JP2008034134A - Manufacturing method of solid polymer electrolyte fuel cell - Google Patents

Manufacturing method of solid polymer electrolyte fuel cell Download PDF

Info

Publication number
JP2008034134A
JP2008034134A JP2006203608A JP2006203608A JP2008034134A JP 2008034134 A JP2008034134 A JP 2008034134A JP 2006203608 A JP2006203608 A JP 2006203608A JP 2006203608 A JP2006203608 A JP 2006203608A JP 2008034134 A JP2008034134 A JP 2008034134A
Authority
JP
Japan
Prior art keywords
catalyst layer
rare earth
polymer electrolyte
fuel cell
salt solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006203608A
Other languages
Japanese (ja)
Other versions
JP5055874B2 (en
Inventor
Kazumine Kimura
和峰 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006203608A priority Critical patent/JP5055874B2/en
Publication of JP2008034134A publication Critical patent/JP2008034134A/en
Application granted granted Critical
Publication of JP5055874B2 publication Critical patent/JP5055874B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a solid polymer fuel cell capable of improving durability while maintaining power generation performance. <P>SOLUTION: The manufacturing method of a solid polymer fuel cell is provide with a rare earth salt solution contact process in which a catalyst layer formed by coating and drying an ink containing a catalyst component and a cation exchange resin on a support body is contacted to a solution dissolving salt of a rare earth element in pressure reduced environment, a drying process in which the catalyst layer is dried after the rare earth salt solution contact process, and a thermo-compression bonding process in which the catalyst layer is thermocompression bonded on at least one side of the polymer electrolyte membrane. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、固体高分子型燃料電池の製造方法に関する。   The present invention relates to a method for producing a polymer electrolyte fuel cell.

燃料電池は、電気的に接続された2つの電極に燃料と酸化剤を供給し、電気化学的に燃料の酸化を起こさせることで、化学エネルギーを直接電気エネルギーに変換する。火力発電とは異なり、燃料電池はカルノーサイクルの制約を受けないので、高いエネルギー変換効率を示す。燃料電池は、通常、電解質膜を一対の電極で挟持した膜・電極接合体を基本構造とする単セルを複数積層して構成されている。中でも、電解質膜として固体高分子電解質膜を用いた固体高分子型燃料電池は、小型化が容易であること、低い温度で作動すること、などの利点があることから、特に携帯用、移動体用電源として注目されている。   A fuel cell directly converts chemical energy into electrical energy by supplying fuel and an oxidant to two electrically connected electrodes and causing the fuel to be oxidized electrochemically. Unlike thermal power generation, fuel cells are not subject to the Carnot cycle and thus exhibit high energy conversion efficiency. A fuel cell is usually formed by laminating a plurality of single cells having a basic structure of a membrane / electrode assembly in which an electrolyte membrane is sandwiched between a pair of electrodes. Among them, a solid polymer fuel cell using a solid polymer electrolyte membrane as an electrolyte membrane has advantages such as easy miniaturization and operation at a low temperature. It is attracting attention as a power source.

固体高分子型燃料電池において、アノード(燃料極)では(1)式の反応が進行する。
→ 2H + 2e ・・・(1)
(1)式で生じる電子は、外部回路を経由し、外部の負荷で仕事をした後、カソード(酸化剤極)に到達する。そして、(1)式で生じたプロトンは、水と水和した状態で、電気浸透により固体高分子電解質膜内をアノード側からカソード側に移動する。
一方、カソードでは(2)式の反応が進行する。
4H + O + 4e → 2HO ・・・(2)
In the polymer electrolyte fuel cell, the reaction of the formula (1) proceeds at the anode (fuel electrode).
H 2 → 2H + + 2e (1)
The electrons generated by the equation (1) reach the cathode (oxidant electrode) after working with an external load via an external circuit. Then, the proton generated in the formula (1) moves in the solid polymer electrolyte membrane from the anode side to the cathode side by electroosmosis while being hydrated with water.
On the other hand, the reaction of the formula (2) proceeds at the cathode.
4H + + O 2 + 4e → 2H 2 O (2)

燃料電池の電極では、上記主反応以外にも副反応が進行し、その代表的なものとして過酸化水素等の過酸化物の生成反応が挙げられる。過酸化水素は、燃料電池の作動環境下においてラジカル分解し、ヒドロキシラジカル(・OH)や過酸化物ラジカル(・OOH)等の酸化力の強いラジカルを発生させることが知られている。これらラジカルは固体高分子電解質膜へと移動すると、固体高分子電解質から水素やフッ素等を引き抜いたり、或いは高分子鎖を切断し、固体高分子電解質膜の劣化を引き起こす。このような劣化により、固体高分子電解質膜にはプロトン伝導性の低下や、クロスリークの原因となる穴あきや破れ等が発生する。クロスリークは燃料の損失や電位の低下を引き起こし、燃料電池の発電性能や耐久性を低下させる原因のひとつである。   In the electrode of the fuel cell, a side reaction proceeds in addition to the main reaction, and a representative example thereof is a reaction for generating a peroxide such as hydrogen peroxide. It is known that hydrogen peroxide undergoes radical decomposition under the operating environment of a fuel cell and generates radicals with strong oxidizing power such as hydroxy radicals (.OH) and peroxide radicals (.OOH). When these radicals move to the solid polymer electrolyte membrane, hydrogen, fluorine, or the like is extracted from the solid polymer electrolyte, or the polymer chain is cut to cause deterioration of the solid polymer electrolyte membrane. As a result of such deterioration, the solid polymer electrolyte membrane is deteriorated in proton conductivity, perforated or broken, which causes cross leak. A cross leak causes fuel loss and a decrease in potential, and is one of the causes of reducing the power generation performance and durability of a fuel cell.

以上のような過酸化物のラジカル分解により生成するラジカル種によって、固体高分子電解質膜が劣化し、燃料電池の耐久性や発電性能が低下するのを抑制するため、従来様々な技術が提案されている。
例えば、特許文献1には、固体高分子電解質膜及び電極のいずれか1以上に、希土類元素並びにTi、Fe、Al及びBiから選ばれる少なくとも1つの金属元素を含むリン酸塩が固定されている固体高分子型燃料電池が記載されている。この具体例として、特許文献1には、前記固体高分子電解質膜が、該固体高分子電解質膜又はその前駆体を、前記金属元素の水溶性の塩又は有機金属錯体を含む第一溶液及びリン酸を含む第二溶液のいずれか一方に接触させ、次いで他方に接触させることによって得られる固体高分子型燃料電池が記載されている。
In order to prevent the solid polymer electrolyte membrane from being deteriorated by the radical species generated by radical decomposition of the peroxide as described above, and to reduce the durability and power generation performance of the fuel cell, various technologies have been proposed in the past. ing.
For example, in Patent Document 1, a phosphate containing at least one metal element selected from rare earth elements and Ti, Fe, Al, and Bi is fixed to any one or more of the solid polymer electrolyte membrane and the electrode. A polymer electrolyte fuel cell is described. As a specific example, Patent Document 1 discloses that the solid polymer electrolyte membrane includes the solid polymer electrolyte membrane or a precursor thereof, a first solution containing a water-soluble salt of the metal element or an organometallic complex, and phosphorus. A polymer electrolyte fuel cell obtained by contacting one of the second solutions containing an acid and then contacting the other is described.

また、特許文献2には、高分子電解質材料中に電池反応により発生する過酸化物を接触分解する触媒能を有する遷移金属酸化物を分散配合するか、過酸化物の分解を抑制する過酸化物安定剤を分散配合するか、フェノール性水酸基を有する化合物を分散配合するか、もしくはフェノール性水酸基を電解質高分子化学結合により導入するかの少なくともいずれかの手段がとられていることを特徴とする高耐久性固体高分子電解質が記載されている。   In Patent Document 2, a transition metal oxide having catalytic ability to catalytically decompose a peroxide generated by a battery reaction is dispersed and blended in a polymer electrolyte material, or a peroxide that suppresses the decomposition of the peroxide. It is characterized in that at least one of the following is taken: a compound stabilizer is dispersed and compounded, a compound having a phenolic hydroxyl group is dispersed and compounded, or a phenolic hydroxyl group is introduced by an electrolytic polymer chemical bond A highly durable solid polymer electrolyte is described.

