JP2008034815A - SmFeN NANO-COMPOSITE MAGNETIC PARTICLE AND MANUFACTURING METHOD THEREOF - Google Patents

SmFeN NANO-COMPOSITE MAGNETIC PARTICLE AND MANUFACTURING METHOD THEREOF Download PDF

Info

Publication number
JP2008034815A
JP2008034815A JP2007156522A JP2007156522A JP2008034815A JP 2008034815 A JP2008034815 A JP 2008034815A JP 2007156522 A JP2007156522 A JP 2007156522A JP 2007156522 A JP2007156522 A JP 2007156522A JP 2008034815 A JP2008034815 A JP 2008034815A
Authority
JP
Japan
Prior art keywords
smfen
magnetic
particles
magnetic particles
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007156522A
Other languages
Japanese (ja)
Inventor
Takeshi Kato
豪士 加藤
Shigehiro Hisamatsu
茂洋 久松
Kosaku Okamura
興作 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2007156522A priority Critical patent/JP2008034815A/en
Publication of JP2008034815A publication Critical patent/JP2008034815A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide SmFeN nanocomposite magnetic particles which represent high magnetic anisotropy as the entire particles, along with its manufacturing method, at a low cost. <P>SOLUTION: By using a discharge plasma sintering method, SmFeN magnetic particles are applied with pulse currents under a pressure, to decompose a part of SmFeN single crystal phase constituting the SmFeN magnetic particle, for Fe crystal phase to be precipitated. Thus, SmFeN nanocomposite magnetic particles of mixed-phase system are obtained in which Fe crystal particles are dispersed as soft magnetic phase in the SmFeN single crystal phase as hard magnetic phase. By electrifying under pressure while the SmFeN magnetic particles are applied with a specified magnetic field, a part of the particles is decomposed while crystal orientation of the SmFeN magnetic particles is maintained in the applied magnetic field. Thus, SmFeN nanocomposite magnetic particles having a magnetic anisotropy equal to or higher than that of the SmFeN magnetic particles having been subjected to decomposition are provided. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、SmFeNナノコンポジット磁性粒子及びその製造方法に関し、特に、異方性SmFeNナノコンポジット磁石の構成要素となり得るものに関する。   The present invention relates to SmFeN nanocomposite magnetic particles and a method for producing the same, and more particularly to what can be a constituent element of an anisotropic SmFeN nanocomposite magnet.

次世代高性能磁石としてのナノコンポジット磁石は、ナノオーダーの軟磁性相と、軟磁性相と隣接する硬磁性相との間の交換相互作用により従来のNdFeB系磁石等に比べて高い磁力特性を発揮し得るものであり、実用化に向けて研究開発が進められている。   Nanocomposite magnets as next-generation high-performance magnets have higher magnetic properties than conventional NdFeB magnets due to the exchange interaction between the soft magnetic phase of the nano order and the hard magnetic phase adjacent to the soft magnetic phase. Research and development is underway for practical application.

この種のナノコンポジット磁石用材料としては、高い磁力レベルを有するNdFeB系材料が一般的であるが、この他にも、磁力レベルに関しNdFeB系材料と同等のポテンシャルを有し、かつ耐熱性や耐食性に関してはNdFeBより優れた特性を示すSmFeN系材料が有望であり、実用化に向けて種々の検討がなされている。   As this type of nanocomposite magnet material, an NdFeB-based material having a high magnetic force level is generally used, but in addition to this, it has the same potential as the NdFeB-based material with respect to the magnetic force level, and has heat resistance and corrosion resistance. Is promising, SmFeN-based materials exhibiting properties superior to NdFeB, and various studies have been made for practical application.

これらナノコンポジット磁石用材料の製造方法として、例えば特開平10−261515号公報に記載の方法が公知である(特許文献1を参照)。これは、いわゆる単ロール法と呼ばれる方法を利用したもので、SmやFeを元素として含む原料を溶解し、溶湯状態の原料をノズルからCuロール上に供給し、急冷する。これによりアモルファス組織、あるいはアモルファス組織中に微細結晶を含む組織からなる急冷箔帯を得る。その後、当該急冷箔帯を粉砕し、カプセル封入と熱間加工を経て、ハード磁性相となるSmFe結晶相とソフト磁性相(Fe結晶相)の結晶化を行う。そして、最後にガス窒化を行うことで、SmFeN結晶相とFe結晶相とからなるSmFeNナノコンポジット磁性粉末を得る。
特開平10−261515号公報
As a method for producing these nanocomposite magnet materials, for example, a method described in JP-A-10-261515 is known (see Patent Document 1). This is a method using a so-called single roll method, in which a raw material containing Sm or Fe as an element is melted, and a raw material in a molten state is supplied from a nozzle onto a Cu roll and rapidly cooled. As a result, a quenched foil strip made of an amorphous structure or a structure containing fine crystals in the amorphous structure is obtained. Thereafter, the quenched foil strip is pulverized, and encapsulated and hot-worked to crystallize an SmFe crystal phase and a soft magnetic phase (Fe crystal phase) that become a hard magnetic phase. Finally, gas nitriding is performed to obtain an SmFeN nanocomposite magnetic powder composed of an SmFeN crystal phase and an Fe crystal phase.
Japanese Patent Laid-Open No. 10-261515

上述の方法で得られたナノコンポジット磁性粉末(粒子)においては、軟磁性相と硬磁性相の結晶方位が揃っていることが理想的であるが、上述のように、アモルファス組織中から各磁性相の結晶化を行う方法では硬磁性相の結晶方位を揃えることは困難であり、粒子全体として十分な磁気異方性を示すには至っていない。また、上述の方法は、複数の工程を必要とするものであり、工数の増加はコストの高騰を招く。   In the nanocomposite magnetic powder (particles) obtained by the above method, it is ideal that the crystal orientations of the soft magnetic phase and the hard magnetic phase are aligned. In the method of crystallizing phases, it is difficult to align the crystal orientation of the hard magnetic phase, and the magnetic grains as a whole do not exhibit sufficient magnetic anisotropy. Further, the above-described method requires a plurality of steps, and an increase in the number of man-hours leads to an increase in cost.

そこで、本発明では、粒子全体として高い磁気異方性を示し得るSmFeNナノコンポジット磁性粒子およびその製造方法を低コストに提供することを技術的課題とする。   Therefore, the present invention has a technical problem to provide SmFeN nanocomposite magnetic particles that can exhibit high magnetic anisotropy as a whole particle and a method for producing the same at low cost.

前記課題を解決するため、本発明は、硬磁性相としてのSmFeN単結晶相と、SmFeN単結晶相の一部が分解して生成された軟磁性相としてのFe結晶相とを含むSmFeNナノコンポジット磁性粒子を提供する。   In order to solve the above-mentioned problems, the present invention provides an SmFeN nanocomposite comprising an SmFeN single crystal phase as a hard magnetic phase and an Fe crystal phase as a soft magnetic phase generated by decomposing a part of the SmFeN single crystal phase. Magnetic particles are provided.

このように、本発明に係るSmFeNナノコンポジット磁性粒子は、SmFeN単結晶相と、SmFeN単結晶相の一部が分解して生成されたFe結晶相とが共存する混相組織をなすものであり、SmFeN単結晶相は、結晶方位の揃った硬磁性相を形成する。従って、Fe結晶相の分解生成により粒子全体としてはナノコンポジット化しつつも、硬磁性相においては、結晶方位の揃ったSmFeN単結晶相を残すことができる。これにより、粒子全体として高い磁気異方性を示すナノコンポジット磁性粒子を得ることができる。   As described above, the SmFeN nanocomposite magnetic particle according to the present invention has a mixed phase structure in which the SmFeN single crystal phase and the Fe crystal phase generated by decomposition of a part of the SmFeN single crystal phase coexist. The SmFeN single crystal phase forms a hard magnetic phase with a uniform crystal orientation. Accordingly, the SmFeN single crystal phase having a uniform crystal orientation can be left in the hard magnetic phase while the entire particle is made into a nanocomposite by decomposition and formation of the Fe crystal phase. Thereby, the nanocomposite magnetic particle which shows high magnetic anisotropy as the whole particle | grain can be obtained.

