JP2008033658A - Pressure regulator including power generating function - Google Patents

Pressure regulator including power generating function Download PDF

Info

Publication number
JP2008033658A
JP2008033658A JP2006206712A JP2006206712A JP2008033658A JP 2008033658 A JP2008033658 A JP 2008033658A JP 2006206712 A JP2006206712 A JP 2006206712A JP 2006206712 A JP2006206712 A JP 2006206712A JP 2008033658 A JP2008033658 A JP 2008033658A
Authority
JP
Japan
Prior art keywords
pressure
pressure regulating
diaphragm
piezoelectric element
pressure regulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2006206712A
Other languages
Japanese (ja)
Inventor
Mutsumi Nakamura
睦実 中村
Yoshijiro Watanabe
嘉二郎 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2006206712A priority Critical patent/JP2008033658A/en
Publication of JP2008033658A publication Critical patent/JP2008033658A/en
Abandoned legal-status Critical Current

Links

Images

Landscapes

  • Control Of Fluid Pressure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To allow a pressure regulator to have a power generating function by which a gas pressure regulator is not enlarged and also the responsiveness of a pressure regulating mechanism is not affected. <P>SOLUTION: The pressure regulator includes: a diaphragm 14 for forming a part of the partitioning wall of a pressure regulating chamber 11 which communicates with a gas stream inlet via a pressure regulating valve 20; and a pressure regulating spring 16 for energizing the diaphragm toward the pressure regulating chamber. The pressure regulator regulates the opening degree of the pressure regulating valve linked with the movement of the diaphragm, so as to regulate gas pressure in the pressure regulating chamber. Piezoelectric element modules 61, 62 for converting mechanical energy into electric energy are arranged in parts for receiving the vibration of at least the diaphragm or the pressure regulating spring. Then, power is generated by the vibration of the diaphragm or the pressure regulating spring. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、圧力調整器に係り、特に、ガスの圧力を調整する圧力調整機構の振動を利用して発電する機能を備えた圧力調整器に関する。   The present invention relates to a pressure regulator, and more particularly to a pressure regulator having a function of generating electric power using vibration of a pressure regulation mechanism that regulates the pressure of a gas.

一般に、工業用又は家庭用のガス使用機器に燃料ガスを供給するガス供給設備には、ガス供給源から供給される高圧ガスを使用機器が要求する低圧ガスに変換するガス圧力調整器が設けられる。また、ガス供給設備には、ガス圧力調整器の他に、ガス使用量を計量するガスメータ、安全を確保するための保安装置、等々の付属機器が設けられている。   In general, gas supply equipment that supplies fuel gas to industrial or household gas use equipment is provided with a gas pressure regulator that converts high pressure gas supplied from a gas supply source into low pressure gas required by the use equipment. . In addition to the gas pressure regulator, the gas supply facility is provided with attached devices such as a gas meter for measuring the amount of gas used, a safety device for ensuring safety, and the like.

これらの付属機器には、電子回路やマイクロコンピュータ(以下、マイコンという。)が組み込まれる場合があり、その電子回路やマイコンを作動させる電源として、例えばリチウム電池等の一次電池が用いられている(例えば、特許文献1、2)。   In some cases, an electronic circuit or a microcomputer (hereinafter referred to as a microcomputer) is incorporated in these accessory devices, and a primary battery such as a lithium battery is used as a power source for operating the electronic circuit or the microcomputer ( For example, Patent Documents 1 and 2).

ところで、電池は容量(放電)が定まっているから、電子回路やマイコンの消費電力を電池の容量以下に設計する必要があり、機能的に制約を受ける場合がある。そこで、特許文献2では、ガス圧力調整器の駆動電源を長期間に渡って確保するために、ガス出口通路にガス流を受けて回転する回転翼を配置し、その回転翼により発電機を駆動して発電された電力を電池に蓄えることが提案されている。また、これに代えて、圧力調整機構を構成するダイアフラムに磁石を取付け、その磁石にコイルを近接して配置し、ダイアフラムの振動によりコイルに発生した電力を電池に蓄えることが提案されている。   By the way, since the capacity (discharge) of the battery is fixed, it is necessary to design the power consumption of the electronic circuit or the microcomputer to be equal to or less than the capacity of the battery, which may be functionally restricted. Therefore, in Patent Document 2, in order to secure a driving power source for the gas pressure regulator for a long period of time, a rotating blade that rotates by receiving a gas flow is disposed in the gas outlet passage, and the generator is driven by the rotating blade. It has been proposed to store the generated power in a battery. In place of this, it has been proposed to attach a magnet to the diaphragm constituting the pressure adjusting mechanism, place the coil close to the magnet, and store the electric power generated in the coil by the vibration of the diaphragm in the battery.

特開2004−157074号公報JP 2004-157074 A 特開2006−185301号公報JP 2006-185301 A

しかしながら、特許文献2に記載された回転翼により発電機を駆動して発電する方式によれば、ガス圧力調整器が大型になるという問題がある。一方、ダイアフラムの振動により磁石を振動させて発電する方式によれば、磁石の質量分だけダイアフラムの慣性が増加するので、圧力調整機構の応答性が影響を受けるという問題がある。   However, according to the method of generating power by driving the generator with the rotary blade described in Patent Document 2, there is a problem that the gas pressure regulator becomes large. On the other hand, according to the method of generating power by vibrating a magnet by diaphragm vibration, there is a problem that the responsiveness of the pressure adjusting mechanism is affected because the inertia of the diaphragm increases by the mass of the magnet.

本発明が解決しようとする課題は、ガス圧力調整器を大型化することなく、かつ圧力調整機構の応答性に影響を与えることのない発電機能を備えた圧力調整器を実現することにある。   The problem to be solved by the present invention is to realize a pressure regulator having a power generation function without increasing the size of the gas pressure regulator and without affecting the responsiveness of the pressure regulation mechanism.

