JP2008034183A - Battery cell bypass structure of battery - Google Patents

Battery cell bypass structure of battery Download PDF

Info

Publication number
JP2008034183A
JP2008034183A JP2006204707A JP2006204707A JP2008034183A JP 2008034183 A JP2008034183 A JP 2008034183A JP 2006204707 A JP2006204707 A JP 2006204707A JP 2006204707 A JP2006204707 A JP 2006204707A JP 2008034183 A JP2008034183 A JP 2008034183A
Authority
JP
Japan
Prior art keywords
battery
battery cell
positive electrode
electrode
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006204707A
Other languages
Japanese (ja)
Inventor
Hideyasu Takatsuji
秀保 高辻
Michio Yoshino
道夫 吉野
Seiji Sadahira
誠二 定平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2006204707A priority Critical patent/JP2008034183A/en
Publication of JP2008034183A publication Critical patent/JP2008034183A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To equip a battery cell itself constituting a battery with a self diagnostic function and a bypass circuit formation function. <P>SOLUTION: The battery cell 1 has an electrode plate part 6 housed in a conductive battery case comprising a case main body 2 and a lid 3, and the electrode plate part 6 is connected to a bottom part 2b of the case main body 2 by a negative electrode current collector 7. The electrode plate part 6 is connected to a positive electrode terminal 5 installed on the lid 3 through an insulator 4 by a positive electrode current collector 8. The positive electrode terminal 5 and the negative electrode current collector 7 are constructed of indium (In) which melts when the electrode plate part 6 of the battery cell 1 has an abnormal heat generation. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、バッテリの電池セルバイパス構造に関する。   The present invention relates to a battery cell bypass structure for a battery.

電気エネルギ源としてバッテリが多用されている。例えば、自動車にあっては、それまでガソリンなどの燃料に依存したエンジンを駆動源としていたが、近時の環境問題からエンジンとモータとを併用するハイブリッド自動車や、専らモータに依存した電気自動車が注目されている。   A battery is frequently used as an electrical energy source. For example, in the case of automobiles, the engine that relied on fuel such as gasoline has been used as a driving source until now. However, due to recent environmental problems, hybrid cars that use both an engine and a motor, and electric cars that rely exclusively on motors are used. Attention has been paid.

特許文献1は、複数の電池セルを直列又は並列に接続したバッテリに関し、その一部の電池セルが故障したときにバッテリ全体が使用不能になる事態を回避する発明を提案している。すなわち、特許文献1は、バッテリを構成する複数の電池セルのいずれかが故障して発熱して温度監視機構が異常と判断すると充電や放電を停止することからバッテリ全体が使用不能になってしまうという問題を解消する発明を提案している。   Patent Document 1 proposes an invention that relates to a battery in which a plurality of battery cells are connected in series or in parallel, and that avoids a situation in which the entire battery becomes unusable when some of the battery cells fail. That is, in Patent Document 1, if any of the plurality of battery cells constituting the battery fails and generates heat and the temperature monitoring mechanism determines that it is abnormal, charging and discharging are stopped, and the entire battery becomes unusable. The invention which solves the problem is proposed.

具体的には、特許文献1に開示の発明は、バッテリを構成する各電池セル毎にスイッチ付きバイパス回路を設け、異常と判断した電池セルのバイパス回路のスイッチをオンして、当該電池セル無しでバッテリが動作し続けるように構成されている。   Specifically, the invention disclosed in Patent Document 1 provides a bypass circuit with a switch for each battery cell constituting the battery, turns on the switch of the bypass circuit of the battery cell determined to be abnormal, and has no battery cell The battery is configured to continue to operate.

特開2000−133318号公報JP 2000-133318 A

特許文献1のように、温度監視機構や各電池セル毎にスイッチ付きバイパス回路を、別途、バッテリに設けることは、バッテリの構造を複雑にするだけでなく、温度監視機構及びスイッチ機構などが故障してしまう可能性を含む。   As in Patent Document 1, providing a temperature monitoring mechanism and a bypass circuit with a switch for each battery cell separately in the battery not only complicates the structure of the battery but also breaks down the temperature monitoring mechanism and the switch mechanism. Including the possibility of end.