また、前記課題を解決するため、本発明は、SmFeN磁性粒子に対して加圧しつつ電流を流し、SmFeN磁性粒子をなすSmFeN単結晶相の一部を分解してFe結晶相を析出させることにより、硬磁性相としてのSmFeN単結晶相中に、軟磁性相としてのFe結晶相が分散した混相組織の磁性粒子を得る、SmFeNナノコンポジット磁性粒子の製造方法を提供する。   In order to solve the above-mentioned problem, the present invention applies a current while applying pressure to the SmFeN magnetic particles, decomposes a part of the SmFeN single crystal phase forming the SmFeN magnetic particles, and precipitates the Fe crystal phase. The present invention provides a method for producing SmFeN nanocomposite magnetic particles, which obtains magnetic particles having a mixed phase structure in which an Fe crystal phase as a soft magnetic phase is dispersed in an SmFeN single crystal phase as a hard magnetic phase.

このように、本発明に係る方法は、従来とは異なる手法で磁石原料のナノコンポジット化を図るもので、この方法によれば、分解析出される粒状のFe結晶相と、分解されずに残ったSmFeN単結晶相とが共存する組織をなす磁性粒子が得られる。そのため、結晶方位の揃った単結晶相からなるSmFeN磁性粒子に対して本発明に係る方法を適用すれば、同一の結晶方位を示す硬磁性相が得られる。よって、全体として高い磁気異方性を示すSmFeNナノコンポジット磁性粒子を得ることができ、ひいては高い磁気特性{例えば(BH)max}を発揮し得るナノコンポジット磁石の生産が可能となる。   As described above, the method according to the present invention is intended to make the magnet raw material into a nanocomposite by a method different from the conventional method. According to this method, the granular Fe crystal phase to be decomposed and precipitated remains undecomposed. In addition, magnetic particles having a structure in which the SmFeN single crystal phase coexists can be obtained. Therefore, when the method according to the present invention is applied to SmFeN magnetic particles composed of a single crystal phase with a uniform crystal orientation, a hard magnetic phase having the same crystal orientation can be obtained. Therefore, SmFeN nanocomposite magnetic particles exhibiting high magnetic anisotropy as a whole can be obtained, and as a result, production of a nanocomposite magnet that can exhibit high magnetic properties {for example (BH) max} becomes possible.

また、本発明に係る方法であれば、従来に比べて簡易な方法でナノコンポジット磁性粒子を製造することができるので、かかる製造工程の簡略化が可能となる。これにより当該ナノコンポジット磁性粒子、あるいはこの粒子で形成されるナノコンポジット磁石をより低コストに製造することができる。   In addition, since the nanocomposite magnetic particles can be produced by a simpler method than the conventional method, the production process can be simplified. Thereby, the nanocomposite magnetic particles or a nanocomposite magnet formed of these particles can be manufactured at a lower cost.

SmFeN磁性粒子の分解は、例えば当該磁性粒子間に放電プラズマを発生させることにより行うことができる。ここで放電プラズマを発生させる手法としては、放電プラズマ焼結法(SPS法)と呼ばれるものが周知である。この手法は、黒鉛等の材料で形成された型内に供給された粉末材料に対して加圧しつつパルス電流を流しかつ粉末粒子間に放電プラズマを発生させることで、粒子表面を活性化させ、当該粒子に対し短時間で効果的な熱処理を行うものである。本発明においては、同手法により熱処理がなされた結果、粉末粒子間に焼結作用を生じるか否かは問わない。後述する他の通電処理に関しても同様に、焼結作用の有無は問わない。   The decomposition of the SmFeN magnetic particles can be performed, for example, by generating discharge plasma between the magnetic particles. Here, as a method for generating discharge plasma, a method called a discharge plasma sintering method (SPS method) is well known. This method activates the particle surface by applying a pulse current to the powder material supplied in a mold formed of a material such as graphite while applying a pulse current and generating discharge plasma between the powder particles. An effective heat treatment is performed on the particles in a short time. In the present invention, it does not matter whether or not a sintering action is produced between the powder particles as a result of the heat treatment performed by the same method. Similarly, the presence or absence of a sintering action is not questioned with respect to other energization treatments to be described later.

このように、本発明は、通常、粉末の焼結に使用する放電プラズマ焼結法を、磁石原料となるSmFeN磁性粒子の分解(言い換えるとナノコンポジット化)に利用したことを特徴の1つとするものである。この方法によれば、SmFeN磁性粒子の分解が全体にわたって万遍なく行われるので、Fe結晶相をSmFeN単結晶相中に極力偏りなく分散析出させることができる。そのため、全体として均質な結晶組織を有するSmFeNナノコンポジット磁性粒子を形成することができる。また、軟磁性相としてのFe結晶相がナノオーダーで分散析出されることで、より優れた交換相互作用を発揮し得る高磁性のナノコンポジット磁石を得ることができる。   Thus, one feature of the present invention is that the discharge plasma sintering method, which is usually used for powder sintering, is used for the decomposition (in other words, nanocomposite formation) of SmFeN magnetic particles used as magnet raw materials. Is. According to this method, since the decomposition of the SmFeN magnetic particles is performed uniformly, the Fe crystal phase can be dispersed and precipitated in the SmFeN single crystal phase as much as possible. Therefore, SmFeN nanocomposite magnetic particles having a homogeneous crystal structure as a whole can be formed. In addition, since the Fe crystal phase as a soft magnetic phase is dispersed and precipitated in the nano order, a highly magnetic nanocomposite magnet capable of exhibiting better exchange interaction can be obtained.

上述の通り、本発明は、SmFeN磁性粒子を加圧通電して、軟磁性相としてのFe結晶相がSmFeN単結晶相中に析出するよう、SmFeN磁性粒子を分解することを特徴とするものであるが、この際には、SmFeN単結晶相を完全に分解してしまわないよう分解条件を適正化して部分的に分解反応を進行させる必要がある。   As described above, the present invention is characterized in that the SmFeN magnetic particles are decomposed so that the Fe crystal phase as a soft magnetic phase is precipitated in the SmFeN single crystal phase when the SmFeN magnetic particles are pressurized and energized. However, in this case, it is necessary to promote the decomposition reaction partially by optimizing the decomposition conditions so that the SmFeN single crystal phase is not completely decomposed.

ここで、放電プラズマ焼結法(SPS法)に限らず、本発明のように、加圧しながらパルス通電することでSmFeN磁性粒子の分解を行う場合、Fe結晶相の分解析出に影響を及ぼすと推測される因子として、加圧力、電流量(通電量)、パルス条件、処理時間(通電時間)、処理雰囲気が考えられる。このうち、この中でも特に影響が大きいと推察される加圧力と電流量につき詳細に鋭意検討した結果、本発明者らは、SmFeN磁性粒子を偏りなくかつ適度に分解できる条件(好適条件)を見出した。   Here, not only the discharge plasma sintering method (SPS method) but also the SmFeN magnetic particles are decomposed by applying a pulse current while applying pressure as in the present invention, the decomposition of the Fe crystal phase is affected. As factors presumed to be, pressure, current amount (energization amount), pulse condition, processing time (energization time), and processing atmosphere can be considered. Among these, as a result of intensive studies on the applied pressure and the amount of current, which are presumed to have particularly great effects, the present inventors have found conditions (preferable conditions) that allow the SmFeN magnetic particles to be decomposed without bias and appropriately. It was.

つまり、詳細は後述の検討結果に任せるが、当該結果から、加圧力の増加に伴い、磁気特性の向上が認められる領域(有効電流領域)が電流量の大きい側にシフトする傾向が見
られた。また、加圧力の増加に伴い、前記有効電流領域の範囲が拡大する傾向が見られた。これらの結果から、本発明では、下記条件下でSmFeN磁性粒子の分解処理を行うことを提案する。すなわち、加圧力P[MPa]に対する電流量I[A]の比が、4≦I/P≦13となるよう、加圧力Pおよび電流量Iを定めた上で分解を行うことにより、SmFeN磁性粒子を偏りなくかつ適度に分解することができる。
In other words, the details are left to the examination results to be described later. From the results, it was found that the area where the improvement of magnetic properties (effective current area) was observed tends to shift to the side where the amount of current is larger as the applied pressure increases. . Moreover, the range of the said effective current area | region expanded as the pressurization force increased. From these results, the present invention proposes that the SmFeN magnetic particles be decomposed under the following conditions. That is, by determining the pressure P and the current amount I so that the ratio of the current amount I [A] to the pressure force P [MPa] is 4 ≦ I / P ≦ 13, the decomposition is performed, whereby the SmFeN magnetism is obtained. The particles can be decomposed without bias and moderately.

