Mitsui Chemicals Co., Ltd.) was formed into a film having a thickness of 50 μm and impregnated with d-limonene (first grade, manufactured by Wako Pure Chemical Industries, Ltd.). .

PLLAへのd−リモネンの注入は、超臨界二酸化炭素流体装置((株)AKICO社製)により実施した。ステンレス製耐圧容器(0.5L)にPLLA10g、及び耐圧容器内の濃度が7.3g/Lになるようにd−リモネンをセットし、超臨界二酸化炭素(scCO)雰囲気下(温度40℃、圧力20MPa)で3時間攪拌(100rpm)した。その後、圧力を3時間かけて緩やかに減圧し、サンプルを耐圧容器から取り出し、重量を測定した。注入処理後のサンプルには、d−リモネンの他に二酸化炭素が含まれているため、d−リモネンの注入量をH NMR(核磁気共鳴装置:JNM-ECP400、日本電子(株)社製)により測定した。 The injection of d-limonene into PLLA was performed with a supercritical carbon dioxide fluid device (manufactured by AKICO Corporation). In a stainless pressure vessel (0.5 L), PLLA 10 g and d-limonene are set so that the concentration in the pressure vessel is 7.3 g / L, and the atmosphere is supercritical carbon dioxide (scCO 2 ) (temperature 40 ° C., The mixture was stirred (100 rpm) for 3 hours at a pressure of 20 MPa. Thereafter, the pressure was gradually reduced over 3 hours, the sample was taken out from the pressure vessel, and the weight was measured. Since the sample after the injection treatment contains carbon dioxide in addition to d-limonene, the injection amount of d-limonene is 1 H NMR (nuclear magnetic resonance apparatus: JNM-ECP400, manufactured by JEOL Ltd.) ).

(参照例9)基材にフィルム厚100μmのPLLAを用いた以外は、参照例8と同様にしてd−リモネンを注入した。   Reference Example 9 d-Limonene was injected in the same manner as in Reference Example 8 except that PLLA having a film thickness of 100 μm was used as the base material.

(参照例10)基材にフィルム厚300μmのPLLAを用いた以外は、参照例8と同様にしてd−リモネンを注入した。   Reference Example 10 d-Limonene was injected in the same manner as in Reference Example 8 except that PLLA having a film thickness of 300 μm was used as the substrate.

(参照例11)基材にフィルム厚500μmのPLLAを用いた以外は、参照例8と同様にしてd−リモネンを注入した。   Reference Example 11 d-Limonene was injected in the same manner as in Reference Example 8 except that PLLA having a film thickness of 500 μm was used as the base material.

表4にフィルム厚に対する注入量の実験結果を示す。   Table 4 shows the experimental results of the injection amount with respect to the film thickness.

Figure 2008037858
Figure 2008037858

フィルム厚が50μmのPLLAへのd−リモネンの注入量は、2.13%であった(参照例8)。同条件でのペレット状のPLLAへの注入量は、表3に示す結果をもとに計算すると、約1.9%となり、フィルム状の方がペレット状よりも約0.2%注入量が多くなる(約10%増)ことが考えられる。また、フィルム厚の増加により注入量が増加することも確認できた(参照例9〜10)。しかしながら、参照例11のフィルム厚が500μmの基材を用いた場合は、注入量が減少しており、計算により求めたペレット状のPLLAとほぼ同じ結果であった。以上の結果より、フィルム厚が大きくなることにより、内部に目的とする注入物は入りにくくなることが確認できた。   The amount of d-limonene injected into PLLA having a film thickness of 50 μm was 2.13% (Reference Example 8). The amount injected into the pellet-like PLLA under the same conditions is calculated to be about 1.9% when calculated based on the results shown in Table 3, and the film-like injection amount is about 0.2% more than the pellet shape. It is conceivable that it will increase (about 10% increase). Moreover, it has also confirmed that the injection quantity increased with the increase in film thickness (Reference Examples 9-10). However, when the base material having a film thickness of 500 μm in Reference Example 11 was used, the injection amount was reduced, which was almost the same result as the pellet-like PLLA obtained by calculation. From the above results, it was confirmed that the target injection was difficult to enter inside as the film thickness increased.

PLLACLの組成比に対する注入量の影響
表1に示すように、PLLACL(組成比73/27)への注入量は、PLLAへの注入量の約3倍であった。そこで、PLLACLの組成比に対する注入量の影響を検討するために組成比の異なる共重合体を基材に用いて注入試験を行った。
Effect of injection amount on PLLACL composition ratio As shown in Table 1, the injection amount into PLLACL (composition ratio 73/27) was about three times the injection amount into PLLA. Therefore, in order to examine the influence of the injection amount on the composition ratio of PLLACL, an injection test was performed using copolymers having different composition ratios as base materials.

(実施例2)所定量のLLA((3S)-cis-3,6-Dimethyl-1,4-dioxane-2,5-dione:Sigma-Aldrich社製)とCL(特級、和光純薬工業(株)社製)とを、モノマーとしてシュレンクチューブ(φ16mm×110mm:二葉理化製作所社製)に仕込み、触媒としてStannous 2-Ethyl-Hexanoate(Sigma-Aldrich社製)を加え、脱気とアルゴンガス置換をした後、120℃のオイルバスにて24時間重合を行い、PLLACLを合成した。この共重合体の組成比(LLA/CL)をH NMR(核磁気共鳴装置:JNM-ECP400、日本電子(株)社製)により測定したところ、66/34であった。また、このサンプルをフィルム厚さ100μmのフィルム状に成形した。 (Example 2) A predetermined amount of LLA ((3S) -cis-3,6-Dimethyl-1,4-dioxane-2,5-dione: Sigma-Aldrich) and CL (special grade, Wako Pure Chemical Industries ( Is made into a Schlenk tube (φ16mm × 110mm: Futaba Rika Seisakusho Co., Ltd.) as a monomer, Stannous 2-Ethyl-Hexanoate (Sigma-Aldrich) is added as a catalyst, and deaeration and argon gas replacement are performed. Then, polymerization was performed in an oil bath at 120 ° C. for 24 hours to synthesize PLLACL. The composition ratio (LLA / CL) of the copolymer was 66/34 as measured by 1 H NMR (nuclear magnetic resonance apparatus: JNM-ECP400, manufactured by JEOL Ltd.). Further, this sample was formed into a film having a film thickness of 100 μm.

PLLACLへのd−リモネンの注入は、超臨界二酸化炭素流体装置((株)AKICO社製)により実施した。ステンレス製耐圧容器(0.5L)にPLLA10g、及び耐圧容器内の濃度が1.0g/Lになるようにd−リモネンをセットし、超臨界二酸化炭素(scCO)雰囲気下(温度40℃、圧力20MPa)で3時間攪拌(100rpm)した。その後、圧力を3時間かけて緩やかに減圧し、サンプルを耐圧容器から取り出し、重量を測定した。注入処理後のサンプルには、d−リモネンの他に二酸化炭素が含まれているため、d−リモネンの注入量をH NMR(核磁気共鳴装置:JNM-ECP400、日本電子(株)社製)により測定した。 The injection of d-limonene into PLLACL was performed using a supercritical carbon dioxide fluid device (manufactured by AKICO). In a stainless steel pressure vessel (0.5 L), PLLA 10 g and d-limonene are set so that the concentration in the pressure vessel is 1.0 g / L, and the atmosphere is supercritical carbon dioxide (scCO 2 ) (temperature 40 ° C., The mixture was stirred (100 rpm) for 3 hours at a pressure of 20 MPa. Thereafter, the pressure was gradually reduced over 3 hours, the sample was taken out from the pressure vessel, and the weight was measured. Since the sample after the injection treatment contains carbon dioxide in addition to d-limonene, the injection amount of d-limonene is 1 H NMR (nuclear magnetic resonance apparatus: JNM-ECP400, manufactured by JEOL Ltd.) ).

(実施例3)組成比(LLA/CL)が76/24のPLLACLを基材に用いた以外は、実施例2と同様にしてd−リモネンを注入した。   (Example 3) d-limonene was injected in the same manner as in Example 2 except that PLLACL having a composition ratio (LLA / CL) of 76/24 was used as a base material.

(実施例4)組成比(LLA/CL)が85/15のPLLACLを基材に用いた以外は、実施例2と同様にしてd−リモネンを注入した。   (Example 4) d-limonene was injected in the same manner as in Example 2 except that PLLACL having a composition ratio (LLA / CL) of 85/15 was used as a base material.

(実施例5)組成比(LLA/CL)が92/8のPLLACLを基材に用いた以外は、実施例2と同様にしてd−リモネンを注入した。   (Example 5) d-limonene was injected in the same manner as in Example 2 except that PLLACL having a composition ratio (LLA / CL) of 92/8 was used as a base material.

(実施例6)組成比(LLA/CL)が95/5のPLLACLを基材に用いた以外は、実施例2と同様にしてd−リモネンを注入した。   (Example 6) d-limonene was injected in the same manner as in Example 2 except that PLLACL having a composition ratio (LLA / CL) of 95/5 was used as a base material.

(比較例3)組成比(LLA/CL)が12/88のPLLACLを基材に用いた以外は、実施例2と同様にしてd−リモネンを注入した。   (Comparative Example 3) d-Limonene was injected in the same manner as in Example 2 except that PLLACL having a composition ratio (LLA / CL) of 12/88 was used as the base material.

(比較例4)組成比(LLA/CL)が24/76のPLLACLを基材に用いた以外は、実施例2と同様にしてd−リモネンを注入した。   (Comparative Example 4) d-Limonene was injected in the same manner as in Example 2 except that PLLACL having a composition ratio (LLA / CL) of 24/76 was used as a base material.

