JP2008032675A - Surface roughness measuring apparatus - Google Patents

Surface roughness measuring apparatus Download PDF

Info

Publication number
JP2008032675A
JP2008032675A JP2006296760A JP2006296760A JP2008032675A JP 2008032675 A JP2008032675 A JP 2008032675A JP 2006296760 A JP2006296760 A JP 2006296760A JP 2006296760 A JP2006296760 A JP 2006296760A JP 2008032675 A JP2008032675 A JP 2008032675A
Authority
JP
Japan
Prior art keywords
measurement
light
measured
surface roughness
posture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006296760A
Other languages
Japanese (ja)
Inventor
Kazuki Kuwabara
一樹 桑原
Atsushi Suzuki
敦 鈴木
Hideyuki Okabayashi
英行 岡林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006296760A priority Critical patent/JP2008032675A/en
Publication of JP2008032675A publication Critical patent/JP2008032675A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface roughness measuring apparatus for simply and accurately measuring a surface roughness on a measured surface including a curved surface. <P>SOLUTION: An apparatus housing 2 includes a measurement section 7, a position monitoring optical system 3, a measuring optical system 4, a calculation unit 5, a display unit 13, and a perception unit 14. A measuring person holds the apparatus housing 2, and presses the measurement section 7 to the measured surface S of a press die, and swings the apparatus housing 2 around a measurement region A as a supporting point. When the calculation unit 5 uses the position monitoring optical system 3 and senses the apparatus housing 2 in a measurement position, it automatically starts a calculation of the surface roughness on the measured surface S based on an output signal from the measuring optical system 4, informs the measuring person of the started calculation by using the perception until 14, and displays the calculated surface roughness on the display unit 13. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、プレス用金型等の被測定面の表面粗さを現場で簡単に測定することができる表面粗さ測定装置に関するものである。   The present invention relates to a surface roughness measuring apparatus capable of easily measuring the surface roughness of a surface to be measured such as a press die, on site.

金属部材等の表面粗さ(表面状態)を測定する表面粗さ測定装置として、例えば特許文献1に記載されているように、レーザー光を利用したものが知られている。この表面粗さ測定装置は、発光素子によって被測定面にレーザー光を入射させ、その反射光を受光素子によって受光し、受光した光の強さの分布、すなわち、被測定面の凹凸による反射光の散乱状態に基づいて被測定面の表面粗さを演算している。このように、レーザー光を利用して被測定面の表面粗さを光学的に測定することにより、短時間で正確な測定を行うことができる。
特開2000−111493号公報
As a surface roughness measuring device for measuring the surface roughness (surface state) of a metal member or the like, for example, as described in Patent Document 1, a device using laser light is known. In this surface roughness measuring apparatus, laser light is incident on a surface to be measured by a light emitting element, the reflected light is received by a light receiving element, and the intensity distribution of the received light, that is, reflected light by unevenness of the surface to be measured. The surface roughness of the surface to be measured is calculated based on the scattering state. Thus, by measuring the surface roughness of the surface to be measured optically using laser light, accurate measurement can be performed in a short time.
JP 2000-111493 A

しかしながら、上記従来のレーザー光を利用した表面粗さ測定装置では、次のような問題がある。被測定面に対するレーザー光の入射角度が一定の角度になるように測定装置を正確に位置決めして固定する必要があるため、専用の固定治具を必要としたり位置決め、固定に非常に手間がかかったりすることが多い。特に、被測定面が曲面である場合には、測定装置を正確に位置決めして固定することが困難である。   However, the conventional surface roughness measuring apparatus using laser light has the following problems. Since it is necessary to accurately position and fix the measurement device so that the incident angle of the laser beam on the surface to be measured is a constant angle, a dedicated fixing jig is required, and positioning and fixing are very laborious. Often. In particular, when the surface to be measured is a curved surface, it is difficult to accurately position and fix the measuring device.

一方、生産設備において、プレス用金型等の表面粗さは、製品品質に重大な影響を及ぼすことから、定期的に測定することが望まれており、プレス用金型等の曲面を含む被測定面の表面粗さを現場で簡単かつ正確に測定することができる表面粗さ測定装置が要求されている。   On the other hand, in production facilities, the surface roughness of press dies and the like has a significant effect on product quality, and therefore it is desired to measure the surface roughness regularly. There is a need for a surface roughness measuring apparatus that can easily and accurately measure the surface roughness of a measurement surface.

本発明は、上記の点に鑑みてなされたものであり、曲面を含む被測定面の表面粗さを現場で簡単かつ正確に測定することができる表面粗さ測定装置を提供することを目的とする。   The present invention has been made in view of the above points, and an object of the present invention is to provide a surface roughness measuring device that can easily and accurately measure the surface roughness of a surface to be measured including a curved surface on site. To do.

上記の課題を解決するために、請求項1の発明に係る表面粗さ測定装置は、被測定面に押付けられる測定部を有する装置筐体と、該装置筐体に設けられ、前記被測定面に光を入射させる姿勢監視用発光素子及びその反射光を受光して前記装置筐体の前記被測定面に対する姿勢を表す信号を出力する姿勢監視用受光素子を含む姿勢監視用光学系と、前記装置筐体に設けられ、前記被測定面に光を入射させる測定用発光素子及びその反射光を受光して前記被測定面の表面粗さを表す信号を出力する測定用受光素子を含む測定用光学系と、前記測定用受光素子の出力信号に基づいて前記被測定面の表面粗さを演算する演算手段とを備え、前記姿勢監視用受光素子の出力信号が前記装置筐体が所定の測定姿勢にあることを表しているとき、前記演算手段が前記測定用受光素子の出力信号に基づいて前記被測定面の表面粗さの演算を開始するようにしたことを特徴とする。
請求項2の発明に係る表面粗さ測定装置は、被測定面に押付けられる測定部を有する装置筐体と、該装置筐体に設けられ、前記被測定面に光を入射させる姿勢監視用発光素子及びその反射光を受光して前記装置筐体の前記被測定面に対する姿勢を表す信号を出力する姿勢監視用受光素子を含む姿勢監視用光学系と、前記装置筐体に設けられ、前記被測定面に光を入射させる測定用発光素子及びその反射光を受光して前記被測定面の表面粗さを表す信号を出力する測定用受光素子を含む測定用光学系と、前記測定用受光素子の出力信号に基づいて前記被測定面の表面粗さを演算する演算手段と、該演算手段が演算した表面粗さを表示する表示部とを備え、前記姿勢監視用受光素子の出力信号が前記装置筐体が所定の測定姿勢にあることを表しているとき、前記演算手段が前記測定用受光素子の出力信号に基づいて前記被測定面の表面粗さの演算を開始するようにしたことを特徴とする。
請求項3の発明に係る表面粗さ測定装置は、上記請求項2の構成において、前記演算手段は、前記姿勢監視用受光素子の出力信号に基づいて、前記装置筐体の前記測定姿勢に対する変位を検出し、前記表示部は、前記装置筐体の前記測定姿勢に対する変位を表示することを特徴とする。
請求項4の発明に係る表面粗さ測定装置は、上記請求項1乃至3のいずれかの構成において、前記演算手段は、前記姿勢監視用受光素子の出力信号が前記装置筐体が前記測定姿勢にあることを表しているとき、自動的に前記被測定面の表面粗さの演算を開始することを特徴とする。
請求項5の発明に係る表面粗さ測定装置は、上記請求項1乃至4のいずれかの構成において、前記装置筐体は、測定者が把持して前記測定部を前記被測定面に押付けられる寸法であることを特徴とする。
In order to solve the above-mentioned problem, a surface roughness measuring apparatus according to the invention of claim 1 includes an apparatus housing having a measuring unit pressed against a surface to be measured, and the surface to be measured provided in the apparatus housing. A posture monitoring optical system including a posture monitoring light-emitting element that causes light to enter and a posture monitoring light-receiving element that receives the reflected light and outputs a signal representing the posture of the apparatus housing with respect to the surface to be measured; A measurement light-emitting element that is provided in an apparatus housing and that makes light incident on the surface to be measured and a light-receiving element for measurement that receives the reflected light and outputs a signal representing the surface roughness of the surface to be measured An optical system; and a calculation means for calculating the surface roughness of the surface to be measured based on an output signal of the light receiving element for measurement, and the output signal of the posture monitoring light receiving element is measured by the apparatus housing according to a predetermined measurement. When it indicates that it is in a posture, There is characterized in that so as initiate the operation of the surface roughness of the surface to be measured based on the output signal of the measuring light receiving element.
According to a second aspect of the present invention, there is provided a surface roughness measuring apparatus comprising: a device housing having a measuring unit that is pressed against a surface to be measured; An attitude monitoring optical system including an attitude monitoring light receiving element that receives an element and reflected light of the element and outputs a signal representing the attitude of the apparatus casing with respect to the surface to be measured; and A measurement optical system including a measurement light-emitting element that causes light to enter the measurement surface, a measurement light-receiving element that receives the reflected light and outputs a signal representing the surface roughness of the measurement surface, and the measurement light-receiving element Calculation means for calculating the surface roughness of the surface to be measured based on the output signal, and a display unit for displaying the surface roughness calculated by the calculation means, and the output signal of the posture monitoring light receiving element is the Indicates that the device housing is in a predetermined measurement posture Rutoki, wherein said calculating means has to start the operation of the surface roughness of the surface to be measured based on the output signal of the measuring light receiving element.
According to a third aspect of the present invention, there is provided the surface roughness measuring apparatus according to the second aspect, wherein the calculating means is a displacement of the apparatus housing relative to the measuring attitude based on an output signal of the attitude monitoring light receiving element. , And the display unit displays a displacement of the apparatus housing with respect to the measurement posture.
According to a fourth aspect of the present invention, there is provided the surface roughness measuring apparatus according to any one of the first to third aspects, wherein the calculating means outputs the output signal of the posture monitoring light-receiving element when the device casing is in the measuring posture. When it is shown that the surface roughness is calculated, the calculation of the surface roughness of the surface to be measured is automatically started.
According to a fifth aspect of the present invention, there is provided the surface roughness measuring apparatus according to any one of the first to fourth aspects, wherein the apparatus housing is gripped by a measurer and the measuring portion is pressed against the surface to be measured. It is characterized by dimensions.

請求項6の発明に係る表面粗さ測定装置は、装置本体と、該装置本体とは別体で、被測定面に押付けられる測定部を有する測定筐体と、該測定筐体に設けられ、前記被測定面に光を入射させる発光部及びその反射光を受光する受光部と、前記装置本体に設けられ、光を発光する発光素子及び受光した光の強さの分布を表す信号を出力する受光素子と、前記発光素子から前記発光部に光を伝送する光ファイバ及び前記受光部から前記受光素子に光を伝送する光ファイバを含む接続ケーブルと、前記装置本体に設けられ、前記受光素子の出力信号に基づいて、前記被測定面に対する前記測定筐体の姿勢を検知し、また、前記被測定面の表面粗さを演算する演算手段とを備え、前記演算手段は、前記測定筐体が所定の測定姿勢にあることを検知したとき、前記被測定面の表面粗さの演算を開始することを特徴とする。
請求項7の発明に係る表面粗さ測定装置は、上記請求項6の発明において、前記演算手段は、前記測定筐体が所定の測定姿勢にあることを検知したとき、自動的に前記被測定面の表面粗さの演算を開始することを特徴とする。
請求項8の発明に係る表面粗さ測定装置は、上記請求項6又は7の構成において、前記演算手段は、前記受光素子の出力信号に基づいて、前記測定筐体の前記測定姿勢に対する変位を検出し、検出された前記測定筐体の前記測定姿勢に対する変位を表示する表示部を備えていることを特徴とする。
The surface roughness measuring device according to the invention of claim 6 is provided in the measuring housing, the measuring device having a measuring unit pressed against the surface to be measured separately from the device main body, and the measuring device. A light emitting unit that makes light incident on the surface to be measured, a light receiving unit that receives the reflected light thereof, and a light emitting element that emits light and a signal representing the distribution of the intensity of the received light are output. A light receiving element; a connection cable including an optical fiber that transmits light from the light emitting element to the light emitting part; and an optical fiber that transmits light from the light receiving part to the light receiving element; and Based on the output signal, it comprises an operation means for detecting the posture of the measurement housing with respect to the surface to be measured, and for calculating the surface roughness of the surface to be measured. Detected that it is in a predetermined measurement posture It can, characterized in that to start the operation of the surface roughness of the surface to be measured.
According to a seventh aspect of the present invention, in the surface roughness measuring apparatus according to the sixth aspect of the invention, when the calculation means detects that the measurement housing is in a predetermined measurement posture, the surface roughness is automatically measured. The calculation of the surface roughness of the surface is started.
According to an eighth aspect of the present invention, there is provided the surface roughness measuring apparatus according to the sixth or seventh aspect, wherein the computing means changes the displacement of the measurement housing relative to the measurement posture based on an output signal of the light receiving element. A display unit is provided for detecting and displaying the detected displacement of the measurement casing with respect to the measurement posture.

本発明に係る表面粗さ測定装置によれば、装置筐体を被測定面に押付けて適当に移動させることにより、姿勢監視用光学系によって装置筐体が測定姿勢にあることを検知して、測定用光学系によって被測定面の表面粗さを測定することができる。   According to the surface roughness measuring apparatus according to the present invention, the apparatus housing is detected by the attitude monitoring optical system by appropriately moving the apparatus casing against the surface to be measured, The surface roughness of the surface to be measured can be measured by the measuring optical system.

また、装置本体と測定筐体を別体とし、これらを接続ケーブルによって互いに接続することにより、測定筐体を小型化することが可能になり、操作性が向上して狭小部分の表面粗さの測定を行うことができる。   In addition, by separating the device body and measurement housing from each other and connecting them with a connection cable, the measurement housing can be reduced in size, improving operability and reducing the surface roughness of the narrow part. Measurements can be made.

以下、本発明の実施形態を図面に基づいて詳細に説明する。
本発明の第1実施形態について、図1乃至図4を参照して説明する。
図1に示すように、本実施形態に係る表面粗さ測定装置1は、装置筐体2に、装置筐体2の被測定面S(凸面状及び凹面状のものを示す)に対する姿勢を監視するための姿勢監視用光学系3と、被測定面Sの表面粗さを測定するための測定用光学系4と、姿勢監視用光学系3及び測定用光学系4からの出力信号を演算処理するための演算ユニット5(演算手段)と、演算ユニット5による演算結果を表示するための表示部6とが設けられている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
A first embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 1, the surface roughness measuring apparatus 1 according to the present embodiment monitors the attitude of the apparatus housing 2 with respect to the surface S to be measured (showing a convex shape and a concave shape). For processing the posture monitoring optical system 3, the measurement optical system 4 for measuring the surface roughness of the surface S to be measured, and the output signals from the posture monitoring optical system 3 and the measurement optical system 4 An arithmetic unit 5 (arithmetic means) for performing the calculation and a display unit 6 for displaying the calculation result by the arithmetic unit 5 are provided.

装置筐体2は、図3に示すように、略矩形の本体の一端部に、半割円柱状の測定部7が形成されている。測定部7の中心部には姿勢監視用光学系3及び測定用光学系4のレーザー光を透過させるための窓部8が設けられている。窓部8は、被測定面Sの測定領域A(例えば直径3mm程度)に対して充分な大きさとする。なお、装置筐体2は、測定者が片手で把持して測定部7を被測定面Sに押付けられる程度の寸法であり、図1において縦150mm以下、横150mm以下及び厚さ75mm以下であることが望ましい。   As shown in FIG. 3, the apparatus housing 2 has a half-columnar measuring unit 7 formed at one end of a substantially rectangular main body. A window 8 for transmitting the laser light of the posture monitoring optical system 3 and the measurement optical system 4 is provided at the center of the measurement unit 7. The window 8 is sufficiently large with respect to the measurement area A (for example, about 3 mm in diameter) of the measurement surface S. The apparatus housing 2 has dimensions such that a measurement person can hold it with one hand and press the measuring unit 7 against the surface S to be measured, and is 150 mm or less in length, 150 mm or less in width and 75 mm or less in thickness in FIG. It is desirable.

姿勢監視用光学系3は、測定部7の窓部8に対向して略垂直方向に配置された姿勢監視用発光素子9及び姿勢監視用受光素子10で構成されている。姿勢監視用発光素子9は、レーザー光を発生させて窓部8を通して被測定面Sに入射させ、姿勢監視用受光素子10は、その反射光を受光したとき、所定の電気信号を出力する。姿勢監視用発光素子9及び姿勢監視用受光素子10は、装置筐体2が所定の測定姿勢にあるとき、すなわち、測定部7が被測定面Sに押付けられ、窓部8の中心を通る法線が被測定面Sに対して垂直になったとき、姿勢監視用発光素子9から被測定面Sに入射されたレーザー光の反射光が姿勢監視用受光素子10によって受光されるように配置されている。このとき、姿勢監視用光学系3の入射光と反射光との角度θを小さくすることにより、姿勢監視用発光素子9と姿勢監視用受光素子10との間隔を小さくすることができ、装置筐体2の幅を小さくすることができる。この他、装置筐体2の姿勢は、装置筐体2における一定の基準位置の被測定面Sに対する相対的な3次元位置を2点測定することによって一般的に求めることが可能である。   The posture monitoring optical system 3 includes a posture monitoring light-emitting element 9 and a posture monitoring light-receiving element 10 which are arranged in a substantially vertical direction so as to face the window portion 8 of the measurement unit 7. The posture monitoring light-emitting element 9 generates laser light and makes it incident on the measurement surface S through the window 8, and the posture monitoring light-receiving element 10 outputs a predetermined electrical signal when receiving the reflected light. The posture monitoring light-emitting element 9 and the posture monitoring light-receiving element 10 are a method of passing through the center of the window portion 8 when the apparatus housing 2 is in a predetermined measurement posture, that is, the measurement portion 7 is pressed against the surface S to be measured. When the line is perpendicular to the measured surface S, the reflected light of the laser light incident on the measured surface S from the posture monitoring light emitting element 9 is received by the posture monitoring light receiving element 10. ing. At this time, by reducing the angle θ between the incident light and the reflected light of the attitude monitoring optical system 3, the interval between the attitude monitoring light emitting element 9 and the attitude monitoring light receiving element 10 can be reduced, and the apparatus housing The width of the body 2 can be reduced. In addition, the posture of the apparatus housing 2 can be generally obtained by measuring two relative three-dimensional positions with respect to the surface S to be measured at a certain reference position in the apparatus housing 2.

測定用光学系4は、レーザー光を発生させて窓部8の中心を通して被測定面Sに入射させる測定用発光素子11及びその反射光を受光する測定用受光素子アレイ12(測定用受光素子)で構成されている。測定用発光素子11及び測定用受光素子アレイ12は、装置筐体2が上述の測定姿勢にあるとき、レーザー光が被測定面Sに所定の入射角αで入射し、その反射光が測定用受光素子アレイ12の中心部で受光されるように配置されている。測定用受光素子アレイ12は、被測定面Sで反射されてその凹凸によって散乱された反射光をCCDアレイ等で受光し、その光の強さの分布を電気信号として出力するようになっている。ここで、入射角αを大きくすることにより、測定用光学系4の入射光と反射光とのなす角度を小さくすることができ、装置筐体2の幅を小さくすることができる。   The measurement optical system 4 includes a measurement light-emitting element 11 that generates laser light and enters the surface S to be measured through the center of the window 8 and a measurement light-receiving element array 12 that receives the reflected light (measurement light-receiving element). It consists of In the measurement light emitting element 11 and the measurement light receiving element array 12, when the apparatus housing 2 is in the above-described measurement posture, the laser light is incident on the measurement surface S at a predetermined incident angle α, and the reflected light is used for measurement. It arrange | positions so that it may light-receive in the center part of the light receiving element array 12. FIG. The light-receiving element array 12 for measurement receives reflected light reflected by the surface S to be measured and scattered by the unevenness by a CCD array or the like, and outputs the intensity distribution of the light as an electric signal. . Here, by increasing the incident angle α, the angle formed between the incident light and the reflected light of the measurement optical system 4 can be reduced, and the width of the apparatus housing 2 can be reduced.

演算ユニット5は、姿勢監視用受光素子10及び測定用受光素子アレイ12の出力信号を受信し、所定の論理規則に従ってこれらを処理して、表示部6へ信号を出力する。演算ユニット5は、姿勢監視用受光素子9から所定の出力信号を受信したとき、すなわち、窓部8の中心を通る法線が被測定面Sに対して垂直になって、姿勢監視用発光素子9から被測定面Sに入射されたレーザー光の反射光が姿勢監視用受光素子10によって受光されたとき、これをトリガとして、測定用受光素子アレイ12の出力信号に基づいて被測定面Sの表面粗さの演算を開始する。これにより、表面粗さ測定時に測定用発光素子11から被測定面Sに入射するレーザー光の入射角度が確実に入射角αとなるので、正確で安定した測定結果を得ることができる。また、演算ユニット5は、表面粗さの演算開始と共に演算開始信号を表示部6へ出力する。そして、演算ユニット5は、測定用受光素子アレイ12から受信した光の強さの分布を表す電気信号に基づいて、被測定面Sからの反射光の散乱状態に応じて被測定面Sの表面粗さを演算し、その演算結果を表示部6へ出力する。   The arithmetic unit 5 receives the output signals of the posture monitoring light receiving element 10 and the measurement light receiving element array 12, processes them according to a predetermined logic rule, and outputs a signal to the display unit 6. When the arithmetic unit 5 receives a predetermined output signal from the posture monitoring light-receiving element 9, that is, the normal passing through the center of the window 8 is perpendicular to the measured surface S, the posture monitoring light-emitting element When the reflected light of the laser light incident on the measurement surface S from 9 is received by the posture monitoring light-receiving element 10, this is used as a trigger based on the output signal of the measurement light-receiving element array 12. Starts calculation of surface roughness. Thereby, since the incident angle of the laser light incident on the measurement surface S from the measurement light emitting element 11 at the time of measuring the surface roughness is surely the incident angle α, an accurate and stable measurement result can be obtained. In addition, the arithmetic unit 5 outputs a calculation start signal to the display unit 6 at the same time as the calculation of the surface roughness. The arithmetic unit 5 then determines the surface of the measured surface S according to the scattering state of the reflected light from the measured surface S based on the electrical signal representing the intensity distribution of the light received from the measurement light receiving element array 12. The roughness is calculated and the calculation result is output to the display unit 6.

表示部6は、演算ユニット5によって演算された表面粗さを液晶ディプレイ等によって表示する表示ユニット13と、演算ユニット5からの演算開始信号を受けたとき作動するブザー、ランプ等の知覚ユニット14とから構成されている。表示ユニット13による表面粗さの表示は、演算ユニット5の演算結果に基づいて、例えば中心線平均粗さRa換算で0.01〜10μm程度とする。   The display unit 6 includes a display unit 13 for displaying the surface roughness calculated by the arithmetic unit 5 by a liquid crystal display or the like, and a perceptual unit 14 such as a buzzer or a lamp that operates when receiving a calculation start signal from the arithmetic unit 5. It consists of and. Display of the surface roughness by the display unit 13 is, for example, about 0.01 to 10 μm in terms of the center line average roughness Ra based on the calculation result of the calculation unit 5.

以上のように構成した本実施形態の作用について次に説明する。
測定者は、表面粗さ測定装置1を作動させ、装置筐体2を把持して装置筐体2が被測定面Sに対してほぼ垂直になるように測定部7をプレス用金型等の被測定面Sに押し当てて、被測定面Sの測定領域Aを支点として装置筐体2を揺動させる(図3中の矢印参照)。このとき、測定部7が半割円柱状となっているので、被測定面Sが凸面状又は凹面状であっても測定部7を被測定面Sに容易に押付けることができる。
The operation of the present embodiment configured as described above will be described next.
The measurer operates the surface roughness measuring device 1, holds the device housing 2, and places the measuring unit 7 such as a press die so that the device housing 2 is substantially perpendicular to the surface S to be measured. Press against the surface to be measured S, and the apparatus housing 2 is swung with the measurement area A of the surface to be measured S as a fulcrum (see the arrow in FIG. 3). At this time, since the measurement unit 7 has a half columnar shape, the measurement unit 7 can be easily pressed against the measurement surface S even if the measurement surface S is convex or concave.

装置筐体2を揺動させることにより、装置筐体2が測定姿勢になったとき、すなわち、測定部7の窓部8の中心を通る法線が被測定面Sに対して垂直になったとき、姿勢監視用発光素子9から被測定面Sに入射したレーザー光の反射光を姿勢監視用受光素子10が受光して所定の出力信号を出力し、これにより、演算ユニット5が表面粗さの演算を開始する。また、演算ユニット5が知覚ユニット14を作動させてランプ、ブザー等によって表面粗さの演算の開始を測定者に知らせる。そして、演算ユニット5は、測定用受光素子アレイ12からの電気信号に基づいて被測定面Sの表面粗さを演算し、その結果を表示ユニット13に表示する。   By swinging the device housing 2, when the device housing 2 is in the measuring posture, that is, the normal passing through the center of the window 8 of the measuring unit 7 is perpendicular to the surface S to be measured. At this time, the reflected light of the laser light incident on the measurement surface S from the posture monitoring light emitting element 9 is received by the posture monitoring light receiving element 10 and a predetermined output signal is output. Start the operation. Further, the arithmetic unit 5 operates the sensory unit 14 to inform the measurer of the start of the calculation of the surface roughness by a lamp, a buzzer or the like. The arithmetic unit 5 calculates the surface roughness of the surface S to be measured based on the electrical signal from the measurement light receiving element array 12 and displays the result on the display unit 13.

このようにして、装置筐体2の測定姿勢の監視及び被測定面Sの表面粗さの検出を姿勢監視用光学系3及び測定用光学系4によって光学的に行うことにより、短時間で正確に表面粗さの測定を行うことができる。そして、測定者は、例えば、現場でプレス用金型等の被測定面Sの表面粗さを簡単かつ正確に測定することができ、金型の保守、点検等を効率的に行うことが可能となる。   In this way, the measurement posture of the apparatus housing 2 is monitored and the surface roughness of the surface S to be measured is optically detected by the posture monitoring optical system 3 and the measurement optical system 4, so that the measurement can be accurately performed in a short time. The surface roughness can be measured. The measurer can easily and accurately measure the surface roughness of the surface S to be measured such as a press mold on site, and can efficiently perform maintenance and inspection of the mold. It becomes.

なお、上記実施形態では、演算ユニット5は、姿勢監視用受光素子10の出力信号をトリガとして、自動的に表面粗さの演算を開始するが、このほか、演算開始を指令する演算開始スイッチを別に設け、また、姿勢監視用受光素子10の出力信号を受信したとき知覚ユニット14を作動させて装置筐体2が測定姿勢にあることを測定者に知らせるようにし、知覚ユニット14の作動に対して測定者が演算開始スイッチを操作することによって表面粗さの演算を開始するようにしてもよい。   In the above embodiment, the arithmetic unit 5 automatically starts the calculation of the surface roughness using the output signal of the posture monitoring light receiving element 10 as a trigger, but in addition, a calculation start switch for instructing the start of the calculation is provided. In addition, when the output signal of the posture monitoring light receiving element 10 is received, the sensory unit 14 is operated to notify the measurer that the apparatus housing 2 is in the measurement posture. Then, the surface roughness calculation may be started by the operator operating the calculation start switch.

上記実施形態の変形例として、図2に示すように、姿勢監視用受光素子10を2次元アレイ化して、被測定面Sからの反射光の受光姿勢のアレイ中心Oからの変位を監視し、その変位に基づいて、表示ユニット13等によって測定者に装置筐体2を揺動させるべき方向を指示する構成としてもよい。そして、反射光がアレイ中心Oに入射したとき、演算ユニット5による演算を開始し、あるいは、知覚ユニット14を作動させて測定者に演算開始スイッチの操作を促すようにする。   As a modification of the above-described embodiment, as shown in FIG. 2, the posture monitoring light receiving elements 10 are two-dimensionally arrayed, and the displacement of the light receiving posture of the reflected light from the measurement surface S from the array center O is monitored. Based on the displacement, the measurement unit may be instructed by the display unit 13 or the like in the direction in which the apparatus housing 2 should be swung. Then, when the reflected light is incident on the array center O, the calculation by the calculation unit 5 is started, or the sensory unit 14 is operated to prompt the measurer to operate the calculation start switch.

また、装置筐体2は、図3に示す形状のほか、図4に示すように、円柱状の本体の一端部に半球状の測定部7を形成した形状とすることもできる。これにより、被測定面Sが凹面状の3次曲面である場合に、測定部7を被測定面に押付け易くすることができる。   In addition to the shape shown in FIG. 3, the device housing 2 may have a shape in which a hemispherical measurement portion 7 is formed at one end of a cylindrical main body as shown in FIG. 4. Thereby, when the measured surface S is a concave third-order curved surface, the measuring unit 7 can be easily pressed against the measured surface.

さらに、上記実施形態では、装置筐体2内に演算ユニット5及び表示部6を一体に組込んだ場合について説明しているが、演算ユニット5及び表示部6は、装置筐体2とは別体として、装置筐体2に組込まれた姿勢監視用光学系3及び測定用光学系4にリード線等によって接続するようにしてもよい。   Furthermore, although the said embodiment demonstrated the case where the arithmetic unit 5 and the display part 6 were integrated in the apparatus housing | casing 2, the arithmetic unit 5 and the display part 6 are different from the apparatus housing | casing 2. The body may be connected to the posture monitoring optical system 3 and the measurement optical system 4 incorporated in the apparatus housing 2 by lead wires or the like.

次に本発明の第2実施形態について図5を参照して説明する。なお、上記第1実施形態に対して、同様の部分には同一の符号を付して、異なる部分についてのみ詳細に説明する。   Next, a second embodiment of the present invention will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the same part with respect to the said 1st Embodiment, and only a different part is demonstrated in detail.

図5に示すように、本実施形態に係る表面粗さ測定装置15では、装置本体16と測定筐体17とが別体に設けられており、これらが接続ケーブル18によって互いに接続されている。装置本体16は、ケース18内に、演算ユニット5と、測定用発光素子11と、測定用受光素子アレイ12、表示ユニット13と、知覚ユニット14とが設けられている。   As shown in FIG. 5, in the surface roughness measuring device 15 according to the present embodiment, the device main body 16 and the measurement housing 17 are provided separately, and these are connected to each other by a connection cable 18. The apparatus body 16 is provided with a calculation unit 5, a measurement light emitting element 11, a measurement light receiving element array 12, a display unit 13, and a perception unit 14 in a case 18.

測定筐体17は、略円筒状のケース19の先端部に略テーパ状の測定部20が形成されている。測定部20は、テーパ状のほか、例えば図3及び図4に示すような半割円柱状又は半球状等の尖端形状としてもよい。測定部20の先端部中央には、窓部8が開口されている。ケース19内には、発光部21及び受光部22が設けられており、これらが接続ケーブル18によって測定用発光素子11(発光素子)及び測定用受光素子アレイ12(受光素子)にそれぞれ接続されている。   The measurement housing 17 has a substantially tapered measurement portion 20 formed at the tip of a substantially cylindrical case 19. The measuring unit 20 may have a pointed shape such as a half columnar shape or a hemispherical shape as shown in FIGS. 3 and 4 in addition to the tapered shape. A window 8 is opened at the center of the tip of the measurement unit 20. The case 19 is provided with a light emitting unit 21 and a light receiving unit 22, which are connected to the measuring light emitting element 11 (light emitting element) and the measuring light receiving element array 12 (light receiving element) by a connection cable 18, respectively. Yes.

発光部21は、接続ケーブル18を構成する光ファイバ23によって測定用発光素子11に接続されており、測定用発光素子11が発生したレーザー光を光ファイバ23によって伝送してレーザー光を発光する。受光部22は、測定用受光素子アレイ12と同様のアレイ状に配置された多数の受光部分を有しており、各受光部分が光ファイバ24を介して測定用受光素子アレイ12の対応する受光部にそれぞれ接続されている。そして、受光部22の各受光部分に入射したレーザー光が光ファイバ24によって測定用受光素子アレイ12に伝送され、測定用受光素子アレイ12がその光の強さの分布を電気信号として出力する。   The light emitting unit 21 is connected to the measurement light emitting element 11 by an optical fiber 23 constituting the connection cable 18, and transmits the laser light generated by the measurement light emitting element 11 through the optical fiber 23 to emit laser light. The light receiving unit 22 includes a large number of light receiving portions arranged in an array similar to the measurement light receiving element array 12, and each light receiving portion corresponds to the light receiving corresponding to the measurement light receiving element array 12 via the optical fiber 24. Connected to each part. The laser light incident on each light receiving portion of the light receiving unit 22 is transmitted to the measurement light receiving element array 12 through the optical fiber 24, and the measurement light receiving element array 12 outputs the intensity distribution of the light as an electrical signal.

発光部21及び受光部22は、受光部21が発光したレーザー光を窓部8を通して被測定面Sに入射させ、その反射光を受光部22によって受光するように配置されている。このとき、測定筐体17が所定の測定姿勢にあるとき、すなわち、測定部20の先端部が被測定面Sに押付けられ、窓部8の中心を通る法線が被測定面Sに対して垂直になったとき、発光部21から被測定面Sに入射されたレーザー光の反射光が受光部22の中心部で受光されるように配置されている。ここで、発光部21から被測定面Sへ入射するレーザー光と被測定面Sから受光部22への反射光との間の角度を小さくすることにより、発光部21と受光部22との間隔を小さくすることができ、測定筐体17の幅を小さくすることができる。   The light emitting unit 21 and the light receiving unit 22 are arranged so that the laser light emitted from the light receiving unit 21 is incident on the measurement surface S through the window 8 and the reflected light is received by the light receiving unit 22. At this time, when the measurement housing 17 is in a predetermined measurement posture, that is, the tip of the measurement unit 20 is pressed against the measurement surface S, and the normal passing through the center of the window portion 8 is relative to the measurement surface S. It is arranged so that the reflected light of the laser beam incident on the measurement surface S from the light emitting unit 21 is received at the center of the light receiving unit 22 when it becomes vertical. Here, the distance between the light emitting unit 21 and the light receiving unit 22 is reduced by reducing the angle between the laser light incident on the measured surface S from the light emitting unit 21 and the reflected light from the measured surface S to the light receiving unit 22. And the width of the measurement housing 17 can be reduced.

接続ケーブル18は、測定用発光素子11と発光部21とを接続する光ファイバ23及び測定用受光素子アレイ12と受光部22とを接続する多数の光ファイバ24を1本に束ね、適当な補強を施したものであり、必要な柔軟性(屈曲性)及び強度を有している。   The connection cable 18 bundles together an optical fiber 23 that connects the measurement light emitting element 11 and the light emitting unit 21 and a large number of optical fibers 24 that connect the measurement light receiving element array 12 and the light receiving unit 22, and is appropriately reinforced. It has the necessary flexibility (flexibility) and strength.

本実施形態に係る表面粗さ測定装置15では、測定用発光素子11、測定用受光素子アレイ12、接続ケーブル18、発光部21及び受光部22によって測定用光学系を構成しており、また、この測定用光学系は、測定筐体17の被測定面Sに対する姿勢を監視するための姿勢監視用光学系を兼ねている。すなわち、演算ユニット5によって測定用受光素子アレイ12の出力信号における最大輝度のアレイ座標を監視し、測定用受光素子アレイ12の中心部が最大輝度となったき、測定筐体17が測定姿勢にあることを決定する。   In the surface roughness measuring device 15 according to the present embodiment, the measurement light-emitting element 11, the measurement light-receiving element array 12, the connection cable 18, the light-emitting unit 21, and the light-receiving unit 22 constitute a measurement optical system. This measurement optical system also serves as an attitude monitoring optical system for monitoring the attitude of the measurement housing 17 with respect to the surface S to be measured. That is, the arithmetic unit 5 monitors the array coordinates of the maximum luminance in the output signal of the measurement light receiving element array 12, and when the central portion of the measurement light receiving element array 12 reaches the maximum luminance, the measurement housing 17 is in the measurement posture. Decide that.

以上のように構成した本実施形態の作用について次に説明する。
測定者は、表面粗さ測定装置15を作動させ、測定筐体17を把持して測定筐体17が被測定面Sに対してほぼ垂直になるように測定部20をプレス用金型等の被測定面Sに押し当てる。そして、この状態で、被測定面Sの測定領域を支点として測定筐体17を揺動させる。このとき、測定筐体17を装置本体16と別体として柔軟性を有する接続ケーブル18によって接続したので、測定筐体17を小型化することができ、操作性が向上して狭小部分の表面粗さの測定を行うことができる。
The operation of the present embodiment configured as described above will be described next.
The measurer operates the surface roughness measuring device 15 to hold the measurement housing 17 and place the measurement unit 20 such as a press die so that the measurement housing 17 is substantially perpendicular to the surface S to be measured. Press against the surface S to be measured. In this state, the measurement housing 17 is swung with the measurement region of the measurement surface S as a fulcrum. At this time, since the measurement casing 17 is connected to the apparatus main body 16 by a flexible connection cable 18, the measurement casing 17 can be reduced in size, and the operability is improved and the surface roughness of the narrow portion is improved. Can be measured.

演算ユニット5は、測定筐体17が測定姿勢になったとき、すなわち、測定用受光素子アレイ12の中心部が最大輝度となったことを検出したとき、表面粗さの演算を開始する。また、演算ユニット5が知覚ユニット14を作動させてランプ、ブザー等によって表面粗さの演算の開始を測定者に知らせる。そして、演算ユニット5は、測定用受光素子アレイ12からの電気信号に基づいて被測定面Sの表面粗さを演算し、その結果を表示ユニット13に表示する。   The arithmetic unit 5 starts the calculation of the surface roughness when the measurement housing 17 is in the measurement posture, that is, when it is detected that the central portion of the measurement light receiving element array 12 has reached the maximum luminance. Further, the arithmetic unit 5 operates the sensory unit 14 to inform the measurer of the start of the calculation of the surface roughness by a lamp, a buzzer or the like. The arithmetic unit 5 calculates the surface roughness of the surface S to be measured based on the electrical signal from the measurement light receiving element array 12 and displays the result on the display unit 13.

このようにして、測定筐体17の測定姿勢の監視及び被測定面Sの表面粗さの検出を光学的に行うことにより、短時間で正確に表面粗さの測定を行うことができる。このとき、測定用光学系が測定筐体17の測定姿勢を監視する姿勢監視用光学系の機能を兼ねることより、別途の姿勢監視用光学系が不要となり、構造を簡素化して小型化を図ることができる。なお、上記第1実施形態においても、上記第2実施形態と同様、測定用光学系4は、測定用受光素アレイ12の出力信号に基づいて装置筐体2の被測定面Sに対する姿勢を検知することができるので、測定用光学系4が姿勢監視用光学系3を兼ねることができ、これにより、姿勢監視用光学系3を省略することが可能である。   Thus, the surface roughness can be accurately measured in a short time by optically monitoring the measurement posture of the measurement housing 17 and detecting the surface roughness of the surface S to be measured. At this time, since the measurement optical system also functions as the posture monitoring optical system for monitoring the measurement posture of the measurement housing 17, a separate posture monitoring optical system is unnecessary, and the structure is simplified and the size is reduced. be able to. In the first embodiment as well, as in the second embodiment, the measurement optical system 4 detects the attitude of the apparatus housing 2 with respect to the measurement surface S based on the output signal of the measurement light receiving element array 12. Therefore, the measurement optical system 4 can also serve as the attitude monitoring optical system 3, and thus the attitude monitoring optical system 3 can be omitted.

上記第2実施形態において、上記第1実施形態と同様、姿勢監視用光学系を別途設けてもよい。また、図2に示すものと同様、演算ユニット5より、測定用受光素子アレイ12の出力信号において、最大輝度が検出された座標のアレイ中心からの変位を監視し、その変位に基づいて、表示ユニット13等によって測定者に測定筐体17を揺動させるべき方向を指示するようにしてもよい。   In the second embodiment, a posture monitoring optical system may be provided separately as in the first embodiment. Similarly to the one shown in FIG. 2, the arithmetic unit 5 monitors the displacement from the array center of the coordinates where the maximum luminance is detected in the output signal of the measurement light-receiving element array 12, and displays based on the displacement. The direction in which the measurement housing 17 should be swung may be instructed to the measurer by the unit 13 or the like.

また、上記第1実施形態の場合と同様、演算ユニット5は、演算ユニット5によって測定筐体17が測定姿勢にあることを検知したとき、自動的に表面粗さの演算を開始するが、このほか、演算開始を指令する演算開始スイッチを別に設け、また、演算ユニット5によって測定筐体17が測定姿勢にあることを検知したとき知覚ユニット14を作動させて測定筐体17が測定姿勢にあることを測定者に知らせるようにし、これにより、知覚ユニット14の作動に対して測定者が演算開始スイッチを操作することによって表面粗さの演算を開始するようにしてもよい。   As in the case of the first embodiment, the arithmetic unit 5 automatically starts calculating the surface roughness when the arithmetic unit 5 detects that the measurement housing 17 is in the measurement posture. In addition, a calculation start switch for instructing the start of calculation is provided separately, and when it is detected by the calculation unit 5 that the measurement casing 17 is in the measurement posture, the perception unit 14 is activated and the measurement casing 17 is in the measurement posture. This may be notified to the measurer, whereby the measurer may start the calculation of the surface roughness by operating the calculation start switch with respect to the operation of the perception unit 14.

本発明の第1実施形態に係る表面粗さ測定装置の概略構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows schematic structure of the surface roughness measuring apparatus which concerns on 1st Embodiment of this invention. 図1に示す表面粗さ測定装置の姿勢監視用光学系の変形例を示す概略図である。It is the schematic which shows the modification of the attitude | position monitoring optical system of the surface roughness measuring apparatus shown in FIG. 図1に示す表面粗さ測定装置の装置筐体の形状を示す斜視図である。It is a perspective view which shows the shape of the apparatus housing | casing of the surface roughness measuring apparatus shown in FIG. 図1に示す表面粗さ測定装置の装置筐体の形状の変形例を示す斜視図である。It is a perspective view which shows the modification of the shape of the apparatus housing | casing of the surface roughness measuring apparatus shown in FIG. 本発明の第2実施形態に係る表面粗さ測定装置の概略構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows schematic structure of the surface roughness measuring apparatus which concerns on 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1 表面粗さ測定装置、2 装置筐体、3 姿勢監視用光学系、4 測定用光学系、5演算ユニット(演算手段)、6 表示部、7 測定部、9 姿勢監視用発光素子、10 姿勢監視用受光素子、11 測定用発光素子、12 測定用受光素子アレイ(測定用受光素子)、15 表面粗さ測定装置、16 装置本体、17 測定筐体、18 接続ケーブル、23、24 光ファイバ、20 測定部、21 発光部   DESCRIPTION OF SYMBOLS 1 Surface roughness measuring apparatus, 2 apparatus housing | casing, 3 attitude | position monitoring optical system, 4 measuring optical system, 5 arithmetic unit (calculation means), 6 display part, 7 measuring part, 9 attitude | position monitoring light emitting element, 10 attitude | position Light-receiving element for monitoring, 11 Light-emitting element for measurement, 12 Light-receiving element array for measurement (light-receiving element for measurement), 15 Surface roughness measuring device, 16 Device body, 17 Measuring housing, 18 Connection cable, 23, 24 Optical fiber, 20 measuring units, 21 light emitting units

Claims (8)

被測定面に押付けられる測定部を有する装置筐体と、該装置筐体に設けられ、前記被測定面に光を入射させる姿勢監視用発光素子及びその反射光を受光して前記装置筐体の前記被測定面に対する姿勢を表す信号を出力する姿勢監視用受光素子を含む姿勢監視用光学系と、前記装置筐体に設けられ、前記被測定面に光を入射させる測定用発光素子及びその反射光を受光して前記被測定面の表面粗さを表す信号を出力する測定用受光素子を含む測定用光学系と、前記測定用受光素子の出力信号に基づいて前記被測定面の表面粗さを演算する演算手段とを備え、前記姿勢監視用受光素子の出力信号が前記装置筐体が所定の測定姿勢にあることを表しているとき、前記演算手段が前記測定用受光素子の出力信号に基づいて前記被測定面の表面粗さの演算を開始するようにしたことを特徴とする表面粗さ測定装置。 A device housing having a measuring unit pressed against the surface to be measured; a light emitting element for posture monitoring provided on the device housing for allowing light to enter the surface to be measured; A posture monitoring optical system including a posture monitoring light-receiving element that outputs a signal representing a posture with respect to the surface to be measured, a light emitting element for measurement that is provided in the apparatus housing and makes light incident on the surface to be measured, and its reflection A measuring optical system including a measuring light receiving element that receives light and outputs a signal representing the surface roughness of the measured surface, and the surface roughness of the measured surface based on the output signal of the measuring light receiving element And calculating means for calculating the output signal of the light receiving element for measurement when the output signal of the light receiving element for posture monitoring indicates that the apparatus housing is in a predetermined measuring posture. Based on the surface roughness of the surface to be measured. Surface roughness measuring apparatus being characterized in that so as to start. 被測定面に押付けられる測定部を有する装置筐体と、該装置筐体に設けられ、前記被測定面に光を入射させる姿勢監視用発光素子及びその反射光を受光して前記装置筐体の前記被測定面に対する姿勢を表す信号を出力する姿勢監視用受光素子を含む姿勢監視用光学系と、前記装置筐体に設けられ、前記被測定面に光を入射させる測定用発光素子及びその反射光を受光して前記被測定面の表面粗さを表す信号を出力する測定用受光素子を含む測定用光学系と、前記測定用受光素子の出力信号に基づいて前記被測定面の表面粗さを演算する演算手段と、該演算手段が演算した表面粗さを表示する表示部とを備え、前記姿勢監視用受光素子の出力信号が前記装置筐体が所定の測定姿勢にあることを表しているとき、前記演算手段が前記測定用受光素子の出力信号に基づいて前記被測定面の表面粗さの演算を開始するようにしたことを特徴とする表面粗さ測定装置。 A device housing having a measuring unit pressed against the surface to be measured; a light emitting element for posture monitoring provided on the device housing for allowing light to enter the surface to be measured; A posture monitoring optical system including a posture monitoring light-receiving element that outputs a signal representing a posture with respect to the surface to be measured, a light emitting element for measurement that is provided in the apparatus housing and makes light incident on the surface to be measured, and its reflection A measuring optical system including a measuring light receiving element that receives light and outputs a signal representing the surface roughness of the measured surface, and the surface roughness of the measured surface based on the output signal of the measuring light receiving element And a display unit for displaying the surface roughness calculated by the calculation means, and the output signal of the light-receiving element for posture monitoring indicates that the device housing is in a predetermined measurement posture. When the calculation means has the light receiving element for measurement Surface roughness measuring apparatus being characterized in that so as to start the operation of the surface roughness of the surface to be measured based on the output signal of the. 前記演算手段は、前記姿勢監視用受光素子の出力信号に基づいて、前記装置筐体の前記測定姿勢に対する変位を検出し、前記表示部は、前記装置筐体の前記測定姿勢に対する変位を表示することを特徴とする請求項2に記載の表面粗さ測定装置。 The computing means detects a displacement of the device casing with respect to the measurement posture based on an output signal of the posture monitoring light receiving element, and the display unit displays a displacement of the device housing with respect to the measurement posture. The surface roughness measuring apparatus according to claim 2. 前記演算手段は、前記姿勢監視用受光素子の出力信号が前記装置筐体が前記測定姿勢にあることを表しているとき、自動的に前記被測定面の表面粗さの演算を開始することを特徴とする請求項1乃至3のいずれかに記載の表面粗さ測定装置。 The calculating means automatically starts calculating the surface roughness of the surface to be measured when the output signal of the posture monitoring light-receiving element indicates that the apparatus housing is in the measuring posture. The surface roughness measuring device according to claim 1, wherein the surface roughness measuring device is a surface roughness measuring device. 前記装置筐体は、測定者が把持して前記測定部を前記被測定面に押付けられる寸法であることを特徴とする請求項1乃至4のいずれかに記載の表面粗さ測定装置。 The surface roughness measuring device according to any one of claims 1 to 4, wherein the device casing is dimensioned to be held by a measurer and to press the measuring unit against the surface to be measured. 装置本体と、該装置本体とは別体で、被測定面に押付けられる測定部を有する測定筐体と、該測定筐体に設けられ、前記被測定面に光を入射させる発光部及びその反射光を受光する受光部と、前記装置本体に設けられ、光を発光する発光素子及び受光した光の強さの分布を表す信号を出力する受光素子と、前記発光素子から前記発光部に光を伝送する光ファイバ及び前記受光部から前記受光素子に光を伝送する光ファイバを含む接続ケーブルと、前記装置本体に設けられ、前記受光素子の出力信号に基づいて、前記被測定面に対する前記測定筐体の姿勢を検知し、また、前記被測定面の表面粗さを演算する演算手段とを備え、前記演算手段は、前記測定筐体が所定の測定姿勢にあることを検知したとき、前記被測定面の表面粗さの演算を開始することを特徴とする表面粗さ測定装置。 An apparatus main body, a measurement casing having a measurement unit that is pressed against the surface to be measured, separately from the apparatus main body, a light emitting unit that is provided in the measurement casing and makes light incident on the surface to be measured, and its reflection A light receiving unit that receives light, a light emitting element that is provided in the apparatus main body and that emits light, a light receiving element that outputs a signal indicating the intensity distribution of the received light, and light from the light emitting element to the light emitting unit. A connection cable including an optical fiber that transmits light and an optical fiber that transmits light from the light receiving unit to the light receiving element, and the measurement housing with respect to the surface to be measured based on an output signal of the light receiving element. Calculation means for detecting the posture of the body and calculating the surface roughness of the surface to be measured. When the calculation means detects that the measurement housing is in a predetermined measurement posture, Start calculation of surface roughness of measurement surface Surface roughness measuring device according to claim Rukoto. 前記演算手段は、前記測定筐体が所定の測定姿勢にあることを検知したとき、自動的に前記被測定面の表面粗さの演算を開始することを特徴とする請求項6に記載の表面粗さ測定装置。 The surface according to claim 6, wherein the calculation means automatically starts calculating the surface roughness of the surface to be measured when detecting that the measurement casing is in a predetermined measurement posture. Roughness measuring device. 前記演算手段は、前記受光素子の出力信号に基づいて、前記測定筐体の前記測定姿勢に対する変位を検出し、検出された前記測定筐体の前記測定姿勢に対する変位を表示する表示部を備えていることを特徴とする請求項6又は7に記載の表面粗さ測定装置。 The calculation means includes a display unit that detects a displacement of the measurement housing with respect to the measurement posture based on an output signal of the light receiving element and displays the detected displacement of the measurement housing with respect to the measurement posture. The surface roughness measuring apparatus according to claim 6 or 7, wherein
JP2006296760A 2006-07-07 2006-10-31 Surface roughness measuring apparatus Pending JP2008032675A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006296760A JP2008032675A (en) 2006-07-07 2006-10-31 Surface roughness measuring apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006187929 2006-07-07
JP2006296760A JP2008032675A (en) 2006-07-07 2006-10-31 Surface roughness measuring apparatus

Publications (1)

Publication Number Publication Date
JP2008032675A true JP2008032675A (en) 2008-02-14

Family

ID=39122239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006296760A Pending JP2008032675A (en) 2006-07-07 2006-10-31 Surface roughness measuring apparatus

Country Status (1)

Country Link
JP (1) JP2008032675A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8774694B2 (en) 2010-07-21 2014-07-08 Ricoh Company, Ltd. Image forming apparatus including sealed fixing liquid applying section
US8818255B2 (en) 2010-03-17 2014-08-26 Ricoh Company, Ltd. Image forming apparatus with fixing liquid applicator
WO2014176479A1 (en) * 2013-04-26 2014-10-30 General Electric Comapny Surface roughness measurement device
WO2016098762A1 (en) * 2014-12-18 2016-06-23 株式会社村田製作所 Distance measurement device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8818255B2 (en) 2010-03-17 2014-08-26 Ricoh Company, Ltd. Image forming apparatus with fixing liquid applicator
US8774694B2 (en) 2010-07-21 2014-07-08 Ricoh Company, Ltd. Image forming apparatus including sealed fixing liquid applying section
WO2014176479A1 (en) * 2013-04-26 2014-10-30 General Electric Comapny Surface roughness measurement device
CN105378427A (en) * 2013-04-26 2016-03-02 通用电气公司 Surface roughness measurement device
US10054434B2 (en) 2013-04-26 2018-08-21 General Electric Company Surface roughness measurement device
WO2016098762A1 (en) * 2014-12-18 2016-06-23 株式会社村田製作所 Distance measurement device
JPWO2016098762A1 (en) * 2014-12-18 2017-08-31 株式会社村田製作所 Distance measuring device

Similar Documents

Publication Publication Date Title
EP3170712B1 (en) Method and tool to determine a brake disk deterioration state
JP6437107B2 (en) Sensor device, measuring device and measuring method
US20070038113A1 (en) Puncture adaptor, ultrasonic probe for puncture, ultrasonic diagnostic apparatus for puncture, method for detecting angle of puncture needle
WO2012102036A1 (en) Ultrasound probe
EP2896350A1 (en) Measurement probe and biological optical measurement system
JP2008032675A (en) Surface roughness measuring apparatus
CN109974851B (en) Laser detection device, fiber laser, and laser detection method
EP3162274A1 (en) Optical connector and medical device
JP2010518367A5 (en)
JP5485480B1 (en) Fiber unit
EP3091332B1 (en) A catoptric imaging device for drill measuring
JP2019219036A (en) Steam trap diagnostic device
KR101238220B1 (en) Crack Detecting Apparatus
EP3730931A1 (en) Image detection system
JP4981356B2 (en) Optical vibration distortion measurement method
JP2003315215A (en) Sensor for detecting damage of structure
WO2016092885A1 (en) Measurement probe and living body optical measurement system
JP2010175962A (en) Endoscope device
US20170055840A1 (en) Measurement probe and optical measurement system
JP2009109339A (en) Vibration measuring device and vibration measurement method
JP2006349453A (en) Outer-diameter measuring instrument
KR101133683B1 (en) Measurement apparatus
JP5526292B1 (en) Bio-optical measurement device, measurement probe, and bio-optical measurement system
EP3291572A1 (en) Apparatus and method for using laser guides to identify the source of sound waves
JP5793370B2 (en) Scanning radiation thermometer