このように、SmFeN磁性粒子に対して加圧およびパルス通電を施し、その一部を分解するようにすれば、SmFeN磁性粒子のナノコンポジット化を図ることができるが、一方で、上述の方法では、分解されずに残るSmFeN単結晶相の磁気異方性の度合いが上記分解処理の影響で低下するおそれがある。このことは、分解前の磁性粒子と分解後の磁性粒子とに対して等方的な磁気測定を行った場合、分解後の(BH)maxは向上するのに対し、各々の磁性粒子に磁場配向を付与した後、磁気測定を行うと、分解後の(BH)maxが分解前(未処理)のそれに比して同等以下の値を示すに留まることからも推察される。   In this manner, if SmFeN magnetic particles are pressurized and pulsed and a part of them is decomposed, nanocomposites of SmFeN magnetic particles can be achieved. The degree of magnetic anisotropy of the SmFeN single crystal phase remaining without being decomposed may be reduced by the influence of the decomposition treatment. This is because, when isotropic magnetic measurement is performed on the magnetic particles before decomposition and the magnetic particles after decomposition, (BH) max after decomposition is improved, whereas each magnetic particle has a magnetic field. It is also inferred from the fact that when the magnetic measurement is performed after the orientation is imparted, the (BH) max after decomposition only shows a value equal to or less than that before decomposition (untreated).

かかる事情に鑑み、本発明では、SmFeN磁性粒子に対して磁場を印加した状態で加圧通電を行うようにした。このように、加圧通電によるSmFeN磁性粒子の一部分解を、磁場を当該粒子に印加した状態で実施することで、SmFeN磁性粒子の結晶方位を印加磁場により保持した状態で当該粒子の一部分解が生じる。これにより、分解に供したSmFeN磁性粒子と同等あるいはそれ以上の磁気異方性を有するSmFeNナノコンポジット磁性粒子を得ることができる。   In view of such circumstances, in the present invention, pressurization energization is performed with a magnetic field applied to the SmFeN magnetic particles. As described above, the partial decomposition of the SmFeN magnetic particles by applying the pressure is performed in a state where the magnetic field is applied to the particles, so that the partial decomposition of the particles can be performed while the crystal orientation of the SmFeN magnetic particles is held by the applied magnetic field. Arise. Thereby, SmFeN nanocomposite magnetic particles having magnetic anisotropy equal to or higher than that of the SmFeN magnetic particles subjected to decomposition can be obtained.

このように、磁場作用下で加圧通電し、SmFeN磁性粒子の一部分解を図る場合、通電に供する電流の種類としては直流やパルス状など任意の形態を採用することができる。   As described above, when applying energization under a magnetic field and partially decomposing the SmFeN magnetic particles, an arbitrary form such as direct current or pulse can be adopted as the type of current to be applied.

このように、本発明によれば、粒子全体として高い磁気異方性を示し得るSmFeNナノコンポジット磁性粒子を低コストに提供することができる。   Thus, according to the present invention, SmFeN nanocomposite magnetic particles that can exhibit high magnetic anisotropy as a whole particle can be provided at low cost.

以下、本発明に係るSmFeNナノコンポジット磁性粒子の製造方法の第1実施形態を図面に基づいて説明する。   Hereinafter, 1st Embodiment of the manufacturing method of the SmFeN nanocomposite magnetic particle which concerns on this invention is described based on drawing.

図1は、第1実施形態に係るSmFeNナノコンポジット磁性粒子の製造に用いる装置の要部断面図を示している。この装置1は、いわゆる放電プラズマ焼結装置と呼ばれるもので、加圧通電の対象となる材料、すなわちSmFeN単結晶相(例えばSm2Fe173単結晶相)からなるSmFeN磁性粒子11を収容するためのダイ2と、ダイ2の内部に挿入可能で、上下一対に配置される上パンチ3および下パンチ4とを主に備える。上パンチ3および下パンチ4のそれぞれ対向する側とは反対側の端部には、上部パンチ電極5、下部パンチ電極6が設けられている。上記構成をなす放電プラズマ焼結装置1のうち、少なくともダイ2と上下パンチ3、4はチャンバー7内に収容されている。チャンバー7内部は、図示しない適当な雰囲気制御手段により所定の真空度(10-1Pa〜10-3Pa)に維持され、あるいは窒素ガス等により不活性状態の雰囲気に維持される。 FIG. 1: has shown principal part sectional drawing of the apparatus used for manufacture of the SmFeN nanocomposite magnetic particle which concerns on 1st Embodiment. This apparatus 1 is a so-called discharge plasma sintering apparatus, and contains SmFeN magnetic particles 11 made of a material to be pressurized and energized, that is, an SmFeN single crystal phase (for example, Sm 2 Fe 17 N 3 single crystal phase). And a die 2 for insertion, and an upper punch 3 and a lower punch 4 that can be inserted into the die 2 and are arranged in a pair of upper and lower sides. An upper punch electrode 5 and a lower punch electrode 6 are provided at the ends of the upper punch 3 and the lower punch 4 opposite to the opposing sides. Of the discharge plasma sintering apparatus 1 configured as described above, at least the die 2 and the upper and lower punches 3 and 4 are accommodated in the chamber 7. The inside of the chamber 7 is maintained at a predetermined degree of vacuum (10 −1 Pa to 10 −3 Pa) by an appropriate atmosphere control means (not shown), or is maintained in an inert atmosphere by nitrogen gas or the like.

上下パンチ3、4は何れも、SmFeN磁性粒子11にパルス電流を供給するため、黒鉛で形成される。もちろん、導電性および所定の加圧力に耐え得る強度を持つものであれば、導電性セラミックスや高融点の金属など他の材料で上下パンチ3、4を形成することも可能である。   Both the upper and lower punches 3 and 4 are made of graphite in order to supply a pulse current to the SmFeN magnetic particles 11. Of course, the upper and lower punches 3 and 4 can be formed of other materials such as conductive ceramics or a high melting point metal as long as they have conductivity and strength capable of withstanding a predetermined pressure.

また、ダイ2も黒鉛で形成されるが、所定の加圧力や温度に耐え得るものであれば、WC(タングステンカーバイド)やセラミックスなど他の材料で形成しても構わない。   The die 2 is also formed of graphite, but may be formed of other materials such as WC (tungsten carbide) or ceramics as long as it can withstand a predetermined pressure and temperature.

また、上下パンチ3、4はそれぞれ、上部パンチ電極5と下部パンチ電極6を介して図示しない適当な駆動手段により上下方向に移動可能であり、また図示しない適当な電力供給手段により通電可能となっている。   The upper and lower punches 3 and 4 can be moved in the vertical direction by an appropriate driving means (not shown) through the upper punch electrode 5 and the lower punch electrode 6 and can be energized by an appropriate power supply means (not shown). ing.

ダイ2および上下パンチ3、4によって区画形成された空間内にSmFeN磁性粒子11を充填した状態で、上パンチ3を下パンチ4に向けて相対的に接近させ、これによりSmFeN磁性粒子11を上下方向から加圧する。また、加圧と共に、上下パンチ3、4に所定のパルス電流を供給し、加圧中のSmFeN磁性粒子11に対してパルス通電を所定の時間行う。これにより、SmFeN磁性粒子11中において、SmFeN→Fe+SmN+N の分解反応(ここでは、Sm2Fe173→17Fe+2SmN+1/2N2 の分解反応)が生じる。 With the SmFeN magnetic particles 11 filled in the space defined by the die 2 and the upper and lower punches 3 and 4, the upper punch 3 is relatively moved toward the lower punch 4 so that the SmFeN magnetic particles 11 are moved up and down. Pressurize from the direction. Along with the pressurization, a predetermined pulse current is supplied to the upper and lower punches 3, 4, and pulse energization is performed on the SmFeN magnetic particles 11 being pressed for a predetermined time. Thereby, in the SmFeN magnetic particles 11, a decomposition reaction of SmFeN → Fe + SmN + N (here, a decomposition reaction of Sm 2 Fe 17 N 3 → 17Fe + 2SmN + 1 / 2N 2 ) occurs.