(比較例5)組成比(LLA/CL)が34/66のPLLACLを基材に用いた以外は、実施例2と同様にしてd−リモネンを注入した。   Comparative Example 5 d-Limonene was injected in the same manner as in Example 2 except that PLLACL having a composition ratio (LLA / CL) of 34/66 was used as the base material.

(比較例6)組成比(LLA/CL)が100/0、つまりPLLAを基材に用いた以外は、実施例2と同様にしてd−リモネンを注入した。   Comparative Example 6 d-Limonene was injected in the same manner as in Example 2 except that the composition ratio (LLA / CL) was 100/0, that is, PLLA was used as the base material.

表5に実施例2〜6及び比較例3〜6の実験結果を示す。また、表6にPLLACLの熱的特性を示す。   Table 5 shows the experimental results of Examples 2 to 6 and Comparative Examples 3 to 6. Table 6 shows the thermal characteristics of PLLACL.

Figure 2008037858
Figure 2008037858

Figure 2008037858
Figure 2008037858

LLA/CL組成比が12/88、24/76、34/66のコポリマー(共重合体)の融点は、表6に示すように約50℃以下と低いため、40℃、20MPaのscCO流体下では、融解が起こっていた。このため、d−リモネンの注入量は、1%以下とPLLA(LLA/CL組成比100/0)を基材として用いるよりも低くなっていた(比較例3〜5)。融点が充分に高い、LLA含量がモル比で66%以上のコポリマーは、融解は起こらず、d−リモネンの注入量もPLLAよりも充分に多かった(実施例2〜6)。さらに、LLA/CL組成比が85/15の場合、注入量が最も高く、3.19%となっていた(実施例4)。また、LLA/CL組成比が66/34、76/24のコポリマーは、注入量がそれぞれ2.42%、2.80%となっており、PLLAの2倍以上の注入量を確認できた。 Since the melting point of the copolymer (copolymer) having an LLA / CL composition ratio of 12/88, 24/76, 34/66 is as low as about 50 ° C. or less as shown in Table 6, the scCO 2 fluid at 40 ° C. and 20 MPa Below, melting occurred. For this reason, the injection amount of d-limonene was 1% or less and lower than using PLLA (LLA / CL composition ratio 100/0) as a base material (Comparative Examples 3 to 5). A copolymer having a sufficiently high melting point and an LLA content of 66% or more by molar ratio did not cause melting, and the amount of d-limonene injected was sufficiently larger than that of PLLA (Examples 2 to 6). Furthermore, when the LLA / CL composition ratio was 85/15, the injection amount was the highest and was 3.19% (Example 4). In addition, the copolymers with LLA / CL composition ratios of 66/34 and 76/24 had injection amounts of 2.42% and 2.80%, respectively, and it was confirmed that the injection amount was twice or more that of PLLA.

図1は、PLLACLのLLA含量に対する注入量を示すグラフである。図1に示すグラフより、LLA含量がモル比で65%以上98%以下のPLLACLを基材として用いることにより、PLLAを基材とした場合より、d−リモネンの注入量が同条件下で2〜2.7倍増加することが分かった。   FIG. 1 is a graph showing the injection amount with respect to the LLA content of PLLACL. From the graph shown in FIG. 1, by using PLLACL having a LLA content of 65% or more and 98% or less as a base material as a base material, the injection amount of d-limonene is 2 under the same conditions as compared with the case where PLLA is used as the base material. It was found to increase by 2.7 times.

d−リモネン濃度及び温度に対する注入量の影響
また、d−リモネン濃度や温度を変えて注入試験を行った。
Influence of injection amount on d-limonene concentration and temperature Further, an injection test was conducted by changing the d-limonene concentration and temperature.

(実施例7)所定量のLLA((3S)-cis-3,6-Dimethyl-1,4-dioxane-2,5-dione:Sigma-Aldrich社製)とCL(特級、和光純薬工業(株)社製)とを、モノマーとしてシュレンクチューブ(φ16mm×110mm:二葉理化製作所社製)に仕込み、触媒としてStannous 2-Ethyl-Hexanoate(Sigma-Aldrich社製)を加え、脱気とアルゴンガス置換をした後、120℃のオイルバスにて24時間重合を行い、PLLACLを合成した。この共重合体の組成比(LLA/CL)をH NMR(核磁気共鳴装置:JNM-ECP400、日本電子(株)社製)により測定したところ、76/24であった。また、このサンプルをフィルム厚さ100μmのフィルム状に成形した。 (Example 7) A predetermined amount of LLA ((3S) -cis-3,6-Dimethyl-1,4-dioxane-2,5-dione: manufactured by Sigma-Aldrich) and CL (special grade, Wako Pure Chemical Industries ( Is made into a Schlenk tube (φ16mm × 110mm: Futaba Rika Seisakusho Co., Ltd.) as a monomer, Stannous 2-Ethyl-Hexanoate (Sigma-Aldrich) is added as a catalyst, and deaeration and argon gas replacement are performed. Then, polymerization was performed in an oil bath at 120 ° C. for 24 hours to synthesize PLLACL. The composition ratio (LLA / CL) of this copolymer was 76/24 as measured by 1 H NMR (nuclear magnetic resonance apparatus: JNM-ECP400, manufactured by JEOL Ltd.). Further, this sample was formed into a film having a film thickness of 100 μm.

PLLACLへのd−リモネンの注入は、超臨界二酸化炭素流体装置((株)AKICO社製)により実施した。ステンレス製耐圧容器(0.5L)にPLLA0.3g、及び濃度が4.0g/Lになるようにd−リモネンをセットし、超臨界二酸化炭素(scCO)雰囲気下(温度40℃、圧力20MPa)で3時間攪拌(100rpm)した。その後、圧力を3時間かけて緩やかに減圧し、サンプルを耐圧容器から取り出し、重量を測定した。注入処理後のサンプルには、d−リモネンの他に二酸化炭素が含まれているため、d−リモネンの注入量をH NMR(核磁気共鳴装置:JNM-ECP400、日本電子(株)社製)により測定した。 The injection of d-limonene into PLLACL was performed using a supercritical carbon dioxide fluid device (manufactured by AKICO). In a stainless steel pressure vessel (0.5 L), PLLA 0.3 g and d-limonene are set so as to have a concentration of 4.0 g / L, and in a supercritical carbon dioxide (scCO 2 ) atmosphere (temperature 40 ° C., pressure 20 MPa). ) For 3 hours (100 rpm). Thereafter, the pressure was gradually reduced over 3 hours, the sample was taken out from the pressure vessel, and the weight was measured. Since the sample after the injection treatment contains carbon dioxide in addition to d-limonene, the injection amount of d-limonene is 1 H NMR (nuclear magnetic resonance apparatus: JNM-ECP400, manufactured by JEOL Ltd.) ).

(実施例8)ステンレス製耐圧容器(0.5L)内の濃度が20.0g/Lになるようにd−リモネンをセットした以外は、実施例7と同様にしてd−リモネンを注入した。   (Example 8) d-limonene was injected in the same manner as in Example 7 except that d-limonene was set so that the concentration in the stainless steel pressure vessel (0.5 L) was 20.0 g / L.

(実施例9)ステンレス製耐圧容器(0.5L)内の濃度が20.0g/Lになるようにd−リモネンをセットし、温度75℃の超臨界二酸化炭素(scCO)雰囲気下で処理した以外は、実施例7と同様にしてd−リモネンを注入した。 (Example 9) d-limonene is set so that the concentration in a stainless steel pressure vessel (0.5 L) is 20.0 g / L, and the treatment is performed in a supercritical carbon dioxide (scCO 2 ) atmosphere at a temperature of 75 ° C. Except that, d-limonene was injected in the same manner as in Example 7.

表7に実施例7〜9の実験結果を示す。   Table 7 shows the experimental results of Examples 7-9.

Figure 2008037858
Figure 2008037858

d−リモネン濃度を4.0g/Lとして40℃、20MPaで3時間処理した実施例7の場合、注入量は2.80%であったが、d−リモネン濃度を20.0g/Lに増加した実施例8の場合、注入量は6.19%と、約2倍増加していた。また、75℃、20MPaで3時間処理した実施例9の場合、コポリマーが融解したため、注入量は5.81%であった。以上の結果より、d−リモネン濃度を増やすと、注入量が大幅に増加することが分かった。   In the case of Example 7 in which the d-limonene concentration was 4.0 g / L and treated at 40 ° C. and 20 MPa for 3 hours, the injection amount was 2.80%, but the d-limonene concentration was increased to 20.0 g / L. In the case of Example 8, the injection amount was 6.19%, an increase of about 2 times. In the case of Example 9 treated at 75 ° C. and 20 MPa for 3 hours, the injection amount was 5.81% since the copolymer was melted. From the above results, it was found that when the d-limonene concentration was increased, the injection amount was significantly increased.

分解試験
また、コポリマーの分解性について実験を行った。
Degradation test An experiment was also conducted on the degradability of the copolymer.

(実施例10)組成比が66/34のPLLACLを37℃のトリシン緩衝溶液(pH8.0)で加水分解させた。   (Example 10) PLLACL having a composition ratio of 66/34 was hydrolyzed with a tricine buffer solution (pH 8.0) at 37 ° C.

(実施例11)組成比が73/27のPLLACLを37℃のトリシン緩衝溶液(pH8.0)で加水分解させた。   (Example 11) PLLACL having a composition ratio of 73/27 was hydrolyzed with a tricine buffer solution (pH 8.0) at 37 ° C.

(実施例12)組成比が85/15のPLLACLを37℃のトリシン緩衝溶液(pH8.0)で加水分解させた。   (Example 12) PLLACL having a composition ratio of 85/15 was hydrolyzed with a tricine buffer solution (pH 8.0) at 37 ° C.