そこで、本発明の目的は、バッテリを構成する電池セルそれ自体が自己診断機能とバイパス回路生成機能を備えたバッテリの電池セルバイパス構造を提供することにある。   Therefore, an object of the present invention is to provide a battery cell bypass structure for a battery in which the battery cell itself constituting the battery has a self-diagnosis function and a bypass circuit generation function.

かかる技術的課題は、本発明によれば、
正極端子と負極端子を備えた複数の電池セルを接続することにより構成されたバッテリにおいて、故障した電池セルを除いた他の電池セルでバッテリとして機能するように、故障した電池セルをバイパスする回路を生成するバッテリの電池セルバイパス構造であって、
電気エネルギを蓄積した極板部と、
該極板部を絶縁状態で収容する導電性の電池ケースと、
該電池ケースに設けられて、隣接する電池セルと接続するための正極及び負極の接続端子と、
前記正極又は前記負極の接続端子と前記電池ケースとの間に設けられた絶縁体と、
前記極板部と前記正極及び負極の接続端子とを導通させる正極用及び負極用の導体とを有し、
前記絶縁体を介して前記電池ケースに設けられた前記正極又は前記負極の接続端子と、前記正極用及び/又は負極用の導体が、前記極板部の異常発熱によって溶融する導電性材料で作られ、
前記正極又は負極の接続端子が溶融することにより、該正極又は負極の接続端子と前記電池ケースとが導通状態になることを特徴とするバッテリの電池セルバイパス構造を提供することによって達成される。
According to the present invention, such a technical problem is
In a battery configured by connecting a plurality of battery cells having a positive electrode terminal and a negative electrode terminal, a circuit that bypasses the failed battery cell so that it functions as a battery in other battery cells except the failed battery cell. A battery cell bypass structure for a battery that generates
An electrode plate that stores electrical energy;
A conductive battery case for accommodating the electrode plate portion in an insulated state; and
Provided in the battery case, positive and negative connection terminals for connecting to adjacent battery cells,
An insulator provided between the positive electrode or the connection terminal of the negative electrode and the battery case;
A conductor for a positive electrode and a negative electrode for electrically connecting the electrode plate part and the connection terminals of the positive electrode and the negative electrode;
The positive electrode or the negative electrode connection terminal provided on the battery case via the insulator and the positive electrode and / or negative electrode conductor are made of a conductive material that melts due to abnormal heat generation of the electrode plate. And
This is achieved by providing a battery cell bypass structure for a battery, wherein the positive or negative connection terminal is melted to bring the positive or negative connection terminal into a conductive state.

すなわち、正極及び負極の接続端子とを導通させる正極用及び負極用の導体の少なくとも一方の導体を、極板部の異常発熱によって溶融させて、この導体の機能を消失させることで、当該電池セルの電池としての機能を消失させることができる。また、絶縁体を介して前記電池ケースに設けられた前記正極又は前記負極の接続端子を極板部の異常発熱によって溶融させて当該正極又は負極の接続端子と導電性の電池ケースとを導通状態にすることで、当該正極又は負極の接続端子と導電性の電池ケースとの間の絶縁体の機能を事実上消失させ、当該電池セルを他の電池セルに対して単なる導体に変化させることができ、これにより異常発熱した電池セルをバイパスするバイパス回路を自動的に生成することができる。   That is, at least one of the positive electrode and negative electrode conductors that are electrically connected to the connection terminals of the positive electrode and the negative electrode is melted by the abnormal heat generation of the electrode plate portion, and the function of this conductor is lost, thereby the battery cell. The function as a battery can be lost. Further, the positive electrode or the negative electrode connection terminal provided in the battery case via the insulator is melted by abnormal heat generation of the electrode plate portion, and the positive electrode or negative electrode connection terminal and the conductive battery case are in a conductive state. By effectively making the function of the insulator between the positive or negative connection terminal and the conductive battery case disappear, the battery cell can be changed to a mere conductor with respect to other battery cells. Thus, a bypass circuit that bypasses the battery cell that has abnormally generated heat can be automatically generated.