このようにして、SmFeN磁性粒子11に対して加圧力およびパルス電流を供給し、SmFeN磁性粒子11をなすSmFeN単結晶相の一部を分解することで、硬磁性相としてのSmFeN単結晶相中に、軟磁性相としてのFe結晶粒が分散析出した形態の粒子が得られる。このうち、SmFeN単結晶相とFe結晶相とが共存している状態は、XRD(X線回折法)により確認された。また、図2は、上記分解処理後のSmFeN磁性粒子11単体あるいはその一部をTEM(透過型電子顕微鏡)にて撮影したものである。同図より、当該粒子11が、分解析出されたナノオーダーの微細結晶粒(同図中矢印で示す部分)と、分解されずに残ったSmFeN単結晶相とで成っていることが見て取れる。同図中右上に示すEDS(エネルギー分散型X線分析装置)の分析結果やXRD(X線回折法)の結果と併せて考えると、上記微細結晶粒が析出Fe結晶相であることが推察される。   In this way, by applying a pressure and a pulse current to the SmFeN magnetic particles 11 and decomposing a part of the SmFeN single crystal phase forming the SmFeN magnetic particles 11, the SmFeN single crystal phase as a hard magnetic phase is decomposed. In addition, particles having a form in which Fe crystal grains as a soft magnetic phase are dispersed and precipitated are obtained. Among these, the coexistence of the SmFeN single crystal phase and the Fe crystal phase was confirmed by XRD (X-ray diffraction method). FIG. 2 is a photograph of the SmFeN magnetic particles 11 after the decomposition treatment or a part thereof taken with a TEM (transmission electron microscope). From the figure, it can be seen that the particles 11 are composed of nano-order fine crystal grains (parts indicated by arrows in the figure) that are decomposed and precipitated and SmFeN single crystal phases that remain without being decomposed. When considered together with the analysis results of the EDS (energy dispersive X-ray analyzer) and the XRD (X-ray diffraction method) shown in the upper right in the figure, it can be inferred that the fine crystal grains are precipitated Fe crystal phases. The

以上より、SmFeN磁性粒子11に対して加圧しつつパルス通電を行い、SmFeN磁性粒子11をなすSmFeN単結晶相の一部を分解して微細結晶粒としてのFe結晶相を析出させることで、分解されずに残った硬磁性相としてのSmFeN単結晶相と、同結晶相中に分散析出され、ナノオーダーの粒状をなす軟磁性相としてのFe結晶相とが共存した混相組織をなす磁性粒子が得られる。かかる粒子を構成する硬磁性相は、分解前のSmFeN単結晶相の持つ単一の結晶方位を示す。そのため、かかる製造方法により得られたSmFeNコンポジット磁性粒子は、高い磁気異方性を示し得る。従って、これを原料とすることで優れた磁気特性{例えば(BH)max}を発揮し得るナノコンポジット磁石の生産が可能となる。   As described above, by applying pulse current to the SmFeN magnetic particles 11 while applying pressure, the SmFeN magnetic particles 11 are partially decomposed to precipitate a Fe crystal phase as fine crystal grains, thereby decomposing the particles. The magnetic particles having a mixed phase structure in which the SmFeN single crystal phase as the hard magnetic phase remaining without being dispersed and the Fe crystal phase as the soft magnetic phase dispersed and precipitated in the same crystal phase and having a nano-order granularity coexist can get. The hard magnetic phase composing such particles exhibits a single crystal orientation of the SmFeN single crystal phase before decomposition. Therefore, the SmFeN composite magnetic particles obtained by such a production method can exhibit high magnetic anisotropy. Therefore, by using this as a raw material, it becomes possible to produce a nanocomposite magnet that can exhibit excellent magnetic properties {for example, (BH) max}.

また、かかる方法によれば、従来に比べて製造工程を簡略化することができ、これにより、上記SmFeNナノコンポジット磁性粒子あるいはこれを原料とするナノコンポジット磁石の製造コストを低減することが可能となる。   In addition, according to such a method, the manufacturing process can be simplified as compared with the conventional method, thereby making it possible to reduce the manufacturing cost of the SmFeN nanocomposite magnetic particles or the nanocomposite magnet using the same. Become.

また、SmFeN磁性粒子11の分解を放電プラズマ焼結法を利用することにより行うことでSmFeN磁性粒子11の分解が全体にわたって万遍なく行われる。従って、極力ばらつきの少ない均質な結晶組織を有するSmFeNナノコンポジット磁性粒子を得ることができる。また、放電プラズマ焼結法を利用することで、SmFeN磁性粒子11の分解を短時間で行うことが可能となる。   Further, by decomposing the SmFeN magnetic particles 11 by using the discharge plasma sintering method, the SmFeN magnetic particles 11 are uniformly decomposed throughout. Therefore, SmFeN nanocomposite magnetic particles having a homogeneous crystal structure with as little variation as possible can be obtained. Further, by using the discharge plasma sintering method, the SmFeN magnetic particles 11 can be decomposed in a short time.

次に、上述の製造方法によりSmFeNナノコンポジット磁性粒子を製造する際の適正条件について、放電プラズマ焼結法を利用する場合を例にとって検討を行った。なお、以下の検討に際し、ダイ2および上下パンチ3、4は何れも黒鉛製とし、SmFeN磁性粒子11の収容空間の直径はφ10mmとした。   Next, the proper conditions for producing SmFeN nanocomposite magnetic particles by the above-described production method were examined by taking as an example the case of using the discharge plasma sintering method. In the following examination, the die 2 and the upper and lower punches 3 and 4 were both made of graphite, and the diameter of the accommodation space for the SmFeN magnetic particles 11 was φ10 mm.

まず、放電プラズマ焼結法の設定条件のうち、SmFeN磁性粒子11の分解能に影響を及ぼすと推察される加圧力、電流量、パルス条件、処理時間(通電時間)、処理雰囲気の5因子に関し、各因子の磁気特性、ここでは最大エネルギー積(BH)maxに対する影響の度合いを調べた。具体的には、
1)加圧力に関し、3kN、4kN、5kN、
2)電流量に関し、300A、375A、450A、
3)パルス条件に関し、1−9、1−1、99−1(前者がパルス電流ON、後者がOFF 1単位が1.3msec)、
4)通電時間に関し、4sec、8sec、12sec、
5)雰囲気に関し、高真空(10-2〜10-3Pa)、真空(10-1Pa)、窒素ガス下、のそれぞれ3水準下において上記分解処理を行い、処理後のSmFeN磁性粒子11に対する磁気特性の評価を行った。この際、処理後のSmFeN磁性粒子11の集合体(成形体)を等方的に、すなわち成形後、特定磁場中において磁気的配向を持たせるための処理を省いて(BH)maxの測定を行った。また、試験に供するSmFeN磁性粒子11として、日亜化学工業(株)製のZ16を使用した。
First, among the setting conditions of the discharge plasma sintering method, regarding the five factors of the applied pressure, current amount, pulse condition, processing time (energization time), and processing atmosphere, which are presumed to affect the resolution of the SmFeN magnetic particles 11, The degree of influence of each factor on the magnetic properties, here the maximum energy product (BH) max, was examined. In particular,
1) Regarding pressure, 3kN, 4kN, 5kN,
2) Regarding the amount of current, 300A, 375A, 450A,
3) Regarding pulse conditions, 1-9, 1-1, 99-1 (the former is pulse current ON, the latter is OFF 1 unit is 1.3 msec),
4) Regarding energization time, 4 sec, 8 sec, 12 sec,
5) Regarding the atmosphere, the above decomposition treatment is performed under three levels of high vacuum (10 -2 to 10 -3 Pa), vacuum (10 -1 Pa), and nitrogen gas, respectively, and the SmFeN magnetic particles 11 after the treatment The magnetic properties were evaluated. At this time, the aggregate (molded body) of the processed SmFeN magnetic particles 11 isotropically, that is, after molding, the process for giving magnetic orientation in a specific magnetic field is omitted (BH) max is measured. went. Further, Z16 manufactured by Nichia Corporation was used as the SmFeN magnetic particle 11 used for the test.