(比較例7)PLLAを37℃のトリシン緩衝溶液(pH8.0)で加水分解させた。   Comparative Example 7 PLLA was hydrolyzed with a 37 ° C. tricine buffer solution (pH 8.0).

実施例10〜12及び比較例7の実験結果を表8に示す。   The experimental results of Examples 10 to 12 and Comparative Example 7 are shown in Table 8.

Figure 2008037858
Figure 2008037858

PLLAを37℃のトリシン緩衝溶液(pH8.0)で加水分解させたところ、350日までは残存重量率が約97%でほとんど分解が進行しなかったが、350日以降になると、徐々に重量減少がみられ、500日で完全に分解した。一方、PLLACLについても同様の実験を行ったところ、組成比が73/27のPLLACLは、PLLAよりも加水分解速度が速く、100日で完全に分解した。また、LLA含量の増加に伴い、加水分解速度は遅くなる傾向となり、85/15の共重合体は、完全に分解するのに約5ヶ月を要した。また、組成比が66/34の共重合体は、73/27の共重合体よりも結晶性(融解熱)が低く、加水分解速度が速くなると思われたが、親水性が低いCL基の含有量が増加するため、加水分解速度は73/27とほぼ同じであった。   When PLLA was hydrolyzed with a 37 ° C. tricine buffer solution (pH 8.0), the remaining weight ratio was about 97% until 350 days, and almost no degradation progressed. There was a decrease and it completely degraded in 500 days. On the other hand, when a similar experiment was performed on PLLACL, PLLACL having a composition ratio of 73/27 had a higher hydrolysis rate than PLLA and completely decomposed in 100 days. Further, as the LLA content increased, the hydrolysis rate tended to be slow, and the 85/15 copolymer took about 5 months to completely decompose. The copolymer with a composition ratio of 66/34 had a lower crystallinity (heat of fusion) than that of the 73/27 copolymer, and the hydrolysis rate seemed to be faster. Due to the increase in content, the hydrolysis rate was almost the same as 73/27.

すなわち、LLA含量がモル比で65%以上98%以下のPLLACLは、少なくとも3ヶ月の徐放期間を有し、LLA含量の増加により、徐放期間が延長することが分かった。   That is, it was found that PLLACL having a LLA content of 65% or more and 98% or less in terms of molar ratio has a sustained release period of at least 3 months, and the sustained release period is extended by increasing the LLA content.

また、このような加水分解試験は、ポリマーを分解するのに長期間を要するので、徐放性を迅速に確認するために酵素を用いて分解試験(酵素分解試験)を行った。分解試験用のPLLACLは、厚さ100μmのフィルムを用いた。   In addition, since such a hydrolysis test requires a long time to decompose the polymer, a degradation test (enzymatic degradation test) was performed using an enzyme in order to quickly confirm the sustained release property. As the PLLACL for the degradation test, a film having a thickness of 100 μm was used.

図2は、リパーゼPSによるPLLACLの酵素分解試験の結果を示すグラフである。実験は、リン酸緩衝溶液(pH7)にリパーゼPS及びコポリマーを浸し、37℃で行った。リパーゼPSは、PCLに対して分解活性が高い酵素である。   FIG. 2 is a graph showing the results of an enzymatic degradation test of PLLACL with lipase PS. The experiment was performed at 37 ° C. by immersing lipase PS and copolymer in a phosphate buffer solution (pH 7). Lipase PS is an enzyme having a high degradation activity against PCL.

PCLは、20時間で完全に分解した。LLA/CL組成比が12/88のコポリマーは、100時間で完全に分解しており、LLA含量の増加に伴い分解速度が遅くなった。また、PLLAは、ほとんど分解しておらず、240時間での残存重量率は約95%であった。   PCL completely decomposed in 20 hours. The copolymer having an LLA / CL composition ratio of 12/88 was completely degraded in 100 hours, and the degradation rate became slower as the LLA content increased. Further, PLLA was hardly decomposed, and the residual weight ratio at 240 hours was about 95%.

図3は、プロティナーゼKによるPLLACLの酵素分解試験の結果を示すグラフである。実験は、トリシン酸緩衝溶液(pH8)にプロティナーゼK及びコポリマーを浸し、37℃で行った。プロティナーゼKは、リパーゼPSと基質特性が異なり、PLLAに対して高い分解活性を示す酵素である。   FIG. 3 is a graph showing the results of the enzymatic degradation test of PLLACL with proteinase K. The experiment was performed at 37 ° C. by immersing proteinase K and the copolymer in a tricinate buffer solution (pH 8). Proteinase K is an enzyme that has different substrate characteristics from lipase PS and exhibits high degradation activity against PLLA.

PLLAは、240時間で残存重量率が約8%にまで減少していた。LLA含量が66%以上のコポリマーは、PLLAよりも分解速度が速くなっており、LLA/CL組成比が76/24のコポリマーは、80時間で完全に分解していた。PLLAよりも分解速度が速くなった理由としては、CLを含有することによりPLLAよりも結晶性が低下し、酵素が付着しやすく、分解しやすくなったことが考えられる。また、プロティナーゼKにより分解されやすいユニット(LLA)含量が減少することにより分解速度は遅くなり、組成比34/66のコポリマーは、240時間で残存重量率は約86%となった。   PLLA had a residual weight percentage reduced to about 8% in 240 hours. A copolymer having an LLA content of 66% or more has a faster degradation rate than PLLA, and a copolymer having an LLA / CL composition ratio of 76/24 was completely degraded in 80 hours. The reason why the decomposition rate was faster than PLLA is that the inclusion of CL decreased the crystallinity compared to PLLA, making it easier for the enzyme to adhere and decompose. In addition, the degradation rate was slowed by decreasing the unit (LLA) content easily degraded by proteinase K, and the copolymer having a composition ratio of 34/66 had a residual weight ratio of about 86% after 240 hours.

以上、本発明に係る徐放剤によれば、LLA含量がモル比で65%以上98%以下のPLLACLを基材として用いることにより、LLAに比べ、少なくとも2倍量の徐放対象成分を含浸させることができる。したがって、徐放期間内に高濃度の徐放対象成分を放出させることができる。また、少なくとも3ヶ月の徐放期間を有するため、害虫駆除等に用いることができる。   As described above, according to the sustained release agent according to the present invention, by using PLLACL having a LLA content of 65% or more and 98% or less as a base material as a base material, at least twice the amount of the sustained release target component as compared with LLA is impregnated. Can be made. Therefore, a high concentration sustained release target component can be released within the sustained release period. Further, since it has a sustained release period of at least 3 months, it can be used for pest control and the like.

以下、徐放材料となる生分解性ポリマーとして、ポリエステル系のポリ乳酸(PLLA)とその共重合体であるL−ラクチド/トリメチレンカーボネート共重合体(PLLATMC)、L−ラクチド/2,2−ジメチルトリメチレンカーボネート共重合体(PLLA22DTMC)、L−ラクチド/テトラメチレンカーボネート共重合体(PLLATEMC)、L−ラクチド/グリコリド共重合体(PLLAGL)、L−ラクチド/D,L−ラクチド共重合体(PLLADLLA)、D,L−ラクチド/ε−カプロラクトン共重合体(PDLLACL)等を用いて実験を行った。   Hereinafter, polyester-based polylactic acid (PLLA) and its copolymer L-lactide / trimethylene carbonate copolymer (PLLATMC), L-lactide / 2,2- Dimethyltrimethylene carbonate copolymer (PLLA22DTMC), L-lactide / tetramethylene carbonate copolymer (PLLATEMC), L-lactide / glycolide copolymer (PLLAGL), L-lactide / D, L-lactide copolymer ( (PLLADLLA), D, L-lactide / ε-caprolactone copolymer (PDLLACL) and the like were used for experiments.

PLLA22DTMCの組成比に対する注入量の影響
PLLAとその重合体であるPLLA22DTMCへのd−リモネンの注入試験を行った。d−リモネンは、柑橘類の果皮やスギの木などに含まれる昆虫などに対する忌避効果を有するテルペン系炭化水素である。
Influence of injection amount on composition ratio of PLLA22DTMC An injection test of d-limonene into PLLA and its polymer PLLA22DTMC was conducted. d-Limonene is a terpene hydrocarbon that has repellent effects on insects contained in citrus peels and cedar trees.

(実施例13)所定量のLLA((3S)-cis-3,6-Dimethyl-1,4-dioxane-2,5-dione:Sigma-Aldrich社製)と22DTMC(宇部興産(株)社製)とを、モノマーとしてシュレンクチューブ(φ16mm×110mm:二葉理化製作所社製)に仕込み、触媒としてStannous 2-Ethyl-Hexanoate(Sigma-Aldrich社製)を加え、脱気とアルゴンガス置換をした後、120℃のオイルバスにて24時間重合を行い、PLLA22DTMCを合成した。この共重合体の組成比(LLA/22DTMC)をH NMR(核磁気共鳴装置:JNM-ECP400、日本電子(株)社製)により測定したところ、76/24であった。また、このサンプルをフィルム厚さ100μmのフィルム状に成形した。 (Example 13) A predetermined amount of LLA ((3S) -cis-3,6-Dimethyl-1,4-dioxane-2,5-dione: Sigma-Aldrich) and 22DTMC (Ube Industries, Ltd.) Is added to a Schlenk tube (φ16 mm × 110 mm: manufactured by Futaba Rika Seisakusho Co., Ltd.) as a monomer, Stannous 2-Ethyl-Hexanoate (manufactured by Sigma-Aldrich) is added as a catalyst, and after deaeration and argon gas replacement, Polymerization was performed in an oil bath at 120 ° C. for 24 hours to synthesize PLLA22DTMC. The composition ratio (LLA / 22DTMC) of this copolymer was measured by 1 H NMR (nuclear magnetic resonance apparatus: JNM-ECP400, manufactured by JEOL Ltd.) and found to be 76/24. Further, this sample was formed into a film having a film thickness of 100 μm.