特開2005−71760号公報JP-A-2005-71760 特開2001−118591号公報JP 2001-118591 A

しかしながら、特許文献1の固体高分子型燃料電池は、過酸化物ラジカルによる電解質膜の劣化を防止することは可能であるが、発電には直接関与しないリン酸塩を析出等させることにより固体状で電解質膜や電極に添加するため、発電性能が低下するおそれがある。また、特許文献1において製膜後の電解質膜や層形成後の触媒層にリン酸塩を添加する工程には、煩雑な処理を要し、生産性が低いという問題がある。
また、特許文献2においても電解質は遷移金属酸化物等を微粒子として含有しており、特許文献1同様、発電性能が低下するおそれがある。
さらに、特許文献1及び特許文献2に記載の技術では、希土類元素の分散性が悪く、充分な高分子電解質膜の劣化防止効果が得られないおそれもある。
However, although the polymer electrolyte fuel cell of Patent Document 1 can prevent the electrolyte membrane from being deteriorated by peroxide radicals, the solid polymer fuel cell can be obtained by depositing phosphate that is not directly involved in power generation. Therefore, the power generation performance may be reduced. Moreover, in the process of adding a phosphate to the electrolyte membrane after film formation and the catalyst layer after layer formation in Patent Document 1, there is a problem that complicated processing is required and productivity is low.
Also in Patent Document 2, the electrolyte contains a transition metal oxide or the like as fine particles, and there is a risk that the power generation performance may be reduced as in Patent Document 1.
Furthermore, in the techniques described in Patent Document 1 and Patent Document 2, the dispersibility of rare earth elements is poor, and there is a possibility that a sufficient effect of preventing deterioration of the polymer electrolyte membrane may not be obtained.

本発明は上記実情を鑑みて成し遂げられたものであり、発電性能を保持しつつ、耐久性を向上させることが可能な固体高分子型燃料電池の製造方法を提供することを目的とする。   The present invention has been accomplished in view of the above circumstances, and an object of the present invention is to provide a method for producing a polymer electrolyte fuel cell capable of improving durability while maintaining power generation performance.

本発明の固体高分子型燃料電池の製造方法は、触媒成分及び陽イオン交換樹脂を含有する触媒インクを支持体上に塗布、乾燥させて形成した触媒層を、希土類元素の塩を溶解した溶液と減圧環境において接触させる希土類塩溶液接触工程と、該希土類塩溶液接触工程後に前記触媒層を乾燥させる乾燥工程と、高分子電解質膜の少なくとも片面に前記触媒層を熱圧着する熱圧着工程と、を備えることを特徴とするものである。   The method for producing a polymer electrolyte fuel cell according to the present invention is a solution in which a catalyst layer formed by applying a catalyst ink containing a catalyst component and a cation exchange resin on a support and drying the solution is dissolved in a salt of a rare earth element And a rare earth salt solution contact step for contacting in a reduced pressure environment, a drying step for drying the catalyst layer after the rare earth salt solution contact step, a thermocompression bonding step for thermocompression bonding the catalyst layer to at least one surface of the polymer electrolyte membrane, It is characterized by providing.

本発明の固体高分子型燃料電池の製造方法は、支持体上に形成した触媒層を、希土類元素の塩を溶解した溶液(以下、希土類塩溶液ということがある)と接触させることにより、触媒層に含まれる陽イオン交換樹脂のイオン交換基の一部を希土類イオンでイオン交換し、希土類をイオン状態で触媒層内に含有させるものである。本発明では、上記触媒層と希土類塩溶液との接触工程において、減圧条件とすることによって、撥水性を有すると共に多孔質構造を有する触媒層への希土類塩溶液の浸透性を向上させ、表面から内部に至る触媒層全域の陽イオン交換樹脂を希土類イオンでイオン交換することを可能とした。
このように、触媒層全域にイオン状態で希土類元素を含有させることによって、発電性能を保持しつつ、希土類元素による過酸化物のラジカル分解抑制効果を得ることが可能である。従って、本発明の製造方法により提供される固体高分子型燃料電池は、優れた発電性能と共に、高い耐久性を有するものである。
The method for producing a polymer electrolyte fuel cell according to the present invention comprises contacting a catalyst layer formed on a support with a solution in which a salt of a rare earth element is dissolved (hereinafter sometimes referred to as a rare earth salt solution). A part of the ion exchange groups of the cation exchange resin contained in the layer is ion-exchanged with rare earth ions, and the rare earth is contained in the catalyst layer in an ionic state. In the present invention, in the contact step between the catalyst layer and the rare earth salt solution, by reducing the pressure, the permeability of the rare earth salt solution to the catalyst layer having water repellency and a porous structure is improved. The cation exchange resin in the entire catalyst layer leading to the inside can be ion-exchanged with rare earth ions.
Thus, by containing rare earth elements in an ionic state throughout the catalyst layer, it is possible to obtain an effect of suppressing radical decomposition of peroxide by the rare earth elements while maintaining power generation performance. Therefore, the polymer electrolyte fuel cell provided by the production method of the present invention has high durability as well as excellent power generation performance.

本発明の具体的態様としては、例えば、触媒成分及び陽イオン交換樹脂を含有する触媒インクを転写用支持体上に塗布、乾燥させて形成した触媒層を、希土類元素の塩を溶解した溶液と減圧環境において接触させる希土類塩溶液接触工程と、該希土類塩溶液接触工程後に前記触媒層を乾燥させる乾燥工程と、高分子電解質膜の少なくとも片面に前記触媒層を熱圧着する熱圧着工程と、該熱圧着工程後に前記転写用支持体を前記触媒層から剥離する工程と、を備える製造方法が挙げられる。   As a specific embodiment of the present invention, for example, a catalyst layer formed by applying a catalyst ink containing a catalyst component and a cation exchange resin on a transfer support and drying, a solution in which a salt of a rare earth element is dissolved, A rare earth salt solution contact step for contacting in a reduced pressure environment, a drying step for drying the catalyst layer after the rare earth salt solution contact step, a thermocompression bonding step for thermocompression bonding the catalyst layer to at least one surface of a polymer electrolyte membrane, And a step of peeling the transfer support from the catalyst layer after the thermocompression bonding step.

耐久性向上の観点から、電解質膜の両面に設けられる触媒層は共に、本発明の製造方法により製造されることが好ましい。すなわち、前記熱圧着工程において、前記高分子電解質膜の両面に前記触媒層を熱圧着することが好ましい。
前記希土類元素としては、コスト面、過酸化物のラジカル分解の抑制効果等の観点から、特にセリウムが好適である。
前記希土類塩溶液接触工程における減圧環境は、触媒層への希土類塩溶液の浸透性を高め、触媒層全域において陽イオン交換樹脂と希土類塩溶液とが接触するようにできれば、その具体的条件は特に限定されないが、50mmHg以下とすることが好ましい。
From the viewpoint of improving durability, both catalyst layers provided on both surfaces of the electrolyte membrane are preferably produced by the production method of the present invention. That is, in the thermocompression bonding step, the catalyst layer is preferably thermocompression bonded to both surfaces of the polymer electrolyte membrane.
As the rare earth element, cerium is particularly preferable from the viewpoints of cost and the effect of suppressing radical decomposition of peroxide.
The reduced pressure environment in the rare earth salt solution contact step is such that the specific conditions are particularly as long as the permeability of the rare earth salt solution to the catalyst layer is increased and the cation exchange resin and the rare earth salt solution can be brought into contact with each other over the entire catalyst layer. Although not limited, it is preferably 50 mmHg or less.

本発明によれば、発電性能を保持したまま、耐久性を向上させた固体高分子型燃料電池を提供することが可能である。   According to the present invention, it is possible to provide a polymer electrolyte fuel cell with improved durability while maintaining power generation performance.

本発明の固体高分子型燃料電池の製造方法は、触媒成分及び陽イオン交換樹脂を含有する触媒インクを支持体上に塗布、乾燥させて形成した触媒層を、希土類元素の塩を溶解した溶液と減圧環境において接触させる希土類塩溶液接触工程と、該希土類塩溶液接触工程後に前記触媒層を乾燥させる乾燥工程と、高分子電解質膜の少なくとも片面に前記触媒層を熱圧着する熱圧着工程と、を備えることを特徴とするものである。   The method for producing a polymer electrolyte fuel cell according to the present invention is a solution in which a catalyst layer formed by applying a catalyst ink containing a catalyst component and a cation exchange resin on a support and drying the solution is dissolved in a salt of a rare earth element And a rare earth salt solution contact step for contacting in a reduced pressure environment, a drying step for drying the catalyst layer after the rare earth salt solution contact step, a thermocompression bonding step for thermocompression bonding the catalyst layer to at least one surface of the polymer electrolyte membrane, It is characterized by providing.

上述したように、燃料電池の電極において生成した過酸化水素に代表される過酸化物は、燃料電池の作動環境下において、ヒドロキシラジカルや過酸化物ラジカル等の強い酸化性を有するラジカルに分解する。これらラジカルは、高分子電解質膜から水素やフッ素等を引き抜いたり、或いは高分子鎖を切断する等して、高分子電解質膜の劣化を引き起こす。その結果、プロトン伝導性の低下や、穴あき、割れ等が高分子電解質膜に発生し、ひいては燃料電池の発電性能や耐久性が低下する。   As described above, peroxides typified by hydrogen peroxide generated at the electrodes of the fuel cell are decomposed into radicals having strong oxidizing properties such as hydroxy radicals and peroxide radicals in the operating environment of the fuel cell. . These radicals cause deterioration of the polymer electrolyte membrane by extracting hydrogen, fluorine, or the like from the polymer electrolyte membrane, or by cutting the polymer chain. As a result, a decrease in proton conductivity, perforations, cracks, and the like occur in the polymer electrolyte membrane, and as a result, the power generation performance and durability of the fuel cell decrease.