その結果、パルス条件に関しては、直流に近い条件のほうが(BH)maxの向上に寄与することがわかった。通電時間に関しては、パルス条件との組合わせで最適な値が存在し、パルス条件が直流に近い場合(99−1)では、8secが好適となることがわかった。一方、加圧力に関しては、加圧力と(BH)maxとの間に一応の相関が見られたものの、電流量の値によって、その傾向およびその程度が異なることがわかった。なお、雰囲気に関しては、上記磁気特性に影響を及ぼすものではなかった。   As a result, regarding the pulse condition, it was found that the condition close to direct current contributes to the improvement of (BH) max. Regarding the energization time, an optimum value exists in combination with the pulse condition, and it was found that 8 sec is suitable when the pulse condition is close to DC (99-1). On the other hand, with regard to the applied pressure, although a temporary correlation was observed between the applied pressure and (BH) max, it was found that the tendency and the degree thereof differ depending on the value of the current amount. The atmosphere did not affect the magnetic characteristics.

上述の結果を踏まえ、電流量:300A(3.82MA/m2)、通電時間:8sec、パルス条件:99−1、加圧力:5kN(64MPa)、雰囲気:真空 の条件下でSmFeN磁性粒子11の分解処理を行い、この際の当該分解後粒子の磁気特性{(BH)max}を測定したところ、52kJ/m3の最大エネルギー積を示した。分解前の同粒子11の(BH)maxが35kJ/m3であることから、本発明に係る方法により磁気特性{(BH)max}が約1.5倍となることがわかった。 Based on the above results, SmFeN magnetic particles 11 under the conditions of current amount: 300 A (3.82 MA / m 2 ), energization time: 8 sec, pulse condition: 99-1, pressurizing force: 5 kN (64 MPa), atmosphere: vacuum When the magnetic properties {(BH) max} of the particles after decomposition were measured, a maximum energy product of 52 kJ / m 3 was shown. Since (BH) max of the same particle 11 before decomposition was 35 kJ / m 3 , it was found that the magnetic property {(BH) max} was increased about 1.5 times by the method according to the present invention.

次に、複数水準(3kN、4kN、5kN、5.5kN、6kN)の加圧力の下で電流量を変化させた場合に得られる、分解後のSmFeN磁性粒子11の磁気特性{(BH)max}を測定し、両因子の組み合わせが磁気特性に及ぼす影響の度合いを調べた。その他の条件は、先の結果に基づき、通電時間:8sec、パルス条件:99−1、雰囲気:真空とした。分解後の粒子を成形したものについて等方的に(BH)maxの測定を行った。   Next, the magnetic characteristics {(BH) max of the decomposed SmFeN magnetic particles 11 obtained when the amount of current is changed under a pressing force of a plurality of levels (3 kN, 4 kN, 5 kN, 5.5 kN, 6 kN). } And the degree of influence of the combination of both factors on the magnetic properties was investigated. Based on the previous results, the other conditions were energization time: 8 sec, pulse condition: 99-1, and atmosphere: vacuum. (BH) max was measured isotropically on the shaped particles after decomposition.

図3に、各加圧力P[kN]下における電流量I[A]と、その時に得られた(BH)max[kJ/m3]との関係を示す。同図中、破線枠で囲った領域は、上記条件下で分解処理を行う前のSmFeN磁性粒子11が示し得る(BH)maxの範囲を示す。同図より、各加圧力Pにおいて、(BH)maxの向上が認められる所定幅の有効電流領域が存在し、当該有効電流領域は、加圧力Pの増加に伴い電流量Iの大きい側に移行する傾向が見て取れる。また、加圧力Pの増加に伴い、有効電流領域の範囲が拡大する傾向が見て取れる。以上の結果から、粒子に作用させる加圧力に合わせた大きさのパルス電流を流すことにより適度な分解反応が得られることがわかる。図4に、図3に示す結果から得られた、各加圧力に対する有効電流範囲を示す。なお、図4における加圧力の値について、左段側の数値は設定荷重値[kN]であり、右段側の数値は加圧力[MPa]への換算値をそれぞれ示している。 FIG. 3 shows the relationship between the current amount I [A] under each pressing force P [kN] and (BH) max [kJ / m 3 ] obtained at that time. In the figure, a region surrounded by a broken line frame indicates a range of (BH) max that can be indicated by the SmFeN magnetic particle 11 before the decomposition treatment under the above conditions. From the figure, there is an effective current region with a predetermined width where an improvement in (BH) max is recognized at each pressing force P, and the effective current region shifts to the side where the current amount I is larger as the pressing force P increases. The tendency to do can be seen. Further, as the pressing force P increases, the range of the effective current region tends to expand. From the above results, it can be seen that an appropriate decomposition reaction can be obtained by applying a pulse current having a magnitude matching the pressure applied to the particles. FIG. 4 shows the effective current range for each applied pressure obtained from the results shown in FIG. As for the pressure value in FIG. 4, the numerical value on the left side is the set load value [kN], and the numerical value on the right side indicates the converted value to the pressure [MPa].

上述の結果をさらに一般化することにより、例えば図5に示す有効範囲が定まる。すなわち、通電時間:8sec、パルス条件:99−1、雰囲気:真空 の条件下で、電流量I[A]と加圧力P[MPa]とが、4≦I/P≦13 の関係(図5中斜線で示す領域)を満たすよう、加圧力Pおよび電流量Iを設定して上記分解処理を行うことにより、SmFeN磁性粒子11に対してばらつきのない適度な分解反応を得ることが可能となる。ただ、あまりにも加圧力Pが小さい場合には、加圧力Pに比してSmFeN磁性粒子11のマクロな体積抵抗率が急激に増加するため、過度な分解反応が生じる恐れがある。加圧力Pがある程度大きくなっても、SmFeN磁性粒子11のマクロな体積抵抗率にそれ程変化は見られないが、かかる場合には、ダイ2や上下パンチ3、4など、比較的強度に乏しい材料(黒鉛など)で形成される部材の変形や破損が懸念される。そのため、かかる観点から、図5に示す有効範囲に加えて、加圧力Pの下限(例えば38MPa)と上限(例えば90MPa)を適当に定めるのがよい。   By further generalizing the above results, for example, the effective range shown in FIG. 5 is determined. That is, under the conditions of energization time: 8 sec, pulse condition: 99-1, atmosphere: vacuum, the relationship between the current amount I [A] and the applied pressure P [MPa] is 4 ≦ I / P ≦ 13 (FIG. 5). By performing the above-described decomposition treatment with the applied pressure P and the current amount I set so as to satisfy the region indicated by the middle slanted line, it is possible to obtain an appropriate decomposition reaction without variation with respect to the SmFeN magnetic particles 11. . However, when the applied pressure P is too small, the macro volume resistivity of the SmFeN magnetic particles 11 increases abruptly as compared with the applied pressure P, which may cause an excessive decomposition reaction. Even if the pressure P is increased to some extent, the macro volume resistivity of the SmFeN magnetic particles 11 does not change so much, but in such a case, materials such as the die 2 and the upper and lower punches 3 and 4 that have relatively low strength. There is concern about deformation or breakage of a member formed of (graphite or the like). Therefore, from this viewpoint, in addition to the effective range shown in FIG. 5, it is preferable to appropriately determine the lower limit (for example, 38 MPa) and the upper limit (for example, 90 MPa) of the applied pressure P.

また、図3に示す結果より、加圧力Pが一定の場合、(BH)maxの向上が認められる有効電流領域において、(BH)maxの値がピークを示す傾向が見て取れる。また、(BH)maxのピーク(最大値)は、加圧力Pの増加に伴い、電流量Iの大きくなる方向に移行する傾向にある。かかる観点から、加圧力Pに応じて(BH)maxの最大値(ピーク)を得られるよう、最適な電流量Iを設定することで、より理想的な微細結晶混相構造を有し、優れた磁気特性を発揮し得るSmFeNナノコンポジット磁性粒子を得ることができる。   Further, from the results shown in FIG. 3, when the pressure P is constant, it can be seen that the value of (BH) max shows a peak in the effective current region where the improvement of (BH) max is recognized. Further, the peak (maximum value) of (BH) max tends to shift in the direction in which the current amount I increases as the pressing force P increases. From this point of view, by setting the optimal amount of current I so as to obtain the maximum value (peak) of (BH) max according to the applied pressure P, it has a more ideal fine crystal mixed phase structure and is excellent. SmFeN nanocomposite magnetic particles that can exhibit magnetic properties can be obtained.

以上、SmFeNナノコンポジット磁性粒子を得る手段として、放電プラズマ焼結法(SPS法)を利用した場合を例示したが、本発明は、SmFeN磁性粒子11に対して加圧しつつ電流を流してSmFeN磁性粒子11を分解し、硬磁性相としてのSmFeN単結晶相中に軟磁性相としてのFe結晶相を分解析出し得るものである限り、上記以外の手段を採用することも可能である。   As described above, the case where the discharge plasma sintering method (SPS method) is used as an example of the means for obtaining the SmFeN nanocomposite magnetic particles has been illustrated. As long as the particles 11 can be decomposed and the Fe crystal phase as the soft magnetic phase can be decomposed and precipitated in the SmFeN single crystal phase as the hard magnetic phase, means other than those described above can be employed.

図6は、本発明の第2実施形態に係るSmFeNナノコンポジット磁性粒子の製造に用いる装置の要部断面図を示している。この装置21は、主に、ダイ22と上下パンチ23,24とで区画形成される空間内に充填されたSmFeN磁性粒子11に対し所定の磁場を印加するための磁場印加手段(ここでは一対の電磁石28)を備える点で、第1構成例に係る放電プラズマ焼結装置1と異なる構成を有する。この構成例では、一対の電磁石28はダイ22を挟持する位置に対峙して配設され、上下パンチ23、24の可動方向、すなわちSmFeN磁性粒子11への通電方向とは直交する向きに磁場を印加するようになっている。   FIG. 6: has shown principal part sectional drawing of the apparatus used for manufacture of the SmFeN nanocomposite magnetic particle which concerns on 2nd Embodiment of this invention. The apparatus 21 mainly includes a magnetic field applying means (here, a pair of magnetic fields) for applying a predetermined magnetic field to the SmFeN magnetic particles 11 filled in a space defined by the die 22 and the upper and lower punches 23 and 24. It has a configuration different from the discharge plasma sintering apparatus 1 according to the first configuration example in that it includes an electromagnet 28). In this configuration example, the pair of electromagnets 28 is disposed opposite to the position where the die 22 is sandwiched, and a magnetic field is applied in a direction perpendicular to the movable direction of the upper and lower punches 23 and 24, that is, the energization direction to the SmFeN magnetic particles 11. It is designed to be applied.

SmFeN磁性粒子11を充填し加圧通電するためのダイ22と、上下パンチ23、24、および上下パンチ電極25、26とを備える点は第1構成例と同様である。また、この構成例では、ダイ22の外側に筒状のチャンバー27が配設され、このチャンバー27に設けた通気孔を介してAr等の不活性ガスをチャンバー27内部に注入することで、ダイ22および上下パンチ23、24の周囲を不活性に維持するようになっている。   The point which is equipped with the die | dye 22 filled with the SmFeN magnetic particle 11, and energizing pressurization, the upper and lower punches 23 and 24, and the upper and lower punch electrodes 25 and 26 is the same as that of the 1st structural example. In this configuration example, a cylindrical chamber 27 is disposed outside the die 22, and an inert gas such as Ar is injected into the chamber 27 through a vent hole provided in the chamber 27. 22 and the upper and lower punches 23 and 24 are kept inactive.

また、第1構成例と同様、上下パンチ23、24はそれぞれ、上部パンチ電極25と下部パンチ電極26を介して図示しない適当な駆動手段により上下方向に移動可能であり、また図示しない適当な電力供給手段により通電可能、ここでは直流通電可能に構成されている。電磁石28への電力供給とその供給源を同一にするものであってもよい。   Similarly to the first configuration example, the upper and lower punches 23 and 24 can be moved in the vertical direction by an appropriate driving means (not shown) via the upper punch electrode 25 and the lower punch electrode 26, respectively, and appropriate electric power not shown. It can be energized by the supply means, here it is configured to be capable of direct current energization. The power supply to the electromagnet 28 and its supply source may be the same.

上記構成の加圧通電装置21を用いてSmFeN磁性粒子11の一部分解を行う。まず、ダイ22および上下パンチ23、24によって区画形成された空間内にSmFeN磁性粒子11を充填した状態で、一対の電磁石28に通電し、対峙する向きの所定の磁場をSmFeN磁性粒子11に印加する。このようにして、磁場を印加した状態で上下パンチ23、24によりSmFeN磁性粒子11を加圧すると共に、上下パンチ23、24間に所定の直流電流を流し、加圧中のSmFeN磁性粒子11に対する通電を所定の時間行う。これにより、SmFeN磁性粒子11中において、SmFeN→Fe+SmN+N の分解反応(ここでは、Sm2Fe173→17Fe+2SmN+1/2N2 の分解反応)が生じる。 The SmFeN magnetic particles 11 are partially decomposed using the pressurizing and energizing device 21 having the above configuration. First, with the SmFeN magnetic particles 11 filled in the space defined by the die 22 and the upper and lower punches 23 and 24, the pair of electromagnets 28 are energized, and a predetermined magnetic field in the opposite direction is applied to the SmFeN magnetic particles 11. To do. In this manner, the SmFeN magnetic particles 11 are pressurized by the upper and lower punches 23 and 24 in a state where a magnetic field is applied, and a predetermined direct current is passed between the upper and lower punches 23 and 24, thereby energizing the SmFeN magnetic particles 11 being pressurized. Is performed for a predetermined time. Thereby, in the SmFeN magnetic particles 11, a decomposition reaction of SmFeN → Fe + SmN + N (here, a decomposition reaction of Sm 2 Fe 17 N 3 → 17Fe + 2SmN + 1 / 2N 2 ) occurs.

このようにして、SmFeN磁性粒子11に対して加圧力および電流を供給し、SmFeN磁性粒子11をなすSmFeN単結晶相の一部を分解することで、第1実施形態と同様、硬磁性相としてのSmFeN単結晶相中に、軟磁性相としてのFe結晶粒が分散析出した形態の粒子が得られる。上記通電処理後のSmFeN磁性粒子11につき、Sm2Fe173単結晶相とα−Fe結晶相とが共存している状態、および、α−Fe結晶相の平均結晶子径が18nmであることが、XRD(X線回折法)により確認された。 In this manner, by applying pressure and current to the SmFeN magnetic particles 11 and decomposing a part of the SmFeN single crystal phase forming the SmFeN magnetic particles 11, the hard magnetic phase is obtained as in the first embodiment. Thus, particles having a form in which Fe crystal grains as a soft magnetic phase are dispersed and precipitated in the single crystal phase of SmFeN are obtained. About the SmFeN magnetic particle 11 after the energization treatment, the Sm 2 Fe 17 N 3 single crystal phase and the α-Fe crystal phase coexist, and the average crystallite diameter of the α-Fe crystal phase is 18 nm. This was confirmed by XRD (X-ray diffraction method).

また、この実施形態では、SmFeN磁性粒子11に対して電磁石28により所定の磁場を印加した状態で加圧通電を行うようにしたので、SmFeN磁性粒子11が本来的に有する結晶方位を印加磁場により保持した状態でこの粒子11の一部分解が生じる。これにより、分解に供したSmFeN磁性粒子11と同等あるいはそれ以上の磁気異方性を有する(例えば、後述の実験では、図11に例示の如く異方化度が向上する結果が得られた)SmFeNナノコンポジット磁性粒子を得ることができる。   In this embodiment, the SmFeN magnetic particles 11 are pressurized and energized in a state where a predetermined magnetic field is applied by the electromagnet 28, so that the crystal orientation inherently possessed by the SmFeN magnetic particles 11 is determined by the applied magnetic field. Partial decomposition of the particles 11 occurs in the held state. Thereby, it has a magnetic anisotropy equivalent to or higher than that of the SmFeN magnetic particles 11 subjected to decomposition (for example, in the experiment described later, a result of improving the degree of anisotropy as illustrated in FIG. 11 was obtained). SmFeN nanocomposite magnetic particles can be obtained.