PLLA22DTMCへのd−リモネンの注入は、超臨界二酸化炭素流体装置((株)AKICO社製)により実施した。ステンレス製耐圧容器(0.5L)にPLLA22DTMC0.3g、及び耐圧容器内の濃度が4.0g/Lになるようにd−リモネンをセットし、超臨界二酸化炭素(scCO)雰囲気下(温度40℃、圧力20MPa)で3時間攪拌(100rpm)した。その後、圧力を3時間かけて緩やかに減圧し、サンプルを耐圧容器から取り出し、重量を測定した。注入処理後のサンプルには、d−リモネンの他に二酸化炭素が含まれているため、d−リモネンの注入量をH NMR(核磁気共鳴装置:JNM-ECP400、日本電子(株)社製)により測定した。 The injection of d-limonene into PLLA22DTMC was performed with a supercritical carbon dioxide fluid device (manufactured by AKICO). In a stainless steel pressure vessel (0.5 L), PLLA22DTMC 0.3 g and d-limonene are set so that the concentration in the pressure vessel is 4.0 g / L, and the atmosphere is supercritical carbon dioxide (scCO 2 ) (temperature 40 The mixture was stirred (100 rpm) at 3 ° C. for 3 hours. Thereafter, the pressure was gradually reduced over 3 hours, the sample was taken out from the pressure vessel, and the weight was measured. Since the sample after the injection treatment contains carbon dioxide in addition to d-limonene, the injection amount of d-limonene is 1 H NMR (nuclear magnetic resonance apparatus: JNM-ECP400, manufactured by JEOL Ltd.) ).

(実施例14)組成比(LLA/22DTMC)が90/10のPLLA22DTMCを基材に用いた以外は、実施例13と同様にしてd−リモネンを注入した。   (Example 14) d-Limonene was injected in the same manner as in Example 13 except that PLLA22DTMC having a composition ratio (LLA / 22DTMC) of 90/10 was used as a base material.

(比較例8)組成比(LLA/22DTMC)が0/100、つまり22DTMCを基材に用いた以外は、実施例13と同様にしてd−リモネンを注入した。   (Comparative Example 8) d-Limonene was injected in the same manner as in Example 13 except that the composition ratio (LLA / 22DTMC) was 0/100, that is, 22DTMC was used as the base material.

(比較例9)組成比(LLA/22DTMC)が10/90のPLLA22DTMCを基材に用いた以外は、実施例13と同様にしてd−リモネンを注入した。   (Comparative Example 9) d-Limonene was injected in the same manner as in Example 13 except that PLLA22DTMC having a composition ratio (LLA / 22DTMC) of 10/90 was used as a base material.

(比較例10)組成比(LLA/22DTMC)が36/64のPLLA22DTMCを基材に用いた以外は、実施例13と同様にしてd−リモネンを注入した。   (Comparative Example 10) d-Limonene was injected in the same manner as in Example 13 except that PLLA22DTMC having a composition ratio (LLA / 22DTMC) of 36/64 was used as a base material.

(比較例11)組成比(LLA/22DTMC)が58/42のPLLA22DTMCを基材に用いた以外は、実施例13と同様にしてd−リモネンを注入した。   (Comparative Example 11) d-Limonene was injected in the same manner as in Example 13 except that PLLA22DTMC having a composition ratio (LLA / 22DTMC) of 58/42 was used as the base material.

表9に実施例13、14及び比較例6、8〜11の実験結果を示す。   Table 9 shows the experimental results of Examples 13 and 14 and Comparative Examples 6 and 8-11.

Figure 2008037858
Figure 2008037858

PLLA(比較例6)と22DTMC(比較例8)の単独重合体へのd−リモネンの注入量は、それぞれ1.20%と2.10%であった。LLAの増加に伴い、共重合体へのd−リモネンの注入量は増加する傾向にあり、LLA/22DTMC組成比が76/24の時に最も注入量は高く5.02%であった。組成比が36/64(比較例10)と58/42(比較例11)の共重合体への注入試験では、共重合体の融解がみられた。また、PLLACLでは、組成比が85/15(実施例4)の共重合体が最も注入量が高く3.19%であったが、今回のPLLA22DTMCへの注入実験の結果、実施例13は、実施例4よりもd−リモネンの注入量が1.6倍増加していた。   The amounts of d-limonene injected into the homopolymers of PLLA (Comparative Example 6) and 22DTMC (Comparative Example 8) were 1.20% and 2.10%, respectively. As the LLA increased, the amount of d-limonene injected into the copolymer tended to increase. When the LLA / 22DTMC composition ratio was 76/24, the amount injected was the highest, 5.02%. In the injection test into the copolymers having a composition ratio of 36/64 (Comparative Example 10) and 58/42 (Comparative Example 11), melting of the copolymer was observed. Moreover, in PLLACL, the copolymer with a composition ratio of 85/15 (Example 4) had the highest injection amount of 3.19%, but as a result of the injection experiment into PLLA 22DTMC, Example 13 Compared to Example 4, the amount of d-limonene injected was increased 1.6 times.

PLLA22DTMCは、PLLAよりも融点やガラス転移温度が低く、また、結晶性の程度を表す融解熱も低く、scCOによる可塑化が進行したことによって注入量が増加したことが考えられる。さらに、22DTMCは、カーボネート結合を有する化合物であり、この結合はCOと同様の化学構造であるため、d−リモネンが溶解したCOの共重合体への溶解度が増加したことも考えられる。以上のような要因により、PLLAよりもPLLA22DTMCの方がd−リモネンの注入量が増加したものと推察できる。 PLLA22DTMC has a lower melting point and glass transition temperature than PLLA, and also has a low heat of fusion representing the degree of crystallinity, and it is considered that the injection amount increased due to the progress of plasticization with scCO 2 . Furthermore, 22DTMC is a compound having a carbonate bond, this bond is because it is the same chemical structure as CO 2, the solubility in the copolymer of CO 2 limonene d- is dissolved is also contemplated that increased. Due to the above factors, it can be inferred that PLLA22DTMC increased the amount of d-limonene injected over PLLA.

他のポリ乳酸共重合体への注入試験
PLLA22DTMC以外のその他のポリ乳酸共重合体についても、同様の注入実験を行った。ポリ乳酸共重合体には、PLLAGL、PLLADLLA、PDLLACLを用い、注入実験はPLLACLやPLLA22DTMCと同じ条件で実験を行った。
Injection test to other polylactic acid copolymers The same injection experiment was conducted for other polylactic acid copolymers other than PLLA22DTMC. As the polylactic acid copolymer, PLLAGL, PLLLADLLA, and PDLLACL were used, and the injection experiment was performed under the same conditions as PLLACL and PLLA22DTMC.

(実施例15)組成比(LLA/GL)が80/20のPLLAGLを基材に用いた以外は、実施例13と同様にしてd−リモネンを注入した。   (Example 15) d-Limonene was injected in the same manner as in Example 13 except that PLLAGL having a composition ratio (LLA / GL) of 80/20 was used as a base material.

(実施例16)組成比(LLA/DLLA)が80/20のPLLADLLAを基材に用いた以外は、実施例13と同様にしてd−リモネンを注入した。   (Example 16) d-Limonene was injected in the same manner as in Example 13 except that PLLADLLA having a composition ratio (LLA / DLLA) of 80/20 was used as a base material.

(比較例12)組成比(LLA/GL)が49/51のPLLAGLを基材に用いた以外は、実施例13と同様にしてd−リモネンを注入した。   (Comparative Example 12) d-Limonene was injected in the same manner as in Example 13 except that PLLAGL having a composition ratio (LLA / GL) of 49/51 was used as the base material.

(比較例13)組成比(LLA/DLLA)が20/80のPLLADLLAを基材に用いた以外は、実施例13と同様にしてd−リモネンを注入した。   Comparative Example 13 d-Limonene was injected in the same manner as in Example 13 except that PLLADLLA having a composition ratio (LLA / DLLA) of 20/80 was used as the base material.

(比較例14)組成比(LLA/DLLA)が50/50のPLLADLLAを基材に用いた以外は、実施例13と同様にしてd−リモネンを注入した。   (Comparative Example 14) d-Limonene was injected in the same manner as in Example 13 except that PLLADLLA having a composition ratio (LLA / DLLA) of 50/50 was used as the base material.

(比較例15)組成比(DLLA/CL)が19/81のPDLLACLを基材に用いた以外は、実施例13と同様にしてd−リモネンを注入した。   (Comparative Example 15) d-Limonene was injected in the same manner as in Example 13 except that PDLLACL having a composition ratio (DLLA / CL) of 19/81 was used as a base material.

(比較例16)組成比(DLLA/CL)が51/49のPDLLACLを基材に用いた以外は、実施例13と同様にしてd−リモネンを注入した。   (Comparative Example 16) d-Limonene was injected in the same manner as in Example 13 except that PDLLACL having a composition ratio (DLLA / CL) of 51/49 was used as a base material.

(比較例17)組成比(DLLA/CL)が83/17のPDLLACLを基材に用いた以外は、実施例13と同様にしてd−リモネンを注入した。   (Comparative Example 17) d-Limonene was injected in the same manner as in Example 13 except that PDLLACL having a composition ratio (DLLA / CL) of 83/17 was used as the base material.

(比較例18)組成比(DLLA/CL)が91/9のPDLLACLを基材に用いた以外は、実施例13と同様にしてd−リモネンを注入した。   (Comparative Example 18) d-Limonene was injected in the same manner as in Example 13 except that PDLLACL having a composition ratio (DLLA / CL) of 91/9 was used as the base material.

表10に実施例15、16及び比較例12〜18の実験結果を示す。   Table 10 shows the experimental results of Examples 15 and 16 and Comparative Examples 12 to 18.

Figure 2008037858
Figure 2008037858

組成比(LLA/GL)が49/51(比較例12)と80/20(実施例15)について実験を行ったところ、d−リモネンの注入量は、それぞれ1.30%と1.67%であった。GLはLLAと同様に一般的に親水性が高い化合物として知られており、この共重合体は、d−リモネンとの相溶性があまり高くないが、この実施例15は、比較例12よりも注入量が多かった。   When an experiment was conducted with composition ratios (LLA / GL) of 49/51 (Comparative Example 12) and 80/20 (Example 15), the injection amounts of d-limonene were 1.30% and 1.67%, respectively. Met. GL is generally known as a highly hydrophilic compound like LLA, and this copolymer is not very compatible with d-limonene, but this Example 15 is more than Comparative Example 12. The injection volume was large.

PLLADLLAについては、組成比が50/50(比較例14)のときに、注入量が最も高く7.35%となっているが、組成比が20/80(比較例13)と50/50(比較例14)の共重合体は、融解がみられた。DLLAは非晶性化合物であり、共重合体の融解を促進したものと思われる。非晶性であるDLLAを20mol%程度含有する共重合体(実施例16)においては、融解はみられず、注入量は4.01%であった。これは、PLLAへの注入量である1.20%と比べて3.3倍の増加であった。   As for PLLLADLLA, when the composition ratio was 50/50 (Comparative Example 14), the injection amount was the highest and was 7.35%, but the composition ratio was 20/80 (Comparative Example 13) and 50/50 ( The copolymer of Comparative Example 14) was melted. DLLA is an amorphous compound and appears to have accelerated the melting of the copolymer. In the copolymer (Example 16) containing about 20 mol% of amorphous DLLA, no melting was observed, and the injection amount was 4.01%. This was a 3.3-fold increase compared to 1.20%, which is the amount injected into PLLA.

PDLLACLへの注入試験の結果は、モノマーに非晶性のDLLAを用いているために全共重合体において融解がみられた。H NMRによる測定では、注入量は組成比91/9(比較例18)において、最も高く5.73%となっており、LLACLと同様にCL含有量の増加に伴い、d−リモネンの注入量は減少する傾向であった。 As a result of the injection test into PDLLACL, since amorphous DLLA was used as a monomer, melting was observed in all copolymers. In the measurement by 1 H NMR, the injection amount was the highest at 5.73% in the composition ratio 91/9 (Comparative Example 18), and as the CL content increased, the injection of d-limonene was similar to LLACL. The amount tended to decrease.

LLA含量約80%のポリ乳酸共重合体の注入量の比較
表11にLLA含量約80%のポリ乳酸共重合体へのd−リモネンの注入量を比較した結果を示す。また、表12にポリ乳酸共重合体の熱的特性を示す。
Comparison of injection amount of polylactic acid copolymer having an LLA content of about 80% Table 11 shows the result of comparison of the injection amount of d-limonene into the polylactic acid copolymer having an LLA content of about 80%. Table 12 shows the thermal characteristics of the polylactic acid copolymer.

なお、実施例17、18は、それぞれ、LLAとトリメチレンカーボネート(TMC)との共重合体、及びLLAとテトラメチレンカーボネート(TEMC)との共重合体を用いた以外は、実施例13と同様にしてd−リモネンを注入した。   Examples 17 and 18 were the same as Example 13 except that a copolymer of LLA and trimethylene carbonate (TMC) and a copolymer of LLA and tetramethylene carbonate (TEMC) were used. Then, d-limonene was injected.

Figure 2008037858
Figure 2008037858

Figure 2008037858
Figure 2008037858

ポリエステル共重合体(PLLAGL、PLLADLLA、PLLACL)において、エステル結合間のメチレン鎖長の短いGL(C)を20%含有するポリ乳酸共重合体は、d−リモネンの注入量が、1.67%でポリ乳酸の結果(1.20%)より少しの増加が見られた。一方、メチレン鎖長の長いCL(C)を15%含有するポリ乳酸共重合体は、d−リモネンの注入量が3.19%となっており、PLLAGLと比べて2.4倍増加していた。これは、CLがGLよりも疎水性が高く、ポリ乳酸共重合体の疎水性を増加させたことにより、親油性の性質を有するscCOになじみやすくなり、注入量を増加させたことを示している。 In a polyester copolymer (PLLAGL, PLLLADLLA, PLLACL), a polylactic acid copolymer containing 20% GL (C 1 ) having a short methylene chain length between ester bonds has an injection amount of d-limonene of 1.67. % Showed a slight increase from the polylactic acid result (1.20%). On the other hand, in the polylactic acid copolymer containing 15% CL (C 5 ) having a long methylene chain length, the injection amount of d-limonene is 3.19%, which is 2.4 times higher than PLLAGL. It was. This indicates that CL is more hydrophobic than GL and increases the hydrophobicity of the polylactic acid copolymer, making it easier to become familiar with scCO 2 having lipophilic properties and increasing the injection amount. ing.

PLLADLLAへの注入量は、4.01%であった。LLA、DLLAは、共にGLにメチル基が結合した構造であり、GLよりも疎水性は高い。さらに、LLAは、光学活性化合物であるのに対し、DLLAは、光学活性化合物ではない。このDLLAがポリ乳酸共重合の光学活性を低下させ、光学活性の低下はポリマー構造の結晶性あるいは融点を低下させる原因になる。結晶性や融点の低下は、scCOに対する溶解性を増加させることになり、LLA単体で構成されるポリ乳酸よりもd−リモネン注入量を増加させた要因であると考えられる。したがって、ポリマーの疎水性の増加や結晶性あるいは融点の低下させることにより、目標とする化合物の注入量を増加できるものと考えられ、γ−ブチロラクトンやδ−バレロラクトンなどのラクトン類も同様の効果が期待できるものと考えられる。 The injection amount into PLLLADLLA was 4.01%. Both LLA and DLLA have a structure in which a methyl group is bonded to GL, and are more hydrophobic than GL. Furthermore, LLA is an optically active compound, whereas DLLA is not an optically active compound. This DLLA decreases the optical activity of polylactic acid copolymerization, and the decrease in optical activity causes the crystallinity or melting point of the polymer structure to decrease. The decrease in crystallinity and melting point increases the solubility in scCO 2 and is considered to be a factor that increased the amount of d-limonene injection compared to polylactic acid composed of LLA alone. Therefore, it is considered that the injection amount of the target compound can be increased by increasing the hydrophobicity of the polymer or decreasing the crystallinity or melting point, and lactones such as γ-butyrolactone and δ-valerolactone have the same effect. Can be expected.

また、ポリエステルカーボネート共重合体(PLLATMC、PLLA22DTMC、PLLATEMC)において、何れの共重合体もd−リモネンの注入量は5%以上であった。中でも置換基の無いTMC(C)やTEMC(C)は、高い値を示していた。PLLATMC(86/14)、PLLA22DTMC(76/24)、PLLATEMC(81/19)の融点・融解熱は、それぞれ、48.9℃・29.0J/g、138.6℃・24.4J/g、97.9℃・5.1J/gであり、融点が低下するに伴い注入量が増加していることから、注入量はメチレン鎖長の長さよりも融点に起因していると考えられる。なお、カーボネート類は、COと構造が類似のカーボネート結合を有していることから、CLなどのラクトン類から成る共重合よりも目的成分の注入量が増加したものと推察される。 Moreover, in the polyester carbonate copolymer (PLLATMC, PLLA22DTMC, PLLATEMC), the injection amount of d-limonene was 5% or more in any copolymer. Among them, TMC (C 3 ) and TEMC (C 4 ) having no substituent showed high values. The melting points and heats of fusion of PLLATMC (86/14), PLLA22DTMC (76/24) and PLLATEMC (81/19) are 48.9 ° C. and 29.0 J / g, 138.6 ° C. and 24.4 J / g, respectively. 97.9 ° C. · 5.1 J / g, and since the injection amount increases as the melting point decreases, it is considered that the injection amount is caused by the melting point rather than the length of the methylene chain length. In addition, since carbonates have carbonate bonds similar in structure to CO 2 , it is presumed that the injection amount of the target component was increased as compared with copolymerization of lactones such as CL.

以上の結果より、ポリエステル共重合体やポリエステルカーボネート共重合体のように、疎水性を増加させることや、結晶性あるいは融点を低下させることが可能なポリエステルアミド共重合体、ポリエステルエーテル共重合体等の共重合体も目的化合物の注入量を増加させることが可能な高分子材料として利用することができる。   From the above results, polyester amide copolymers, polyester ether copolymers, etc. that can increase hydrophobicity, decrease crystallinity or melting point, such as polyester copolymers and polyester carbonate copolymers, etc. This copolymer can also be used as a polymer material capable of increasing the injection amount of the target compound.

生分解性ポリマー(フィルム状)への抗菌成分の注入試験
次に、上述した生分解性ポリマーに抗菌成分の注入試験を行った。抗菌成分としては、ヒノキ、ワサビ、茶葉などに含まれる、ヒノキチオール、イソチオシアン酸アリル、trans−2−ヘキセナール、trans−3−ヘキセナール、cis−3−ヘキセナールなどが知られているが、ここでは、trans−2−ヘキセナールやヒノキチオールを用いた。
Injection test of antibacterial component into biodegradable polymer (film form) Next, an injection test of the antibacterial component into the above-described biodegradable polymer was performed. As the antibacterial component, hinokithiol, allyl isothiocyanate, trans-2-hexenal, trans-3-hexenal, cis-3-hexenal, and the like, which are contained in hinoki, wasabi, tea leaves, etc. are known. -2-hexenal or hinokitiol was used.

(実施例19)組成比(LLA/CL)が81/19の共重合体(フィルム厚さ100μm)へのtrans−2−ヘキセナールの注入は、超臨界二酸化炭素流体装置((株)AKICO社製)により実施した。ステンレス製耐圧容器(0.5L)にPLLACL0.3g、及び耐圧容器内の濃度が4.0g/Lになるようにtrans−2−ヘキセナールをセットし、超臨界二酸化炭素(scCO)雰囲気下(温度40℃、圧力20MPa)で3時間攪拌(100rpm)した。その後、圧力を3時間かけて緩やかに減圧し、サンプルを耐圧容器から取り出し、重量を測定した。注入処理後のサンプルには、trans−2−ヘキセナールの他に二酸化炭素が含まれているため、trans−2−ヘキセナールの注入量をH NMR(核磁気共鳴装置:JNM-ECP400、日本電子(株)社製)により測定した。 (Example 19) Trans-2-hexenal was injected into a copolymer having a composition ratio (LLA / CL) of 81/19 (film thickness: 100 μm) by a supercritical carbon dioxide fluid device (manufactured by AKICO Corporation). ). In a stainless steel pressure vessel (0.5 L), PLLACL 0.3 g and trans-2-hexenal were set so that the concentration in the pressure vessel would be 4.0 g / L, and in a supercritical carbon dioxide (scCO 2 ) atmosphere ( The mixture was stirred (100 rpm) at a temperature of 40 ° C. and a pressure of 20 MPa for 3 hours. Thereafter, the pressure was gradually reduced over 3 hours, the sample was taken out from the pressure vessel, and the weight was measured. Since the sample after the injection treatment contains carbon dioxide in addition to trans-2-hexenal, the amount of trans-2-hexenal injected was determined by 1 H NMR (nuclear magnetic resonance apparatus: JNM-ECP400, JEOL ( Measured by Co. Ltd.

(実施例20)組成比(LLA/CL)が91/9のPLLACLを基材に用いた以外は、実施例19と同様にしてtrans−2−ヘキセナールを注入した。   (Example 20) Trans-2-hexenal was injected in the same manner as in Example 19 except that PLLACL having a composition ratio (LLA / CL) of 91/9 was used as a base material.

(実施例21)組成比(LLA/GL)が80/20のPLLAGLを基材に用いた以外は、実施例19と同様にしてtrans−2−ヘキセナールを注入した。   Example 21 trans-2-hexenal was injected in the same manner as in Example 19 except that PLLAGL having a composition ratio (LLA / GL) of 80/20 was used as a base material.

(比較例19)組成比(LLA/CL)が49/51のPLLACLを基材に用いた以外は、実施例19と同様にしてtrans−2−ヘキセナールを注入した。   (Comparative Example 19) Trans-2-hexenal was injected in the same manner as in Example 19 except that PLLACL having a composition ratio (LLA / CL) of 49/51 was used as a base material.

(比較例20)組成比(LLA/CL)が60/40のPLLACLを基材に用いた以外は、実施例19と同様にしてtrans−2−ヘキセナールを注入した。   Comparative Example 20 Trans-2-hexenal was injected in the same manner as in Example 19 except that PLLACL having a composition ratio (LLA / CL) of 60/40 was used as the base material.

(比較例21)組成比(DLLA/CL)が59/41のPDLLACLを基材に用いた以外は、実施例19と同様にしてtrans−2−ヘキセナールを注入した。   (Comparative Example 21) trans-2-hexenal was injected in the same manner as in Example 19 except that PDLACL having a composition ratio (DLLA / CL) of 59/41 was used as the base material.

(比較例22)組成比(DLLA/CL)が71/29のPDLLACLを基材に用いた以外は、実施例19と同様にしてtrans−2−ヘキセナールを注入した。   (Comparative Example 22) Trans-2-hexenal was injected in the same manner as in Example 19 except that PDLACL having a composition ratio (DLLA / CL) of 71/29 was used as a base material.

(比較例23)PLLAを基材に用いた以外は、実施例19と同様にしてtrans−2−ヘキセナールを注入した。   (Comparative Example 23) Trans-2-hexenal was injected in the same manner as in Example 19 except that PLLA was used as the base material.

表13にPLLAとその共重合体であるPLLACL、PLLAGL、PDLLACLへのtrans−2−ヘキセナールの注入結果を示す。   Table 13 shows the result of trans-2-hexenal injection into PLLA and its copolymers PLLACL, PLLAGL, and PDLLACL.

Figure 2008037858
Figure 2008037858

PLLACLに対するtrans−2−ヘキセナールの注入量は、組成比49/51(比較例19)のときに、0.86%となっており、LLA含量の増加に伴い注入量は増加していた。PLLACLへのtrans−2−ヘキセナールの注入量は、d−リモネンの注入量と比べて低くなっていた。これは、trans−2−ヘキセナールのscCOへの溶解度がd−リモネンと比べて低いことが原因であると考えられる。実施例20に示すようにLLA含量が多い共重合体(組成比91/9)では、trans−2−ヘキセナールの注入量は2.56%と多くなる傾向にあった。同様の組成比(92/8)の共重合体へのd−リモネンの注入量は2.15%であった。以上のことから、LLA含量が多い共重合体では、trans−2−ヘキセナールの注入量が多くなることが分かった。これは、LLAとtrans−2−ヘキセナールの相溶性が高いことが原因であると考えられる。 The injection amount of trans-2-hexenal with respect to PLLACL was 0.86% when the composition ratio was 49/51 (Comparative Example 19), and the injection amount increased as the LLA content increased. The amount of trans-2-hexenal injected into PLLACL was lower than that of d-limonene. This is thought to be due to the low solubility of trans-2-hexenal in scCO 2 compared to d-limonene. As shown in Example 20, in the copolymer having a high LLA content (composition ratio 91/9), the injection amount of trans-2-hexenal tended to increase to 2.56%. The amount of d-limonene injected into the copolymer having the same composition ratio (92/8) was 2.15%. From the above, it was found that in the copolymer having a high LLA content, the amount of trans-2-hexenal injected was increased. This is considered due to the high compatibility between LLA and trans-2-hexenal.

相溶性を明確にするために、LLAGLへのtrans−2−ヘキセナールの注入実験を行った。実施例21に示すようにLLAGL(組成比80/20)への注入量は2倍以上になっていた。GLはLLAと同様にCLと比べて構造上疎水性が低いことからtrans−2−ヘキセナールのような化合物と相溶しやすいことが考えられる。   In order to clarify the compatibility, trans-2-hexenal was injected into LLAGL. As shown in Example 21, the amount injected into LLAGL (composition ratio 80/20) was more than doubled. Since GL is structurally less hydrophobic than CL as in LLA, it is considered that GL is easily compatible with compounds such as trans-2-hexenal.

DLLACLについては、DLLAを含有する共重合体が非晶性ポリマーであることから反応条件下でポリマーの融解がみられたが、組成比71/29でtrans−2−ヘキセナールの注入量は3.31%となっていた。   As for DLLCL, although the copolymer containing DLLA was an amorphous polymer, melting of the polymer was observed under the reaction conditions, but the injection amount of trans-2-hexenal was 3 in a composition ratio of 71/29. It was 31%.

また、ヒノキチオールの注入試験を、PLLA22DTMCの組成比を変えて行った。   Moreover, the injection | pouring test of hinokitiol was done by changing the composition ratio of PLLA22DTMC.

(実施例22)(LLA/22DTMC)が79/21の共重合体(フィルム厚さ100μm)へのヒノキチオールの注入は、超臨界二酸化炭素流体装置((株)AKICO社製)により実施した。ステンレス製耐圧容器(0.5L)にPLLA22DTMC0.3g、及び耐圧容器内の濃度が4.0g/Lになるようにヒノキチオールをセットし、超臨界二酸化炭素(scCO)雰囲気下(温度40℃、圧力20MPa)で3時間攪拌(100rpm)した。その後、圧力を3時間かけて緩やかに減圧し、サンプルを耐圧容器から取り出し、重量を測定した。注入処理後のサンプルには、ヒノキチオールの他に二酸化炭素が含まれているため、ヒノキチオールの注入量をH NMR(核磁気共鳴装置:JNM-ECP400、日本電子(株)社製)により測定した。 (Example 22) Injection of hinokitiol into a copolymer (film thickness: 100 µm) having (LLA / 22DTMC) of 79/21 was carried out with a supercritical carbon dioxide fluid device (manufactured by AKICO Corporation). Set stainless steel pressure vessel (0.5L) PLLA22DTMC 0.3g, and hinokitiol so that the concentration in the pressure vessel becomes 4.0g / L, under supercritical carbon dioxide (scCO 2 ) atmosphere (temperature 40 ° C, The mixture was stirred (100 rpm) for 3 hours at a pressure of 20 MPa. Thereafter, the pressure was gradually reduced over 3 hours, the sample was taken out from the pressure vessel, and the weight was measured. Since the sample after the injection treatment contains carbon dioxide in addition to hinokitiol, the injection amount of hinokitiol was measured by 1 H NMR (nuclear magnetic resonance apparatus: JNM-ECP400, manufactured by JEOL Ltd.). .

(実施例23)組成比(LLA/22DTMC)が86/14のPLLA22DTMCを基材に用いた以外は、実施例22と同様にしてヒノキチオールを注入した。   (Example 23) Hinokitiol was injected in the same manner as in Example 22 except that PLLA22DTMC having a composition ratio (LLA / 22DTMC) of 86/14 was used as a base material.

(実施例24)組成比(LLA/22DTMC)が91/9のPLLA22DTMCを基材に用いた以外は、実施例22と同様にしてヒノキチオールを注入した。   (Example 24) Hinokitiol was injected in the same manner as in Example 22 except that PLLA22DTMC having a composition ratio (LLA / 22DTMC) of 91/9 was used as a base material.

(実施例25)組成比(LLA/22DTMC)が98/2のPLLA22DTMCを基材に用いた以外は、実施例22と同様にしてヒノキチオールを注入した。   (Example 25) Hinokitiol was injected in the same manner as in Example 22 except that PLLA22DTMC having a composition ratio (LLA / 22DTMC) of 98/2 was used as a base material.

(比較例24)組成比(LLA/22DTMC)が100/0、すなわちPLLAを基材に用いた以外は、実施例22と同様にしてヒノキチオールを注入した。   Comparative Example 24 Hinokitiol was injected in the same manner as in Example 22 except that the composition ratio (LLA / 22DTMC) was 100/0, that is, PLLA was used as the base material.

表14にPLLAとの共重合体であるPLLA22DTMCへのヒノキチオールの注入試験の結果を示す。   Table 14 shows the results of an injection test of hinokitiol into PLLA22DTMC, which is a copolymer with PLLA.

Figure 2008037858
Figure 2008037858

PLLA共重合体(PLLACL、PLLAGL、PLLA22DLLA)へのd−リモネンの注入量は、融解した共重合体を除いて、PLLA22DTMC(76/24)が最も注入量が高くなっていたので、ヒノキチオールのPLLA共重合体への注入は、PLLA22DTMCを用いて実験を行った。PLLAへのヒノキチオールの注入実験(温度40℃、圧力20MPa、時間3h)において、PLLAへの注入量は、2.41%となっており、d−リモネン注入量1.20%と比べて注入量は2倍増加していた。これは、ヒノキチオールのscCOに対する溶解度がd−リモネンの溶解度よりも高いことを示している。PLLA22DTMCについても同条件下で実験を行ったところ、組成比98/2の共重合体(実施例25)への注入量は7.92%となっており、scCOへの溶解度が高いと考えられる22DTMC含量の増加に伴い、共重合体への注入量は増加していた。組成比91/9の共重合体(実施例24)への注入量は10.58%となっており、一方、同じ共重合体(組成比90/10)へのd−リモネンの注入量は4.59%であり、ヒノキチオールの注入量の約1/2となっていた。 The injection amount of d-limonene into the PLLA copolymer (PLLACL, PLLAGL, PLLA22DLLA) was the highest injection amount of PLLA22DTMC (76/24) except for the melted copolymer. The injection into the copolymer was conducted using PLLA22DTMC. In the injection experiment of hinokitiol into PLLA (temperature 40 ° C., pressure 20 MPa, time 3 h), the injection amount into PLLA is 2.41%, which is an injection amount compared to the d-limonene injection amount 1.20%. Increased by a factor of two. This indicates that the solubility of hinokitiol in scCO 2 is higher than that of d-limonene. When the experiment was performed under the same conditions for PLLA22DTMC, the amount injected into the copolymer (Example 25) with a composition ratio of 98/2 was 7.92%, and it was considered that the solubility in scCO 2 was high. As the 22DTMC content increased, the amount injected into the copolymer increased. The injection amount into the copolymer (Example 24) with a composition ratio of 91/9 is 10.58%, while the injection amount of d-limonene into the same copolymer (composition ratio 90/10) is It was 4.59%, which was about ½ of the injection amount of hinokitiol.

以上の結果から、scCOによるポリマーへの有用成分の注入は、基材となるポリマーと、有用成分のscCOへの溶解性と、ポリマーと有用成分の相溶性とが大きな要因となることが分かった。 From the above results, injection of a useful component into a polymer by scCO 2 may be largely caused by the polymer as a base material, the solubility of the useful component in scCO 2 and the compatibility of the polymer and the useful component. I understood.

生分解性ポリマーの分解試験
本徐放剤の徐放性は、加水分解性に依存するため、分解性について評価した。分解性については、加水分解性と酵素分解性について検討した。加水分解性については、トリシン緩衝溶液(pH8.0)における37℃での分解試験を行った。その結果、PLLAは、350日まで残存重量率が約97%でほとんど分解が進行していないが、350日以降になると徐々に重量減少がみられ、500日で完全に溶解した。注入試験に使用したPLLA共重合体(PLLACL、PLLAGL、PLL22DTMC)の加水分解性は、LLA含量が80%前後の共重合体において加水分解速度は速く、100日前後で完全に分解した。
Biodegradable polymer degradation test The sustained release properties of this sustained release agent depend on the hydrolyzability, and therefore the degradation property was evaluated. Regarding degradability, hydrolyzability and enzyme degradability were examined. About hydrolyzability, the degradation test at 37 degreeC in a tricine buffer solution (pH 8.0) was done. As a result, PLLA had a residual weight ratio of about 97% until 350 days and hardly decomposed, but gradually decreased in weight after 350 days and completely dissolved in 500 days. Regarding the hydrolyzability of the PLLA copolymer (PLLACL, PLLAGL, PLL22DTMC) used in the injection test, the hydrolysis rate was fast in the copolymer having an LLA content of about 80%, and it completely decomposed in about 100 days.

図4は、プロティナーゼKによるPLLA22DTMCの酵素分解試験の結果を示すグラフである。実験は、トリシン酸緩衝溶液(pH8)にプロティナーゼK及びコポリマーを浸し、37℃で行った。プロティナーゼKは、PLLAに対して高い分解活性を示す酵素である。   FIG. 4 is a graph showing the results of an enzymatic degradation test of PLLA22DTMC with proteinase K. The experiment was performed at 37 ° C. by immersing proteinase K and the copolymer in a tricinate buffer solution (pH 8). Proteinase K is an enzyme that exhibits high degradation activity against PLLA.

PLLAの残存重量率は、240時間で約8%にまで減少した。22DTMC含量が18%以下のPLLA22DTMCは、PLLAよりも分解速度が速く、組成比98/2の共重合体は、160時間で完全に分解していた。PLLAよりも分解速度が速くなった理由としては、22DTMCを含有することによりPLLAよりも結晶性が低下し、酵素に分解されやすいLLAが減少するに伴い分解速度は遅くなり、組成比34/66の重合体は、分解速度が遅く240時間で残存重量率は、約93%となっていた。その他の共重合体についても、同様の結果となっており、LLA含量が80%以上の共重合体はPLLAよりも分解速度が速かった。   The residual weight percentage of PLLA decreased to about 8% in 240 hours. PLLA 22DTMC having a 22DTMC content of 18% or less had a faster decomposition rate than PLLA, and the copolymer with a composition ratio of 98/2 was completely decomposed in 160 hours. The reason why the degradation rate was higher than that of PLLA is that the inclusion of 22DTMC decreases the crystallinity as compared with PLLA, and the degradation rate becomes slower as LLA that is easily degraded by the enzyme decreases, resulting in a composition ratio of 34/66. This polymer had a slow decomposition rate and a residual weight ratio of about 93% after 240 hours. The same results were obtained for the other copolymers, and the copolymer having an LLA content of 80% or more had a faster decomposition rate than PLLA.

以上の結果より、本発明に係る徐放剤によれば、分解の進行に伴いポリマー内に取り込まれている有用成分を徐々に放出することができる。   From the above results, the sustained release agent according to the present invention can gradually release useful components incorporated into the polymer as the decomposition proceeds.

PLLACLのLLA含量に対する注入量を示すグラフである。It is a graph which shows the injection amount with respect to the LLA content of PLLACL. リパーゼPSによるPLLACLの酵素分解試験の結果を示すグラフである。It is a graph which shows the result of the enzymatic degradation test of PLLACL by lipase PS. プロティナーゼKによるPLLACLの酵素分解試験の結果を示すグラフである。It is a graph which shows the result of the enzymatic degradation test of PLLACL by proteinase K. プロティナーゼKによるPLLA22DTMCの酵素分解試験の結果を示すグラフである。It is a graph which shows the result of the enzymatic degradation test of PLLA22DTMC by proteinase K.

Claims (9)