希土類元素は、上述したような燃料電池の性能低下及び耐久性低下の原因となる過酸化物を水(HO)と水素(H)に分解する触媒活性を有しているため、触媒層内に希土類元素を含有させることによって、過酸化物がラジカル分解するのを抑制することができる。しかしながら、従来のように希土類元素をリン酸化物や酸化物等の固体状で電解質膜や触媒層内に含有させた場合、高分子電解質膜の劣化を防止し、燃料電池の耐久性を向上させることはできるが、燃料電池の発電性能が低下してしまうという問題があった。 The rare earth element has a catalytic activity to decompose the peroxide, which causes the deterioration of the performance and durability of the fuel cell as described above, into water (H 2 O) and hydrogen (H 2 ). By containing a rare earth element in the layer, radical decomposition of the peroxide can be suppressed. However, when the rare earth element is contained in the electrolyte membrane or the catalyst layer in the solid state such as phosphorus oxide or oxide as in the past, the deterioration of the polymer electrolyte membrane is prevented and the durability of the fuel cell is improved. However, there is a problem that the power generation performance of the fuel cell is lowered.

そこで、本発明においては、触媒層において、プロトン伝導性成分及びバインダー成分として機能する陽イオン交換樹脂のイオン交換基の一部を希土類イオンで置換し、イオン状態で希土類元素を触媒層内に含有させる。イオン状態で希土類元素を触媒層内に含有させることによって、従来のように固体状で希土類元素を含有させる場合と異なり、分子レベルで触媒層内に希土類を高分散させることが可能であり、且つ、発電性能の低下を防止することができる。   Therefore, in the present invention, in the catalyst layer, a part of the ion exchange group of the cation exchange resin functioning as a proton conductive component and a binder component is replaced with rare earth ions, and the rare earth element is contained in the catalyst layer in an ionic state. Let By containing the rare earth element in the ionic state in the catalyst layer, unlike the conventional case where the rare earth element is contained in a solid state, it is possible to highly disperse the rare earth in the catalyst layer at the molecular level, and It is possible to prevent a decrease in power generation performance.

そして、本発明の製造方法では、触媒層中に含まれる陽イオン交換樹脂のイオン交換基を希土類イオンで置換するため、支持体上に形成された触媒層と希土類塩溶液とを接触する際に、触媒層を減圧環境におくことを特徴とする。触媒層は、含有する触媒成分や支持体が撥水性を有していることが多く、また、その多孔質構造のため、単に希土類塩溶液と接触させただけでは、触媒層内に希土類塩溶液を浸透させることができない。すなわち、単に触媒層と希土類塩溶液とを接触させただけでは、触媒層の内部に存在するイオン交換基を希土類イオンで置換することができず、表面から内部にいたる触媒層全域において希土類イオンを含有させることができない。   And in the manufacturing method of this invention, in order to substitute the ion exchange group of the cation exchange resin contained in a catalyst layer with rare earth ions, when contacting the catalyst layer and rare earth salt solution formed on the support body, The catalyst layer is placed in a reduced pressure environment. In many cases, the catalyst layer contained in the catalyst layer and the support have water repellency, and due to its porous structure, the rare earth salt solution is simply brought into contact with the rare earth salt solution simply by contacting with the rare earth salt solution. Can not penetrate. That is, simply contacting the catalyst layer with the rare earth salt solution cannot replace the ion exchange groups present in the catalyst layer with the rare earth ions, and rare earth ions in the entire catalyst layer from the surface to the inside. Cannot be included.

これに対して、本発明では、支持体上に形成した触媒層を減圧環境下におき、触媒層の空孔内の空気を抜くことによって、触媒層内への希土類塩溶液の浸透を促進し、陽イオン交換樹脂と希土類塩溶液との接触性を高め、触媒層の内部に存在する陽イオン交換基の希土類イオンによる置換を可能とした。
また、本発明では、過酸化物のラジカル分解を十分に抑制可能であると供に、電解質膜のプロトン伝導性を維持できることから、過酸化物の主な発生源である触媒層(電極)にのみ希土類を含有させることとした。
On the other hand, in the present invention, the penetration of the rare earth salt solution into the catalyst layer is promoted by placing the catalyst layer formed on the support in a reduced pressure environment and extracting air from the pores of the catalyst layer. The contact property between the cation exchange resin and the rare earth salt solution was improved, and the cation exchange groups present in the catalyst layer could be replaced with rare earth ions.
In the present invention, the radical decomposition of the peroxide can be sufficiently suppressed, and the proton conductivity of the electrolyte membrane can be maintained, so that the catalyst layer (electrode) that is the main generation source of the peroxide is used. Only rare earth was included.

以下、本発明の固体高分子型燃料電池の製造方法について、詳しく説明していく。
支持体上の触媒層は、少なくとも触媒成分及び陽イオン交換樹脂を含有する触媒インクを、支持体上に塗布、乾燥させることで形成できる。
ここで、支持体とは、ガス拡散層を構成する導電性多孔質体(ガス拡散層基材)や、導電性多孔質体に機能層を設けた備えたガス拡散層シート、転写用支持体等が挙げられる。
転写用支持体としては、該転写用支持体上に形成した触媒層を、ガス拡散層や電解質膜に熱転写する際の基材として一般的に用いられるものを使用することができ、例えば、ポリテトラフルオロエチレン(PTFE)、ポリプロピレン等からなるものが挙げられる。
Hereinafter, the method for producing the polymer electrolyte fuel cell of the present invention will be described in detail.
The catalyst layer on the support can be formed by applying and drying a catalyst ink containing at least a catalyst component and a cation exchange resin on the support.
Here, the support means a conductive porous body (gas diffusion layer base material) constituting the gas diffusion layer, a gas diffusion layer sheet provided with a functional layer on the conductive porous body, and a transfer support. Etc.
As the transfer support, those generally used as a base material when the catalyst layer formed on the transfer support is thermally transferred to a gas diffusion layer or an electrolyte membrane can be used. Examples thereof include tetrafluoroethylene (PTFE), polypropylene and the like.

また、導電性多孔質体としては、触媒層に効率良くガスを供給することができるガス拡散性、導電性、及びガス拡散層を構成する材料として要求される強度を有するもの、例えば、カーボンペーパー、カーボンクロス、カーボンフェルト等の炭素質多孔質体や、チタン、アルミニウム、銅、ニッケル、ニッケル−クロム合金、銅及びその合金、アルミ合金、亜鉛合金、鉛合金、チタン、ニオブ、タンタル、鉄、ステンレス等の金属から構成される金属メッシュ又は金属多孔質体等が挙げられる。   The conductive porous body has a gas diffusibility that can efficiently supply a gas to the catalyst layer, a conductivity, and a strength required as a material constituting the gas diffusion layer, such as carbon paper. Carbon porous bodies such as carbon cloth, carbon felt, titanium, aluminum, copper, nickel, nickel-chromium alloy, copper and its alloys, aluminum alloy, zinc alloy, lead alloy, titanium, niobium, tantalum, iron, Examples thereof include a metal mesh composed of a metal such as stainless steel or a metal porous body.

導電性多孔質体に機能層を設けたガス拡散層シートとしては、例えば、導電性多孔質体の触媒層に面する側に撥水層を設けたものが挙げられる。撥水層は、通常、炭素粒子や炭素繊維等の導電性粉粒体、ポリテトラフルオロエチレン等の撥水性樹脂等を含む多孔質構造を有するものである。撥水層を導電性多孔質体上に形成する方法は特に限定されない。例えば、炭素粒子等の導電性粉粒体と撥水性樹脂、及び必要に応じてその他の成分を、エタノール、プロパノール、プロピレングリコール等の有機溶剤、水又はこれらの混合物等の溶剤と混合した撥水層ペーストを、導電性多孔質体の少なくとも触媒層に面する側に塗布し、その後、乾燥及び/又は焼成すればよい。   Examples of the gas diffusion layer sheet in which the functional layer is provided on the conductive porous body include those in which a water repellent layer is provided on the side of the conductive porous body facing the catalyst layer. The water-repellent layer usually has a porous structure containing conductive particles such as carbon particles and carbon fibers, a water-repellent resin such as polytetrafluoroethylene, and the like. The method for forming the water repellent layer on the conductive porous body is not particularly limited. For example, water repellent obtained by mixing conductive particles such as carbon particles, water repellent resin, and other components as necessary with an organic solvent such as ethanol, propanol, propylene glycol, water or a mixture thereof. The layer paste may be applied to at least the side of the conductive porous body facing the catalyst layer, and then dried and / or fired.