以下、磁場印加状態での加圧通電方法の優位性につき検討を行った。   Hereinafter, the superiority of the pressure energization method in a magnetic field application state was examined.

まず、電流量に関し、20A、40A、60A(何れも直流)の3水準下において、磁場印加状態(1.2T)もしくは磁場未印加状態(0T)で加圧通電を行い、その際に得られた粒子の最大エネルギー積(BH)maxを測定した。また、比較として、第1実施形態での実験に使用したものと同種(日亜化学工業(株)製 Z16)でかつ未処理のSmFeN磁性粒子11についてもその(BH)maxを測定した。   First, with respect to the amount of current, pressure energization is performed in a magnetic field application state (1.2 T) or a magnetic field non-application state (0 T) under three levels of 20 A, 40 A, and 60 A (all of which are direct current). The maximum energy product (BH) max of the particles was measured. As a comparison, the (BH) max was also measured for SmFeN magnetic particles 11 of the same type (Z16 manufactured by Nichia Corporation) used in the experiment in the first embodiment and untreated.

ここで、SmFeN磁性粒子11のダイ22内部への充填量は50mgとした。また、ダイ22および上下パンチ23、24は何れも黒鉛製とし、SmFeN磁性粒子11の収容空間の直径はφ3mmとすると共に、加圧力を14MPa、通電時間を4sとして上記通電処理を行った。また、磁気測定については、上述の各処理で得た粉末に所定の磁場を印加した状態でパラフィンを用いて固形化することで測定試料を作製し、これら測定試料の磁気特性をVSM(振動試料型磁力計)を用いて評価することで行った。   Here, the filling amount of the SmFeN magnetic particles 11 into the die 22 was 50 mg. The die 22 and the upper and lower punches 23 and 24 were both made of graphite, the diameter of the accommodation space for the SmFeN magnetic particles 11 was 3 mm, the pressure was 14 MPa, and the current application time was 4 s. In addition, for magnetic measurement, measurement samples are prepared by solidifying with paraffin in a state where a predetermined magnetic field is applied to the powder obtained in each of the above-described processes, and the magnetic properties of these measurement samples are expressed as VSM (vibration sample). Type magnetometer).

図7に、各処理条件下における電流量I[A]と、その際に得られた(BH)max[kJ/m3]との関係を示す。何れの電流範囲においても、磁場印加下での加圧通電処理で得られた粒子の(BH)maxが、未処理状態の粒子の(BH)maxはもちろん、磁場未印加での加圧通電処理で得られた粒子のそれを上回っていることがわかる。また、電流量40A(=5.66MA/mm2)のとき、(BH)maxが最も高い値(318kJ/m3)を示すことが見て取れる。 FIG. 7 shows the relationship between the current amount I [A] under each processing condition and (BH) max [kJ / m 3 ] obtained at that time. In any current range, the (BH) max of the particles obtained by the pressurization energization treatment with the magnetic field applied is not only the (BH) max of the untreated particles, but the pressurization energization treatment with no magnetic field applied. It can be seen that it exceeds that of the particles obtained in. Also, it can be seen that (BH) max shows the highest value (318 kJ / m 3 ) when the current amount is 40 A (= 5.66 MA / mm 2 ).

次に、通電時間に関し、4、8、10、15、20[s]の5水準下において上記各処理を行った場合に得られた粒子に対し、その磁気特性、具体的には、残留磁化Br[T]、保磁力iHc[kA/m]、最大エネルギー積(BH)max[kJ/m3]、および異方化度の4項目につき評価、比較を行った。ここで、異方化度は、磁化容易方向およびこの方向に垂直な2方向における最大磁界2.4MA/mでの磁化の比(磁化容易方向における磁化/垂直2方向の何れか一における磁化)で表されるものとする(その他当該指標については、以下の参考文献:粉末冶金が開く磁性材料−圧粉磁心から永久磁石まで−,平成16年2月,(財)素形材センター,p54 を参照のこと)。また、印加電流量は先の実験結果から40Aとした。その他の条件は、先の実験の場合と同様である。 Next, with respect to the energization time, the magnetic properties, specifically, the residual magnetization, of the particles obtained when the above treatments are performed under five levels of 4, 8, 10, 15, 20 [s]. Evaluation and comparison were performed for four items of Br [T], coercive force iHc [kA / m], maximum energy product (BH) max [kJ / m 3 ], and degree of anisotropy. Here, the degree of anisotropy is the ratio of magnetization at the maximum magnetic field of 2.4 MA / m in the easy magnetization direction and the two directions perpendicular to this direction (magnetization in the easy magnetization direction / magnetization in any one of the two perpendicular directions). (For other relevant indicators, refer to the following reference: Magnetic materials opened by powder metallurgy-From dust cores to permanent magnets, February 2004, Material Center, p54.) checking). The applied current amount was set to 40 A from the previous experimental result. Other conditions are the same as in the previous experiment.

各処理条件下における通電時間と、その際に得られた粒子の残留磁化Brとの関係を図8に、同様に、通電時間と保磁力iHcとの関係、および通電時間と(BH)maxとの関係をそれぞれ図9、図10に示す。まず、図8より、残留磁化Brに関しては、通電時間の如何によらず、磁場印加下での加圧通電処理で得られた粒子の残留磁化Brが、未処理状態の粒子、および、磁場未印加での加圧通電処理で得られた粒子のそれを上回っていることがわかる。また、図9から、磁場未印加の加圧通電処理の場合、処理後粒子の保磁力iHcは通電時間の増加と共に減少する傾向にあるが、磁場印加状態での加圧通電処理で得られた粒子であれば、保磁力iHcの低下が抑制されることがわかる。また、(BH)maxについては、図7と同様、通電時間の如何によらず、磁場印加下での加圧通電で得られた粒子の(BH)maxが、未処理の場合はもちろん、磁場未印加での加圧通電処理で得られた粒子のそれを上回っていることがわかる。   FIG. 8 shows the relationship between the energization time under each processing condition and the residual magnetization Br of the particles obtained at that time. Similarly, the relationship between the energization time and the coercive force iHc, and the energization time and (BH) max These relationships are shown in FIGS. 9 and 10, respectively. First, as shown in FIG. 8, with respect to the residual magnetization Br, the residual magnetization Br of the particles obtained by the pressurization energization treatment under the application of the magnetic field is not affected by the energization time. It turns out that it exceeds that of the particle | grains obtained by the pressurization energization process by application. Further, from FIG. 9, in the case of the pressurization energization treatment without applying a magnetic field, the coercive force iHc of the treated particles tends to decrease as the energization time increases. It can be seen that the particles suppress the decrease in the coercive force iHc. As for (BH) max, as in FIG. 7, regardless of the energization time, the (BH) max of the particles obtained by pressurization energization under magnetic field application is of course the magnetic field. It turns out that it exceeds that of the particle | grains obtained by the pressurization energization process by no application.

また、磁場印加下で加圧通電処理を施した場合と未処理の場合とにつき、それぞれ通電時間と、その際に得られた粒子の異方化度との関係を図11に示す。同図より、未処理粒子の異方化度に比べて、磁場印加下での加圧通電を施した粒子の異方化度が総じて増加していることがわかる。このことからも、SmFeN磁性粒子に対して所定の磁場を印加した状態で加圧通電することにより、未分解のSmFeN磁性粒子の結晶方位を保持して、一部分解の結果得られるSmFeNナノコンポジット磁性粒子に高い磁気異方性を付与し得ることがわかる。   Further, FIG. 11 shows the relationship between the energization time and the degree of anisotropy of the particles obtained at that time when the pressure energization treatment is performed under application of a magnetic field and when it is not treated. From the figure, it can be seen that the degree of anisotropy of particles subjected to pressurization under application of a magnetic field generally increases as compared to the degree of anisotropy of untreated particles. Also from this, SmFeN nanocomposite magnetism obtained as a result of partial decomposition is maintained by maintaining the crystal orientation of undecomposed SmFeN magnetic particles by applying pressure to the SmFeN magnetic particles while applying a predetermined magnetic field. It can be seen that high magnetic anisotropy can be imparted to the particles.

本発明の第1実施形態に係るSmFeNナノコンポジット磁性粒子の製造方法に用いる装置の要部断面図である。It is principal part sectional drawing of the apparatus used for the manufacturing method of the SmFeN nanocomposite magnetic particle which concerns on 1st Embodiment of this invention. 第1実施形態に係る製造方法により得られたSmFeNナノコンポジット磁性粒子のTEM写真である。It is a TEM photograph of SmFeN nanocomposite magnetic particles obtained by the manufacturing method according to the first embodiment. 各加圧力時における電流量と、その際に得られた粒子の(BH)maxとの関係を示す図である。It is a figure which shows the relationship between the electric current amount at the time of each pressurizing force, and (BH) max of the particle | grains obtained at that time. 各加圧力時における有効電流範囲を示す表である。It is a table | surface which shows the effective current range at the time of each pressurizing force. 加圧力および電流量の有効範囲を示す図である。It is a figure which shows the effective range of applied pressure and electric current amount. 本発明の第2実施形態に係るSmFeNナノコンポジット磁性粒子の製造方法に用いる装置の要部断面図である。It is principal part sectional drawing of the apparatus used for the manufacturing method of the SmFeN nanocomposite magnetic particle which concerns on 2nd Embodiment of this invention. 各処理条件下における電流量と、その際に得られた粒子の(BH)maxとの関係を示す図である。It is a figure which shows the relationship between the electric current amount in each process condition, and (BH) max of the particle | grains obtained in that case. 各処理条件下における通電時間と、その際に得られた粒子の残留磁化Brとの関係を示す図である。It is a figure which shows the relationship between the electricity supply time on each process condition, and the residual magnetization Br of the particle | grains obtained in that case. 各処理条件下における通電時間と、その際に得られた粒子の保磁力iHcとの関係を示す図である。It is a figure which shows the relationship between the electricity supply time on each process condition, and the coercive force iHc of the particle | grains obtained at that time. 各処理条件下における通電時間と、その際に得られた粒子の(BH)maxとの関係を示す図である。It is a figure which shows the relationship between the electricity supply time on each process condition, and (BH) max of the particle | grains obtained in that case. 各処理条件下における通電時間と、その際に得られた粒子の異方化度との関係を示す図である。It is a figure which shows the relationship between the electricity supply time on each process condition, and the degree of anisotropic of the particle | grains obtained at that time.

符号の説明Explanation of symbols

1 放電プラズマ焼結装置
2 ダイ
3、4 パンチ
5、6 パンチ電極
11 SmFeN磁性粒子
21 加圧通電装置
22 ダイ
23、24 パンチ
25、26 パンチ電極
28 電磁石
DESCRIPTION OF SYMBOLS 1 Discharge plasma sintering apparatus 2 Die 3, 4 Punch 5, 6 Punch electrode 11 SmFeN magnetic particle 21 Pressurization electricity supply device 22 Die 23, 24 Punch 25, 26 Punch electrode 28 Electromagnet

Claims (3)

硬磁性相としてのSmFeN単結晶相と、該SmFeN単結晶相の一部が分解して生成された軟磁性相としてのFe結晶相とを含むSmFeNナノコンポジット磁性粒子。   An SmFeN nanocomposite magnetic particle comprising an SmFeN single crystal phase as a hard magnetic phase and an Fe crystal phase as a soft magnetic phase generated by decomposing a part of the SmFeN single crystal phase. SmFeN磁性粒子に対して加圧しつつ電流を流し、前記SmFeN磁性粒子をなすSmFeN単結晶相の一部を分解してFe結晶相を析出させることにより、硬磁性相としてのSmFeN単結晶相中に、軟磁性相としてのFe結晶相が分散した混相組織の磁性粒子を得る、SmFeNナノコンポジット磁性粒子の製造方法。   By applying an electric current while applying pressure to the SmFeN magnetic particles, by disassembling a part of the SmFeN single crystal phase forming the SmFeN magnetic particles and precipitating the Fe crystal phase, the SmFeN single crystal phase as a hard magnetic phase is precipitated. A method for producing SmFeN nanocomposite magnetic particles, wherein magnetic particles having a mixed phase structure in which an Fe crystal phase as a soft magnetic phase is dispersed are obtained. 前記SmFeN磁性粒子に対して磁場を印加した状態で加圧通電を行う請求項2記載のSmFeNナノコンポジット磁性粒子の製造方法。   The method for producing SmFeN nanocomposite magnetic particles according to claim 2, wherein pressure application is performed while a magnetic field is applied to the SmFeN magnetic particles.
JP2007156522A 2006-06-27 2007-06-13 SmFeN NANO-COMPOSITE MAGNETIC PARTICLE AND MANUFACTURING METHOD THEREOF Withdrawn JP2008034815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007156522A JP2008034815A (en) 2006-06-27 2007-06-13 SmFeN NANO-COMPOSITE MAGNETIC PARTICLE AND MANUFACTURING METHOD THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006177032 2006-06-27
JP2007156522A JP2008034815A (en) 2006-06-27 2007-06-13 SmFeN NANO-COMPOSITE MAGNETIC PARTICLE AND MANUFACTURING METHOD THEREOF

Publications (1)

Publication Number Publication Date
JP2008034815A true JP2008034815A (en) 2008-02-14

Family

ID=39123875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007156522A Withdrawn JP2008034815A (en) 2006-06-27 2007-06-13 SmFeN NANO-COMPOSITE MAGNETIC PARTICLE AND MANUFACTURING METHOD THEREOF

Country Status (1)

Country Link
JP (1) JP2008034815A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012092359A (en) * 2010-10-22 2012-05-17 Hayashi Shokai:Kk Regenerated rare earth, and regeneration method of rare earth

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012092359A (en) * 2010-10-22 2012-05-17 Hayashi Shokai:Kk Regenerated rare earth, and regeneration method of rare earth

Similar Documents

Publication Publication Date Title
EP2228808B1 (en) Composite magnetic material for magnet and method for manufacturing such material
KR101338663B1 (en) Sintered neodymium magnet and manufacturing method therefor
US11732336B2 (en) Magnetic material and method for producing same
JP5120710B2 (en) RL-RH-T-Mn-B sintered magnet
EP2767992B1 (en) Manufacturing method for magnetic powder for forming sintered body of rare-earth magnet precursor
EP2087493A2 (en) Production method for nanocomposite magnet
CN1111879C (en) Manufacture method with thin slice magnet of microstructure
EP3690071A1 (en) Magnetic material and method for producing same
Saito Production of Sm–Fe–N bulk magnets by spark plasma sintering method
CN1111880C (en) Thin slice magnet with microstructure
Saito et al. Production of Sm–Fe–N bulk magnets by the spark plasma sintering method with dynamic compression
Gopalan et al. Anisotropic Nd–Fe–B nanocrystalline magnets processed by spark plasma sintering and in situ hot pressing of hydrogenation–decomposition–desorption–recombination powder
JP2008127648A (en) Method for producing rare earth anisotropic magnet powder
JP2004253697A (en) Permanent magnet and material thereof
JP6598700B2 (en) Rare earth magnet manufacturing method and rare earth magnet
Liu et al. Compositional optimization and new processes for nanocrystalline NdFeB-based permanent magnets
JP2008034815A (en) SmFeN NANO-COMPOSITE MAGNETIC PARTICLE AND MANUFACTURING METHOD THEREOF
US11331721B2 (en) Magnetic material and process for manufacturing same
JP2014160729A (en) Manufacturing method of magnetic member and magnetic member
EP3382720A1 (en) Rare earth magnet, and method of producing rare earth magnet
Güth et al. Ultra-fine grained Nd–Fe–B by high pressure reactive milling and desorption
Yonekura et al. Relationship between Nd content and magnetic properties of Nd2Fe14B/Nd nanocomposites chemically synthesized using self-assembled block copolymer templates
JP4714839B2 (en) Method for producing high-performance magnetic material and sintered body thereof
JP4802426B2 (en) Magnetic field forming apparatus and powder forming method
JP4415681B2 (en) Rare earth sintered magnet and manufacturing method thereof

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091111

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100907