L−ラクチドとε−カプロラクトンとのモル比が65:35〜98:2の共重合体からなる基材に、徐放対象成分を含浸させてなることを特徴とする徐放剤。   A sustained release agent comprising a base material made of a copolymer having a molar ratio of L-lactide and ε-caprolactone of 65:35 to 98: 2, impregnated with a sustained release target component. 上記徐放対象成分は、超臨界流体注入法を用いて上記基材に含浸されることを特徴とする請求項1記載の徐放剤。   The sustained-release agent according to claim 1, wherein the sustained-release target component is impregnated into the base material using a supercritical fluid injection method. 上記徐放対象成分の上記基材への注入量は、上記基材への注入の際の条件下においてポリL−ラクチドからなる基材への注入量の少なくとも2倍であることを特徴とする請求項1記載の徐放剤。   The amount of the sustained release target component injected into the substrate is at least twice the amount injected into the substrate made of poly-L-lactide under the conditions for injection into the substrate. The sustained release agent according to claim 1. 上記徐放対象成分は、d−リモネン、メントン、メントール、プレゴン、カルボン、ネロリドール、テルピネオール、セドロール、ピレトリン、アレスリン、ヒドラメチルノン、ペルメトリン、フタルスリン、硫酸ニコチン、クマリン、ユーカリエキス、ラベンダーエキス、ハーブエキスから選択される少なくとも1つであることを特徴とする請求項1記載の徐放剤。   The above sustained release target ingredients are d-limonene, menthone, menthol, pregone, carvone, nerolidol, terpineol, cedrol, pyrethrin, allethrin, hydramethylnon, permethrin, phthalthrin, nicotine sulfate, coumarin, eucalyptus extract, lavender extract, herb The sustained-release agent according to claim 1, wherein the sustained-release agent is at least one selected from extracts. 上記基材は、フィルム状であることを特徴とする請求項1記載の徐放剤。   The sustained-release agent according to claim 1, wherein the substrate is in the form of a film. ポリ乳酸共重合体からなる基材に、徐放対象成分を含浸させてなる徐放剤であって、
上記ポリ乳酸共重合体は、L−ラクチドが65〜98モル%の割合で重合されたものであることを特徴とする徐放剤。
A sustained release agent obtained by impregnating a base material composed of a polylactic acid copolymer with a component for sustained release,
The above-mentioned polylactic acid copolymer is a sustained release agent characterized in that L-lactide is polymerized in a proportion of 65 to 98 mol%.
上記ポリ乳酸共重合体は、L−ラクチドと、グリコリド、D,L−ラクチド、β−プロピオラクトン、γ−ブチロラクトン、δ−バレロラクトン、β−メチル−δ−バレロラクト、ε−カプロラクトン、DL−マバロノラクトン、エチレンカーボネート、トリメチレンカーボネート、1−メチルトリメチレンカーボネート、2,2−ジメチルトリメチレンカーボネート、テトラメチレンカーボネート、1,5−ジオキセパン−2−オン、モルフォリン−2,5−ジオン、3,6−ジメチルモルフォリン−2,5−ジオン、(R)−or(S)−3−メチル−4−オキサ−6−ヘキサノライド(MOHEL)、エチレンオキシド、5−メチル−5−ベンジロキシカルボニル−1,3−ジオキサン−2−オンから選択される1種または2種以上とから構成されることを特徴とする請求項6記載の徐放剤。   The polylactic acid copolymer includes L-lactide, glycolide, D, L-lactide, β-propiolactone, γ-butyrolactone, δ-valerolactone, β-methyl-δ-valerolacto, ε-caprolactone, DL- Mavalonolactone, ethylene carbonate, trimethylene carbonate, 1-methyltrimethylene carbonate, 2,2-dimethyltrimethylene carbonate, tetramethylene carbonate, 1,5-dioxepan-2-one, morpholine-2,5-dione, 3, 6-dimethylmorpholine-2,5-dione, (R) -or (S) -3-methyl-4-oxa-6-hexanolide (MOHEL), ethylene oxide, 5-methyl-5-benzyloxycarbonyl-1, From one or more selected from 3-dioxan-2-one Sustained release agent according to claim 6, wherein the made. 上記徐放対象成分は、超臨界流体注入法を用いて上記基材に含浸されることを特徴とする請求項6記載の徐放剤。   The sustained-release agent according to claim 6, wherein the sustained-release target component is impregnated in the base material using a supercritical fluid injection method. 上記徐放対象成分は、ヒノキチオール、ワサオール、trans−2−ヘキセナール、trans−3−ヘキセナール、cis−3−ヘキセナール、カテキン、タケオール、ひまし油、10−ウンデセン酸、アリルカラシ油、イソチオシアン酸アリル、カプサイシン、d−リモネン、メントン、メントール、プレゴン、カルボン、ネロリドール、テルピネオール、セドロール、ピレトリン、アレスリン、ヒドラメチルノン、ペルメトリン、フタルスリン、硫酸ニコチン、クマリン、ユーカリエキス、ラベンダーエキス、ハーブエキスから選択される少なくとも1つであることを特徴とする請求項6記載の徐放剤。   The sustained release target components are hinokitiol, wasaol, trans-2-hexenal, trans-3-hexenal, cis-3-hexenal, catechin, takeol, castor oil, 10-undecenoic acid, allyl mustard oil, allyl isothiocyanate, capsaicin, d -At least one selected from limonene, menthone, menthol, pregon, carvone, nerolidol, terpineol, cedrol, pyrethrin, allethrin, hydramethylnon, permethrin, phthalthrin, nicotine sulfate, coumarin, eucalyptus extract, lavender extract, herbal extract The sustained-release agent according to claim 6, wherein
JP2007042430A 2006-07-12 2007-02-22 Sustained release agent Active JP5458261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007042430A JP5458261B2 (en) 2006-07-12 2007-02-22 Sustained release agent

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006192203 2006-07-12
JP2006192203 2006-07-12
JP2007042430A JP5458261B2 (en) 2006-07-12 2007-02-22 Sustained release agent

Publications (3)

Publication Number Publication Date
JP2008037858A true JP2008037858A (en) 2008-02-21
JP2008037858A5 JP2008037858A5 (en) 2010-05-13
JP5458261B2 JP5458261B2 (en) 2014-04-02

Family

ID=39173289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007042430A Active JP5458261B2 (en) 2006-07-12 2007-02-22 Sustained release agent

Country Status (1)

Country Link
JP (1) JP5458261B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011068577A (en) * 2009-09-24 2011-04-07 Institute Of National Colleges Of Technology Japan Repellent
JP2013035779A (en) * 2011-08-08 2013-02-21 Institute Of National Colleges Of Technology Japan Sustained release agent
WO2017188195A1 (en) * 2016-04-28 2017-11-02 日本ゼオン株式会社 Antibacterial agent and antibacterial treatment method
JP2020059674A (en) * 2018-10-10 2020-04-16 国立大学法人九州大学 Agricultural material and method for producing agricultural material
JP2020079349A (en) * 2018-11-12 2020-05-28 独立行政法人国立高等専門学校機構 Sustained-release material, sustained-release agent containing the same and production method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1025336A (en) * 1996-07-09 1998-01-27 Shimadzu Corp Levee sheet
JP2002356403A (en) * 2001-05-30 2002-12-13 Japan Steel Works Ltd:The Method for sustained-release sexual pheromone preparation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1025336A (en) * 1996-07-09 1998-01-27 Shimadzu Corp Levee sheet
JP2002356403A (en) * 2001-05-30 2002-12-13 Japan Steel Works Ltd:The Method for sustained-release sexual pheromone preparation

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011068577A (en) * 2009-09-24 2011-04-07 Institute Of National Colleges Of Technology Japan Repellent
JP2013035779A (en) * 2011-08-08 2013-02-21 Institute Of National Colleges Of Technology Japan Sustained release agent
WO2017188195A1 (en) * 2016-04-28 2017-11-02 日本ゼオン株式会社 Antibacterial agent and antibacterial treatment method
JP2020059674A (en) * 2018-10-10 2020-04-16 国立大学法人九州大学 Agricultural material and method for producing agricultural material
JP2020079349A (en) * 2018-11-12 2020-05-28 独立行政法人国立高等専門学校機構 Sustained-release material, sustained-release agent containing the same and production method thereof
JP7249568B2 (en) 2018-11-12 2023-03-31 独立行政法人国立高等専門学校機構 Sustained-release material, sustained-release agent containing the same, and method for producing the same

Also Published As

Publication number Publication date
JP5458261B2 (en) 2014-04-02

Similar Documents

Publication Publication Date Title
Kalia et al. Polyhydroxyalkanoates: Trends and advances toward biotechnological applications
Huang et al. Degradation characteristics of poly (ϵ‐caprolactone)‐based copolymers and blends
JP5458261B2 (en) Sustained release agent
Cai et al. Enzymatic degradation behavior and mechanism of poly (lactide-co-glycolide) foams by trypsin
Ying et al. Scaffolds from electrospun polyhydroxyalkanoate copolymers: fabrication, characterization, bioabsorption and tissue response
Janorkar et al. Modification of poly (lactic acid) films: enhanced wettability from surface-confined photografting and increased degradation rate due to an artifact of the photografting process
KR102201025B1 (en) Absorbable iron alloy stent
JP5311828B2 (en) Biodegradable polyester blend
Chapanian et al. The role of oxidation and enzymatic hydrolysis on the in vivo degradation of trimethylene carbonate based photocrosslinkable elastomers
Lee et al. Hydrolytic kinetics of biodegradable polyester monolayers
Källrot et al. Covalent grafting of poly (L-lactide) to tune the in vitro degradation rate
LeBlon et al. In vitro comparative biodegradation analysis of salt‐leached porous polymer scaffolds
Seppälä et al. Photocrosslinkable polyesters and poly (ester anhydride) s for biomedical applications
JP6094219B2 (en) Biodegradable particle, vascular embolization material, and method for producing biodegradable particle
JP5852357B2 (en) Sustained release agent, sustained release device, and method for producing sustained release agent
Daban et al. Porous polyurethane film fabricated via the breath figure approach for sustained drug release
Slivniak et al. Hydrolytic degradation and drug release of ricinoleic acid–lactic acid copolyesters
CN110621717B (en) Resins derived from renewable resources and structures made from the resins
Yue et al. Incorporating of oxidized cellulose nanofibers@ D-Limonene Pickering emulsion into chitosan for fully biobased coatings toward fruits protection
Tsutsumi et al. Impregnation of poly (L‐lactide‐ran‐cyclic carbonate) copolymers with useful compounds with supercritical carbon dioxide
Lu et al. Permeation of protein from porous poly (ϵ‐caprolactone) films
JP5508797B2 (en) Repellent
Zhang et al. Hyperbranched poly (ester) s for delivery of small molecule therapeutics
Shirahama et al. Highly biodegradable copolymers composed of chiral depsipeptide and l‐lactide units with favorable physical properties
Regnier-Delplace et al. PLGAs bearing carboxylated side chains: novel matrix formers with improved properties for controlled drug delivery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100218

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120521

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120814

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20121225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5458261

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150