JP2008036956A - Manufacturing process of thermoplastic resin container by two-stage blow molding - Google Patents

Manufacturing process of thermoplastic resin container by two-stage blow molding Download PDF

Info

Publication number
JP2008036956A
JP2008036956A JP2006213973A JP2006213973A JP2008036956A JP 2008036956 A JP2008036956 A JP 2008036956A JP 2006213973 A JP2006213973 A JP 2006213973A JP 2006213973 A JP2006213973 A JP 2006213973A JP 2008036956 A JP2008036956 A JP 2008036956A
Authority
JP
Japan
Prior art keywords
blow molding
primary
preform
stage
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006213973A
Other languages
Japanese (ja)
Other versions
JP4895186B2 (en
Inventor
Toshiki Sakaguchi
俊樹 坂口
Ayako Abe
綾子 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP2006213973A priority Critical patent/JP4895186B2/en
Publication of JP2008036956A publication Critical patent/JP2008036956A/en
Application granted granted Critical
Publication of JP4895186B2 publication Critical patent/JP4895186B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/20Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer
    • B29C2949/22Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer at neck portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/20Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer
    • B29C2949/24Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer at flange portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/20Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer
    • B29C2949/26Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer at body portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/20Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer
    • B29C2949/28Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer at bottom portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3008Preforms or parisons made of several components at neck portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3012Preforms or parisons made of several components at flange portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3016Preforms or parisons made of several components at body portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/302Preforms or parisons made of several components at bottom portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3024Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3024Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique
    • B29C2949/3026Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components
    • B29C2949/3028Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components having three or more components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3032Preforms or parisons made of several components having components being injected
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3032Preforms or parisons made of several components having components being injected
    • B29C2949/3034Preforms or parisons made of several components having components being injected having two or more components being injected
    • B29C2949/3036Preforms or parisons made of several components having components being injected having two or more components being injected having three or more components being injected
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3041Preforms or parisons made of several components having components being extruded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3041Preforms or parisons made of several components having components being extruded
    • B29C2949/3042Preforms or parisons made of several components having components being extruded having two or more components being extruded
    • B29C2949/3044Preforms or parisons made of several components having components being extruded having two or more components being extruded having three or more components being extruded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3056Preforms or parisons made of several components having components being compression moulded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3056Preforms or parisons made of several components having components being compression moulded
    • B29C2949/3058Preforms or parisons made of several components having components being compression moulded having two or more components being compression moulded
    • B29C2949/306Preforms or parisons made of several components having components being compression moulded having two or more components being compression moulded having three or more components being compression moulded

Landscapes

  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem, wherein, in a conventional biaxial orientation two-stage blow molding for a polyester container, the intermediates prepared at the first stage of the biaxial orientation two-stage blow molding are thermally shrunk longitudinally and latitudinally for stress relaxation and the prediction of the amount of the shrinkage is difficult, and thus, a large amount of man hour is required in designing blow molding molds for the first stage and the shapes of the preforms, which results in the economical and temporal burden on the commercialization of the molding process. <P>SOLUTION: The primary intermediate of a preform is subjected to the primary blow molding using a primary mold, to prepare a secondary intermediate. The secondary intermediate is thermally shrunk, to prepare a tertiary intermediate. The tertiary intermediate is subjected to a secondary orientation blow molding using a secondary mold, to manufacture the container. In the primary orientation blow molding, the container is manufactured by using a conical preform as the primary intermediate and stretch-orientating the primary intermediate mainly in the direction of the height of the preform and shrinking it almost only in the circumferential direction in a thermal shrinkage process. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、二段ブロー成形法による熱可塑性樹脂容器の製造方法に関し、詳しくは、プリフォームの延伸配向を制御して熱収縮させるデータに基づいて予め金型及び/又はプリフォーム形状の設計をなして、二段ブロー成形法の工数の簡易化を図る、熱可塑性樹脂容器の製造方法に係わるものである。   The present invention relates to a method for producing a thermoplastic resin container by a two-stage blow molding method, and more specifically, a mold and / or a preform shape is designed in advance based on data for controlling the orientation of a preform to cause heat shrinkage. Therefore, the present invention relates to a method for manufacturing a thermoplastic resin container, which simplifies the man-hour of the two-stage blow molding method.

熱可塑性樹脂容器におけるポリエステル樹脂容器は、軽量性や経済性及び成形の容易性や優れた各種の物性更には対環境問題適応性や資源再利用性などにより、最近では、従来の金属やガラス製の容器を凌駕して、日常生活や各種の産業分野において重用され、特に、飲料や食品及び化粧品や洗浄剤更には医薬品などの容器として汎用されている。
ポリエステル樹脂容器のなかでも、いわゆるPETボトル(ポリエチレンテレフタレート製の容器)は、飲食品用の容器として認可されて以来非常に需要が高くなっているが、PETボトルは最近まで、耐熱性や耐圧性が不充分で高温の飲料や高温殺菌を要す飲料用には使用できず、日常生活においては夏季の飲料に限られていた。
その後、ペットボトルにおける冬季用の携帯高温飲料やレトルト殺菌食品への消費者の強い要望に応えるべく、二段ブロー成形法などの開発によって、ポリエチレンテレフタレートのプリフォームの延伸や結晶化が充分に行われるようになり、PETボトルの耐熱性と耐圧性が著しく改良され(特許文献1,2を参照)、さらにPETボトルの透明性により内部の飲料が直接見える安心感や清潔感なども相まって、これらの面からもPETボトルの重要性は更に顕著になっている。特に、最近ではPETボトルが携帯用の飲料用小型容器として消費者に重用されており、かかる分野や他の利用における需要は今後ますます増大すると予測される。
Polyester resin containers in thermoplastic resin containers have recently been made of conventional metals and glass due to their light weight, economy, ease of molding, various physical properties, adaptability to environmental problems, and resource reusability. It is widely used in daily life and various industrial fields, and in particular, is widely used as a container for beverages, foods, cosmetics, cleaning agents and pharmaceuticals.
Among polyester resin containers, so-called PET bottles (polyethylene terephthalate containers) have been in great demand since being approved as containers for foods and drinks, but until recently PET bottles had heat resistance and pressure resistance. However, it cannot be used for high-temperature drinks and drinks that require high-temperature sterilization, and is limited to summer drinks in daily life.
Later, in response to consumers' strong demand for portable high-temperature beverages and retort-sterilized foods for winter in PET bottles, the polyethylene terephthalate preform was sufficiently stretched and crystallized by developing a two-stage blow molding method. The heat resistance and pressure resistance of PET bottles have been remarkably improved (see Patent Documents 1 and 2), and the transparency of the PET bottles combined with the sense of security and cleanliness that allow the internal beverage to be seen directly. From this point of view, the importance of PET bottles is even more remarkable. In particular, recently, PET bottles have been heavily used by consumers as portable small containers for beverages, and demand in such fields and other uses is expected to increase in the future.