したがって、本発明によれば、バッテリを構成する電池セルそれ自体が自己診断機能とバイパス回路生成機能を備えたバッテリの電池セルバイパス構造を提供することができる。   Therefore, according to this invention, the battery cell bypass structure of the battery in which the battery cell itself which comprises a battery was provided with the self-diagnosis function and the bypass circuit production | generation function can be provided.

本発明の好ましい実施の形態では、前記極板部の異常発熱によって溶融する導電性材料から作られた前記正極又は前記負極の接続端子が、その回りを前記絶縁体で包囲した状態で前記電池ケースを貫通して配設されている。典型的な電池セル構造は、正極の接続端子が電池ケースの端から突出した正極端子で構成され、この正極端子は絶縁体を介して電池ケースに支持されているが、この正極端子を、極板部が異常発熱したときに溶融する材料で構成するのが好ましい。   In a preferred embodiment of the present invention, the positive electrode or the negative electrode connection terminal made of a conductive material that melts due to abnormal heat generation of the electrode plate portion is surrounded by the insulator, and the battery case is surrounded by the insulator. Is disposed through. A typical battery cell structure is composed of a positive electrode terminal with a positive electrode terminal protruding from the end of the battery case, and the positive electrode terminal is supported by the battery case via an insulator. It is preferable to use a material that melts when the plate portion abnormally generates heat.

バッテリの適用例としてハイブリッドカーや電気自動車に適用する場合、一般的には、直列に接続した数多くの電池セルでバッテリが構成されるが、このような場合には、前記極板部の異常発熱により、前記正極用及び/又は負極用の導体が先行して溶融し、次いで、前記極板部の異常発熱によって溶融する導電性材料で作られた前記正極又は前記負極の接続端子が溶融するように構成することで故障した電池セルが原因でバッテリがショートするのを回避することができる。   When applied to a hybrid car or an electric vehicle as an application example of the battery, the battery is generally constituted by a large number of battery cells connected in series. In such a case, abnormal heat generation of the electrode plate portion occurs. As a result, the positive electrode and / or the negative electrode conductor is melted in advance, and then the positive electrode or the negative electrode connection terminal made of a conductive material that melts due to abnormal heat generation of the electrode plate is melted. By constituting in this way, it is possible to avoid a short circuit of the battery due to a faulty battery cell.

以下に、添付の図面に基づいて本発明の好ましい実施例を説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.

図1、図2は、実施例の電池セルの構造を説明するための図であり、この電池セルを例えば100個というように数多くの電池セルを直列に接続することにより自動車に搭載可能な充放電可能なバッテリが構成される。図1、図2を参照して、電池セル1は、電池ケースとしての導電性材料で構成されたケース本体2を有し、ケース本体2は一端が閉塞され、他端が開放された有底筒状の形状を有し、このケース本体2の開口2aは蓋体3によって密封されている。   FIG. 1 and FIG. 2 are diagrams for explaining the structure of the battery cell according to the embodiment. The battery cell can be mounted on an automobile by connecting a large number of battery cells, for example, 100, in series. A dischargeable battery is constructed. 1 and 2, a battery cell 1 has a case body 2 made of a conductive material as a battery case, and the case body 2 has a bottom with one end closed and the other end opened. It has a cylindrical shape, and the opening 2 a of the case body 2 is sealed by a lid 3.