このとき撥水層ペーストは、導電性多孔質体の内部に含浸してもよい。また、撥水層の形状は特に限定されず、例えば、導電性多孔質体の触媒層側の面全体を覆うような形状でもよいし、格子状等の所定パターンを有する形状でもよい。撥水層ペーストを導電性多孔質体に塗布する方法としては、例えば、スクリーン印刷法、スプレー法、ドクターブレード法、グラビア印刷法、ダイコート法等が挙げられる。   At this time, the water repellent layer paste may be impregnated inside the conductive porous body. The shape of the water repellent layer is not particularly limited, and may be, for example, a shape that covers the entire surface of the conductive porous body on the catalyst layer side or a shape having a predetermined pattern such as a lattice shape. Examples of the method for applying the water repellent layer paste to the conductive porous body include a screen printing method, a spray method, a doctor blade method, a gravure printing method, and a die coating method.

また、導電性多孔質体は、触媒層と面する側に、ポリテトラフルオロエチレン等の撥水性樹脂をバーコーター等によって含浸塗布することによって、触媒層内の水分がガス拡散層の外へ効率良く排出されるように加工してもよい。   In addition, the conductive porous body is formed by impregnating and applying a water-repellent resin such as polytetrafluoroethylene to the side facing the catalyst layer with a bar coater or the like, so that the moisture in the catalyst layer is efficiently removed from the gas diffusion layer. You may process so that it may be discharged well.

触媒成分としては、燃料極の燃料の酸化反応又は酸化剤極の酸化剤の還元反応に対して触媒活性を有しているものであれば、特に限定されず、固体高分子型燃料電池に一般的に用いられているものを使用することができる。例えば、白金、又はルテニウム、鉄、ニッケル、マンガン等の金属と白金との合金等を用いることができる。
触媒成分は、通常、導電性粒子に担持された状態で用いられる。触媒担体である導電性粒子としては、カーボンブラック等の炭素粒子や炭素繊維のような導電性炭素材料、金属粒子や金属繊維等の金属材料も用いることができる。
The catalyst component is not particularly limited as long as it has catalytic activity for the oxidation reaction of the fuel at the fuel electrode or the reduction reaction of the oxidant at the oxidant electrode, and is generally used for solid polymer fuel cells. Can be used. For example, platinum or an alloy of platinum and a metal such as ruthenium, iron, nickel, and manganese can be used.
The catalyst component is usually used in a state where it is supported on conductive particles. As the conductive particles as the catalyst carrier, carbon particles such as carbon black, conductive carbon materials such as carbon fibers, and metal materials such as metal particles and metal fibers can also be used.

陽イオン交換樹脂は特に限定されず、固体高分子型燃料電池において一般的に用いられているものを使用することができる。例えば、ナフィオンに代表されるパーフルオロカーボンスルホン酸樹脂等のフッ素系電解質樹脂や、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトン、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド(PPS)、ポリスルホン(PSU)、ポリパラフェニレン(PPP)、ポリエーテルイミド(PEI)、ポリベンゾイミダゾール(PBI)、等の炭化水素系高分子に、スルホン酸基、ヒドロキシ基、リン酸基、カルボン酸基等の陽イオン交換基が導入されたものが挙げられる。   The cation exchange resin is not particularly limited, and those commonly used in solid polymer fuel cells can be used. For example, fluorine electrolyte resin such as perfluorocarbon sulfonic acid resin represented by Nafion, polyether ether ketone (PEEK), polyether ketone, polyether sulfone (PES), polyphenylene sulfide (PPS), polysulfone (PSU), Hydrocarbon polymers such as polyparaphenylene (PPP), polyetherimide (PEI), polybenzimidazole (PBI), cation exchange groups such as sulfonic acid groups, hydroxy groups, phosphoric acid groups, carboxylic acid groups, etc. Is introduced.

触媒インクは上記のような触媒成分と陽イオン交換樹脂とを、溶媒に溶解又は分散させて得られる。触媒インクの溶媒は、用いる陽イオン交換樹脂に応じて適宜選択すればよく、例えば、メタノール、エタノール、プロパノール等のアルコールの他、ジメチルスルホキシド(DMSO)、N−メチル−2−ピロリドン(NMP)、ジメチルアセトアミド(DMAC)、ジクロロメタン、クロロホルム、1,1−ジクロロエタン、1,2−ジクロロエタン、1,1,1−トリクロロエタン、テトラヒドロフラン、ジエチルエーテル、アセトン、メチルエチルケトン、ジメチルホルムアミド、又はこれら有機溶媒の混合物やこれら有機溶媒と水との混合物を用いることができる。   The catalyst ink is obtained by dissolving or dispersing the above catalyst component and cation exchange resin in a solvent. The solvent of the catalyst ink may be appropriately selected according to the cation exchange resin to be used. For example, in addition to alcohols such as methanol, ethanol and propanol, dimethyl sulfoxide (DMSO), N-methyl-2-pyrrolidone (NMP), Dimethylacetamide (DMAC), dichloromethane, chloroform, 1,1-dichloroethane, 1,2-dichloroethane, 1,1,1-trichloroethane, tetrahydrofuran, diethyl ether, acetone, methyl ethyl ketone, dimethylformamide, or a mixture of these organic solvents or these A mixture of an organic solvent and water can be used.

触媒インクをシート状の支持体表面に塗布、乾燥することによって、支持体上に触媒層が形成された触媒層シートが得られる。このとき、触媒層シートとは、支持体として、転写用支持体を用いた場合には、触媒層転写用シートが得られ、支持体としてガス拡散層シートや導電性多孔質体(ガス拡散層基材)を用いた場合には、触媒層−ガス拡散層接合体が得られる。
支持体への触媒インクの塗布方法、乾燥方法等は適宜選択することができる。例えば、塗布方法としては、スプレー法、スクリーン印刷法、ドクターブレード法、グラビア印刷法、ダイコート法等が挙げられる。また、乾燥方法としては、例えば、減圧乾燥、加熱乾燥、減圧加熱乾燥等が挙げられる。減圧乾燥、加熱乾燥における具体的な条件に制限はなく、適宜設定すればよい。
A catalyst layer sheet in which a catalyst layer is formed on the support is obtained by applying the catalyst ink to the surface of the sheet-like support and drying. At this time, the catalyst layer sheet is a catalyst layer transfer sheet when a transfer support is used as a support, and a gas diffusion layer sheet or a conductive porous material (gas diffusion layer) is used as the support. When the substrate is used, a catalyst layer-gas diffusion layer assembly is obtained.
A method for applying the catalyst ink to the support, a drying method, and the like can be appropriately selected. For example, examples of the coating method include a spray method, a screen printing method, a doctor blade method, a gravure printing method, a die coating method, and the like. Examples of the drying method include reduced pressure drying, heat drying, and reduced pressure heat drying. There is no restriction | limiting in the specific conditions in reduced pressure drying and heat drying, What is necessary is just to set suitably.

希土類塩溶液接触工程は、以上のようにして支持体の表面に形成された触媒層を、減圧環境において、希土類元素の塩を溶解した希土類塩溶液と接触させる工程である。
希土類元素は、スカンジウム(Sc)、イットリウム(Y)及びランタノイド15元素(原子番号57〜71)である。中でも、セリウム、イットリウムは、安価であるため、低コスト化が可能である。特に、セリウムは、過酸化物の分解作用が強いことから好適である。
希土類元素の塩としては、溶解性を有するものであれば特に限定されず、例えば、硝酸塩、リン酸塩等が挙げられる。特に、溶解性の観点から、硝酸塩が好適である。
The rare earth salt solution contact step is a step in which the catalyst layer formed on the surface of the support as described above is brought into contact with a rare earth salt solution in which a rare earth element salt is dissolved in a reduced pressure environment.
The rare earth elements are scandium (Sc), yttrium (Y), and 15 lanthanoid elements (atomic numbers 57 to 71). Among these, cerium and yttrium are inexpensive and can be reduced in cost. In particular, cerium is suitable because it has a strong peroxide decomposition action.
The salt of the rare earth element is not particularly limited as long as it has solubility, and examples thereof include nitrates and phosphates. In particular, nitrate is preferable from the viewpoint of solubility.

希土類塩溶液の溶媒としては、希土類塩を溶解するが、触媒層の陽イオン交換樹脂を溶解しないものであればよく、例えば、水、アルコール及びこれらの混合物が挙げられる。中でも、溶解性、樹脂不溶性の観点から、水が好適である。   The solvent of the rare earth salt solution may be any solvent that dissolves the rare earth salt but does not dissolve the cation exchange resin of the catalyst layer. Examples thereof include water, alcohol, and a mixture thereof. Among these, water is preferable from the viewpoints of solubility and resin insolubility.

希土類塩溶液に含まれる希土類塩の濃度によって、触媒層内の陽イオン交換樹脂の希土類イオンによるイオン交換率を制御することができる。従って、希土類塩溶液における希土類塩の濃度は、陽イオン交換樹脂への希土類イオンの導入量に応じて、適宜設定すればよく、通常は、希土類イオンで置換する触媒層内の陽イオン交換樹脂の陽イオン交換基に対して1〜95%当量のイオン交換量とすることが好ましい。
触媒層シートの触媒層を希土類塩溶液に接触させる方法は、触媒層内の陽イオン交換樹脂が希土類塩溶液中の希土類イオンとイオン交換することができれば特に限定されない。例えば、触媒層シートを希土類塩溶液に浸漬する方法、触媒層シートの触媒層に希土類塩溶液を塗布する方法等が挙げられ、中でも浸漬法が好ましい。
Depending on the concentration of the rare earth salt contained in the rare earth salt solution, the ion exchange rate by the rare earth ions of the cation exchange resin in the catalyst layer can be controlled. Accordingly, the concentration of the rare earth salt in the rare earth salt solution may be set as appropriate according to the amount of rare earth ions introduced into the cation exchange resin, and usually the concentration of the cation exchange resin in the catalyst layer to be substituted with rare earth ions. The ion exchange amount is preferably 1 to 95% equivalent to the cation exchange group.
The method of bringing the catalyst layer of the catalyst layer sheet into contact with the rare earth salt solution is not particularly limited as long as the cation exchange resin in the catalyst layer can ion exchange with the rare earth ions in the rare earth salt solution. For example, a method of immersing the catalyst layer sheet in the rare earth salt solution, a method of applying the rare earth salt solution to the catalyst layer of the catalyst layer sheet, and the like are exemplified, and among these, the immersing method is preferable.

希土類塩溶液接触工程における減圧環境は、多孔質構造を有すると共に、撥水性を有する触媒層内へ、希土類塩溶液が浸透するのを促進することができればよく、具体的な真空度や減圧のタイミング等は特に限定されない。希土類塩溶液の触媒層内への浸透を確実に促進するためには、真空度は、50mmHg以下が好ましく、例えば20〜50mmHg程度でよいが、特に20mmHg以下が好ましい。
また、減圧のタイミングは、触媒層シートを減圧環境下においてから、希土類塩溶液と接触させてもよいし(図1参照)、触媒層シートの触媒層と希土類塩溶液とを接触させた状態で減圧を開始してもよいが、通常は、触媒層シートを減圧環境においてから希土類塩溶液と接触させることが好ましい。
減圧方法としては、一般的な方法を利用することができ、減圧ポンプ等を用いることができる。
The pressure reduction environment in the rare earth salt solution contact step is not limited as long as the rare earth salt solution has a porous structure and can promote the penetration of the rare earth salt solution into the water-repellent catalyst layer. Etc. are not particularly limited. In order to reliably promote the penetration of the rare earth salt solution into the catalyst layer, the degree of vacuum is preferably 50 mmHg or less, for example, about 20 to 50 mmHg, and particularly preferably 20 mmHg or less.
Moreover, the timing of pressure reduction may be that the catalyst layer sheet is brought into contact with the rare earth salt solution after being in a reduced pressure environment (see FIG. 1), or the catalyst layer of the catalyst layer sheet is in contact with the rare earth salt solution. Although pressure reduction may be started, it is usually preferable that the catalyst layer sheet is brought into contact with the rare earth salt solution in a reduced pressure environment.
As a decompression method, a general method can be used, and a decompression pump or the like can be used.

触媒層と希土類塩溶液との接触時間は、陽イオン交換樹脂への希土類イオンの導入量(イオン交換率)等に応じて適宜決定すればよく、希土類塩溶液の希土類塩の濃度、減圧環境の真空度及び減圧のタイミング等によっても異なってくる。通常は、0.5〜24時間程度でよい。
希土類塩溶液接触工程における温度は、特に限定されないが、通常、25〜80℃程度とすることが好ましい。
The contact time between the catalyst layer and the rare earth salt solution may be appropriately determined according to the amount of rare earth ions introduced into the cation exchange resin (ion exchange rate) and the like. It depends on the degree of vacuum and the timing of pressure reduction. Usually, it may be about 0.5 to 24 hours.
Although the temperature in a rare earth salt solution contact process is not specifically limited, Usually, it is preferable to set it as about 25-80 degreeC.

本発明において、触媒層に含有される陽イオン交換樹脂は、触媒層のプロトン伝導性確保のため、その一部の陽イオン交換基のみを希土類イオンで置換する。陽イオン交換樹脂の希土類イオンによるイオン交換率は、陽イオン交換基によるプロトン伝導性と希土類イオンによる耐久性向上効果のバランスから適宜決定すればよく、特に限定されるものではない。具体的には、5〜80%程度とすることが好ましく、特に5〜63%程度とすることが好ましい。   In the present invention, the cation exchange resin contained in the catalyst layer replaces only a part of the cation exchange groups with rare earth ions in order to ensure proton conductivity of the catalyst layer. The ion exchange rate by the rare earth ions of the cation exchange resin may be appropriately determined from the balance between the proton conductivity due to the cation exchange groups and the durability improving effect due to the rare earth ions, and is not particularly limited. Specifically, it is preferably about 5 to 80%, particularly preferably about 5 to 63%.

触媒層内の陽イオン交換樹脂のイオン交換率の算出方法としては、例えば、陽イオン交換樹脂の陽イオン交換基(H)と希土類イオン(rt+)とをイオン交換する場合、まず、{[(触媒層と接触させる希土類塩溶液中の希土類イオンの仕込み量(モル))−(触媒層と接触後の希土類塩溶液中の希土類塩イオンの残量(モル))]×t}/(希土類塩溶液と接触させた触媒層の面積)から、触媒層単位面積当りの希土類イオンに交換された陽イオン交換基(H)の量(当量/cm)を換算することができる。
一方、触媒層を形成する際に用いた陽イオン交換樹脂の量(モル)及び陽イオン交換基Hの価数(1)と触媒層の面積から、希土類塩溶液と接触させる前の触媒層の陽イオン交換基量(当量/cm)を換算することができる。
そして、{[希土類イオンに交換された陽イオン交換基(H)の量(当量/cm)]/[希土類塩溶液と接触させる前の触媒層の陽イオン交換基量(当量/cm)]}×100から、イオン交換率が求められる。
As a method for calculating the ion exchange rate of the cation exchange resin in the catalyst layer, for example, when ion exchange is performed between the cation exchange group (H + ) and the rare earth ion (r t + ) of the cation exchange resin, first, { [(Charge amount of rare earth ions in the rare earth salt solution brought into contact with the catalyst layer (mole)) − (remaining amount of rare earth salt ions in the rare earth salt solution after contact with the catalyst layer (mole))] × t} / ( From the area of the catalyst layer brought into contact with the rare earth salt solution), the amount (equivalent / cm 2 ) of cation exchange groups (H + ) exchanged for rare earth ions per unit area of the catalyst layer can be converted.
On the other hand, from the amount (mole) of the cation exchange resin used in forming the catalyst layer, the valence (1) of the cation exchange group H + and the area of the catalyst layer, the catalyst layer before contacting with the rare earth salt solution The amount of cation exchange groups (equivalent / cm 2 ) can be converted.
And {[amount of cation exchange groups (H + ) exchanged for rare earth ions (equivalent / cm 2 )] / [amount of cation exchange groups in the catalyst layer before contacting with the rare earth salt solution (equivalent / cm 2) )]} × 100 to obtain the ion exchange rate.

希土類塩溶液接触工程は、1つの触媒層ごとに行ってもよいし、複数の触媒層分をまとめて行ってもよい。また、支持体表面に触媒層を設けた触媒層シートは、図1の状態に限らず、ロール状に丸めて希土類塩溶液と接触させてもよい。   The rare earth salt solution contact step may be performed for each catalyst layer or a plurality of catalyst layers may be collectively performed. Moreover, the catalyst layer sheet | seat which provided the catalyst layer in the support surface is not restricted to the state of FIG. 1, You may roll in roll shape and may contact with a rare earth salt solution.

希土類塩溶液接触工程後、必要に応じて、希土類塩溶液の残分を除去するために、脱イオン水により触媒層を洗浄する洗浄工程を設けてもよい。余分な希土類イオン、希土類イオンのカウンターイオン、希土類塩溶液の溶媒等を除去することによって、工程上の信頼性が向上する。洗浄方法としては、特に限定されず、脱イオン水内に触媒層シートを含浸する方法や、脱イオン水を触媒層シート上の触媒層に吹き付ける方法等が挙げられる。   After the rare earth salt solution contacting step, if necessary, a washing step of washing the catalyst layer with deionized water may be provided in order to remove the residue of the rare earth salt solution. By removing excess rare earth ions, rare earth ion counter ions, solvent of the rare earth salt solution, etc., process reliability is improved. The washing method is not particularly limited, and examples thereof include a method of impregnating a catalyst layer sheet in deionized water and a method of spraying deionized water onto the catalyst layer on the catalyst layer sheet.

希土類塩溶液接触工程後又は洗浄工程後、支持体上の触媒層から希土類塩溶液の溶媒又は脱イオン水を除去するため、触媒層を乾燥させる(乾燥工程)。乾燥工程における乾燥方法は特に限定されず、減圧乾燥、加熱乾燥、減圧加熱乾燥等が挙げられる。各乾燥方法における具体的な条件に制限はなく、適宜設定すればよい。   After the rare earth salt solution contact step or the washing step, the catalyst layer is dried in order to remove the solvent of the rare earth salt solution or deionized water from the catalyst layer on the support (drying step). The drying method in the drying step is not particularly limited, and examples thereof include reduced pressure drying, heat drying, and reduced pressure heat drying. There is no restriction | limiting in the specific conditions in each drying method, What is necessary is just to set suitably.

次に、触媒層シートの触媒層を高分子電解質膜に熱圧着し、触媒層と電解質膜とを接合する(熱圧着工程)。ここで、熱圧着とは、加熱と同時に加圧することで、触媒層と高分子電解質膜とを接合することであり、転写用支持体上に設けられた触媒層を高分子電解質膜に熱転写することも含まれる。   Next, the catalyst layer of the catalyst layer sheet is thermocompression bonded to the polymer electrolyte membrane, and the catalyst layer and the electrolyte membrane are joined (thermocompression bonding step). Here, the thermocompression bonding means that the catalyst layer and the polymer electrolyte membrane are joined by pressurizing simultaneously with heating, and the catalyst layer provided on the transfer support is thermally transferred to the polymer electrolyte membrane. It is also included.

高分子電解質膜としては、特に限定されず、固体高分子型燃料電池において用いられるものを広く利用することができ、具体的には、上記した陽イオン交換樹脂を膜状に成型したものが挙げられる。パーフルオロカーボンスルホン酸樹脂膜(商品名Nafion等)が好適に用いられる   The polymer electrolyte membrane is not particularly limited, and those used in solid polymer fuel cells can be widely used. Specific examples include those obtained by molding the above cation exchange resin into a membrane. It is done. Perfluorocarbon sulfonic acid resin membranes (trade name Nafion, etc.) are preferably used.

触媒層と高分子電解質膜とが対面するように、支持体上の触媒層と電解質膜を重ね合わせて、加熱と同時に加圧することによって、支持体上の触媒層を電解質膜の表面に接合することができる。熱圧着工程における加熱温度や加圧力は、高分子電解質膜のガラス転移温度や陽イオン交換樹脂のガラス転移温度に応じて適宜設定すればよい。
このとき、支持体として、ガス拡散層を構成する導電性多孔質体や導電性多孔質体に機能層を設けたガス拡散層シートを用いた場合には、熱圧着工程により、電解質膜と触媒層とガス拡散層とがこの順序で積層してなる膜・電極接合体を得ることができる。
The catalyst layer on the support is superposed on the surface of the electrolyte membrane by overlapping the catalyst layer and the electrolyte membrane on the support so that the catalyst layer and the polymer electrolyte membrane face each other and pressurizing simultaneously with heating. be able to. What is necessary is just to set suitably the heating temperature and applied pressure in a thermocompression bonding process according to the glass transition temperature of a polymer electrolyte membrane, or the glass transition temperature of a cation exchange resin.
At this time, when a conductive porous body constituting the gas diffusion layer or a gas diffusion layer sheet provided with a functional layer on the conductive porous body is used as the support, the electrolyte membrane and the catalyst are formed by a thermocompression bonding process. A membrane / electrode assembly in which a layer and a gas diffusion layer are laminated in this order can be obtained.

一方、支持体として転写用支持体を用いた場合には、熱圧着工程により、転写用シート上の触媒層を、高分子電解膜の表面に転写し、その後、転写用支持体を前記触媒層から剥離することにより、電解質膜上の触媒層が形成された電解質膜−触媒層接合体を得ることができる。
以上のようにして電解質膜の表面に触媒層が熱転写された電解質膜−触媒層接合体は、通常、上記したような導電性多孔質体やガス拡散層シートで挟み込んだ状態で熱圧着等され、該導電性多孔質体やガス拡散層シートと接合され、膜・電極接合体が形成される。
On the other hand, when a transfer support is used as the support, the catalyst layer on the transfer sheet is transferred to the surface of the polymer electrolyte membrane by a thermocompression bonding process, and then the transfer support is transferred to the catalyst layer. The electrolyte membrane-catalyst layer assembly in which the catalyst layer on the electrolyte membrane is formed can be obtained.
The electrolyte membrane-catalyst layer assembly, in which the catalyst layer is thermally transferred onto the surface of the electrolyte membrane as described above, is usually thermocompression bonded in a state of being sandwiched between the conductive porous body and the gas diffusion layer sheet as described above. Then, it is bonded to the conductive porous body or the gas diffusion layer sheet to form a membrane / electrode assembly.

高分子電解質膜の一方の面に設けられる触媒層のみを、上記したような本発明の製造方法により製造した場合でも、発電性能の確保及び耐久性向上という本発明による効果は充分得られるが、より高い効果を得るためには、高分子電解質膜の両面に設けられる触媒層を、共に本発明の製造方法により製造することが好ましい。   Even when only the catalyst layer provided on one surface of the polymer electrolyte membrane is produced by the production method of the present invention as described above, the effect of the present invention of securing the power generation performance and improving the durability is sufficiently obtained, In order to obtain a higher effect, it is preferable that both catalyst layers provided on both surfaces of the polymer electrolyte membrane are produced by the production method of the present invention.

上記のようにして電解質膜に一対の電極を設けた膜・電極接合体は、さらにセパレータで挟持され単セルを形成することができる。セパレータとしては、例えば、炭素繊維を高濃度に含有し、樹脂との複合材からなるカーボンセパレータや、金属材料を用いた金属セパレータ等を用いることができる。金属セパレータとしては、耐腐食性に優れた金属材料からなるものや、表面をカーボンや耐腐食性に優れた金属材料等で被覆し、耐腐食性を高めるコーティングが施されたもの等が挙げられる。   The membrane / electrode assembly in which a pair of electrodes is provided on the electrolyte membrane as described above can be further sandwiched by a separator to form a single cell. As the separator, for example, a carbon separator containing a high concentration of carbon fiber and made of a composite material with a resin, a metal separator using a metal material, or the like can be used. Examples of the metal separator include those made of a metal material excellent in corrosion resistance, and those coated with a coating that enhances the corrosion resistance by coating the surface with carbon or a metal material excellent in corrosion resistance. .

上述したように、本発明の製造方法によれば、固体高分子型燃料電池の耐久性を向上させることが可能である。固体高分子型燃料電池の耐久性の指標としては、例えば、高分子電解質膜の分子量の低下、フッ素系高分子電解質膜を用いた場合にはフッ素溶出度等が挙げられる。高分子電解質膜の劣化は、高分子電解質膜にクロスリークの原因となる穴開きや破れ等を発生させ、発電性能を著しく低下させる。従って、これらの評価を行うことで、固体高分子型燃料電池の耐久性低下の度合いを判断することができる。
具体的には、例えば、フッ素溶出度は、発電時に燃料電池から排出される水分を回収し、イオンクロマトグラフィー等により、回収した水分中のF濃度を分析することで求めることができる。また、電解質膜の分子量低下は、発電前後の電解質膜を適当な溶媒に溶解させた後、GPC測定を行うことで調べることができる。
As described above, according to the manufacturing method of the present invention, it is possible to improve the durability of the polymer electrolyte fuel cell. Examples of the durability index of the polymer electrolyte fuel cell include a decrease in the molecular weight of the polymer electrolyte membrane, and the elution degree of fluorine when a fluorine-based polymer electrolyte membrane is used. Degradation of the polymer electrolyte membrane causes holes or tears that cause cross leaks in the polymer electrolyte membrane, thereby significantly reducing power generation performance. Therefore, by performing these evaluations, it is possible to determine the degree of decrease in durability of the polymer electrolyte fuel cell.
Specifically, for example, the degree of fluorine elution can be obtained by collecting moisture discharged from the fuel cell during power generation and analyzing the F concentration in the collected moisture by ion chromatography or the like. Further, the decrease in the molecular weight of the electrolyte membrane can be examined by performing GPC measurement after dissolving the electrolyte membrane before and after power generation in an appropriate solvent.

[膜・電極接合体の作製]
(実施例)
Pt/C触媒と、陽イオン交換樹脂と、溶媒とを攪拌混合し、触媒インクを調製した。
シート状の転写用支持体の表面に上記触媒インクを塗布、乾燥し、スルホン酸基量が0.33μ当量/cmの触媒層を形成した。
得られた触媒層熱転写シートを減圧容器に入れ、まず、真空ポンプにて減圧条件とし、真空ラインのバルブを閉じた。次に、Ce(NO)・6HO水溶液(80%のイオン交換量で調製)を上記減圧容器に流し入れ、触媒層熱転写シートをCe(NO)・6HO水溶液に浸漬させた(図1参照)。その後、25℃で18時間放置し、触媒層中の陽イオン交換樹脂のスルホン酸基をCeイオンで置換した。続いて、触媒層熱転写シートをCe(NO)・6HO水溶液から取出し、60℃で1時間乾燥させた。
[Production of membrane / electrode assembly]
(Example)
A Pt / C catalyst, a cation exchange resin, and a solvent were mixed with stirring to prepare a catalyst ink.
The catalyst ink was applied to the surface of the sheet-like transfer support and dried to form a catalyst layer having a sulfonic acid group amount of 0.33 μequivalent / cm 2 .
The obtained catalyst layer thermal transfer sheet was put in a decompression vessel, and first, the decompression condition was set with a vacuum pump, and the valve of the vacuum line was closed. Next, a Ce (NO 3 ) · 6H 2 O aqueous solution (prepared with an ion exchange amount of 80%) was poured into the reduced pressure vessel, and the catalyst layer thermal transfer sheet was immersed in the Ce (NO 3 ) · 6H 2 O aqueous solution ( (See FIG. 1). Thereafter, the mixture was allowed to stand at 25 ° C. for 18 hours, and the sulfonic acid group of the cation exchange resin in the catalyst layer was replaced with Ce ions. Subsequently, the catalyst layer thermal transfer sheet was taken out from the Ce (NO 3 ) · 6H 2 O aqueous solution and dried at 60 ° C. for 1 hour.

高分子電解質膜(パーフルオロカーボンスルホン酸樹脂膜)の両面に、上記にて作製した触媒層熱転写シートの触媒層を熱転写し、高分子電解質膜と触媒層とを接合した。
さらに得られた触媒層付き電解質膜を、ガス拡散層用カーボンクロスで挟持し、熱圧着して、膜・電極接合体を得た。
The catalyst layer of the catalyst layer thermal transfer sheet prepared above was thermally transferred to both surfaces of the polymer electrolyte membrane (perfluorocarbon sulfonic acid resin membrane), and the polymer electrolyte membrane and the catalyst layer were joined.
Further, the obtained electrolyte membrane with catalyst layer was sandwiched between carbon cloths for gas diffusion layers and thermocompression bonded to obtain a membrane / electrode assembly.

(比較例1)
上記実施例において、触媒層熱転写シートをCe(NO)・6HO水溶液に浸漬しなかったこと以外は同様にして膜・電極接合体を作製した。
(Comparative Example 1)
A membrane / electrode assembly was produced in the same manner as in the above example except that the catalyst layer thermal transfer sheet was not immersed in the Ce (NO 3 ) · 6H 2 O aqueous solution.

[発電評価]
上記にて得られた実施例及び比較例の膜・電極接合体について、以下の条件下、0.4Vの一定電圧における出力電流密度(A/cm)を測定した。
<条件>
・セル温度:80℃
・湿度:100RH%
・燃料(水素ガス):500mL/min
・酸化剤(空気):1000mL/min
[Power generation evaluation]
For the membrane / electrode assemblies of Examples and Comparative Examples obtained above, the output current density (A / cm 2 ) at a constant voltage of 0.4 V was measured under the following conditions.
<Conditions>
-Cell temperature: 80 ° C
・ Humidity: 100RH%
・ Fuel (hydrogen gas): 500 mL / min
・ Oxidizing agent (air): 1000 mL / min

結果を表1に示す。実施例の膜・電極接合体は、触媒層に含有される陽イオン交換樹脂の陽イオン交換基(スルホン酸基)の一部をセリウムイオンで置換したにも関わらず、比較例の膜・電極接合体と比較して優れた発電性能を発現した。
これは、一部のスルホン酸基のHがセリウムイオンで置換されたことによって、触媒層のイオン交換基密度が変化し、その結果、膜・電極接合体全体としての水バランスが変化したためと推測される。
The results are shown in Table 1. Although the membrane / electrode assembly of the example was obtained by replacing part of the cation exchange groups (sulfonic acid groups) of the cation exchange resin contained in the catalyst layer with cerium ions, the membrane / electrode of the comparative example Excellent power generation performance was achieved compared to the joined body.
This is because the ion exchange group density of the catalyst layer is changed by replacing H + of some sulfonic acid groups with cerium ions, and as a result, the water balance of the membrane / electrode assembly as a whole is changed. Guessed.

Figure 2008034134
Figure 2008034134

[耐久性試験(フッ素溶出度測定)]
発電時に燃料電池から排出される水分を回収し、イオンクロマトグラフィーにより、回収した水分中のF濃度を分析し、F溶出度を測定した。
結果を図2に示す。図2に示すように、比較例の膜・電極接合体と実施例の膜・電極接合体とでは、F溶出度が大きく異なった。具体的には、比較例の膜・電極接合体のフッ素溶出度を100とすると、実施例の膜・電極接合体のフッ素溶出度は4であり、比較例の膜・電極接合体に比べて、約25分の1程度の大幅なフッ素溶出量の低減が確認できた。
これは、減圧環境下における希土類塩溶液と触媒層の接触により、触媒層中の充分量のスルホン酸基を希土類イオンで置換させることができ、希土類イオンにより過酸化物のラジカル分解を抑制することができたためである。その結果、過酸化物ラジカルによる高分子電解質膜や触媒層中の陽イオン交換樹脂の攻撃が抑制されたため、フッ素溶出度を低減することができたと考えられる。フッ素溶出度は、フッ素系高分子電解質膜及び陽イオン交換樹脂の劣化の度合いを示す代表的な指標の一つであり、フッ素溶出度が高ければ高いほど、劣化の度合いが高いことを示す。
[Durability test (fluorine elution measurement)]
The water discharged from the fuel cell during power generation was collected, and the F concentration in the collected water was analyzed by ion chromatography to measure the F elution degree.
The results are shown in FIG. As shown in FIG. 2, the F elution rate was greatly different between the membrane / electrode assembly of the comparative example and the membrane / electrode assembly of the example. Specifically, if the fluorine elution degree of the membrane / electrode assembly of the comparative example is 100, the fluorine elution degree of the membrane / electrode assembly of the example is 4, which is higher than that of the membrane / electrode assembly of the comparative example. Thus, it was confirmed that the fluorine elution amount was significantly reduced by about 1/25.
This is because a sufficient amount of sulfonic acid groups in the catalyst layer can be replaced with rare earth ions by contact between the rare earth salt solution and the catalyst layer in a reduced pressure environment, and radical decomposition of peroxide is suppressed by the rare earth ions. This is because of that. As a result, attack of the polymer electrolyte membrane and the cation exchange resin in the catalyst layer by the peroxide radical was suppressed, and it is considered that the fluorine elution degree could be reduced. The degree of fluorine elution is one of the typical indexes indicating the degree of deterioration of the fluorine-based polymer electrolyte membrane and the cation exchange resin. The higher the degree of fluorine elution, the higher the degree of deterioration.

上記発電評価及びフッ素溶出測定の結果より、本発明の製造方法により作製した膜・電極接合体は、発電性能に優れると共に、耐久性が高いことがわかる。従って、本発明の製造方法によれば、発電性能と耐久性の両方を兼ね備えた優れた燃料電池を提供することが可能である。   From the results of the above power generation evaluation and fluorine elution measurement, it can be seen that the membrane / electrode assembly produced by the production method of the present invention has excellent power generation performance and high durability. Therefore, according to the manufacturing method of the present invention, it is possible to provide an excellent fuel cell having both power generation performance and durability.

本発明に係る固体高分子型燃料電池の製造方法における希土類塩溶液接触工程の一態様を示す図である。It is a figure which shows the one aspect | mode of the rare earth salt solution contact process in the manufacturing method of the polymer electrolyte fuel cell which concerns on this invention. 実施例におけるフッ素溶出度の結果を示すグラフである。It is a graph which shows the result of the fluorine elution degree in an Example.

Claims (5)

触媒成分及び陽イオン交換樹脂を含有する触媒インクを支持体上に塗布、乾燥させて形成した触媒層を、希土類元素の塩を溶解した溶液と減圧環境において接触させる希土類塩溶液接触工程と、該希土類塩溶液接触工程後に前記触媒層を乾燥させる乾燥工程と、高分子電解質膜の少なくとも片面に前記触媒層を熱圧着する熱圧着工程と、を備えることを特徴とする固体高分子型燃料電池の製造方法。   A rare earth salt solution contacting step in which a catalyst layer formed by applying a catalyst ink containing a catalyst component and a cation exchange resin on a support and drying is contacted with a solution in which a salt of a rare earth element is dissolved in a reduced pressure environment; and A solid polymer fuel cell comprising: a drying step of drying the catalyst layer after the rare earth salt solution contact step; and a thermocompression bonding step of thermocompression bonding the catalyst layer to at least one surface of the polymer electrolyte membrane. Production method. 触媒成分及び陽イオン交換樹脂を含有する触媒インクを転写用支持体上に塗布、乾燥させて形成した触媒層を、希土類元素の塩を溶解した溶液と減圧環境において接触させる希土類塩溶液接触工程と、該希土類塩溶液接触工程後に前記触媒層を乾燥させる乾燥工程と、高分子電解質膜の少なくとも片面に前記触媒層を熱圧着する熱圧着工程と、該熱圧着工程後に前記転写用支持体を前記触媒層から剥離する工程と、を備える請求項1に記載の固体高分子型燃料電池の製造方法。   A rare earth salt solution contact step in which a catalyst layer formed by applying a catalyst ink containing a catalyst component and a cation exchange resin on a transfer support and drying is contacted with a solution in which a salt of a rare earth element is dissolved in a reduced pressure environment; A drying step for drying the catalyst layer after the rare earth salt solution contacting step, a thermocompression bonding step for thermocompression bonding the catalyst layer to at least one surface of the polymer electrolyte membrane, and a support for transfer after the thermocompression bonding step. The method for producing a polymer electrolyte fuel cell according to claim 1, comprising a step of peeling from the catalyst layer. 前記熱圧着工程において、前記高分子電解質膜の両面に前記触媒層を熱圧着する、請求項1又は2に記載の固体高分子型燃料電池の製造方法。   The method for producing a polymer electrolyte fuel cell according to claim 1 or 2, wherein in the thermocompression bonding step, the catalyst layer is thermocompression bonded to both surfaces of the polymer electrolyte membrane. 前記希土類元素がセリウムである、請求項1乃至3のいずれかに記載の固体高分子型燃料電池の製造方法。   The method for producing a polymer electrolyte fuel cell according to any one of claims 1 to 3, wherein the rare earth element is cerium. 前記希土類塩溶液接触工程において、50mmHg以下の減圧環境とする、請求項1乃至4のいずれかに記載の固体高分子型燃料電池の製造方法。   5. The method for producing a polymer electrolyte fuel cell according to claim 1, wherein in the rare earth salt solution contact step, a reduced pressure environment of 50 mmHg or less is used.
JP2006203608A 2006-07-26 2006-07-26 Method for producing polymer electrolyte fuel cell Expired - Fee Related JP5055874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006203608A JP5055874B2 (en) 2006-07-26 2006-07-26 Method for producing polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006203608A JP5055874B2 (en) 2006-07-26 2006-07-26 Method for producing polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2008034134A true JP2008034134A (en) 2008-02-14
JP5055874B2 JP5055874B2 (en) 2012-10-24

Family

ID=39123348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006203608A Expired - Fee Related JP5055874B2 (en) 2006-07-26 2006-07-26 Method for producing polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP5055874B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009245796A (en) * 2008-03-31 2009-10-22 Dainippon Printing Co Ltd Membrane-electrode assembly for fuel cell and its method for manufacturing
CN113745611A (en) * 2020-05-27 2021-12-03 丰田自动车株式会社 Membrane electrode assembly and solid polymer fuel cell
CN113745611B (en) * 2020-05-27 2024-04-23 丰田自动车株式会社 Membrane electrode assembly and solid polymer fuel cell

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0397508A (en) * 1989-09-11 1991-04-23 Fuji Electric Co Ltd Liquid infiltrating apparatus for porous board
JPH05343073A (en) * 1991-11-14 1993-12-24 Agency Of Ind Science & Technol Gas diffusion electrode for fuel cell
JP2001259431A (en) * 2000-03-15 2001-09-25 Japan Storage Battery Co Ltd Composite catalyst and method of manufacturing the same
JP2003168446A (en) * 2001-11-29 2003-06-13 Toyota Motor Corp Fuel cell and its manufacturing method
JP2005071760A (en) * 2003-08-22 2005-03-17 Toyota Central Res & Dev Lab Inc Solid high polymer fuel cell
JP2005235437A (en) * 2004-02-17 2005-09-02 Toyota Central Res & Dev Lab Inc Electrolyte membrane electrode joint body for solid polymer type fuel cell and solid polymer type fuel cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0397508A (en) * 1989-09-11 1991-04-23 Fuji Electric Co Ltd Liquid infiltrating apparatus for porous board
JPH05343073A (en) * 1991-11-14 1993-12-24 Agency Of Ind Science & Technol Gas diffusion electrode for fuel cell
JP2001259431A (en) * 2000-03-15 2001-09-25 Japan Storage Battery Co Ltd Composite catalyst and method of manufacturing the same
JP2003168446A (en) * 2001-11-29 2003-06-13 Toyota Motor Corp Fuel cell and its manufacturing method
JP2005071760A (en) * 2003-08-22 2005-03-17 Toyota Central Res & Dev Lab Inc Solid high polymer fuel cell
JP2005235437A (en) * 2004-02-17 2005-09-02 Toyota Central Res & Dev Lab Inc Electrolyte membrane electrode joint body for solid polymer type fuel cell and solid polymer type fuel cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009245796A (en) * 2008-03-31 2009-10-22 Dainippon Printing Co Ltd Membrane-electrode assembly for fuel cell and its method for manufacturing
CN113745611A (en) * 2020-05-27 2021-12-03 丰田自动车株式会社 Membrane electrode assembly and solid polymer fuel cell
CN113745611B (en) * 2020-05-27 2024-04-23 丰田自动车株式会社 Membrane electrode assembly and solid polymer fuel cell

Also Published As

Publication number Publication date
JP5055874B2 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
JP4545403B2 (en) Water-based catalyst inks and their use for the production of catalyst-coated substrates
JP5095089B2 (en) Solid polymer electrolyte, solid polymer fuel cell, and manufacturing method thereof
JP4979179B2 (en) Solid polymer fuel cell and manufacturing method thereof
JP4082999B2 (en) Method for producing a membrane electrode assembly for a membrane fuel cell
KR101767267B1 (en) Reinforced solid polymer electrolyte composite membrane, membrane electrode assembly for solid polymer fuel cell, and solid polymer fuel cell
KR101312189B1 (en) Method for reducing degradation in a fuel cell
Wang et al. Elucidating the role of ionomer in the performance of platinum group metal-free catalyst layer via in situ electrochemical diagnostics
JP5384335B2 (en) Ion conductive membrane
JP2003515894A (en) Direct methanol battery with circulating electrolyte
KR20070027578A (en) Electrolyte membrane for solid polymer fuel cell, method for producing same and membrane electrode assembly for solid polymer fuel cell
KR20070055225A (en) Membrane-electrode assembly for fuel cell, method of producing same and fuel cell system comprising same
EP2144318A1 (en) Method for producing polymer electrolyte membrane for solid polymer fuel cell, membrane electrode assembly for solid polymer fuel cell, and solid polymer fuel cell
JP2007250265A (en) Reinforced type electrolyte film for fuel cell, its manufacturing method, membrane-electrode assembly for fuel cell, and solid polymer fuel cell equipped with it
JP2008041371A (en) Manufacturing method of membrane electrode assembly for fuel cell
Zaffora et al. Methanol and proton transport through chitosan‐phosphotungstic acid membranes for direct methanol fuel cell
JP2007031718A5 (en)
JP5233065B2 (en) Polymer having ionic group, polymer electrolyte material, polymer electrolyte component, membrane electrode composite, and polymer electrolyte fuel cell
KR100970358B1 (en) Liquid composition, method for producing same, and method for producing membrane electrode assembly for solid polymer fuel cell
JP5045911B2 (en) Manufacturing method of membrane electrode assembly
JP5055874B2 (en) Method for producing polymer electrolyte fuel cell
Wang et al. Proton exchange membrane water electrolysis incorporating sulfo-phenylated polyphenylene catalyst coated membranes
JP6862792B2 (en) Method of manufacturing electrode catalyst
JP2009026533A (en) Electrolyte membrane for fuel cell, and manufacturing method thereof
US20100167160A1 (en) Method For Producing Polymer Electrolyte Membrane For Solid Polymer Fuel Cell, Membrane Eelctrode Assembly For Solid Polymer Fuel Cell, and Solid Polymer Fuel Cell
JP2008027645A (en) Manufacturing method of membrane-electrode assembly, hydrocarbon-based polymer electrolyte membrane, and membrane-electrode assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120229

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5055874

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees