JP2008037664A - Method for producing calcium aluminate monocarbonate - Google Patents

Method for producing calcium aluminate monocarbonate Download PDF

Info

Publication number
JP2008037664A
JP2008037664A JP2006209913A JP2006209913A JP2008037664A JP 2008037664 A JP2008037664 A JP 2008037664A JP 2006209913 A JP2006209913 A JP 2006209913A JP 2006209913 A JP2006209913 A JP 2006209913A JP 2008037664 A JP2008037664 A JP 2008037664A
Authority
JP
Japan
Prior art keywords
monocarbonate
aluminum hydroxide
calcium aluminate
reaction
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006209913A
Other languages
Japanese (ja)
Other versions
JP5071616B2 (en
Inventor
Yasuo Tanaka
康夫 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kotegawa Sangyo Co Ltd
Original Assignee
Kotegawa Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kotegawa Sangyo Co Ltd filed Critical Kotegawa Sangyo Co Ltd
Priority to JP2006209913A priority Critical patent/JP5071616B2/en
Publication of JP2008037664A publication Critical patent/JP2008037664A/en
Application granted granted Critical
Publication of JP5071616B2 publication Critical patent/JP5071616B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method rapidly producing calcium aluminate monocarbonate excellent in grain size controllability by using inexpensive raw materials and an inexpensive device. <P>SOLUTION: Aluminum hydroxide as one of raw materials is subjected to grinding treatment, and is mechanochemically activated, thus mutual reaction between slaked lime and calcium carbonate progresses, and calcium aluminate monocarbonate is synthesized in water at ordinary temperature under ordinary pressure. In this case, when high speed shear mixing treatment is performed at the start of the reaction, the fining and satisfactory dispersion of primary particles can be attained together with the acceleration of reaction time. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は水酸化アルミニウムにメカノケミカル処理を施し、活性化させることで生産性・形態制御性良くカルシウムアルミネートモノカーボネート(以下、モノカーボネートという)3CaO・Al・CaCO・11HOを製造する方法に関するものである。 In the present invention, calcium aluminate monocarbonate (hereinafter referred to as monocarbonate) 3CaO · Al 2 O 3 · CaCO 3 · 11H 2 O with good productivity and form controllability is obtained by applying mechanochemical treatment to aluminum hydroxide and activating it. It is related with the method of manufacturing.

モノカーボネートは層状構造をもつ結晶性の物質で、微細な六角板状の形態である。同じように微細な六角板状の結晶であるカオリナイトは、製紙用塗工顔料として印刷適正の向上に役立つため、広く用いられている。カオリナイトのような無機粉体は製紙、プラスチック、ゴム、化粧品などの多くの工業製品に利用されており、これらは表面光沢や増量、補強、難燃化などの機能を製品に与えている。   Monocarbonate is a crystalline substance having a layered structure and is in the form of a fine hexagonal plate. Similarly, kaolinite, which is a fine hexagonal plate-like crystal, is widely used as a coating pigment for papermaking because it helps to improve printing suitability. Inorganic powders such as kaolinite are used in many industrial products such as papermaking, plastics, rubber, cosmetics, etc., which give the product functions such as surface gloss, weight gain, reinforcement and flame retardancy.

また更に、モノカーボネートは、エトリンガイト3CaO・Al・3CaSO・32HOとともにセメント硬化体中に生成する物質として知られており、どちらもカルシウムアルミネートの陰イオン化合物であるため、化学的性質は共通する点が多い。しかしながら単体物質としては、エトリンガイトが製紙産業において「サチンホワイト」と呼ばれる高光沢性・高白色度の塗工用顔料として100年以上の長い歴史を築いてきたのに対して、モノカーボネートが工業的に製造されることは全く無かった。 Furthermore, monocarbonate is known as a substance produced in a hardened cement together with ettringite 3CaO.Al 2 O 3 .3CaSO 4 .32H 2 O, and both are anionic compounds of calcium aluminate. There are many common characteristics. However, as a simple substance, Ettlingite has established a long history of more than 100 years as a high gloss and high whiteness coating pigment called “satin white” in the paper industry, whereas monocarbonate is industrial Was never manufactured.

サチンホワイトの高光沢性は、粒子の形状と結晶水の熱的挙動に由来するものである。サチンホワイトの粒子は針状であるため、紙面上で平坦に配向しやすく、また、多量に含有する結晶水は数十度の熱で容易に放出されるため、その水蒸気が塗工層を柔らかくし、カレンダー効果を出やすくしている。このような結晶水の挙動については、モノカーボネートにも共通する性質であり、他の製紙用塗工顔料にはない特徴的な部分である。   The high glossiness of satin white is derived from the shape of the particles and the thermal behavior of crystal water. Since satin white particles are needle-shaped, they are easily oriented flat on the paper surface, and a large amount of crystal water is easily released by heat of several tens of degrees, so that the water vapor softens the coating layer. The calendar effect is easy to achieve. Such behavior of crystal water is a property common to monocarbonate, and is a characteristic part not found in other paper coating pigments.

このように優れた素性を秘めたモノカーボネートであるが、合成に関してはアルミナセメントの研究の一端とするものが殆どで、工業的な製造が試みられることは全く無かった。   Although it is a monocarbonate having such excellent features, most of the synthesis is one of the researches of alumina cement, and industrial production has never been attempted.