蓋体3は、ケース本体2と共に導電体から作られており、ケース本体2に対して電気的に導通した状態でケース本体2に固定される。蓋体3には、その中心部に絶縁体4を介して正極端子5が配設されている。具体的には、正極端子5は、蓋体3の中心部を貫通して設けられ、この正極端子5の回りを包囲して絶縁体4が配設され、この絶縁体4によって正極端子5と蓋体3とが電気的に絶縁されている。   The lid 3 is made of a conductor together with the case main body 2, and is fixed to the case main body 2 in a state of being electrically connected to the case main body 2. The lid body 3 is provided with a positive electrode terminal 5 through an insulator 4 at the center thereof. Specifically, the positive electrode terminal 5 is provided so as to penetrate the center portion of the lid 3, and an insulator 4 is disposed so as to surround the positive electrode terminal 5. The lid 3 is electrically insulated.

電池セル1は、正極及び負極を構成する活物質を表面に付着した金属箔をセパレータを介して互いに重ね合わせ、これをロール状に巻回することにより形成された極板部6を備え、この電気エネルギを蓄積する非水系二次電池の極板部6は、蓋体3によって密封されたケース本体2の内部に絶縁状態で収容され、そして、極板部6は負極用の導体である負極用集電体7(銅、ニッケル、ステンレス鋼などの金属箔)によってケース本体2の底部2bに接続され、また、正極用の導体である正極集電体8によって正極端子5に接続されている。   The battery cell 1 includes an electrode plate portion 6 formed by superimposing metal foils with active materials constituting the positive electrode and the negative electrode on the surface through a separator and winding the metal foil in a roll shape. The electrode plate portion 6 of the non-aqueous secondary battery that stores electric energy is housed in an insulated state inside the case body 2 sealed by the lid 3, and the electrode plate portion 6 is a negative electrode that is a negative electrode conductor. It is connected to the bottom 2b of the case body 2 by a current collector 7 (metal foil such as copper, nickel, and stainless steel), and is connected to the positive electrode terminal 5 by a positive electrode current collector 8 that is a positive electrode conductor. .

極板部6の正極集電体8及び正極端子5は比較的低融点の金属材料から選択される。具体的には、この実施例では、正極集電体8及び正極端子5が共にインジウム(In)から作られている。ちなみに、インジウムの融点は約157℃である。本発明で好ましく採用可能な低融点金属を例示すれば次の通りである。(1)Sn-Pb-Bi合金(融点約96℃)、(2)In-Sn合金(融点約117℃)、(3)Pb-Bi合金(融点約125℃)、(4)Sn-Bi合金(融点約138℃)。   The positive electrode current collector 8 and the positive electrode terminal 5 of the electrode plate portion 6 are selected from a metal material having a relatively low melting point. Specifically, in this embodiment, both the positive electrode current collector 8 and the positive electrode terminal 5 are made of indium (In). Incidentally, the melting point of indium is about 157 ° C. Examples of low melting point metals that can be preferably used in the present invention are as follows. (1) Sn-Pb-Bi alloy (melting point approximately 96 ° C), (2) In-Sn alloy (melting point approximately 117 ° C), (3) Pb-Bi alloy (melting point approximately 125 ° C), (4) Sn-Bi Alloy (melting point about 138 ° C).

正極用集電体8は、従来と同様に、極板部6の正極金属箔と正極端子5との間に配設される。また、上述した負極用集電体7は、極板部6の負極金属箔とケース本体2の底部2b(負極端子)との間に配設される。   The positive electrode current collector 8 is disposed between the positive electrode metal foil of the electrode plate portion 6 and the positive electrode terminal 5 as in the conventional case. The negative electrode current collector 7 described above is disposed between the negative electrode metal foil of the electrode plate portion 6 and the bottom 2 b (negative electrode terminal) of the case body 2.

上述した電池セル1は、図3に示すように直列に接続されてバッテリが構成される。なお、図3では、3個の電池セル1が図示されているが、実際は100個を越える大量の電池セル1を直列に接続することにより、自動車に搭載するためのバッテリが構成される。   The battery cells 1 described above are connected in series as shown in FIG. 3 to form a battery. In FIG. 3, three battery cells 1 are illustrated, but a battery for mounting in an automobile is configured by actually connecting a large number of battery cells 1 in excess of 100 in series.