上記課題を解決するため、本発明は、ガス流入口に調圧弁を介して連通された調圧室と、該調圧室に連通されたガス流出口と、前記調圧室の隔壁の一部を形成するダイアフラムと、該ダイアフラムを前記調圧室側に付勢する調圧ばねと、前記ダイアフラムの動きに連動して前記調圧弁の開度を調整する弁駆動機構とを有してなる圧力調整器において、前記ダイアフラムと前記調圧ばねの少なくとも一方の振動を受ける部位に、機械エネルギを電気エネルギに変換する機械−電気エネルギ変換素子を配置したことを特徴とする。   In order to solve the above-mentioned problems, the present invention provides a pressure regulating chamber communicated with a gas inlet via a pressure regulating valve, a gas outlet communicated with the pressure regulating chamber, and a part of a partition wall of the pressure regulating chamber. And a pressure regulating spring that urges the diaphragm toward the pressure regulating chamber, and a valve drive mechanism that adjusts the opening of the pressure regulating valve in conjunction with the movement of the diaphragm. In the regulator, a mechanical-electrical energy conversion element that converts mechanical energy into electrical energy is disposed at a portion that receives vibration of at least one of the diaphragm and the pressure regulating spring.

圧力調整器は、ダイアフラムに作用する調圧室内のガス圧と、調圧調圧ばねの付勢力とのバランスにより動作する。例えば、調圧室内のガス圧が設定圧よりも低い場合は弁駆動機構により調圧弁の開度を開き、逆に、調圧室内のガス圧が設定圧よりも高い場合は調圧弁の開度を絞り、調圧室に流入するガス流量を調整して調圧室内のガス圧を設定圧に保持する。この圧力調整器内のガス流れによって、ダイアフラム及び調圧調圧ばねにわずかな振動が常時発生している。   The pressure regulator operates by a balance between the gas pressure in the pressure regulating chamber acting on the diaphragm and the biasing force of the pressure regulating pressure regulating spring. For example, when the gas pressure in the pressure adjustment chamber is lower than the set pressure, the valve drive mechanism opens the opening of the pressure adjustment valve. Conversely, when the gas pressure in the pressure adjustment chamber is higher than the set pressure, the opening of the pressure adjustment valve To adjust the flow rate of the gas flowing into the pressure regulating chamber to maintain the gas pressure in the pressure regulating chamber at the set pressure. Due to the gas flow in the pressure regulator, slight vibrations are constantly generated in the diaphragm and the pressure regulating spring.

本発明によれば、ダイアフラムと調圧ばねの振動を受ける部位に配置された圧電素子などの機械−電気エネルギ変換素子によって、ダイアフラム又は調圧ばねの振動エネルギが電気エネルギに変換される。したがって、機械−電気エネルギ変換素子により変換された交流電力を、直流電力に変換する整流回路と、整流回路の出力により充電される電池とを有する直流電源を設けることにより、電子回路又はマイコンの電源として利用できる。また、直流電源の電力は、自己の圧力調整器又は他の付属機器の電源として利用できる。   According to the present invention, vibration energy of a diaphragm or a pressure regulating spring is converted into electric energy by a mechanical-electrical energy conversion element such as a piezoelectric element arranged at a portion that receives vibrations of the diaphragm and the pressure regulating spring. Therefore, by providing a DC power source having a rectifier circuit that converts AC power converted by the mechanical-electrical energy conversion element into DC power and a battery that is charged by the output of the rectifier circuit, a power source for an electronic circuit or microcomputer Available as The power of the DC power supply can be used as a power supply for its own pressure regulator or other attached equipment.

また、機械−電気エネルギ変換素子は、円板状の圧電素子を該圧電素子よりも大径の円板状の基板に貼り付けて構成され、かつ、該基板の周縁部と前記圧電素子の境界部がリング状の突条を介して固定部に支持され、前記基板の前記突条の反対側の面の周縁部で前記ダイアフラムと前記調圧ばねの少なくとも一方の振動を受けるように構成することが好ましい。これによれば、調圧ばねの振動によって基板が撓み振動し、その撓みによって圧電素子が歪むことから、ダイアフラム及び調圧ばねの振動によって圧電素子を効率よく歪ませることができ、振動エネルギを効率よく電気エネルギに変換できる。   The mechanical-electrical energy conversion element is configured by attaching a disk-shaped piezoelectric element to a disk-shaped substrate having a larger diameter than the piezoelectric element, and a boundary between the peripheral edge of the substrate and the piezoelectric element. The portion is supported by the fixed portion via a ring-shaped protrusion, and is configured to receive vibration of at least one of the diaphragm and the pressure regulating spring at a peripheral portion of the surface of the substrate opposite to the protrusion. Is preferred. According to this, the substrate bends and vibrates due to the vibration of the pressure regulating spring, and the piezoelectric element is distorted due to the bending, so that the piezoelectric element can be efficiently distorted by the vibration of the diaphragm and the pressure regulating spring, and the vibration energy is efficiently used. Can be converted into electrical energy well.

本発明によれば、ガス圧力調整器を大型化することなく、かつ圧力調整機構の応答性に影響を与えることなく発電できる圧力調整器を実現できる。   According to the present invention, it is possible to realize a pressure regulator that can generate power without increasing the size of the gas pressure regulator and without affecting the responsiveness of the pressure regulation mechanism.

図1に本発明の一実施形態の圧力調整器の断面構成図を示し、図2、図3に本発明の特徴に係る機械−電気エネルギ変換素子の一実施形態である圧電素子モジュールの拡大図を示す。図1に示すように、本実施形態の圧力調整器は、同図(A)の第1の圧力調整器1と、同図(B)の第2の圧力調整器2を直列に連結して構成されている。そして、図示していないガス供給源からガス流入口3に供給される高圧のガスを第1の圧力調整器1で中圧に減圧した後、第1の圧力調整器1から流出される中圧のガスを第2の圧力調整器2でさらに低圧に減圧して、ガス流出口4から図示していないガスの使用機器に供給するように構成されている。なお、本発明は2段構成の圧力調整器に限られるものではなく、1段式の圧力調整器にも適用できることはいうまでもない。   FIG. 1 shows a cross-sectional configuration diagram of a pressure regulator according to an embodiment of the present invention, and FIGS. 2 and 3 are enlarged views of a piezoelectric element module which is an embodiment of a mechanical-electric energy conversion element according to features of the present invention. Indicates. As shown in FIG. 1, the pressure regulator of this embodiment includes a first pressure regulator 1 in FIG. 1A and a second pressure regulator 2 in FIG. 1B connected in series. It is configured. Then, after the high pressure gas supplied from the gas supply source (not shown) to the gas inlet 3 is reduced to the intermediate pressure by the first pressure regulator 1, the intermediate pressure that flows out from the first pressure regulator 1. The gas is further reduced to a low pressure by the second pressure regulator 2 and supplied from the gas outlet 4 to a gas using device (not shown). Needless to say, the present invention is not limited to a two-stage pressure regulator, but can be applied to a one-stage pressure regulator.

図1(A)に示すように、圧力調整器1は、内部に調圧室11を有する本体ケーシング12と、本体ケーシング12の図において上部隔壁に形成された開口を塞いで設けられた上部ケーシング13を有して形成されている。本体ケーシング12と上部ケーシング13との接合部に、調圧室11の隔壁の一部としてダイアフラム14が設けられている。ダイアフラム14の上面に設けられたばね受座15に当接させて調圧ばね16が設けられ、調圧ばね16の他端は上部ケーシング13の円筒部に設けられた調圧板17に当接されている。調圧板17は、円盤状に形成され、外周面に形成されたねじが上部ケーシング13の内面に形成されたねじに螺合されている。したがって、調圧板17は、回転によって上部ケーシング13内で上下移動可能に形成されている。また、ダイアフラム14の中心部に作動軸18が連結され、作動軸18の上端は調圧板17に設けられた支持部19に摺動自由に支持されている。   As shown in FIG. 1A, a pressure regulator 1 includes a main casing 12 having a pressure regulating chamber 11 therein, and an upper casing provided by closing an opening formed in an upper partition wall in the figure of the main casing 12. 13 is formed. A diaphragm 14 is provided at a joint portion between the main casing 12 and the upper casing 13 as a part of the partition wall of the pressure regulating chamber 11. A pressure adjusting spring 16 is provided in contact with a spring seat 15 provided on the upper surface of the diaphragm 14, and the other end of the pressure adjusting spring 16 is contacted with a pressure adjusting plate 17 provided in the cylindrical portion of the upper casing 13. Yes. The pressure adjusting plate 17 is formed in a disk shape, and a screw formed on the outer peripheral surface is screwed to a screw formed on the inner surface of the upper casing 13. Therefore, the pressure adjusting plate 17 is formed to be movable up and down in the upper casing 13 by rotation. An operating shaft 18 is connected to the center of the diaphragm 14, and the upper end of the operating shaft 18 is slidably supported by a support portion 19 provided on the pressure adjusting plate 17.

一方、ガス流入口3は、調圧弁20を介して調圧室11に連通されている。調圧弁20は調圧室11に連通された開口を有する弁座22に接離可能に設けられた弁体23を有して構成されている。弁体23は、ばね21により弁座22方向に付勢され、ピストン24を介してアーム型のレバー25の一端に当接して設けられている。レバー25は軸26回りに揺動するように形成され、その他端はダイアフラム14に連結された作動軸19の下端に当接されている。これらの調圧弁20、ピストン24、レバー25、ダイアフラム14、調圧ばね16等によって、圧力調整器1の弁駆動機構が構成されている。圧力調整器1のガス流出口は調圧室11に連通して設けられた過流出防止機構28を介して、圧力調整器2のガス流入口29に連通されている。過流防止機構28は、規定値以上のガスが流れたときにガスの供給を止めるものであるが、本発明の特徴には関係しないことから、詳細な説明は省略する。   On the other hand, the gas inlet 3 communicates with the pressure regulating chamber 11 via the pressure regulating valve 20. The pressure regulating valve 20 includes a valve body 23 provided so as to be able to contact and separate from a valve seat 22 having an opening communicated with the pressure regulating chamber 11. The valve body 23 is urged toward the valve seat 22 by a spring 21 and is provided in contact with one end of an arm type lever 25 via a piston 24. The lever 25 is formed so as to swing around the shaft 26, and the other end is in contact with the lower end of the operating shaft 19 connected to the diaphragm 14. These pressure regulating valve 20, piston 24, lever 25, diaphragm 14, pressure regulating spring 16 and the like constitute a valve drive mechanism of the pressure regulator 1. A gas outlet of the pressure regulator 1 is communicated with a gas inlet 29 of the pressure regulator 2 through an excessive outflow prevention mechanism 28 provided in communication with the pressure regulating chamber 11. The overflow prevention mechanism 28 stops the supply of gas when a gas exceeding a specified value flows, but since it is not related to the feature of the present invention, a detailed description thereof is omitted.

圧力調整器2は、内部に調圧室31を有する本体ケーシング32と、本体ケーシング32の図において上部隔壁に形成された開口を塞いで設けられた上部ケーシング33を有して形成されている。本体ケーシング32と上部ケーシング33との接合部に、調圧室31の隔壁の一部としてダイアフラム34が設けられている。ダイアフラム34の上面に設けられたばね受座35に当接させて調圧ばね36が設けられ、調圧ばね36の他端は上部ケーシング33の円筒部に設けられた調圧板37に当接されている。調圧板37は、円盤状に形成され、外周面に形成されたねじが上部ケーシング33の内面に形成されたねじに螺合されている。したがって、調圧板37は、回転によって上部ケーシング33内で上下移動可能に形成されている。また、ダイアフラム34の中心部に作動軸39が連結され、作動軸39の上端にはリリーフ機構40が設けられている。   The pressure regulator 2 includes a main body casing 32 having a pressure adjusting chamber 31 therein, and an upper casing 33 provided by closing an opening formed in the upper partition wall in the figure of the main body casing 32. A diaphragm 34 is provided as a part of the partition wall of the pressure regulating chamber 31 at the joint between the main casing 32 and the upper casing 33. A pressure adjusting spring 36 is provided in contact with a spring seat 35 provided on the upper surface of the diaphragm 34, and the other end of the pressure adjusting spring 36 is in contact with a pressure adjusting plate 37 provided in the cylindrical portion of the upper casing 33. Yes. The pressure adjusting plate 37 is formed in a disk shape, and a screw formed on the outer peripheral surface is screwed to a screw formed on the inner surface of the upper casing 33. Accordingly, the pressure adjusting plate 37 is formed so as to be vertically movable in the upper casing 33 by rotation. An operating shaft 39 is coupled to the center of the diaphragm 34, and a relief mechanism 40 is provided at the upper end of the operating shaft 39.

また、圧力調整器2のガス流入口29は、調圧弁41を介して調圧室31に連通されている。調圧弁41はガス流入口29に連通されたノズル42の開口に接離可能に設けられた弁体43を有して構成されている。弁体43は、ピストン44を介してレバー45にピン46で連結され、レバー45は軸47回りに揺動可能に軸支されている。レバー45はダイアフラム34に連結された作動軸39の下端部に係止されている。これらの調圧弁41、ピストン44、レバー45、ダイアフラム34、調圧ばね36等によって、圧力調整器2の弁駆動機構が構成されている。   The gas inlet 29 of the pressure regulator 2 communicates with the pressure regulating chamber 31 via the pressure regulating valve 41. The pressure regulating valve 41 is configured to have a valve body 43 provided so as to be able to contact and separate from the opening of the nozzle 42 communicated with the gas inlet 29. The valve body 43 is connected to a lever 45 by a pin 46 via a piston 44, and the lever 45 is pivotally supported around a shaft 47 so as to be swingable. The lever 45 is locked to the lower end portion of the operating shaft 39 connected to the diaphragm 34. These pressure regulating valve 41, piston 44, lever 45, diaphragm 34, pressure regulating spring 36, etc. constitute a valve drive mechanism of the pressure regulator 2.

次に、本発明の特徴部の構成を説明する。図1に示すように、圧力調整器1、2には、それぞれ、調圧板17、37の下面に円板状の接触板58,59を介して、円板状の圧電素子モジュール61、62が接合されている。そして、調圧ばね16,36は、圧電素子モジュール61、62の周縁部を介して調圧板17、37に押接されている。圧電素子モジュール61、62は、機械エネルギを電気エネルギに変換する素子であり、変換された電気は電線63、64により上部ケーシング13、33の頂部カバーから外部に引出されるようになっている。接触板58,59と圧電素子モジュール61,62の拡大図を、それぞれ図2、図3に示し、接触板58,59と圧電素子モジュール61,62の組み付け部の要部拡大図を図4に示す。   Next, the structure of the characteristic part of this invention is demonstrated. As shown in FIG. 1, the pressure regulators 1 and 2 include disk-shaped piezoelectric element modules 61 and 62 via disk-shaped contact plates 58 and 59 on the lower surfaces of the pressure adjusting plates 17 and 37, respectively. It is joined. The pressure adjusting springs 16 and 36 are pressed against the pressure adjusting plates 17 and 37 via the peripheral portions of the piezoelectric element modules 61 and 62. The piezoelectric element modules 61 and 62 are elements that convert mechanical energy into electric energy, and the converted electricity is drawn out from the top covers of the upper casings 13 and 33 by the electric wires 63 and 64. Enlarged views of the contact plates 58 and 59 and the piezoelectric element modules 61 and 62 are shown in FIGS. 2 and 3, respectively, and an enlarged view of the main part of the assembly portion of the contact plates 58 and 59 and the piezoelectric element modules 61 and 62 is shown in FIG. Show.

圧力調整器1用の接触板58は、図2(a)に示すように、図1の支持部19が貫通する円形の穴65を中心部に有し、かつ図において下面にリング状の突条66が同心状に形成されている。図4に示すように、突条66の断面は、半円形(例えば、R=0.3)に形成されている。圧電素子モジュール61は、同図(b)に示すように、図1の支持部19が貫通する穴65と同径の穴67を中心部に有する基板68の下面に、同径の穴67を中心部に有する円板状の圧電素子69を貼り付けて形成されている。また、圧電素子69の外径は突条66のリング径よりも小さく形成されている。接触板58と基板68は、例えばステンレス又は銅等の金属により形成されている。また、基板68と圧電素子69には、それぞれ電線63a、63bがはんだ付けされている。このように形成された圧電素子モジュール61は、同図(c)及び図4に示すように、基板68の圧電素子69が設けられていない外周部のリング状の領域に、調圧ばね16が当接するように調圧ばね16のばね径に合わせて形成されている。   As shown in FIG. 2A, the contact plate 58 for the pressure regulator 1 has a circular hole 65 through which the support portion 19 of FIG. The strips 66 are formed concentrically. As shown in FIG. 4, the cross section of the protrusion 66 is formed in a semicircular shape (for example, R = 0.3). 1B, the piezoelectric element module 61 has a hole 67 having the same diameter on the lower surface of the substrate 68 having a hole 67 having the same diameter as the hole 65 through which the support portion 19 of FIG. A disk-shaped piezoelectric element 69 having a central portion is attached. The outer diameter of the piezoelectric element 69 is smaller than the ring diameter of the protrusion 66. The contact plate 58 and the substrate 68 are made of a metal such as stainless steel or copper, for example. Also, the wires 68a and 63b are soldered to the substrate 68 and the piezoelectric element 69, respectively. In the piezoelectric element module 61 formed in this way, as shown in FIG. 4C and FIG. 4, the pressure regulating spring 16 is provided in the ring-shaped region of the outer periphery of the substrate 68 where the piezoelectric element 69 is not provided. It is formed according to the spring diameter of the pressure adjusting spring 16 so as to abut.

圧力調整器2用の接触板59及び圧電素子モジュール62は、圧力調整器1用の接触板58及び圧電素子モジュール61と寸法が異なるだけで、同一の材料を用いて同一の形状に形成されている。すなわち、接触板59は、図3(a)に示すように、電線73a、73bを引出す円形の穴75を中心部に有する円板状に形成され、かつ、図4に示すように、下面に半円形(例えば、R=0.3)の断面を有するリング状の突条76が形成されている。また、圧電素子モジュール62は、円板状の基板77の下面に円板状の圧電素子78を貼り付けて形成されている。また、圧電素子78の外径は突条76のリング径よりも小さく形成されている。基板77と圧電素子78には、それぞれ電線64a、64bがはんだ付けされ、電線64a、64bは接触板59及び圧電素子モジュール62に形成された穴75,79を通して引出されるようになっている。このように形成された圧電素子モジュール62は、同図(c)及び図4に示すように、基板77の圧電素子78が設けられていない外周部のリング状の領域に、調圧ばね36が当接するように調圧ばね36のばね径に合わせて形成されている。   The contact plate 59 and the piezoelectric element module 62 for the pressure regulator 2 are formed in the same shape using the same material except that the contact plate 58 and the piezoelectric element module 61 for the pressure regulator 1 are different in size. Yes. That is, the contact plate 59 is formed in a disk shape having a circular hole 75 through which the electric wires 73a and 73b are drawn out at the center as shown in FIG. 3 (a), and on the lower surface as shown in FIG. A ring-shaped protrusion 76 having a semicircular (for example, R = 0.3) cross section is formed. The piezoelectric element module 62 is formed by attaching a disk-shaped piezoelectric element 78 to the lower surface of a disk-shaped substrate 77. The outer diameter of the piezoelectric element 78 is smaller than the ring diameter of the protrusion 76. Electric wires 64 a and 64 b are soldered to the substrate 77 and the piezoelectric element 78, respectively, and the electric wires 64 a and 64 b are drawn through holes 75 and 79 formed in the contact plate 59 and the piezoelectric element module 62. In the piezoelectric element module 62 formed in this way, as shown in FIG. 4C and FIG. 4, the pressure adjusting spring 36 is provided in the ring-shaped region of the outer periphery of the substrate 77 where the piezoelectric element 78 is not provided. It is formed according to the spring diameter of the pressure adjusting spring 36 so as to abut.

このように構成される圧電素子モジュール61、62の電気出力は、それぞれ図5に示す同一構成の直流電源回路80に接続されている。直流電源回路80は、圧電素子61(又は、62)の交流出力を整流する整流素子81と、整流素子81の整流出力を平滑するコンデンサ82と、コンデンサ82により平滑された直流が抵抗83と整流素子84を介して供給される電池85と、電池85の出力に接続されたツエナーダイオード86と、ツエナーダイオード86に接続された定電圧回路87を有して構成されている。定電圧回路87から出力される直流は、圧力調整器1、2又は他の付属機器の電子回路又はマイコンの電源として供給される。なお、図5の直流電源回路は、圧力調整器1、2に内蔵させてもよく、一体的に外部に取付けて設けてもよい。   The electrical outputs of the piezoelectric element modules 61 and 62 configured as described above are connected to the DC power supply circuit 80 having the same configuration shown in FIG. The DC power supply circuit 80 includes a rectifier 81 that rectifies the AC output of the piezoelectric element 61 (or 62), a capacitor 82 that smoothes the rectified output of the rectifier 81, and a DC that is smoothed by the capacitor 82 is rectified by the resistor 83. The battery 85 is supplied via the element 84, a Zener diode 86 connected to the output of the battery 85, and a constant voltage circuit 87 connected to the Zener diode 86. The direct current output from the constant voltage circuit 87 is supplied as a power source for an electronic circuit or a microcomputer of the pressure regulator 1, 2 or other accessory device. 5 may be incorporated in the pressure regulators 1 and 2 or may be integrally attached to the outside.

このように構成される実施形態の動作について以下に説明する。図1において、圧力調整器1のガス流入口3にガス供給源から高圧のガスが供給されると、ダイアフラム14は調圧室11のガス圧に応じて上下に変位される。この変位により、レバー25を介して調圧弁20の開度が調整されて、設定値に保持された中圧のガスが流入口29を介して圧力調整器2に導入される。圧力調整器2の流入口29に中圧のガスが供給されると、ダイアフラム34は調圧室31のガス圧に応じて上下に変位され、レバー45を介して調圧弁41の開度が調整される。これにより、設定値に保持された低圧のガスがガス流出口4を介して、図示していないガス使用機器に供給される。   The operation of the embodiment configured as described above will be described below. In FIG. 1, when high-pressure gas is supplied from a gas supply source to the gas inlet 3 of the pressure regulator 1, the diaphragm 14 is displaced up and down according to the gas pressure in the pressure regulating chamber 11. Due to this displacement, the opening degree of the pressure regulating valve 20 is adjusted via the lever 25, and medium-pressure gas held at the set value is introduced into the pressure regulator 2 via the inflow port 29. When medium pressure gas is supplied to the inlet 29 of the pressure regulator 2, the diaphragm 34 is displaced up and down according to the gas pressure in the pressure regulating chamber 31, and the opening degree of the pressure regulating valve 41 is adjusted via the lever 45. Is done. As a result, the low-pressure gas held at the set value is supplied to the gas using device (not shown) via the gas outlet 4.

このように調圧動作するダイアフラム14、34及び調圧ばね16、36は、圧力調整器内のガス流れによって、常時わずかに振動している。この振動は、調圧ばね16、36の上端に配置された圧電素子モジュール61、62に加わり、圧電素子67、77によって振動エネルギが電気エネルギに変換される。   The diaphragms 14 and 34 and the pressure regulating springs 16 and 36 that perform pressure regulation in this way constantly vibrate slightly due to the gas flow in the pressure regulator. This vibration is applied to the piezoelectric element modules 61 and 62 arranged at the upper ends of the pressure regulating springs 16 and 36, and the vibration energy is converted into electric energy by the piezoelectric elements 67 and 77.

この変換動作を、図4を参照して詳しく説明する。調圧ばね16、36の振動が圧電素子モジュール61、62の基板58,59の周縁部に加わると、基板58,59はリング状の突条66,76を支点に撓み振動する。この撓み振動により圧電素子69,78が歪み、その歪みのエネルギが電気エネルギに変換される。圧電素子69、78により変換された電気は配線63、64を介して、圧電素子モジュール61、62に対応させてそれぞれ設けられた図5の直流電源回路80に出力される。直流電源回路80では、圧電素子モジュール61、62から入力される交流の電力を整流素子81とコンデンサ82により直流に変換し、抵抗83と整流素子84を介して電池85に充電する。電池85に充電された直流は定電圧回路87を介して図示していない電子回路やマイコンに供給される。   This conversion operation will be described in detail with reference to FIG. When vibrations of the pressure regulating springs 16 and 36 are applied to the peripheral portions of the substrates 58 and 59 of the piezoelectric element modules 61 and 62, the substrates 58 and 59 bend and vibrate with the ring-shaped protrusions 66 and 76 as fulcrums. Due to this bending vibration, the piezoelectric elements 69 and 78 are distorted, and the energy of the distortion is converted into electric energy. Electricity converted by the piezoelectric elements 69 and 78 is output to the DC power supply circuit 80 of FIG. 5 provided corresponding to the piezoelectric element modules 61 and 62 via the wirings 63 and 64, respectively. In the DC power supply circuit 80, AC power input from the piezoelectric element modules 61 and 62 is converted into DC by the rectifying element 81 and the capacitor 82, and the battery 85 is charged via the resistor 83 and the rectifying element 84. The direct current charged in the battery 85 is supplied via a constant voltage circuit 87 to an electronic circuit or microcomputer not shown.

以上説明したように、本実施形態によれば、圧電素子モジュール61、62をダイアフラム14、34及び調圧ばね16、36の振動を受ける部位に配置したことから、圧電素子モジュール61、62によってダイアフラム14、34及び調圧ばね16、36の振動エネルギが電気エネルギに変換される。   As described above, according to the present embodiment, since the piezoelectric element modules 61 and 62 are disposed in the portions that receive the vibrations of the diaphragms 14 and 34 and the pressure regulating springs 16 and 36, the piezoelectric element modules 61 and 62 cause the diaphragm to operate. The vibration energy of 14, 34 and the pressure regulating springs 16, 36 is converted into electric energy.

特に、円板状の圧電素子を、圧電素子よりも大径の円板状の金属製の基板に貼り付けて圧電素子モジュールを形成し、圧電素子モジュールの基板の周縁部で調圧ばねの振動を受ける構成とし、さらに基板の周縁部と圧電素子との境界部を基板の裏側のリング状の突条で支持する構成としたことから、調圧ばねの振動によって圧電素子を効率よく歪ませることができる。その結果、ダイアフラム及び調圧ばねの振動エネルギを効率よく電気エネルギに変換できる。   In particular, the piezoelectric element module is formed by attaching a disk-shaped piezoelectric element to a disk-shaped metal substrate having a larger diameter than the piezoelectric element, and the vibration of the pressure regulating spring is generated at the periphery of the substrate of the piezoelectric element module. In addition, since the boundary between the peripheral edge of the substrate and the piezoelectric element is supported by a ring-shaped protrusion on the back side of the substrate, the piezoelectric element is efficiently distorted by the vibration of the pressure regulating spring. Can do. As a result, vibration energy of the diaphragm and the pressure regulating spring can be efficiently converted into electric energy.

また、変換された電気エネルギを電池85に蓄えるようにしているから、電池85の容量を補うことができ、電池85により駆動される電子回路やマイコンの機能の制約を軽減できる。   In addition, since the converted electric energy is stored in the battery 85, the capacity of the battery 85 can be supplemented, and the restrictions on the functions of the electronic circuit and microcomputer driven by the battery 85 can be reduced.

特に、圧電素子は小型であるから、圧力調整器を大型にすることなく、発電機能をもたせることができる。特に、ダイアフラムや調圧ばねの動きに影響を及ぼさないことから、圧力調整機構の応答性に影響を及ぼさずに発電機能をもたせることができる。   In particular, since the piezoelectric element is small, a power generation function can be provided without increasing the size of the pressure regulator. In particular, since it does not affect the movement of the diaphragm and the pressure regulating spring, it is possible to provide a power generation function without affecting the responsiveness of the pressure adjusting mechanism.

上記の実施形態では、振動エネルギをピエゾ素子などの圧電素子により電気エネルギに変換する実施形態を示したが、本発明はこれに限らず、電歪素子やその他の機械―電気エネルギ変換素子を適用できることはいうまでもない。   In the above embodiment, the embodiment has been described in which vibration energy is converted into electric energy by a piezoelectric element such as a piezoelectric element. However, the present invention is not limited to this, and an electrostrictive element or other mechanical-electrical energy conversion element is applied. Needless to say, it can be done.

また、圧電素子モジュールを調圧ばねと調圧板の間に挟んで設ける実施形態を示したが、調圧板とばね受座15の間に挟んで設けてもよい。要は、ダイアフラムや調圧ばねの振動を受ける位置に配置する。   Moreover, although the embodiment in which the piezoelectric element module is provided between the pressure adjusting spring and the pressure adjusting plate is shown, it may be provided between the pressure adjusting plate and the spring seat 15. In short, it is arranged at a position that receives vibrations of the diaphragm and the pressure adjusting spring.

本発明の一実施形態の圧力調整器の断面構成図を示し、同図(A)は中圧の圧力調整器、同図(B)は低圧の圧力調整器の断面を示している。The cross-sectional block diagram of the pressure regulator of one Embodiment of this invention is shown, The same figure (A) shows the pressure regulator of an intermediate pressure, The same figure (B) has shown the cross section of the low pressure regulator. 本発明の特徴に係る圧電素子モジュールの一実施形態の拡大図を示す。The enlarged view of one Embodiment of the piezoelectric element module which concerns on the characteristic of this invention is shown. 本発明の特徴に係る圧電素子モジュールの他の実施形態の拡大図を示す。The enlarged view of other embodiment of the piezoelectric element module which concerns on the characteristic of this invention is shown. 圧電素子モジュールと接触板の組み付け状態を示す部分拡大断面図である。It is a partial expanded sectional view which shows the assembly | attachment state of a piezoelectric element module and a contact plate. 本発明の一実施形態の直流電源回路の回路構成図を示す。The circuit block diagram of the DC power supply circuit of one Embodiment of this invention is shown.

符号の説明Explanation of symbols

1、2 圧力調整弁
3 ガス流入口
4 ガス流出口
11、31 調圧室
14、34 ダイアフラム
16、36 調圧ばね
17、37 調圧板
18、39 作動軸
20、41 調圧弁
24、44 ピストン
25、45 レバー
61、62 圧電素子モジュール
1, 2 Pressure adjusting valve 3 Gas inlet 4 Gas outlet 11, 31 Pressure regulating chamber 14, 34 Diaphragm 16, 36 Pressure regulating spring 17, 37 Pressure regulating plate 18, 39 Actuating shaft 20, 41 Pressure regulating valve 24, 44 Piston 25 45 Lever 61, 62 Piezoelectric element module

Claims (3)

ガス流入口に調圧弁を介して連通された調圧室と、該調圧室に連通されたガス流出口と、前記調圧室の隔壁の一部を形成するダイアフラムと、該ダイアフラムを前記調圧室側に付勢する調圧ばねと、前記ダイアフラムの動きに連動して前記調圧弁の開度を調整する弁駆動機構とを有してなる圧力調整器において、前記ダイアフラムと前記調圧ばねの少なくとも一方の振動を受ける部位に、機械エネルギを電気エネルギに変換する機械−電気エネルギ変換素子を配置したことを特徴とする圧力調整器。 A pressure regulating chamber communicated with the gas inlet through a pressure regulating valve, a gas outlet communicated with the pressure regulating chamber, a diaphragm forming a part of a partition wall of the pressure regulating chamber, and the diaphragm A pressure regulator comprising: a pressure regulating spring biased toward the pressure chamber side; and a valve drive mechanism for adjusting an opening of the pressure regulating valve in conjunction with the movement of the diaphragm, wherein the diaphragm and the pressure regulating spring A pressure regulator comprising a mechanical-electrical energy conversion element that converts mechanical energy into electrical energy at a site that receives at least one of the vibrations. 請求項1において、
前記機械−電気エネルギ変換素子は、円板状の圧電素子を該圧電素子よりも大径の円板状の基板に貼り付けて構成され、かつ、該基板の周縁部と前記圧電素子の境界部がリング状の突条を介して固定部に支持され、前記基板の前記突条の反対側の面の周縁部で前記ダイアフラムと前記調圧ばねの少なくとも一方の振動を受けるように構成したことを特徴とする圧力調整器。
In claim 1,
The mechanical-electrical energy conversion element is configured by attaching a disk-shaped piezoelectric element to a disk-shaped substrate having a larger diameter than the piezoelectric element, and a boundary between the peripheral edge of the substrate and the piezoelectric element Is supported by the fixed portion via a ring-shaped protrusion, and is configured to receive vibrations of at least one of the diaphragm and the pressure regulating spring at the peripheral edge of the surface of the substrate opposite to the protrusion. Characteristic pressure regulator.
請求項1又は2において、
前記機械−電気エネルギ変換素子により発生した交流を直流に変換する整流回路と、該整流回路の出力により充電される電池とを有してなる直流電源を備えてなる圧力調整器。
In claim 1 or 2,
A pressure regulator comprising a direct current power source comprising a rectifier circuit that converts alternating current generated by the mechanical-electrical energy conversion element into direct current, and a battery that is charged by the output of the rectifier circuit.
JP2006206712A 2006-07-28 2006-07-28 Pressure regulator including power generating function Abandoned JP2008033658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006206712A JP2008033658A (en) 2006-07-28 2006-07-28 Pressure regulator including power generating function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006206712A JP2008033658A (en) 2006-07-28 2006-07-28 Pressure regulator including power generating function

Publications (1)

Publication Number Publication Date
JP2008033658A true JP2008033658A (en) 2008-02-14

Family

ID=39122995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006206712A Abandoned JP2008033658A (en) 2006-07-28 2006-07-28 Pressure regulator including power generating function

Country Status (1)

Country Link
JP (1) JP2008033658A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011520185A (en) * 2008-04-22 2011-07-14 ローズマウント インコーポレイテッド Industrial process equipment using piezoelectric transducers
CN102710002A (en) * 2012-05-05 2012-10-03 中国兵器工业集团第七0研究所 Charging equipment for remote-testing device of moving part of diesel engine
US20180262129A1 (en) * 2017-03-08 2018-09-13 Dresser, Inc. Generating power for electronics on a gas meter
JP2021032080A (en) * 2019-08-15 2021-03-01 株式会社荏原製作所 Impeller and hydraulic machine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63126911U (en) * 1987-02-12 1988-08-19
JPH08132613A (en) * 1994-11-09 1996-05-28 Canon Inc Ink jet recording apparatus
JPH11275877A (en) * 1998-03-19 1999-10-08 Seiko Epson Corp Piezoelectric power generator and portable equipment provided with the same
JP2001286162A (en) * 2000-03-31 2001-10-12 Keiwa Ryu Drive device utilizing electrostrictive expansion and construction material
JP2003105814A (en) * 2001-09-28 2003-04-09 Toto Ltd Hydrant
JP2004157074A (en) * 2002-11-08 2004-06-03 Yazaki Corp Flow measuring device and gas meter
JP2006185301A (en) * 2004-12-28 2006-07-13 High Pressure Gas Safety Institute Of Japan Pressure regulator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63126911U (en) * 1987-02-12 1988-08-19
JPH08132613A (en) * 1994-11-09 1996-05-28 Canon Inc Ink jet recording apparatus
JPH11275877A (en) * 1998-03-19 1999-10-08 Seiko Epson Corp Piezoelectric power generator and portable equipment provided with the same
JP2001286162A (en) * 2000-03-31 2001-10-12 Keiwa Ryu Drive device utilizing electrostrictive expansion and construction material
JP2003105814A (en) * 2001-09-28 2003-04-09 Toto Ltd Hydrant
JP2004157074A (en) * 2002-11-08 2004-06-03 Yazaki Corp Flow measuring device and gas meter
JP2006185301A (en) * 2004-12-28 2006-07-13 High Pressure Gas Safety Institute Of Japan Pressure regulator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011520185A (en) * 2008-04-22 2011-07-14 ローズマウント インコーポレイテッド Industrial process equipment using piezoelectric transducers
CN102710002A (en) * 2012-05-05 2012-10-03 中国兵器工业集团第七0研究所 Charging equipment for remote-testing device of moving part of diesel engine
US20180262129A1 (en) * 2017-03-08 2018-09-13 Dresser, Inc. Generating power for electronics on a gas meter
US10587209B2 (en) * 2017-03-08 2020-03-10 Natural Gas Solutions North America, Llc Generating power for electronics on a gas meter
JP2021032080A (en) * 2019-08-15 2021-03-01 株式会社荏原製作所 Impeller and hydraulic machine
JP7378242B2 (en) 2019-08-15 2023-11-13 株式会社荏原製作所 impeller, hydraulic machine

Similar Documents

Publication Publication Date Title
JP7157459B2 (en) valve device
CA2878279C (en) Systems and methods for regulating the resonant frequency of a disc pump cavity
JP2008033658A (en) Pressure regulator including power generating function
EP2227723B1 (en) Low power electric operated thermostatic mixing valve
EP2812575B1 (en) Systems and methods for regulating the temperature of a disc pump system
JP4057001B2 (en) Diaphragm air pump
EP2090781A1 (en) Piezoelectric micro-blower
US20070263887A1 (en) Vibration amplification system for piezoelectric actuators and devices using the same
JP2008525709A (en) Reaction drive energy transmission device
CN1722599A (en) Drive method for piezoelectric actuator, drive apparatus for piezoelectric actuator, electronic device
JP2015221430A (en) Vibrational fluid mover active controller
WO2003044938A1 (en) Vibrating linear actuator
JP2017091191A (en) Pressure-reducing valve
EP2263030A1 (en) Electrically actuated valve with a ball sealing element
US8525361B1 (en) Pneumatic energy harvesting devices, methods and systems
US20200041024A1 (en) Valve device
EP3271640A1 (en) Electronic valve with a generator to generate electricity from compressible fluid flow
US20030230339A1 (en) Method of controlling gas supply and opening/closing gas supply with gas regulation function
WO2018180481A1 (en) Valve device
JP2008102716A (en) Gas supply device for recovering energy accompanying gas pressure conversion
JP6344837B2 (en) Power generator, information input device, and information input device protection device
US20130127178A1 (en) Electric generator operated by random motion
CN104781555B (en) Fluid pump
JP2015094229A (en) Fluid vibration power generating device
JP2019065867A (en) Actuator, valve, and fluid control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090629

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20100707

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20100713

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100913

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20101026

A521 Written amendment

Effective date: 20101026

Free format text: JAPANESE INTERMEDIATE CODE: A821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101228

A762 Written abandonment of application

Effective date: 20110221

Free format text: JAPANESE INTERMEDIATE CODE: A762