かかる二段ブロー成形法は二軸延伸ブローと組み合わされて、ポリエステル樹脂容器の耐熱性と耐圧性を著しく向上させ、耐熱性に優れたレトルト殺菌可能な容器を実用化している。
かくして、ポリエステル樹脂容器における二段二軸延伸ブロー成形法は非常に重要な成形法となっているので、更に改良を進めるべく、ブロー成形手法や各工程及び成形条件や熱収縮過程或いは金型設計やプリフォームの材質などの検討が行われている。
Such a two-stage blow molding method is combined with a biaxial stretch blow to remarkably improve the heat resistance and pressure resistance of a polyester resin container, and a retort sterilizable container excellent in heat resistance has been put into practical use.
Thus, the two-stage biaxial stretch blow molding method in a polyester resin container is a very important molding method. Therefore, in order to further improve the blow molding method, each process and molding conditions, the heat shrinking process, or the mold design And materials for preforms are being studied.

その中の、改良を進めるべき問題の一面として、一段目の二軸延伸ブロー成形中間体を縦横方向(容器となる中間体の高さと円周方向)に熱収縮させて中間体の残留応力を緩和させる際に、収縮率予測が困難であり、そのために一段目のブロー成形金型及びプリフォームの形状の設計に非常に工数が掛かり、当成形法の工業化の経費的かつ時間的な負荷となっている問題が派生している。
かかる観点からの二軸延伸二段ブロー成形法における改良手法は、特許文献などにおいては未だ見い出すことができない。
One aspect of the problem to be improved is that the first stage biaxially stretched blow-molded intermediate is heat-shrinked in the vertical and horizontal directions (height and circumferential direction of the container intermediate) to reduce the residual stress of the intermediate. When mitigating, it is difficult to predict the shrinkage rate, so it takes a lot of man-hours to design the shape of the first-stage blow mold and preform, and the cost and time burden of industrialization of this molding method. The problem is derived.
An improved technique in the biaxially stretched two-stage blow molding method from such a viewpoint cannot be found yet in patent documents and the like.

特公平4−56734号公報(特許請求の範囲及び第2頁左欄上段)Japanese Examined Patent Publication No. 4-56734 (Claims and upper left column of page 2) 特開平5−200839号公報(特許請求の範囲及び段落0006)Japanese Patent Laid-Open No. 5-200839 (Claims and paragraph 0006)

段落0004に前述したように、ポリエステル樹脂容器の二軸延伸二段ブロー成形法においては、一段目の二軸延伸ブロー成形中間体を縦横方向に熱収縮させて中間体の残留応力を緩和させる際の、収縮率予測が困難であり、そのために一段目の二軸延伸ブロー成形中間体をあらかじめどのくらい大きく作るかを決めるための一段目のブロー成形金型の設計、及び延伸倍率をどのくらいに設定しておき熱収縮加減を調整するかを決めるためのプリフォームの形状の設計に非常に工数が掛かり、当成形法の工業化の経費的かつ時間的な負荷となっている問題が派生しているので、本発明は、かかる収縮率予測を容易化かつ簡易化して当問題の解決をなすことを、発明が解決すべき課題とするものである。   As described above in paragraph 0004, in the biaxially stretched two-stage blow molding method for a polyester resin container, the first stage biaxially stretched blow molded intermediate is thermally shrunk in the vertical and horizontal directions to relieve the residual stress of the intermediate. of, it is difficult to shrinkage prediction sets the first stage of the blow molding mold design for deciding make advance how large the biaxial stretch blow molding intermediates first stage for its, and the draw ratio how much Since the process of designing the shape of the preform to determine whether to adjust the heat shrinkage takes a lot of man-hours, the problem that is the cost and time load of the industrialization of this molding method is derived. In the present invention, it is an object of the present invention to solve the problem by facilitating and simplifying the shrinkage rate prediction.

本発明者らは、上記の課題の解決を目指して、ポリエステル樹脂容器の二軸延伸二段ブロー成形法における、一段目の二軸延伸ブロー成形中間体を縦横方向(容器となる中間体の高さと円周方向)に熱収縮させる際の、熱収縮手法や各種収縮条件及びプリフォームの材質や形状更には1次ブロー金型の構造などに関して多角的に思考を巡らし改良手法を求めて実験的な検索と勘案を行った。
その過程において、容易かつ簡易な手段により経済的に収縮率予測を行うために、特定の延伸配向と熱収縮手法を採用し、更には特異なプリフォーム形状を使用する新しい手段を知見し得て、その知見の認識により、一段目のブロー成形金型及びプリフォームの形状の設計に非常に工数が掛かることに因る、二軸延伸二段ブロー成形法の工業化における経費的かつ時間的な負荷を解消し得る、本発明を創作することができた。
In order to solve the above-mentioned problems, the present inventors set the first-stage biaxially stretched blow molded intermediate in the biaxially stretched two-stage blow molding method for a polyester resin container in the vertical and horizontal directions (the height of the intermediate body serving as the container). And shrinking in the circumferential direction), and experimenting with various ways of thinking regarding the heat shrinking method, various shrinkage conditions, preform material and shape, and the structure of the primary blow mold. Search and consideration.
In that process, in order to predict shrinkage economically by easy and simple means, we can adopt a specific stretching orientation and heat shrinkage method, and also know a new means of using a unique preform shape The cost and time burden in the industrialization of the biaxially stretched two-stage blow molding method due to the fact that it takes a lot of man-hours to design the shape of the first-stage blow mold and preform by recognizing the knowledge. It was possible to create the present invention that can eliminate the problem.

本発明における特定の延伸配向と熱収縮の手法は、基本的に、1次延伸ブロー成形において1次中間体をプリフォームの高さ方向に主に延伸配向させ、熱収縮過程でほぼ周方向にのみ収縮させる手法であり、この手法を本発明の第一の特徴とし、また、1次延伸ブロー成形において1次中間体をプリフォームの高さ方向に主に延伸配向させ、熱収縮過程でほぼ周方向にのみ収縮させるために、プリフォームの1次中間体として、特異な形状のプリフォームである円錐形状のプリフォームを使用することを、本発明の第二の特徴とするものであり、かかる要件が本発明の構成における基礎的な要素を構成している。   In the present invention, the specific stretch orientation and heat shrinkage method is basically the primary stretch blow molding in which the primary intermediate is stretched and oriented mainly in the height direction of the preform, and substantially in the circumferential direction during the heat shrink process. This method is the first feature of the present invention, and the primary intermediate is mainly stretched and oriented in the height direction of the preform in the primary stretch blow molding, In order to contract only in the circumferential direction, the second feature of the present invention is to use a conical preform, which is a preform having a unique shape, as a primary intermediate of the preform, Such requirements constitute the basic elements in the configuration of the present invention.

そして、1次延伸ブロー成形において1次中間体をプリフォームの高さ方向に主に延伸配向させ、熱収縮過程でほぼ周方向にのみ収縮させることにより得られる熱収縮のデータに基づいて、1次金型及び/又はプリフォーム形状の設計を容易にかつ簡易にそして経済的に行うことができる。
更に、かかる熱収縮のデータを得るために、1次ブロー後の成形中間体の高さと周方向における熱収縮量の差を、熱機械分析(TMA)測定による無荷重変形量の差にて評価する手段をも採用し得る。
In the primary stretch blow molding, the primary intermediate is stretched and oriented mainly in the height direction of the preform, and based on the data of heat shrinkage obtained by shrinking only in the circumferential direction in the heat shrinkage process. The next mold and / or preform shape can be designed easily, simply and economically.
Furthermore, in order to obtain such heat shrinkage data, the difference between the height of the molding intermediate after the primary blow and the amount of heat shrinkage in the circumferential direction was evaluated by the difference in the amount of unloaded deformation by thermomechanical analysis (TMA) measurement. Means to do this can also be employed.

本発明においては、段落0008に前記したように、1次延伸ブロー成形において1次中間体をプリフォームの高さ方向に主に延伸配向させ、熱収縮過程でほぼ周方向にのみ収縮させる手法を採用しており、また、1次延伸ブロー成形において1次中間体をプリフォームの高さ方向に主に延伸配向させ、熱収縮過程でほぼ周方向にのみ収縮させるために、プリフォームの1次中間体として、特異な形状のプリフォームである円錐形状のプリフォームを使用するものであり、かかる新規な二要素を発明の特徴としており、発明がこれらの二つの要素を併せ持つこと、及びそれにより本発明の課題が解決されることは注目されるべきであるといえる。
また、本発明は、一段目のブロー成形金型及びプリフォームの形状の設計を容易化することを目的として、容易にかつ簡易な手段により経済的に収縮率予測を行うために、上記の二要素を発明の構成の要件としており、かかる目的のために当構成の要件を採用することも更に特異的な知見であるといえる。
In the present invention, as described above in paragraph 0008, in the primary stretch blow molding, the primary intermediate is stretched and oriented mainly in the height direction of the preform, and is contracted only in the circumferential direction in the heat shrinking process. In addition, the primary intermediate of the preform is mainly stretched and oriented in the height direction of the preform in the primary stretch blow molding, and contracted only in the circumferential direction in the heat shrink process. A conical-shaped preform, which is a unique-shaped preform, is used as an intermediate, and this novel two element is a feature of the invention, and the invention combines these two elements, and thereby It should be noted that the problems of the present invention are solved.
In addition, the present invention aims at facilitating the design of the shape of the first-stage blow molding die and preform, so that the shrinkage rate can be predicted easily and simply by means of the above two. It is a more specific finding that the elements are the requirements of the configuration of the invention and that the requirements of this configuration are adopted for this purpose.

ところで、一段目の二軸延伸ブロー成形中間体を縦横方向に熱収縮させて中間体の残留応力を緩和させる際に、収縮率予測が困難であるために、一段目のブロー成形金型及びプリフォームの形状の設計に非常に工数が掛かるという問題の観点からの、二軸延伸二段ブロー成形法における改良手法は、段落0004に前記したように、特許文献などにおいては未だ開示されていない。
先行文献を精査すると、特開平9−314650号公報には、ポリエステル樹脂容器の二軸延伸二段ブロー成形法において、「1次中間成形品から加熱収縮成形される2次中間成形品の収縮程度をより正確に制御し、もって内部残留応力のより少ないそして寸法制度の高いかつ適正肉厚分布の壜体を得るには、1次ブロー金型の型温を成形される1次中間成形品の熱収縮量をコントロールできるように110℃〜230℃に設定するのが良い」と記載され(段落0018)、熱収縮量を制御する手法は窺えるが、また、要約(第1頁)においては中間成形品を横方向にのみ収縮させるような図面も記載されているが、それ以上の説明はなく、いずれも、本発明における段落0010に前記した目的と特異な構成の要件と具体的な関連があるものではない。
また、円錐形状のプリフォームの使用は、特開平11−157524号公報に見られるように(第1頁の要約の図面)、先行文献において僅かに散見されるが、いずれの文献も単に円錐形状のプリフォームを使用しているだけであり、その形状に関連した、縦横方向の延伸や熱収縮についての記載は何も無く、本発明における段落0010に前記した目的と特異な構成の要件とは関連があるものではない。
By the way, when the first stage biaxially stretched blow-molded intermediate is thermally shrunk in the vertical and horizontal directions to relieve the residual stress of the intermediate, it is difficult to predict the shrinkage rate. As described above in paragraph 0004, an improved technique in the biaxially stretched two-stage blow molding method has not yet been disclosed in view of the problem that it takes a lot of man-hours to design the shape of the reform.
When reviewing the prior literature, Japanese Patent Application Laid-Open No. 9-314650 discloses that in the biaxially stretched two-stage blow molding method of a polyester resin container, “the degree of shrinkage of a secondary intermediate molded product that is heat shrink molded from a primary intermediate molded product” In order to obtain a casing with less internal residual stress, high dimensional system and appropriate thickness distribution, the mold temperature of the primary blow mold can be controlled. It should be set to 110 ° C. to 230 ° C. so that the amount of heat shrinkage can be controlled ”(paragraph 0018), and there is a method for controlling the amount of heat shrinkage, but in the summary (page 1), it is intermediate. There is also a drawing in which the molded product is contracted only in the lateral direction, but there is no further explanation, and none of them has a specific relationship with the purpose described above in paragraph 0010 in the present invention and the requirements of the specific configuration. Some Not.
The use of a conical preform is slightly scattered in the prior art as seen in Japanese Patent Application Laid-Open No. 11-157524 (summary drawing on the first page). There is no description of stretching and heat shrinkage in the vertical and horizontal directions related to the shape of the preform, and the purpose described above in paragraph 0010 of the present invention and the requirements for the unique configuration are as follows. It is not related.

以上においては、本発明が創作される経緯と、本発明の基本的な特徴と構成要素について、本発明を概観的に記述したので、ここで、本発明全体を俯瞰すると、本発明は、次の発明単位群から構成されるものであって、[1]〜[3]の発明を基本的な発明とし、それ以下の発明は、基本的な発明を具体化ないしは実施態様化するものである。(なお、発明群全体をまとめて「本発明」という。)   In the above, since the present invention has been described in overview with respect to the background of the creation of the present invention and the basic features and components of the present invention, the present invention can be summarized as follows. The invention of [1] to [3] is a basic invention, and the inventions below that embody the basic invention or form an embodiment. . (The invention group as a whole is collectively referred to as “the present invention”.)

[1]予め熱可塑性樹脂により形成したプリフォームの1次中間体を1次金型で1次延伸ブロー成形して2次中間体となし、2次中間体を熱収縮させて3次中間体となし、3次中間体を2次金型で2次延伸ブロー成形して熱可塑性樹脂容器を製造する際に、1次延伸ブロー成形において1次中間体をプリフォームの高さ方向に主に延伸配向させ、熱収縮過程でほぼ周方向にのみ収縮させることを特徴とする、二段ブロー成形法による熱可塑性樹脂容器の製造方法。
[2]1次延伸ブロー成形において1次中間体をプリフォームの高さ方向に主に延伸配向させ、熱収縮過程でほぼ周方向にのみ収縮させるために、プリフォームの1次中間体として、円錐形状のプリフォームを使用することを特徴とする、[1]における二段ブロー成形法による熱可塑性樹脂容器の製造方法。
[3]1次延伸ブロー成形において1次中間体をプリフォームの高さ方向に主に延伸配向させ、熱収縮過程でほぼ周方向にのみ収縮させることにより得られる熱収縮のデータに基づいて、1次金型及び/又はプリフォーム形状の設計をなすことを特徴とする、[1]又は[2]における二段ブロー成形法による熱可塑性樹脂容器の製造方法。
[4]2次延伸ブロー成形が二軸延伸ブローであることを特徴とする、[1]〜[3]のいずれかにおける二段ブロー成形法による熱可塑性樹脂容器の製造方法。
[5]熱可塑性樹脂がポリエステル樹脂であることを特徴とする、[1]〜[4]のいずれかにおける二段ブロー成形法による熱可塑性樹脂容器の製造方法。
[6]2次中間体の高さと周方向における配向度は、高さ方向の配向度が周方向の配向度を上回っていることを特徴とする、[1]〜[5]のいずれかにおける二段ブロー成形法による熱可塑性樹脂容器の製造方法。
[7]熱可塑性樹脂容器の高さと周方向における配向度は、高さ方向の配向度が周方向の配向度を上回っていることを特徴とする、[6]における二段ブロー成形法による熱可塑性樹脂容器の製造方法。
[1] A primary intermediate of a preform formed in advance with a thermoplastic resin is formed into a secondary intermediate by primary stretch blow molding using a primary mold, and the secondary intermediate is thermally contracted to form a tertiary intermediate. When producing a thermoplastic resin container by performing secondary stretch blow molding of the tertiary intermediate with a secondary mold, the primary intermediate is mainly used in the height direction of the preform in the primary stretch blow molding. A method for producing a thermoplastic resin container by a two-stage blow molding method, characterized in that the film is stretched and oriented and contracted only in the circumferential direction in the process of thermal contraction.
[2] In order to cause the primary intermediate to be stretched and oriented mainly in the height direction of the preform in the primary stretch blow molding and to shrink only in the circumferential direction in the heat shrinking process, as the primary intermediate of the preform, A method for producing a thermoplastic resin container by a two-stage blow molding method according to [1], wherein a conical preform is used.
[3] Based on heat shrinkage data obtained by primarily stretching and orienting the primary intermediate in the height direction of the preform in the primary stretch blow molding and shrinking only in the circumferential direction in the heat shrinking process, A method for producing a thermoplastic resin container by a two-stage blow molding method according to [1] or [2], wherein a primary mold and / or a preform shape is designed.
[4] The method for producing a thermoplastic resin container according to any one of [1] to [3], wherein the secondary stretch blow molding is biaxial stretch blow.
[5] The method for producing a thermoplastic resin container by a two-stage blow molding method according to any one of [1] to [4], wherein the thermoplastic resin is a polyester resin.
[6] In any one of [1] to [5], the height of the secondary intermediate and the degree of orientation in the circumferential direction are higher than the degree of orientation in the circumferential direction. A method for producing a thermoplastic resin container by a two-stage blow molding method.
[7] The heat by the two-stage blow molding method according to [6], wherein the orientation degree in the height and the circumferential direction of the thermoplastic resin container is higher than the orientation degree in the circumferential direction. A method for producing a plastic resin container.

本発明においては、ポリエステル樹脂容器の二軸延伸二段ブロー成形法における、一段目の二軸延伸ブロー成形中間体を縦横方向に熱収縮させる際に、容易かつ簡易な手段により経済的に収縮率予測を行うことができ、それにより、一段目のブロー成形金型及びプリフォームの形状の設計に非常に工数が掛かることを解消して、二軸延伸二段ブロー成形法の工業化における経費的かつ時間的な負荷の問題を解決し得る。   In the present invention, in the biaxially stretched two-stage blow molding method for a polyester resin container, when the first-stage biaxially stretched blow-molded intermediate is thermally shrunk in the vertical and horizontal directions, the shrinkage is economically achieved by an easy and simple means. Prediction can be made, which eliminates the need for man-hours for designing the shape of the first-stage blow molding mold and preform, and the cost and cost in industrialization of the biaxially stretched two-stage blow molding method. Can solve the problem of time load.

本願の発明については、課題を解決するための手段として、本発明の基本的な構成に沿って前述したが、以下においては、前述した本発明群の発明の実施の形態を、図面を参照しながら、具体的に詳しく説明する。   The invention of the present application has been described in accordance with the basic configuration of the present invention as means for solving the problems. However, in the following, the embodiment of the invention of the present invention group described above will be described with reference to the drawings. However, it will be specifically described in detail.

1.本発明の基本構成
(1)二段ブロー成形法
本発明は、二段ブロー成形法による熱可塑性樹脂容器の製造方法において、プリフォームの延伸配向を制御して熱収縮させるデータに基づいて予め金型及び/又はプリフォーム形状の設計をなして、二段ブロー成形法の工数の簡易化を図る、熱可塑性樹脂容器の製造方法に係わるものである。
本発明の二軸延伸二段ブロー成形法は、図1に概略的にその成形過程図が示されており、図面の左側から順次に見て、熱可塑性樹脂により予め形成した円錐形状のプリフォームの1次中間体を、1次金型内で1次ブロー成形し、主として中間体の高さ方向(縦方向)に延伸配向して2次中間体となし、次いで熱収縮させ、中間体のほぼ周方向にのみ収縮させて、3次中間体となし、最後に3次中間体を、2次金型内で2次ブロー成形し、二軸延伸を行って、ジャー(広口の容器)の完成品となしている。
1. Basic Configuration of the Present Invention (1) Two-stage Blow Molding Method The present invention relates to a method for manufacturing a thermoplastic resin container by a two-stage blow molding method, which is performed in advance on the basis of data for controlling the stretching orientation of the preform and causing heat shrinkage. The present invention relates to a method for manufacturing a thermoplastic resin container, which is designed for a mold and / or a preform shape to simplify the number of steps of the two-stage blow molding method.
The biaxially stretched two-stage blow molding method of the present invention is schematically shown in FIG. 1 as a molding process, and is viewed from the left side of the drawing in order, and is a conical preform preformed from a thermoplastic resin. The primary intermediate is subjected to primary blow molding in a primary mold, and stretched and oriented mainly in the height direction (longitudinal direction) of the intermediate to form a secondary intermediate, and then thermally contracted. Shrinkage is made almost only in the circumferential direction to form a tertiary intermediate. Finally, the tertiary intermediate is subjected to secondary blow molding in a secondary mold, biaxially stretched, and a jar (wide mouth container) is formed. This is a finished product.

(2)特異な延伸配向と熱収縮
本発明における主要な構成の要件のひとつとして、プリフォームの1次中間体を、1次金型内で1次ブロー成形する際に、主として中間体の高さ方向(縦方向)に延伸配向して2次中間体となし、中間体内の残留歪を緩和させる熱収縮過程でほぼ周方向にのみ収縮させる。
なお、従来のポリエステル樹脂容器の二軸延伸二段ブロー成形法では、高さと周方向の両方向へ延伸配向されるために、熱収縮過程では、通常は高さと周方向の両方向へほぼ同等に収縮されている。
(2) Peculiar stretching orientation and heat shrinkage As one of the main structural requirements in the present invention, when the primary intermediate of the preform is subjected to primary blow molding in the primary mold, the intermediate The film is stretched and oriented in the longitudinal direction (longitudinal direction) to form a secondary intermediate, and is contracted only in the circumferential direction in a thermal contraction process that relieves residual strain in the intermediate.
In the conventional biaxially stretched two-stage blow molding method for polyester resin containers, since it is stretched and oriented in both the height and circumferential directions, it usually shrinks approximately equally in both the height and circumferential directions. Has been.

本発明においては、延伸における配向が主として高さ方向に生じ、周方向には配向があまり生じず、その結果として、熱収縮は高さ方向には殆ど生じず、ほぼ周方向にのみ生じることとなる。
熱収縮は高さ方向には殆ど生じず、ほぼ周方向にのみ生じるから、1次ブロー成形の金型の設計時に高さ方向の収縮を考慮する必要が無くなる。
よって、容易かつ簡易な手段により経済的に収縮率予測を行うことができ、それにより、更に後述するTMA測定による熱収縮のデータを勘案して、一段目のブロー成形金型又はプリフォームの形状の設計を、或いは双方の設計を簡易化することが可能となり、一段目のブロー成形金型及びプリフォームの形状の設計に非常に工数が掛かることを解消して、二軸延伸二段ブロー成形法の工業化における経費的かつ時間的な負荷を解決し得る。
In the present invention, the orientation in stretching occurs mainly in the height direction, the orientation does not occur much in the circumferential direction, and as a result, the heat shrinkage hardly occurs in the height direction, and occurs only in the circumferential direction. Become.
The thermal shrinkage hardly occurs in the height direction, but only in the circumferential direction. Therefore, it is not necessary to consider the shrinkage in the height direction when designing a mold for primary blow molding.
Therefore, the shrinkage rate can be predicted economically by an easy and simple means, and the shape of the first-stage blow molding die or preform is further taken into consideration by taking into account the data of thermal shrinkage by TMA measurement described later. It is possible to simplify the design of both or both, eliminating the time required for designing the shape of the first-stage blow mold and preform, and biaxially stretched two-stage blow molding The cost and time burden in the industrialization of the law can be solved.

(3)円錐形状のプリフォーム
本発明における主要な構成の要件のひとつとして、図2における実施例に例示されるような、特異な形状である円錐形状(円錐型)のプリフォームを採用し、それにより、1次延伸ブロー成形において1次中間体をプリフォームの高さ方向に主に延伸配向させ、熱収縮過程でほぼ周方向にのみ収縮させることを容易に行うことができる。
円錐形状のプリフォームを用いると、延伸配向が高さ方向にのみ発生することが知見され、かかる現象は、本発明者による実験により判明したものであり、後述する実施例における表1の記載により実証されている。
(3) Cone-shaped preform As one of the main structural requirements in the present invention, a cone-shaped (conical) preform having a unique shape as exemplified in the embodiment in FIG. Thereby, in the primary stretch blow molding, the primary intermediate can be stretched and oriented mainly in the height direction of the preform, and can be easily contracted only in the circumferential direction in the heat shrinking process.
When a conical preform is used, it has been found that stretch orientation occurs only in the height direction, and this phenomenon has been found by experiments by the inventors, and is described in Table 1 in the examples described later. Proven.

2.二段ブロー成形法におけるその他の構成
(1)プリフォーム
通常の二軸延伸二段ブロー成形法では円柱形状(円筒型)のプリフォームが専ら使用されるが、本発明におけるプリフォーム(いわゆるパリソン;有底筒状予備形成品)は、好ましくは円錐形状のプリフォームが使用され、射出成形機や押出成形機或いは、圧縮成形機、特に回転式連続圧縮成形機などによる通常の手段により予備形成される。
好ましくは熱可塑性ポリエチレンテレフタレート(PET)を素材とするが、他のポリエステル樹脂或いはポリエチレンやポリプロピレン更にはポリカーボネートなど任意の樹脂も使用し得る。また、適宜に積層プリフォームの使用もでき、例えば、ポリアミドやエバールなどと積層すると酸素遮蔽性が向上する。更に、酸素吸収層を中間層に設けて酸素吸収性を向上させても良い。酸素吸収層に用いる酸化可能有機成分はポリエンから誘導される重合体が好ましい。
2. Other Configurations in the Two-stage Blow Molding Method (1) Preform In the normal biaxially stretched two-stage blow molding method, a cylindrical (cylindrical) preform is exclusively used, but the preform (so-called parison; The bottomed cylindrical preform is preferably a conical preform and is preformed by conventional means such as an injection molding machine, an extrusion molding machine, or a compression molding machine, particularly a rotary continuous compression molding machine. The
Thermoplastic polyethylene terephthalate (PET) is preferably used as a raw material, but other polyester resins or any resin such as polyethylene, polypropylene, and polycarbonate can also be used. In addition, a laminated preform can be used as appropriate. For example, when laminated with polyamide or Eval, oxygen shielding properties are improved. Furthermore, an oxygen absorption layer may be provided in the intermediate layer to improve oxygen absorption. The oxidizable organic component used in the oxygen absorbing layer is preferably a polymer derived from polyene.

(2)1次ブロー成形
1次ブローの高さ方向の縦延伸倍率は2.0〜3.5倍程度とされ、結晶の高配向と延伸の均質化がもたらされる。また、周方向の延伸は高さ方向に比べ少ない。
1次ブローの金型温度条件は、PETにおいては20〜160℃程度とされ他の樹脂では適宜通常の条件が採用される。
(2) Primary blow molding
The longitudinal draw ratio in the height direction of the primary blow is about 2.0 to 3.5 times, resulting in high crystal orientation and uniform drawing. Moreover, there is little extending | stretching of the circumferential direction compared with a height direction.
The mold temperature condition of the primary blow is about 20 to 160 ° C. in PET, and normal conditions are appropriately adopted in other resins.

(3)熱収縮過程
適宜に熱風オーブンや赤外線ヒーターなどで加熱して、2次中間体を専ら円周方向に収縮させるが、その表面温度が150〜220℃、好ましくは200℃において加熱収縮させて、円周方向に好ましくは30〜60%程度収縮させ、最終製品の容器より小さい形状の3次中間体となす。
(3) Thermal contraction process The secondary intermediate is shrunk exclusively in the circumferential direction by appropriately heating with a hot air oven or an infrared heater, but the surface temperature is 150-220 ° C, preferably 200 ° C. Thus, it is preferably contracted by about 30 to 60% in the circumferential direction to form a tertiary intermediate having a shape smaller than the final product container.

(4)2次ブロー成形
熱収縮した3次中間体のブロー成形部分の温度が120〜220℃の状態で、3次中間体を150〜230℃に温調された二次金型内表面に向けて、縦1.05〜1.2倍、横1.05〜1.2倍程度に二軸延伸ブロー成形し、次いで二次金型内で、ブローエア圧を保持したままブロー成形品外表面を二次金型内表面に、好ましくは2秒間程度、接触保持することでヒートセットする。
(4) Secondary blow molding In the state where the temperature of the blow molded portion of the heat-shrinked tertiary intermediate is 120 to 220 ° C, the tertiary intermediate is heated to 150 to 230 ° C on the inner surface of the secondary mold. The biaxially stretched blow molding is about 1.05 to 1.2 times in length and 1.05 to 1.2 times in width, and then the outer surface of the blow molded product is maintained in the secondary mold while maintaining the blow air pressure. Is kept in contact with the inner surface of the secondary mold, preferably for about 2 seconds, for heat setting.

3.熱機械分析(TMA)測定
本発明においては、2次中間体の高さと周方向における熱収縮のデータを得るために、1次ブロー後の2次中間体の高さと周方向における熱収縮量の差を、熱機械分析(TMA)測定による無荷重変形量の差にて評価することをも採用している。
測定方法は実施例において後述し、測定結果は後述する実施例における図3のグラフ図に例示されており、横軸が昇温温度(℃)で縦軸が試料片の長さ変形量(μm)を表すグラフである。
3. Thermomechanical analysis (TMA) measurement In the present invention, in order to obtain the data of the secondary intermediate height and the heat shrinkage in the circumferential direction, the height of the secondary intermediate after the primary blow and the amount of heat shrinkage in the circumferential direction are measured. It is also adopted that the difference is evaluated by the difference in the no-load deformation amount by thermomechanical analysis (TMA) measurement.
The measurement method will be described later in the examples, and the measurement results are illustrated in the graph of FIG. 3 in the examples described later. The horizontal axis is the temperature rise (° C.), and the vertical axis is the length deformation amount (μm) ).

以下において、実施例によって、比較例を対照して図面を参照しながら、本発明をより詳細に具体的に示すが、これらは、本発明の好ましい具体例を示し、本発明をより鮮明にして、本発明における構成の要件の合理性と有意性を明らかにし、その範囲の適応性をより広く顕すものである。   In the following, the present invention will be described in more detail with reference to the drawings by comparison with comparative examples, but these show preferred embodiments of the present invention and make the present invention clearer. Therefore, the rationality and significance of the requirements of the configuration in the present invention will be clarified, and the adaptability of the range will be revealed more widely.

[各種の測定法]
1.)ラマン分光による配向度の評価
レーザーラマン分光法により、容器の切片(胴の中央部)の断面方向(縦横2方向)からラマンスペクトルを測定する。分子構造におけるベンゼン骨格振動に起因するピークは約1616cm−1に顕われ、この強度を測定する。
ベンゼン環の配向度合いが高いほど、入射レーザーの偏光を0°方向にした場合の強度が高くなる。このことを利用し、配向パラメーターの数値化をOP(=入射レーザー0°偏光時の1616cm−1ピーク強度/入射レーザー90°偏光時の1616cm−1ピーク強度)と規定し、測定を行った。
(ラマン測定条件)
分光機器:日本分光Laser Raman Spectrophotometer NRS−1000 使用レーザー:532nm 測定波長範囲:1800〜600cm−1 測定秒数:5秒 積分回数:2回
[Various measurement methods]
1. ) Evaluation of degree of orientation by Raman spectroscopy The Raman spectrum is measured from the cross-sectional direction (vertical and horizontal two directions) of the section of the container (center portion of the trunk) by laser Raman spectroscopy. The peak due to the benzene skeleton vibration in the molecular structure appears at about 1616 cm −1 , and this intensity is measured.
The higher the degree of orientation of the benzene ring, the higher the intensity when the incident laser polarization is in the 0 ° direction. By utilizing this fact, a number of orientation parameters defined as OP (= 1616cm -1 peak intensity of 1616cm -1 peak intensity / incident laser 90 ° Henhikariji the incident laser 0 ° Henhikariji), was measured.
(Raman measurement conditions)
Spectroscopic instrument: JASCO Laser Raman Spectrophotometer NRS-1000 Laser used: 532 nm Measurement wavelength range: 1800-600 cm -1 Measurement seconds: 5 seconds Integration count: 2 times

2.)TMA無荷重変形量の測定
2次中間体の高さと周方向における熱収縮のデータを得るために、1次ブロー後の2次中間体の高さと周方向における熱収縮量の差を、熱機械分析(TMA)測定による無荷重変形量の差にて評価する。
容器の胴の中央部より縦(高さ)方向と横(周)方向に切り出した短冊状試験片を、TMA(熱機械分析法)により測定する。その二方向の変形量を、横軸が昇温温度(℃)で縦軸が試料片の長さ変形量(μm)を表すグラフで表わす。
(TMA測定条件)
測定機器:SIIナノテクノロジー社製DMS6100 温度プログラム:30〜250℃まで5℃/min昇温 試験片:40×5mm
なお、図3に後述する実施例と比較例における、TMA無荷重変化量の差の測定結果を表すグラフ図を例示する。
2. ) Measurement of TMA no-load deformation amount In order to obtain the data of the height of the secondary intermediate and the heat shrinkage in the circumferential direction, the difference between the height of the secondary intermediate after the primary blow and the amount of heat shrinkage in the circumferential direction Evaluation is based on the difference in no-load deformation by mechanical analysis (TMA) measurement.
A strip-shaped test piece cut out in the longitudinal (height) direction and lateral (circumferential) direction from the center of the body of the container is measured by TMA (thermomechanical analysis). The amount of deformation in the two directions is represented by a graph in which the horizontal axis represents the temperature rise (° C.) and the vertical axis represents the length deformation (μm) of the sample piece.
(TMA measurement conditions)
Measuring instrument: DMS6100 manufactured by SII Nanotechnology, Inc. Temperature program: 5 ° C / min temperature increase from 30 to 250 ° C Test piece: 40 x 5 mm
In addition, the graph figure showing the measurement result of the difference of TMA no-load change amount in the Example and comparative example which are mentioned later in FIG. 3 is illustrated.

3.)結晶化度の測定
容器の胴部より試験片を切り出し、硝酸カルシウム水溶液にて作成した密度勾配管法により試験片の密度ρ(g/cm)を求める。その結果、結晶化度は次式により計算される。
結晶化度(%)={ρc(ρ−ρa)/ρ(ρc−ρa)}×100
ρc:結晶密度(1.455g/cm
ρa:非晶密度(1.335g/cm
3. ) Measurement of crystallinity A test piece is cut out from the body of the container, and the density ρ (g / cm 3 ) of the test piece is obtained by a density gradient tube method prepared with an aqueous calcium nitrate solution. As a result, the crystallinity is calculated by the following equation.
Crystallinity (%) = {ρc (ρ−ρa) / ρ (ρc−ρa)} × 100
ρc: Crystal density (1.455 g / cm 3 )
ρa: amorphous density (1.335 g / cm 3 )

[実施例]
本発明の二段ブロー成形法による熱可塑性樹脂容器の製造方法における、図1に示された、(a)円錐形状(円錐型)のプリフォームを、(b)1次ブローし、(c)熱収縮し、(d)2次ブローする、各工程を実施した。
(a)円錐形状のプリフォーム
市販のポリエチレンテレフタレート(PET)を使用してブロー成形を行う、胴部の最外径φ47.6mm・肉厚3.0mm・高さ25mmで、テーパ角度が30度(テーパ比が1:0.866)である略円錐形のプリフォームを射出成形により予備成形し、1次中間体とした。
(b)1次ブロー
空気を吹き込んで120℃の1次金型により1次ブローし、主に高さ80mmに延伸膨張させ、また、外径はφ105mmである2次中間体とした。
(c)熱収縮
2次中間体を、200℃にて10秒収縮固定して、外径55mmに、ほぼ円周方向にのみ収縮した3次中間体とした。
(d)2次ブロー成形
180℃まで温度が低下した3次中間体に空気を吹き込んで210℃の2次金型により2次ブロー成形を行い、縦1.1倍、横1.1倍に二軸延伸ブロー成形し、二次金型内で次いでブロー成形品を前述の210℃の表面温度の金型においてヒートセットして、完成品のジャーを成形した。
[Example]
In the method for producing a thermoplastic resin container by the two-stage blow molding method of the present invention, (a) a conical (conical) preform shown in FIG. 1 is (b) primary blown, (c) Each step of heat shrinking and (d) secondary blowing was performed.
(A) Cone-shaped preform Blow molding is performed using commercially available polyethylene terephthalate (PET). The outermost diameter of the body is 47.6 mm, the wall thickness is 3.0 mm, the height is 25 mm, and the taper angle is 30 degrees. A substantially conical preform having a taper ratio of 1: 0.866 was preformed by injection molding to obtain a primary intermediate.
(B) Primary blow The air was blown and primary blown by a primary mold at 120 ° C., and the film was mainly expanded and expanded to a height of 80 mm, and the outer diameter was a secondary intermediate having a diameter of 105 mm.
(C) Thermal contraction The secondary intermediate was contracted and fixed at 200 ° C. for 10 seconds to obtain a tertiary intermediate contracted to an outer diameter of 55 mm substantially only in the circumferential direction.
(D) Secondary blow molding Air was blown into a tertiary intermediate whose temperature was lowered to 180 ° C, and secondary blow molding was performed with a secondary mold at 210 ° C, resulting in a length of 1.1 times and a width of 1.1 times. The biaxially stretched blow molding was carried out, and then the blow molded product was heat-set in the above-described mold having a surface temperature of 210 ° C. in the secondary mold to form a finished jar.

[比較例]
実施例のプリフォームの代わりに、ほぼ円柱形状(円筒型;テーパ角度は0.5度)のプリフォームを使用して、実施例と同様にブロー成形を行った。
なお、実施例と比較例において使用したプリフォームの形状を、図2に掲示する。また、実施例と比較例における、各種の測定結果を表1に、TMAの測定結果のグラフを図3に掲示する。
[Comparative example]
Instead of the preform of the example, a preform having a substantially columnar shape (cylindrical type; taper angle of 0.5 degrees) was used, and blow molding was performed in the same manner as in the example.
In addition, the shape of the preform used in the Example and the Comparative Example is posted in FIG. Further, various measurement results in Examples and Comparative Examples are shown in Table 1, and a graph of TMA measurement results is shown in FIG.

Figure 2008036956
Figure 2008036956

[実施例と比較例の結果の考察]
実施例及び比較例を対比すると、本発明の実施例においては、円錐型プリフォームを使用し、1次中間体をプリフォームの高さ方向に主に延伸配向させ、熱収縮過程でほぼ周方向にのみ収縮させているので、2次中間体のレーザーラマン法による配向度は、高さ方向が周方向よりかなり高く、逆にTMAによる収縮量は高さ方向が周方向より非常に低く、それらの結果、高さ方向には1次ブロー後の熱収縮過程では殆ど収縮せず、ほぼ周方向にのみ収縮する所望の結果が得られている。
一方、比較例においては、円筒型プリフォームを使用しているので、2次中間体レーザーラマン法による配向度は、高さ方向が周方向よりかなり低く、逆にTMAによる収縮量は高さ方向が周方向よりかなり高く、それらの結果、高さ方向には1次ブロー後の熱収縮過程で収縮し、周方向にも収縮する所望しない結果が得られている。
また、2次中間体を熱収縮及び2次ブローさせたジャー完成品についても配向度の高さ方向と周方向に関する大小関係の傾向は維持されている。
[Consideration of results of Examples and Comparative Examples]
In contrast to the examples and comparative examples, in the examples of the present invention, a conical preform is used, and the primary intermediate is stretched and oriented mainly in the height direction of the preform, and is substantially circumferential in the heat shrinking process. The degree of orientation of the secondary intermediate by the laser Raman method is considerably higher in the height direction than in the circumferential direction, and conversely, the amount of shrinkage by TMA is much lower in the height direction than in the circumferential direction. As a result, in the height direction, a desired result is obtained in which the film does not substantially shrink in the heat shrinking process after the primary blow, and contracts only in the circumferential direction.
On the other hand, in the comparative example, since a cylindrical preform is used, the degree of orientation by the secondary intermediate laser Raman method is considerably lower in the height direction than in the circumferential direction, and conversely, the shrinkage amount by TMA is in the height direction. Is considerably higher than in the circumferential direction, and as a result, in the height direction, an undesired result of shrinking in the heat shrinking process after the primary blow and shrinking in the circumferential direction is obtained.
In addition, the jar finished product in which the secondary intermediate is subjected to heat shrinkage and secondary blow also maintains the tendency of the magnitude relationship between the height direction of the orientation degree and the circumferential direction.

本発明の二軸延伸二段ブロー成形法における、概略的な成形過程図である。It is a rough molding process figure in the biaxial stretching two-stage blow molding method of the present invention. 実施例と比較例において使用したプリフォームの形状を示す概略図である。It is the schematic which shows the shape of the preform used in the Example and the comparative example. 実施例と比較例におけるTMA無荷重変化量の測定結果を示すグラフ図である。It is a graph which shows the measurement result of the TMA no-load change amount in an Example and a comparative example.

Claims (7)

予め熱可塑性樹脂により形成したプリフォームの1次中間体を1次金型で1次延伸ブロー成形して2次中間体となし、2次中間体を熱収縮させて3次中間体となし、3次中間体を2次金型で2次延伸ブロー成形して熱可塑性樹脂容器を製造する際に、1次延伸ブロー成形において1次中間体をプリフォームの高さ方向に主に延伸配向させ、熱収縮過程でほぼ周方向にのみ収縮させることを特徴とする、二段ブロー成形法による熱可塑性樹脂容器の製造方法。 A primary intermediate of a preform formed in advance by a thermoplastic resin is formed into a secondary intermediate by primary stretch blow molding using a primary mold, and a secondary intermediate is heat-shrinked to form a tertiary intermediate. When producing a thermoplastic resin container by secondary stretch blow molding of a tertiary intermediate with a secondary mold, the primary intermediate is mainly stretched and oriented in the height direction of the preform in primary stretch blow molding. A method for producing a thermoplastic resin container by a two-stage blow molding method, wherein the shrinkage is performed only in a substantially circumferential direction during the heat shrinkage process. 1次延伸ブロー成形において1次中間体をプリフォームの高さ方向に主に延伸配向させ、熱収縮過程でほぼ周方向にのみ収縮させるために、プリフォームの1次中間体として、円錐形状のプリフォームを使用することを特徴とする、請求項1に記載された二段ブロー成形法による熱可塑性樹脂容器の製造方法。 In primary stretch blow molding, the primary intermediate is stretched and oriented mainly in the height direction of the preform, and is contracted only in the circumferential direction in the heat shrinking process. The method for producing a thermoplastic resin container by a two-stage blow molding method according to claim 1, wherein a preform is used. 1次延伸ブロー成形において1次中間体をプリフォームの高さ方向に主に延伸配向させ、熱収縮過程でほぼ周方向にのみ収縮させることにより得られる熱収縮のデータに基づいて、1次金型及び/又はプリフォーム形状の設計をなすことを特徴とする、請求項1又は請求項2に記載された二段ブロー成形法による熱可塑性樹脂容器の製造方法。 In the primary stretch blow molding, the primary intermediate is stretched and oriented mainly in the height direction of the preform, and based on heat shrinkage data obtained by shrinking only in the circumferential direction in the heat shrinkage process, the primary gold The method for producing a thermoplastic resin container according to the two-stage blow molding method according to claim 1 or 2, wherein the mold and / or preform shape is designed. 2次延伸ブロー成形が二軸延伸ブローであることを特徴とする、請求項1〜請求項3のいずれかに記載された二段ブロー成形法による熱可塑性樹脂容器の製造方法。 The method for producing a thermoplastic resin container by a two-stage blow molding method according to any one of claims 1 to 3, wherein the secondary stretch blow molding is a biaxial stretch blow. 熱可塑性樹脂がポリエステル樹脂であることを特徴とする、請求項1〜請求項4に記載された二段ブロー成形法による熱可塑性樹脂容器の製造方法。 The method for producing a thermoplastic resin container by a two-stage blow molding method according to claim 1, wherein the thermoplastic resin is a polyester resin. 2次中間体の高さと周方向における配向度は、高さ方向の配向度が周方向の配向度を上回っていることを特徴とする、請求項1〜請求項5のいずれかに記載された二段ブロー成形法による熱可塑性樹脂容器の製造方法。 The height of the secondary intermediate and the degree of orientation in the circumferential direction are described in any one of claims 1 to 5, wherein the degree of orientation in the height direction exceeds the degree of orientation in the circumferential direction. A method for producing a thermoplastic resin container by a two-stage blow molding method. 熱可塑性樹脂容器の高さと周方向における配向度は、高さ方向の配向度が周方向の配向度を上回っていることを特徴とする、請求項6に記載された二段ブロー成形法による熱可塑性樹脂容器の製造方法。 The heat of the two-stage blow molding method according to claim 6, wherein the height of the thermoplastic resin container and the degree of orientation in the circumferential direction are higher than the degree of orientation in the circumferential direction. A method for producing a plastic resin container.
JP2006213973A 2006-08-04 2006-08-04 Manufacturing method of thermoplastic resin container by two-stage blow molding method Active JP4895186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006213973A JP4895186B2 (en) 2006-08-04 2006-08-04 Manufacturing method of thermoplastic resin container by two-stage blow molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006213973A JP4895186B2 (en) 2006-08-04 2006-08-04 Manufacturing method of thermoplastic resin container by two-stage blow molding method

Publications (2)

Publication Number Publication Date
JP2008036956A true JP2008036956A (en) 2008-02-21
JP4895186B2 JP4895186B2 (en) 2012-03-14

Family

ID=39172535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006213973A Active JP4895186B2 (en) 2006-08-04 2006-08-04 Manufacturing method of thermoplastic resin container by two-stage blow molding method

Country Status (1)

Country Link
JP (1) JP4895186B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06126813A (en) * 1992-10-14 1994-05-10 Nissei Asb Mach Co Ltd Molding device for blow molded vessel
JP2003291205A (en) * 2002-04-05 2003-10-14 Toyo Seikan Kaisha Ltd Heat resistant polyester container and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06126813A (en) * 1992-10-14 1994-05-10 Nissei Asb Mach Co Ltd Molding device for blow molded vessel
JP2003291205A (en) * 2002-04-05 2003-10-14 Toyo Seikan Kaisha Ltd Heat resistant polyester container and its manufacturing method

Also Published As

Publication number Publication date
JP4895186B2 (en) 2012-03-14

Similar Documents

Publication Publication Date Title
JP3047732B2 (en) Manufacturing method of biaxially stretched blow container
KR20160024840A (en) Blow molding method, composite preform, composite container, inside label member, and plastic-made member
JPH0453695B2 (en)
US8980390B2 (en) Synthetic resin bottle and process for manufacturing the same
KR101308299B1 (en) Polyester bottle with resistance to heat and pressure and process for producing the same
KR101422308B1 (en) Biaxially stretched thin-walled polyester bottle
JP2006321152A (en) Lightproof container and its manufacturing method
JP4210901B2 (en) Manufacturing method of bottle-shaped container
JP2001526598A (en) Improved multilayer container and preform
JP4895186B2 (en) Manufacturing method of thermoplastic resin container by two-stage blow molding method
JP5740810B2 (en) Polyester resin container in which molding distortion is suppressed and method for producing the same
JP4333280B2 (en) Plastic bottle containers
JP5155570B2 (en) Polyethylene terephthalate hollow container
KR101093671B1 (en) Apparatus for blow-molded container
EP3656533B1 (en) Polyester resin container, method for producing same, and blow mould
JP2009262947A (en) Polyethylene terephthalate bottle
JP4148065B2 (en) Stretch blow molding method of plastic bottle container and plastic bottle container formed by this molding method
JP2005081641A (en) Manufacturing method for flat container by two-stage blow molding method
KR101116169B1 (en) Apparatus for blow-molded container alternative to glass container and process for the same
JPH0443498B2 (en)
JP3986667B2 (en) Polyethylene terephthalate resin bottle manufacturing method
JP3835428B2 (en) Heat-resistant stretched resin container
WO2004096525A1 (en) Method of manufacturing heat-resisting polyester bottles and the products therefrom
JP5347254B2 (en) Heat and pressure resistant polyester bottle and method for producing the same
JP2003103607A (en) Bottom structure of heat-resistant bottle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111215

R150 Certificate of patent or registration of utility model

Ref document number: 4895186

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350