電池セル1が新品の場合、例えば内部抵抗が10mΩであると仮定し、典型的には電池セル1を使い続けることにより極板部6に酸化還元被膜が形成され、この酸化還元被膜による内部抵抗の上昇する経年劣化などの故障により内部抵抗が10倍に増大した(10mΩ)とすると、バッテリに例えば150Aの電流が10秒間流れたとすると、新品の電池セル1が発生するジュール熱(I×R)は、次の数値となる。
新品の電池セル1のジュール熱=(150A)2×(0.01Ω)×10(s)
=2,250(J)
When the battery cell 1 is new, for example, it is assumed that the internal resistance is 10 mΩ, and typically, by continuing to use the battery cell 1, a redox film is formed on the electrode plate portion 6, and the internal resistance due to this redox film Assuming that the internal resistance has increased 10 times (10 mΩ) due to a failure such as aged deterioration, the Joule heat generated by a new battery cell 1 (I 2 × R) is the following numerical value.
Joule heat of new battery cell 1 = (150A) 2 × (0.01Ω) × 10 (s)
= 2,250 (J)

これに対して故障した電池セル1が発生するジュール熱(J)は次の数値となる。
故障した電池セル1のジュール熱=(150A)2×(0.1Ω)×10(s)
=22,500(J)
On the other hand, the Joule heat (J) generated by the failed battery cell 1 is as follows.
Joule heat of the failed battery cell = (150A) 2 × (0.1Ω) × 10 (s)
= 22,500 (J)

電池セル1が発生する熱量によって電池セル1がどの程度温度上昇するかを求めてみると、極板部6の比熱が0.823J/gkであり、電池セル1の重量が200gであるとすると次の通りである。
新品の電池セル1の上昇温度=2,250(J)÷0.823(J/gk)÷200(g)
=13.7k
When the temperature rise of the battery cell 1 is determined by the amount of heat generated by the battery cell 1, the specific heat of the electrode plate 6 is 0.823 J / gk and the weight of the battery cell 1 is 200 g. It is as follows.
Rising temperature of new battery cell = 2,250 (J) ÷ 0.823 (J / gk) ÷ 200 (g)
= 13.7k

故障した電池セル1の上昇温度=22,500(J)÷0.823(J/gk)÷200(g)
=137k
Temperature rise of failed battery cell = 22,500 (J) ÷ 0.823 (J / gk) ÷ 200 (g)
= 137k

ここに、電池セル1の初期温度が25℃であるとすると、バッテリに150Aの大電流が10秒間流れた場合には、電池セル1が新品のときには電池セル1は38.7℃であるのに対して、故障した電池セル1は162℃になる。   Here, assuming that the initial temperature of the battery cell 1 is 25 ° C., when a large current of 150 A flows through the battery for 10 seconds, the battery cell 1 is 38.7 ° C. when the battery cell 1 is new. On the other hand, the failed battery cell 1 has a temperature of 162 ° C.

如上の説明から理解できるように、故障により内部抵抗が大きくなった電池セル1は、極板部6が発生する熱によって電池セル1の内部の温度が上昇し、次いで、その熱が外部に拡散する。したがって、バッテリに大電流が流れて、故障した電池セル1の温度が大きく上昇したときには、当該電池セル1の内部に配設されている正極用集電体8が先行して溶融し(図4の(ロ))、極板部6と正極端子5との電気的な接続が切断される。次いで、電池セル1の内部の熱が外部に伝わって正極端子5が溶融すると(図4の(ハ))、溶融した正極端子5の一部が絶縁体4を乗り越えて導電性材料からなる蓋体3と導通状態となる(図5)。   As can be understood from the above description, in the battery cell 1 whose internal resistance has increased due to the failure, the internal temperature of the battery cell 1 rises due to the heat generated by the electrode plate portion 6, and then the heat diffuses to the outside. To do. Therefore, when a large current flows through the battery and the temperature of the failed battery cell 1 rises greatly, the positive electrode current collector 8 disposed inside the battery cell 1 is melted in advance (FIG. 4). (B)), the electrical connection between the electrode plate portion 6 and the positive electrode terminal 5 is cut. Next, when the internal heat of the battery cell 1 is transmitted to the outside and the positive electrode terminal 5 is melted (FIG. 4C), a part of the molten positive electrode terminal 5 gets over the insulator 4 and is made of a conductive material. It becomes a conductive state with the body 3 (FIG. 5).

この実施例では、正極用集電体8が正極端子5よりも時間的に先行して溶融するのに、電池セル1の熱の伝達メカニズムつまり内部で発生した熱が外部まで拡散して正極端子5が溶融し始める時間的な遅れのメカニズムを使ってショートの発生を防止するようにしているが、これに代えて、正極集電体8を正極端子5よりも相対的に低い温度で溶融する金属で作るようにしてもよい。すなわち、正極集電体8の材料として、正極端子5の材料の融点よりも低い材料を選択するようにしてもよい。   In this embodiment, the positive electrode current collector 8 is melted ahead of the positive electrode terminal 5 in terms of time, but the heat transfer mechanism of the battery cell 1, that is, the heat generated inside diffuses to the outside and the positive electrode terminal Although the occurrence of a short circuit is prevented by using a time delay mechanism in which 5 starts to melt, the positive electrode current collector 8 is melted at a temperature relatively lower than that of the positive electrode terminal 5 instead. It may be made of metal. That is, a material lower than the melting point of the material of the positive electrode terminal 5 may be selected as the material of the positive electrode current collector 8.

如上のように実施例の電池セル1によれば、故障により発熱現象が現れて正極用集電体8が断線し、次いで、正極端子5が溶融して、導電性材料からなる蓋体3と導通状態になったときには、当該電池セル1の導電性の蓋体3及びケース本体2によって、内部の極板部6をバイパスする導電回路が形成され、バッテリは、当該電池セル1が無い状態で動作し続けることになる。   As described above, according to the battery cell 1 of the embodiment, a heat generation phenomenon occurs due to a failure, the positive electrode current collector 8 is disconnected, and then the positive electrode terminal 5 is melted to form the lid 3 made of a conductive material. When the conductive state is established, the conductive lid 3 and the case body 2 of the battery cell 1 form a conductive circuit that bypasses the internal electrode plate portion 6, and the battery is in a state where the battery cell 1 is not present. Will continue to work.

したがって、バッテリを構成する全ての電池セル1がその内部構造によって自己診断機能及びバイパス回路生成機能を持つことになり、従来のように各電池セル毎に温度監視機構やバイパス回路を設ける必要が無くなるため、バッテリの構造を簡素化することができる。   Therefore, all the battery cells 1 constituting the battery have a self-diagnosis function and a bypass circuit generation function due to the internal structure thereof, and there is no need to provide a temperature monitoring mechanism and a bypass circuit for each battery cell as in the prior art. Therefore, the structure of the battery can be simplified.

実施例のバッテリを構成する電池セルの分解斜視図である。It is a disassembled perspective view of the battery cell which comprises the battery of an Example. 実施例のバッテリを構成する電池セルの縦断面図である。It is a longitudinal cross-sectional view of the battery cell which comprises the battery of an Example. 実施例のバッテリの構成する直列に接続した数多くの電池セル群の一部を示す説明図である。It is explanatory drawing which shows a part of many battery cell group connected in series which the battery of an Example comprises. 実施例のバッテリを構成する電池セルのうち劣化した電池セルの構造に発生する現象を時間の経過に従って説明するための図であり、(イ)は電池セルが正常の状態を示し、(ロ)は正極用集電体が溶融した状態を示し、(ハ)は正極端子が溶融した状態を示す。It is a figure for demonstrating the phenomenon which generate | occur | produces in the structure of the deteriorated battery cell among the battery cells which comprise the battery of an Example according to progress of time, (a) shows a normal state of a battery cell, (b) Indicates a state in which the positive electrode current collector is melted, and (C) indicates a state in which the positive electrode terminal is melted. 劣化して正極用集電体及び正極端子が溶融した電池セルの電子の流れを説明するための図である。It is a figure for demonstrating the flow of the electron of the battery cell which deteriorated and the collector for positive electrodes and the positive electrode terminal fuse | melted.

符号の説明Explanation of symbols

1 電池セル
2 導電性のケース本体
3 導電性の蓋体
4 絶縁体
5 正極端子
6 極板部
7 負極用集電体
8 正極用集電体
DESCRIPTION OF SYMBOLS 1 Battery cell 2 Conductive case main body 3 Conductive cover body 4 Insulator 5 Positive electrode terminal 6 Electrode plate part 7 Current collector for negative electrode 8 Current collector for positive electrode

Claims (4)

正極端子と負極端子を備えた複数の電池セルを接続することにより構成されたバッテリにおいて、故障した電池セルを除いた他の電池セルでバッテリとして機能するように、故障した電池セルをバイパスする回路を生成するバッテリの電池セルバイパス構造であって、
電気エネルギを蓄積した極板部と、
該極板部を絶縁状態で収容する導電性の電池ケースと、
該電池ケースに設けられて、隣接する電池セルと接続するための正極及び負極の接続端子と、
前記正極又は前記負極の接続端子と前記電池ケースとの間に設けられた絶縁体と、
前記極板部と前記正極及び負極の接続端子とを導通させる正極用及び負極用の導体とを有し、
前記絶縁体を介して前記電池ケースに設けられた前記正極又は前記負極の接続端子と、前記正極用及び/又は負極用の導体が、前記極板部の異常発熱によって溶融する導電性材料で作られ、
前記正極又は負極の接続端子が溶融することにより、該正極又は負極の接続端子と前記電池ケースとが導通状態になることを特徴とするバッテリの電池セルバイパス構造。
In a battery configured by connecting a plurality of battery cells having a positive electrode terminal and a negative electrode terminal, a circuit that bypasses the failed battery cell so that it functions as a battery in other battery cells except the failed battery cell. A battery cell bypass structure for a battery that generates
An electrode plate that stores electrical energy;
A conductive battery case for accommodating the electrode plate portion in an insulated state; and
Provided in the battery case, positive and negative connection terminals for connecting to adjacent battery cells,
An insulator provided between the positive electrode or the connection terminal of the negative electrode and the battery case;
A conductor for a positive electrode and a negative electrode for electrically connecting the electrode plate part and the connection terminals of the positive electrode and the negative electrode;
The positive electrode or the negative electrode connection terminal provided on the battery case via the insulator and the positive electrode and / or negative electrode conductor are made of a conductive material that melts due to abnormal heat generation of the electrode plate. And
A battery cell bypass structure for a battery, wherein the positive or negative connection terminal is melted to bring the positive or negative connection terminal into conduction.
前記極板部の異常発熱によって溶融する導電性材料から作られた前記正極又は前記負極の接続端子が、その回りを前記絶縁体で包囲した状態で前記電池ケースを貫通して配設されている、請求項1に記載のバッテリの電池セルバイパス構造。   The connection terminal of the positive electrode or the negative electrode made of a conductive material that melts due to abnormal heat generation of the electrode plate portion is disposed through the battery case in a state surrounded by the insulator. The battery cell bypass structure of the battery according to claim 1. 前記極板部の異常発熱により、前記正極用及び/又は負極用の導体が先行して溶融し、次いで、
前記極板部の異常発熱によって溶融する導電性材料で作られた前記正極又は前記負極の接続端子が溶融する、請求項1又は2に記載のバッテリの電池セルバイパス構造。
Due to abnormal heat generation of the electrode plate part, the conductor for the positive electrode and / or the negative electrode is melted in advance,
3. The battery cell bypass structure for a battery according to claim 1, wherein a connection terminal of the positive electrode or the negative electrode made of a conductive material that melts due to abnormal heat generation of the electrode plate portion melts.
前記導電性材料が、前記極板部の異常発熱によって溶融する融点を備えた金属から選択されている、請求項1〜3のいずれか一項に記載のバッテリの電池セルバイパス構造。   The battery cell bypass structure for a battery according to any one of claims 1 to 3, wherein the conductive material is selected from a metal having a melting point that melts due to abnormal heat generation of the electrode plate portion.
JP2006204707A 2006-07-27 2006-07-27 Battery cell bypass structure of battery Pending JP2008034183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006204707A JP2008034183A (en) 2006-07-27 2006-07-27 Battery cell bypass structure of battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006204707A JP2008034183A (en) 2006-07-27 2006-07-27 Battery cell bypass structure of battery

Publications (1)

Publication Number Publication Date
JP2008034183A true JP2008034183A (en) 2008-02-14

Family

ID=39123390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006204707A Pending JP2008034183A (en) 2006-07-27 2006-07-27 Battery cell bypass structure of battery

Country Status (1)

Country Link
JP (1) JP2008034183A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101112447B1 (en) 2006-11-13 2012-02-20 주식회사 엘지화학 Secondary Battery of Improved Safety
JP2022549026A (en) * 2019-11-29 2022-11-22 寧徳時代新能源科技股▲分▼有限公司 BATTERY MODULE, DEVICE AND FAILURE HANDLING METHOD FOR FAILURE BATTERY CELLS

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101112447B1 (en) 2006-11-13 2012-02-20 주식회사 엘지화학 Secondary Battery of Improved Safety
JP2022549026A (en) * 2019-11-29 2022-11-22 寧徳時代新能源科技股▲分▼有限公司 BATTERY MODULE, DEVICE AND FAILURE HANDLING METHOD FOR FAILURE BATTERY CELLS
US11588186B2 (en) 2019-11-29 2023-02-21 Contemporary Amperex Technology Co., Limited Battery module, device, and failure handling method for failed battery cell
JP7256335B2 (en) 2019-11-29 2023-04-11 寧徳時代新能源科技股▲分▼有限公司 BATTERY MODULE, DEVICE AND FAILURE HANDLING METHOD FOR FAILURE BATTERY CELLS

Similar Documents

Publication Publication Date Title
US10026948B2 (en) Safety element for battery cell
KR101433199B1 (en) Battery module and Busbar applied for battery module
KR101463196B1 (en) Battery pack and Connecting bar applied for battery pack
JP5186649B2 (en) Secondary battery
KR101370264B1 (en) Soldering connector, and Battery module and Battery pack comprising the same
KR101690295B1 (en) Overcurrent shut-off device and Secondary battery comprising the same
JPH10233233A (en) Lithium secondary battery
EP3751592B1 (en) High-voltage fuse
JP7171183B2 (en) Secondary battery and assembled battery using the same
JP5958141B2 (en) Electric storage element and electric storage element system
KR20180064221A (en) Cylindrical secondary battery module
JP2008234903A (en) Battery and battery system
JP2006012602A (en) Storage battery
CN104508783A (en) Protective element and battery pack
CN104508789A (en) Protective element and battery pack
CN110050323A (en) Protection element
US10892466B2 (en) Electrical energy storage cell with integrated bridging device
JP5594079B2 (en) Monitoring device for current interruption mechanism
JP2010003546A (en) Battery pack
KR20150062694A (en) Element for secondary battery and Secondary battery comprising the same
JP2008034183A (en) Battery cell bypass structure of battery
EP3217455A1 (en) Electrode assembly and battery cell
US20220238969A1 (en) Electrical-accumulator-isolating device and method
JP2012048911A (en) Molten-salt battery
CN105074953A (en) Battery cell for a battery and method for producing a battery cell