例えば、Gypsum&Lime/No.207(1987)において三五・宮川らは常圧水溶液法でカルシウムアルミネートヘキサハイドレート(ハイドロガーネット)3CaO・Al・6HOを合成する中で空気中または水中の炭酸ガスと反応し副産物としてモノカーボネートが生成したことを報告している。 For example, Gypsum & Lime / No. 207 (1987), Sango and Miyagawa et al. Reacted with carbon dioxide in the air or in water while synthesizing calcium aluminate hexahydrate (hydrogarnet) 3CaO.Al 2 O 3 .6H 2 O by the atmospheric pressure aqueous solution method. It was reported that monocarbonate was produced as a by-product.

また、Inorganic Materials,Vol.4,May(1997)において板井・大門らは、炭酸カルシウムと酸化アルミニウムを乾式混合後1350℃で焼成して得られた無水カルシウムアルミネート3CaO・Alを常温の水中で炭酸カルシウムと反応させ粒径1〜2μm程度のモノカーボネートを合成している。 In Inorganic Materials, Vol. 4, May (1997), Itai and Daimon et al. Obtained anhydrous calcium aluminate 3CaO · Al 2 O 3 obtained by dry mixing calcium carbonate and aluminum oxide at 1350 ° C. at room temperature. Is reacted with calcium carbonate in water to synthesize monocarbonate having a particle size of about 1 to 2 μm.

モノカーボネートを製紙塗料用顔料やプラスチックフィラーとして工業的に生産するには、不純物を含まないことはもちろん、コストが安価で形態制御性の優れた製造方法でなければならないが、従来の技術の範疇ではこれらを達成することは困難である。   In order to industrially produce monocarbonate as a pigment for paper coatings and plastic fillers, it must be a manufacturing method that does not contain impurities and is low in cost and excellent in form controllability. So it is difficult to achieve these.

常圧水溶液法を応用し、積極的に炭酸ガスを吹き込んでモノカーボネートを合成する手法は、炭酸ガスと反応し難いハイドロガーネットを生成させずに実施しなければならないため、シビアな温度制御・炭酸ガス導入速度の制御が要求される。たとえこれを厳格に実施しても生成物中へのハイドロガーネット、ヘミカーボネート3CaO・Al・1/2Ca(OH)・1/2CaCO・12HO、カルサイトCaCO、ギブサイトAl(OH)などの多少の混入は避けられない。また、水酸化アルミニウムの反応促進のため反応の場を高温にすると溶解度の変化により5μmを越す大粒径のモノカーボネートを混在することとなる。 The method of synthesizing monocarbonate by actively blowing carbon dioxide gas by applying the atmospheric pressure aqueous solution method must be carried out without generating hydrogarnet that does not easily react with carbon dioxide gas. Control of the gas introduction speed is required. Even if this is carried out strictly, hydrogarnet into the product, hemicarbonate 3CaO · Al 2 O 3 · 1 / 2Ca (OH) 2 · 1 / 2CaCO 3 · 12H 2 O, calcite CaCO 3 , gibbsite Al Some contamination such as (OH) 3 is inevitable. Further, when the reaction site is heated to promote the reaction of aluminum hydroxide, monocarbonate having a large particle diameter exceeding 5 μm is mixed due to the change in solubility.

無水カルシウムアルミネートと炭酸カルシウムの水中での反応は20〜30℃の常温で比較的速やかに進行し、1〜5μm程度で厚みの薄いモノカーボネートが得られる。低温でも反応するため粒径制御性は期待できる方法であるが、無水カルシウムアルミネートを造るのに1350℃という超高温と、得られた焼結体の微粉砕が必要である。また、水中合成において原料濃度を高めていくと無水カルシウムアルミネートの水和発熱により水温が上昇し、35℃を超えた場合はハイドロガーネットを生成してしまう。更に、無水カルシウムアルミネートは水和とともにセメント様の急激な凝結を伴うため、分散性の良好な生成物を得るには、強力な撹拌機または湿式粉砕機中で反応させなければならない。このように無水カルシウムアルミネートを経由する方法は生産性を高めることが難しく、コスト的に到底見合うものではない。   The reaction of anhydrous calcium aluminate and calcium carbonate in water proceeds relatively quickly at room temperature of 20 to 30 ° C., and a monocarbonate having a thin thickness of about 1 to 5 μm is obtained. Although the particle size controllability can be expected because it reacts even at a low temperature, an ultra-high temperature of 1350 ° C. and fine pulverization of the obtained sintered body are necessary to produce anhydrous calcium aluminate. Further, when the raw material concentration is increased in the synthesis in water, the water temperature rises due to the hydration heat of anhydrous calcium aluminate, and when it exceeds 35 ° C., hydrogarnet is generated. Furthermore, anhydrous calcium aluminate is accompanied by rapid cement-like agglomeration with hydration and must be reacted in a strong stirrer or wet grinder to obtain a product with good dispersibility. As described above, it is difficult to increase the productivity of the method via anhydrous calcium aluminate, and the cost is not completely met.

このような事情を踏まえ、本発明者は生産性と粒径制御性の両立可能なモノカーボネートの製造方法を鋭意検討した結果、水酸化アルミニウムを摩砕処理等によりメカノケミカル活性化することで目的が達成されることを見いだし、しかも比較的軽微な摩砕処理でよいことがわかり、本発明を完成するに至った。   In light of these circumstances, the present inventors have intensively studied a method for producing monocarbonate capable of achieving both productivity and particle size controllability. As a result, the object of the present invention is to mechanochemically activate aluminum hydroxide by grinding treatment or the like. Has been found to be achieved, and it has been found that a relatively fine grinding process is sufficient, and the present invention has been completed.

メカノケミカル活性化とは、固体物質が圧縮、剪断、摩擦、引張り、曲げなどの機械的作用を受けたときに生じる結晶構造の不整化(=格子の乱れ)を化学反応の促進に利用する手法である。このような手法は物質の化学的ポテンシャル自体を変化させるため、使い方によっては加熱、微細化、加圧、撹拌などの一般的な反応操作では成し得ない、優れた効果を発揮する場合がある。   Mechanochemical activation is a technique that uses the disorder of the crystal structure (= lattice disorder) that occurs when a solid material is subjected to mechanical actions such as compression, shearing, friction, tension, bending, etc., to promote chemical reactions. It is. Since such a method changes the chemical potential of the substance itself, depending on how it is used, it may have an excellent effect that cannot be achieved by general reaction operations such as heating, miniaturization, pressurization, and stirring. .

即ち、本発明は消石灰と水酸化アルミニウムと炭酸カルシウムを水の存在下で反応させ、モノカーボネートを製造する方法において、水酸化アルミニウムが特に摩砕処理等によりメカノケミカル活性化されたものであり、当該水酸化アルミニウムが110℃加熱減量率測定法において、10分値−1分値=0.3%以上であることを第一の特徴とし、反応初期に特に高速剪断混合を行うことを第二の特徴とするモノカーボネートの製造方法を提供することにある。   That is, the present invention reacts slaked lime, aluminum hydroxide and calcium carbonate in the presence of water to produce monocarbonate, in which aluminum hydroxide is mechanochemically activated particularly by grinding treatment, The first feature of the aluminum hydroxide is that the 10 minute value-1 minute value = 0.3% or more in the method of measuring the heating loss at 110 ° C. It is an object of the present invention to provide a method for producing monocarbonate characterized by the following.

以下、本発明を詳細に説明する。本発明の目的物質であるモノカーボネートは詳しくは2{[CaAl(OH) ](CO 2−0.5(HO)2.5}の式で示され、[CaAl(OH) ]が層構造を形成し、炭酸イオンと水分子を挟んで積層している。 Hereinafter, the present invention will be described in detail. The monocarbonate which is the target substance of the present invention is specifically represented by the formula 2 {[Ca 2 Al (OH) 6 + ] (CO 3 2− ) 0.5 (H 2 O) 2.5 }, and [Ca 2 Al (OH) 6 + ] forms a layer structure and is laminated with carbonate ions and water molecules sandwiched therebetween.

この層間に挟まれた水分子の数は加熱乾燥などの操作により容易に減少し、同時に層間隔を変化させるが、多少の水分子の出入りはモノカーボネートの本質に大きな影響を与えないため、本発明において水分子の数は特に限定しない。   The number of water molecules sandwiched between the layers can be easily reduced by operations such as heating and drying, and at the same time the layer spacing can be changed, but the entry and exit of some water molecules does not significantly affect the essence of monocarbonate. In the invention, the number of water molecules is not particularly limited.

本発明のモノカーボネートの製造方法は、摩砕処理等によりメカノケミカル活性化した水酸化アルミニウムと消石灰と炭酸カルシウムを水中で反応させるものである。従って消石灰の替わりに生石灰を使用することももちろん可能であるが、実質的な反応は消石灰との反応であり、反応温度の制御性、及び品質が安定することから消石灰を使用することが好ましい。   In the method for producing monocarbonate of the present invention, mechanochemically activated aluminum hydroxide, slaked lime and calcium carbonate are reacted in water. Therefore, it is possible to use quick lime instead of slaked lime, but the substantial reaction is a reaction with slaked lime, and it is preferable to use slaked lime because the controllability of reaction temperature and the quality are stable.

炭酸カルシウムには結晶形態による分類で、カルサイト・アラゴナイト・バテライトがあるが、本発明において炭酸カルシウムは溶解後反応するため結晶形態は何れであっても全く問題なく用いることが出来る。また同じ理由により軽質炭酸カルシウム・重質炭酸カルシウムの種別にも影響されることはない。更に同じ理由により、故意または自然に部分炭酸化した消石灰を用いることもなんら問題ない。重要なのは溶解を促進すべく粒子が小さいことであるが、このような炭酸カルシウムは市販の汎用グレードで十分対応されるため、本発明において炭酸カルシウムの粒度は特に明記しない。   Calcium carbonate is classified according to crystal form, and includes calcite, aragonite, and vaterite. However, in the present invention, calcium carbonate reacts after dissolution, so that any crystal form can be used without any problem. For the same reason, it is not affected by the types of light calcium carbonate and heavy calcium carbonate. Furthermore, for the same reason, there is no problem using intentionally or naturally partially carbonated slaked lime. What is important is that the particles are small in order to promote dissolution. However, since such calcium carbonate is sufficiently compatible with commercially available general grades, the particle size of calcium carbonate is not particularly specified in the present invention.

請求項1に記載したように、本発明では原料として摩砕処理等によりメカノケミカル活性化した水酸化アルミニウムを用いることを必須条件とし、メカノケミカル活性化の度合いは110℃加熱減量率測定法において、10分値−1分値=0.3%以上でなければならない。0.3%未満では活性度が低いため、反応に時間がかかるばかりか目的とする粒径の揃ったモノカーボネートが得られない。   As described in claim 1, in the present invention, it is essential to use mechanochemically activated aluminum hydroxide as a raw material by a grinding treatment or the like, and the degree of mechanochemical activation is determined by a heating loss rate measurement method at 110 ° C. 10 minute value-1 minute value = 0.3% or more. If the content is less than 0.3%, the activity is low, so that the reaction takes time and a monocarbonate having a uniform particle size cannot be obtained.

110℃加熱減量率測定法とは、通常の粉体の水分を測定するように、水酸化アルミニウムを110℃で加熱した時の減量率(=加熱減量÷過熱前の重量)を1分後と10分後で測定し、10分値から1分値を差し引いて評価する方法である。ここで減量率は絶対値で用いることとする。 The 110 ° C. heat loss rate measurement method is a method of measuring the weight loss rate when heating aluminum hydroxide at 110 ° C. (= weight loss before heating / weight before overheating) after 1 minute so as to measure the water content of ordinary powder. This is a method of measuring after 10 minutes and evaluating by subtracting 1 minute value from 10 minute value. Here, the weight loss rate is used as an absolute value.

市販される一般的な水酸化アルミニウムは220℃以上に加熱しないと脱水しないが、メカノケミカル活性化した水酸化アルミニウムは結晶構造が乱され、AlとOHの結合が弱められるため、70〜80℃において既に化1のごとき脱水を開始するようになり、活性化が強いほど脱水率も高くなる。 Commercially available general aluminum hydroxide does not dehydrate unless heated to 220 ° C. or higher, but mechanochemically activated aluminum hydroxide has a disordered crystal structure and weakens the bond between Al and OH. In Fig. 1, dehydration is already started as in Chemical Formula 1, and the stronger the activation, the higher the dehydration rate.

[化1]
Al(OH)→AlOOH+HO↑
[Chemical 1]
Al (OH) 3 → AlOOH + H 2 O ↑

当該評価法が10分値から1分値を差し引くのは、大気中から吸着した水分の影響を除去するためである。110℃の加熱では、メカノケミカルに由来する脱水は結合の乱され方がランダムなため、だらだらと比較的長時間続くのに対し、吸着水分の蒸発は1分以内にほぼ終了する。このような挙動の違いに注目し、請求項1に示すような数値化に至った。 The reason why the evaluation method subtracts the 1-minute value from the 10-minute value is to remove the influence of moisture adsorbed from the atmosphere. With heating at 110 ° C., dehydration derived from mechanochemicals is random in which the bond is disturbed, so that it lasts for a relatively long time, whereas the evaporation of adsorbed water is almost completed within one minute. Paying attention to such a difference in behavior, the numerical value as shown in claim 1 has been reached.

加熱のための熱源は出来るだけ速やかに品温を110℃に到達せしめるものであれば何でも良いが、ハロゲンランプを搭載した電子天秤型水分計であれば加熱の立ち上がりが速く、逐次減量率がモニター出来るので好適である。また、一般的な電子天秤型水分計による測定では秤量が極端に違えば数値の信頼性に影響を与えるため、予めこれを規定しておくほうが良い。サンプルが少なすぎると計量最小単位の読みで値が大きく飛ぶこととなるし、サンプルが多すぎると均一な加熱が出来ず値が小さくなる恐れがある。電子天秤型水分計を用いる場合の当該評価法では1.5〜1.6gが適量である。 The heat source for heating can be anything as long as the product temperature can reach 110 ° C as quickly as possible. However, an electronic balance type moisture meter equipped with a halogen lamp has a rapid rise in heating, and the rate of weight loss is monitored. It is preferable because it is possible. In addition, in the measurement with a general electronic balance type moisture meter, if the weighing is extremely different, the reliability of the numerical value is affected. If the number of samples is too small, the value will fly greatly in reading of the minimum unit of measurement, and if there are too many samples, uniform heating cannot be performed and the value may be small. In the said evaluation method in the case of using an electronic balance type moisture meter, 1.5 to 1.6 g is an appropriate amount.

摩砕処理等によりメカノケミカル活性化した水酸化アルミニウムは20〜30℃程度の常温域においても水中で消石灰と短時間に反応し、化2の反応式に示すようなカルシウムアルミネート水和物を生成する。しかも、このようにして生成するカルシウムアルミネート水和物もまた非晶質で高い活性度をもつため、化3に示すように炭酸カルシウムと容易に反応してモノカーボネートを生成する。 Aluminum hydroxide activated mechanochemically by grinding or the like reacts with slaked lime in water in a short time even at a room temperature of about 20-30 ° C., and calcium aluminate hydrate as shown in the chemical formula 2 is obtained. Generate. Moreover, since the calcium aluminate hydrate produced in this way is also amorphous and has high activity, it reacts easily with calcium carbonate to produce monocarbonate as shown in Chemical Formula 3.

[化2]
3Ca(OH)+2Al(OH)→3CaO・Al・6H
[Chemical 2]
3Ca (OH) 2 + 2Al (OH) 3 → 3CaO · Al 2 O 3 · 6H 2 O

[化3]
3CaO・Al・6HO+CaCO+5HO→3CaO・Al・CaCO・11H
[Chemical formula 3]
3CaO · Al 2 O 3 · 6H 2 O + CaCO 3 + 5H 2 O → 3CaO · Al 2 O 3 · CaCO 3 · 11H 2 O

摩砕処理等を施す原料水酸化アルミニウムについては特に制限するものではないが、工業的に製造される平均粒子径1〜100μmの水酸化アルミニウムを使用することができる。   Although it does not restrict | limit especially about the raw material aluminum hydroxide which performs a grinding process etc., the aluminum hydroxide with an average particle diameter of 1-100 micrometers manufactured industrially can be used.

ところで、水酸化アルミニウムに限らず、一般的に無機化合物は摩砕処理によって結晶構造が不整化され、メカノケミカル活性化されると言われており、中でも金属水酸化物は不整化され易く、特に水酸化アルミニウムが摩砕処理によって結晶構造の不整化を生じ易いことは様々な文献で紹介され公知となっている。しかしながら、このような処理には通常の粉砕に比べて数倍〜数十倍のエネルギーコストを要するほか、コンタミネーション等の課題が多いため工業的利用には至っていなかった。   By the way, not limited to aluminum hydroxide, it is generally said that inorganic compounds are irregular in crystal structure and mechanochemically activated by grinding treatment, and metal hydroxides are particularly prone to irregularities. It is introduced in various literatures and known that aluminum hydroxide is likely to cause crystal structure irregularity by grinding treatment. However, such treatment requires several times to several tens of times the energy cost as compared with ordinary pulverization, and has not been industrially utilized because of many problems such as contamination.

摩砕処理に用いる装置は、水酸化アルミニウムをメカノケミカル活性化できるものであれば特に限定されないが、例えば振動ボールミル、振動ロッドミル等のバイブレーションミルの他、コニカルミル、ポットミル、チューブミル、遠心ミル、遊星ボールミル、撹拌ミル、ピンミル、シェーキングミル、スタンプミル、ディスクミル、グラインダー、ジェットミル等が挙げられる。   The apparatus used for the milling treatment is not particularly limited as long as it can mechanochemically activate aluminum hydroxide. For example, in addition to a vibration mill such as a vibration ball mill and a vibration rod mill, a conical mill, a pot mill, a tube mill, a centrifugal mill, a planetary planet Examples thereof include a ball mill, a stirring mill, a pin mill, a shaking mill, a stamp mill, a disk mill, a grinder, and a jet mill.

請求項2に記載した高速剪断混合処理は、反応開始時に実施されることで最大の効果を発揮する。高速剪断混合処理によりモノカーボネートの種結晶は微粒化分散されるとともに、反応時間の大幅な短縮を図ることができる。高速剪断混合処理を行わない場合、粒径不均一で凝集したモノカーボネートが生成するが、陰イオン捕集剤等のような化学的組成のみが必要な用途であれば特に支障無く利用される。   The high-speed shear mixing treatment described in claim 2 exhibits the maximum effect by being performed at the start of the reaction. The seed crystal of monocarbonate is atomized and dispersed by the high-speed shear mixing treatment, and the reaction time can be greatly shortened. When high-speed shear mixing treatment is not performed, a monocarbonate having a non-uniform particle size is formed, but it can be used without any trouble if it is used only for a chemical composition such as an anion scavenger.

高速剪断混合処理に用いる装置はオープンインペラー型の高速撹拌機や、ジェネレーター型のホモジナイザー、高圧ホモジナイザー、メディアミル等、湿式で高剪断力を発生する装置を用いるのが好ましい。   The apparatus used for the high-speed shear mixing treatment is preferably a wet-type apparatus that generates a high shearing force, such as an open impeller type high-speed stirrer, a generator-type homogenizer, a high-pressure homogenizer, or a media mill.

高速剪断混合処理を行う時間については、原料濃度や混合装置により剪断力が異なるため、特に規定されるものではないが、連続式ホモジナイザーのごとき装置であれば瞬時であるし、バッチ式ホモジナイザーでは通常1〜10分程度で目的は達成される。   The time for performing the high-speed shear mixing treatment is not particularly specified because the shearing force varies depending on the raw material concentration and the mixing device, but it is instantaneous if it is a device such as a continuous homogenizer, and is usually used for a batch homogenizer. The objective is achieved in about 1 to 10 minutes.

以下、本発明を実施例により具体的に説明するが、本発明は下記の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to the following Example.

原料水酸化アルミニウムは住友化学工業社C−31を使用した。水酸化アルミニウムの摩砕処理装置には、中央化工機社のバッチ式振動ミルを用いた。同装置は15リットルの粉砕筒を2基装備し、粉砕媒体はステンレス製ロッドを用いた。ミルの運転条件は1150回転/分、振幅9mm、水酸化アルミニウムの投入量は各筒1kgとした。この条件で60分間の摩砕処理を行いメカノケミカル活性化された水酸化アルミニウムを製造した。得られた粉末の110℃加熱減量率をメトラー・トレド社のハロゲン水分計HR73にて測定したところ、10分値−1分値は1.74%であった。次に、当該処理を施した水酸化アルミニウム21g、消石灰(自社製)29g、炭酸カルシウム(軽質・試薬)44g、及び水900gを1リットルの蓋付きガラス容器に入れ、速やかに80℃まで加熱、撹拌しながらスラリーの電気伝導度を追跡したところ、約110分後に反応の終了を確認した。生成物はXRD(粉末X線回折装置)によりモノカーボネートの単一相と認められ、SEM(走査型電子顕微鏡)観察の結果、幅1〜5μm、厚さ0.05μm以下の薄い六角板状粒子がやや凝集した状態であった。 As the raw material aluminum hydroxide, Sumitomo Chemical Co., Ltd. C-31 was used. A batch type vibration mill manufactured by Chuo Kakoki Co., Ltd. was used for the aluminum hydroxide grinding apparatus. The apparatus was equipped with two 15-liter grinding cylinders, and stainless steel rods were used as the grinding media. The operation conditions of the mill were 1150 revolutions / minute, the amplitude was 9 mm, and the input amount of aluminum hydroxide was 1 kg for each cylinder. A mechanochemically activated aluminum hydroxide was produced by grinding for 60 minutes under these conditions. When the weight loss rate at 110 ° C. of the obtained powder was measured with a halogen moisture meter HR73 manufactured by METTLER TOLEDO, the 10 minute value-1 minute value was 1.74%. Next, 21 g of aluminum hydroxide subjected to the treatment, 29 g of slaked lime (made in-house), 44 g of calcium carbonate (light / reagent), and 900 g of water are placed in a 1 liter glass container with a lid, and immediately heated to 80 ° C., When the electrical conductivity of the slurry was traced while stirring, the completion of the reaction was confirmed after about 110 minutes. The product is recognized as a single phase of monocarbonate by XRD (powder X-ray diffractometer), and as a result of SEM (scanning electron microscope) observation, thin hexagonal plate-like particles having a width of 1 to 5 μm and a thickness of 0.05 μm or less Was slightly agglomerated.

摩砕処理を施した水酸化アルミニウム、消石灰、炭酸カルシウムを80℃で加熱撹拌する前に、16000rpmで撹拌するバッチ式ジューサー型ミキサー、ポット容量1.75リットル、による3分間の高速剪断混合を挿入した以外は実施例1と同様に行ったところ、約40分後に反応の終了を確認した。生成物はモノカーボネートの単一相で、幅1〜2μm、厚さ0.05μm以下の薄い六角板状粒子が良好に分散・配向した状態であった。 Insert high speed shear mixing for 3 minutes with a batch-type juicer mixer, 1.75 liters in pot capacity, stirring at 16000 rpm before milling aluminum hydroxide, slaked lime, calcium carbonate at 80 ° C. The reaction was performed in the same manner as in Example 1 except that the completion of the reaction was confirmed after about 40 minutes. The product was a single phase of monocarbonate, in which thin hexagonal plate-like particles having a width of 1 to 2 μm and a thickness of 0.05 μm or less were well dispersed and oriented.

水酸化アルミニウムの摩砕時間を30分に変更した以外は実施例2と同様に行ったところ、約100分後に反応の終了を確認した。当該水酸化アルミニウムの110℃加熱減量率から求めた10分値−1分値は1.10%であった。生成物はモノカーボネートの単一相で、幅0.5〜1.5μm、厚さ0.05μm以下の薄い六角板状粒子が良好に分散・配向した状態であった。 The reaction was performed in the same manner as in Example 2 except that the grinding time of aluminum hydroxide was changed to 30 minutes, and the completion of the reaction was confirmed after about 100 minutes. The 10-minute value minus 1-minute value obtained from the 110 ° C. heating loss rate of the aluminum hydroxide was 1.10%. The product was a single phase of monocarbonate, in which thin hexagonal plate-like particles having a width of 0.5 to 1.5 μm and a thickness of 0.05 μm or less were well dispersed and oriented.

水酸化アルミニウムの摩砕時間を12分に変更した以外は実施例2と同様に行ったところ、約6時間後に反応の終了を確認した。当該水酸化アルミニウムの110℃加熱減量率から求めた10分値−1分値は0.51%であった。生成物はモノカーボネートの単一相で、幅1〜2μm、厚さ0.05μm以下の薄い六角板状粒子が良好に分散・配向した状態であった。 When the same procedure as in Example 2 was performed except that the grinding time of aluminum hydroxide was changed to 12 minutes, the completion of the reaction was confirmed after about 6 hours. The 10-minute value minus 1-minute value determined from the heating loss rate of the aluminum hydroxide at 110 ° C. was 0.51%. The product was a single phase of monocarbonate, in which thin hexagonal plate-like particles having a width of 1 to 2 μm and a thickness of 0.05 μm or less were well dispersed and oriented.

加熱撹拌温度を95℃に変更した以外は実施例4と同様に行ったところ、約110分後に反応の終了を確認した。生成物はモノカーボネートの単一相で、幅1〜2μm、厚さ0.05μm以下の薄い六角板状粒子が良好に分散・配向した状態であった。
(比較例1)
When the same procedure as in Example 4 was performed except that the heating and stirring temperature was changed to 95 ° C., the completion of the reaction was confirmed after about 110 minutes. The product was a single phase of monocarbonate, in which thin hexagonal plate-like particles having a width of 1 to 2 μm and a thickness of 0.05 μm or less were well dispersed and oriented.
(Comparative Example 1)

水酸化アルミニウムの摩砕処理をせずC−31をそのまま用いた以外は、実施例2と同様の操作を行った。ちなみに当該水酸化アルミニウムの110℃加熱減量率から求めた10分値−1分値は0.00%であった。この混合スラリーは24時間の撹拌によっても反応は終了せず、24時間の時点で回収した粉末には10〜30μmの巨大なモノカーボネートの他、ハイドロガーネット、炭酸カルシウム(カルサイト)が多量に含まれていた。
(比較例2)
The same operation as in Example 2 was performed except that C-31 was used as it was without grinding the aluminum hydroxide. Incidentally, the 10-minute value minus 1-minute value determined from the heating loss rate of the aluminum hydroxide at 110 ° C. was 0.00%. This mixed slurry does not complete the reaction even after 24 hours of stirring, and the powder collected at the time of 24 hours contains a large amount of hydrogarnet and calcium carbonate (calcite) in addition to 10-30 μm of huge monocarbonate. It was.
(Comparative Example 2)

水酸化アルミニウムの摩砕時間を5分に変更した以外は実施例2と同様に行ったところ、約10時間後に反応の終了を確認した。当該水酸化アルミニウムの110℃加熱減量率から求めた10分値−1分値は0.27%であった。生成物はモノカーボネートの単一相であったが、粒子の幅、厚さ、形状、何れも不均一で強く凝集した二次粒子を形成していた。 When the same procedure as in Example 2 was performed except that the grinding time of aluminum hydroxide was changed to 5 minutes, the completion of the reaction was confirmed after about 10 hours. The 10-minute value minus 1-minute value determined from the heating loss rate of the aluminum hydroxide at 110 ° C. was 0.27%. The product was a single phase of monocarbonate, but the particles were non-uniform in width, thickness and shape, and formed strongly aggregated secondary particles.

以上説明したように、本発明によると消石灰、水酸化アルミニウム、炭酸カルシウムといった何れも安価な原料により、常温で簡単にモノカーボネートが製造される。モノカーボネートは選択的に六角板状粒子を形成するため、従来板状粒子が使用されていた用途において同様の機能を発揮することが期待される。とりわけ製紙塗料用顔料としては、被覆性・色の白さ・軽量性に優れることから好適に用いられる。   As described above, according to the present invention, monocarbonate can be easily produced at room temperature from inexpensive raw materials such as slaked lime, aluminum hydroxide, and calcium carbonate. Since monocarbonate selectively forms hexagonal plate-like particles, it is expected to exhibit the same function in applications where plate-like particles are conventionally used. In particular, pigments for papermaking paints are preferably used because they are excellent in covering property, whiteness of color and lightness.

実施例2によるモノカーボネートの電子顕微鏡写真(×10000)Electron micrograph of monocarbonate according to Example 2 (× 10000)

Claims (2)

消石灰と水酸化アルミニウムと炭酸カルシウムを水の存在下で反応させ、カルシウムアルミネートモノカーボネートを製造する方法において、水酸化アルミニウムが特に摩砕処理等によりメカノケミカル活性化した水酸化アルミニウムであり、摩砕処理等によりメカノケミカル活性化した水酸化アルミニウムが110℃加熱減量率測定法において、10分値−1分値=0.3%以上であることを特徴とするカルシウムアルミネートモノカーボネートの製造方法。 In a method for producing calcium aluminate monocarbonate by reacting slaked lime, aluminum hydroxide and calcium carbonate in the presence of water, the aluminum hydroxide is aluminum hydroxide that has been mechanochemically activated, particularly by grinding treatment, and the like. A method for producing calcium aluminate monocarbonate characterized in that the mechanochemically activated aluminum hydroxide obtained by crushing treatment has a value of 10 minutes-1 minutes = 0. . 消石灰と摩砕処理等によりメカノケミカル活性化した水酸化アルミニウムと炭酸カルシウムを水の存在下で反応させ、カルシウムアルミネートモノカーボネートを製造する方法において、反応開始時に特に高速剪断混合処理を行うことを特徴とする請求項1に記載のカルシウムアルミネートモノカーボネートの製造方法。
In a method of producing calcium aluminate monocarbonate by reacting mechanochemically activated aluminum hydroxide and calcium carbonate by slaked lime and grinding treatment in the presence of water, particularly high-speed shear mixing treatment is performed at the start of the reaction. The method for producing a calcium aluminate monocarbonate according to claim 1.
JP2006209913A 2006-08-01 2006-08-01 Method for producing calcium aluminate monocarbonate Expired - Fee Related JP5071616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006209913A JP5071616B2 (en) 2006-08-01 2006-08-01 Method for producing calcium aluminate monocarbonate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006209913A JP5071616B2 (en) 2006-08-01 2006-08-01 Method for producing calcium aluminate monocarbonate

Publications (2)

Publication Number Publication Date
JP2008037664A true JP2008037664A (en) 2008-02-21
JP5071616B2 JP5071616B2 (en) 2012-11-14

Family

ID=39173119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006209913A Expired - Fee Related JP5071616B2 (en) 2006-08-01 2006-08-01 Method for producing calcium aluminate monocarbonate

Country Status (1)

Country Link
JP (1) JP5071616B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008196056A (en) * 2007-02-08 2008-08-28 Kotegawa Sangyo Kk Coated paper using calcium aluminate compound
WO2010113721A1 (en) * 2009-03-31 2010-10-07 日本製紙株式会社 Coated paper for printing
JP2010236151A (en) * 2009-03-31 2010-10-21 Nippon Paper Industries Co Ltd Coated paper for gravure printing
JP2010236148A (en) * 2009-03-31 2010-10-21 Nippon Paper Industries Co Ltd Coated paper for printing
CN104203421A (en) * 2012-03-28 2014-12-10 独立行政法人产业技术综合研究所 Magnetic separator

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4856226A (en) * 1971-11-17 1973-08-07
JPH09241021A (en) * 1996-03-11 1997-09-16 Denki Kagaku Kogyo Kk Calcium aluminate tricarbonate hydrate and synthesis
JPH09241019A (en) * 1996-03-11 1997-09-16 Denki Kagaku Kogyo Kk Method of synthesis of carbonated hydrocarmite
JP2002274842A (en) * 2001-03-15 2002-09-25 Kotegawa Sangyo Kk Method of preparing amorphous calcium aluminate hydrate
JP2003020222A (en) * 2001-07-03 2003-01-24 Kotegawa Sangyo Kk Method for manufacturing ettringite
JP2004043220A (en) * 2002-07-10 2004-02-12 Kotegawa Sangyo Kk Method of manufacturing calcium aluminate monosulfate
JP2004168602A (en) * 2002-11-21 2004-06-17 Kotegawa Sangyo Kk Manufacturing process for porous granular material
JP2004323254A (en) * 2003-04-22 2004-11-18 Kotegawa Sangyo Kk Method for manufacturing calcium aluminate having polyhedral form

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4856226A (en) * 1971-11-17 1973-08-07
JPH09241021A (en) * 1996-03-11 1997-09-16 Denki Kagaku Kogyo Kk Calcium aluminate tricarbonate hydrate and synthesis
JPH09241019A (en) * 1996-03-11 1997-09-16 Denki Kagaku Kogyo Kk Method of synthesis of carbonated hydrocarmite
JP2002274842A (en) * 2001-03-15 2002-09-25 Kotegawa Sangyo Kk Method of preparing amorphous calcium aluminate hydrate
JP2003020222A (en) * 2001-07-03 2003-01-24 Kotegawa Sangyo Kk Method for manufacturing ettringite
JP2004043220A (en) * 2002-07-10 2004-02-12 Kotegawa Sangyo Kk Method of manufacturing calcium aluminate monosulfate
JP2004168602A (en) * 2002-11-21 2004-06-17 Kotegawa Sangyo Kk Manufacturing process for porous granular material
JP2004323254A (en) * 2003-04-22 2004-11-18 Kotegawa Sangyo Kk Method for manufacturing calcium aluminate having polyhedral form

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008196056A (en) * 2007-02-08 2008-08-28 Kotegawa Sangyo Kk Coated paper using calcium aluminate compound
WO2010113721A1 (en) * 2009-03-31 2010-10-07 日本製紙株式会社 Coated paper for printing
JP2010236151A (en) * 2009-03-31 2010-10-21 Nippon Paper Industries Co Ltd Coated paper for gravure printing
JP2010236148A (en) * 2009-03-31 2010-10-21 Nippon Paper Industries Co Ltd Coated paper for printing
JP4668328B2 (en) * 2009-03-31 2011-04-13 日本製紙株式会社 Coated paper for gravure printing
JP4668327B2 (en) * 2009-03-31 2011-04-13 日本製紙株式会社 Coated paper for printing
CN104203421A (en) * 2012-03-28 2014-12-10 独立行政法人产业技术综合研究所 Magnetic separator

Also Published As

Publication number Publication date
JP5071616B2 (en) 2012-11-14

Similar Documents

Publication Publication Date Title
JP5778858B2 (en) Precipitated calcium carbonate from pulp mill waste with improved brightness, process for its production and use
JP6114252B2 (en) Method for producing calcium carbonate material having particle surface with improved adsorptivity
CA2941374C (en) Fibrous structured amorphous silica including precipitated calcium carbonate, compositions of matter made therewith, and methods of use thereof
JP5071616B2 (en) Method for producing calcium aluminate monocarbonate
CA2939417C (en) Process for producing high grade hydromagnesite and magnesium oxide
CA2939418C (en) Process for producing high grade hydromagnesite and magnesium oxide
WO2016062682A1 (en) Pcc with reduced portlandite content
US10745288B2 (en) Production of amorphous calcium carbonate
Atchudan et al. Facile synthesis of monodispersed cubic and spherical calcite nanoparticles in the presence of cetyltrimethylammonium bromide
WO2016091889A1 (en) Improved process for the production of precipitated calcium carbonate
WO2020212204A1 (en) Process for preparing surface-reacted calcium carbonate
TWI551546B (en) Precipitated calcium carbonate from pulp mill waste having an improved brightness, method for the production and use thereof
JP2004043220A (en) Method of manufacturing calcium aluminate monosulfate
Sargheini et al. Preparing of CaCO3 Nano-particles by Mechano-chemical Method
JP2009173794A (en) Resin-calcium carbonate composite particles, emulsion liquid containing resin emulsion-calcium carbonate composite particles and method for producing the emulsion liquid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120807

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20180831

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees