JP2008031332A - Fiber-reinforced polymer composition derived from organism and process for producing the same - Google Patents

Fiber-reinforced polymer composition derived from organism and process for producing the same Download PDF

Info

Publication number
JP2008031332A
JP2008031332A JP2006207481A JP2006207481A JP2008031332A JP 2008031332 A JP2008031332 A JP 2008031332A JP 2006207481 A JP2006207481 A JP 2006207481A JP 2006207481 A JP2006207481 A JP 2006207481A JP 2008031332 A JP2008031332 A JP 2008031332A
Authority
JP
Japan
Prior art keywords
crystalline polyester
liquid crystalline
fiber bundle
fiber
molten liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006207481A
Other languages
Japanese (ja)
Inventor
Yoichi Yamamoto
洋一 山本
Ushio Suzuki
潮 鈴木
Tsunenori Yanagisawa
恒徳 柳澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
NEC Corp
Original Assignee
Kuraray Co Ltd
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd, NEC Corp filed Critical Kuraray Co Ltd
Priority to JP2006207481A priority Critical patent/JP2008031332A/en
Publication of JP2008031332A publication Critical patent/JP2008031332A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a process for producing a fiber-reinforced polymer composition derived from an organism that has a short fiber of a thermotropic liquid-crystalline polyester uniformly dispersed in the form of a single fiber into a polymer derived from an organism and is producing a molded article excellent in dynamic characteristics, durability, heat resistance and the like smoothly with good workability and good progression of the production without the occurrence of clogging or the like in a heating and kneading apparatus. <P>SOLUTION: The fiber-reinforced polymer composition derived from an organism is produced by blending and melt-kneading into a polymer derived from an organism a bundle of short fibers of a thermotropic liquid-crystalline polyester wherein the bundle of short fibers is constituted of short fibers temporarily bonded to each other through thermal fusion bonding with adhesive strength such as to separate the short fibers into each single fiber by heat and/or shearing force upon kneading. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、補強用繊維として溶融液晶性ポリエステル繊維を含有する繊維強化生物由来重合体組成物およびその製造方法に関する。より詳細には、本発明は、溶融液晶性ポリエステルよりなる短繊維が、生物由来重合体中に単繊維状に開繊して均一に分散していて、力学的特性、耐久性、耐熱性などの特性に優れる成形品などを得ることのできる繊維強化生物由来重合体組成物を、良好な作業性および工程性で円滑に製造する方法、およびそれにより得られる繊維強化生物由来重合体組成物、並びに当該重合体組成物よりなる成形品に関する。   The present invention relates to a fiber-reinforced biopolymer composition containing molten liquid crystalline polyester fibers as reinforcing fibers and a method for producing the same. More specifically, in the present invention, short fibers made of molten liquid crystalline polyester are spread and uniformly dispersed in a bio-derived polymer in the form of single fibers, such as mechanical properties, durability, heat resistance, etc. A method of smoothly producing a fiber-reinforced biopolymer composition capable of obtaining a molded article excellent in the properties of the above with good workability and processability, and a fiber-reinforced biopolymer composition obtained thereby, In addition, the present invention relates to a molded article made of the polymer composition.

ポリ塩化ビニル、ポリエチレンやポリプロピレンなどのポリオレフィン類、ポリスチレン、ポリエチレンテレフタレートやポリブチレンテレフタレートなどのポリエステル、ナイロンなどのポリアミドをはじめとして、その他種々の重合体が多量に生産され、広範な用途で用いられている。例えば、電子電気製品の枠体として、ポリプロピレンやポリカーボネート樹脂などからなる樹脂成形品が多く使用されている。
前記した重合体は、通常、石油系資源を原料として製造されているが、石油系資源には限りがある。石油系資源の供給量が低減したり、石油系資源が枯渇したときには、石油系資源を原料とする重合体はその製造コストの大幅な上昇を招き易く、場合によっては製造が困難になることが予想されている。
しかも、石油資源に由来する前記した重合体は、一般に自然環境では安定で、分解しにくいため、使用後に一部は回収されて再利用されているものの、大半は埋め立てまたは焼却により処分されている。埋め立て処分の場合は廃棄場所の確保の問題があり、また焼却処分による場合は、焼却によって発生する炭酸ガスが地球の温暖化の原因の一つになっている。また、ポリ塩化ビニルのようなハロゲンを含有する重合体は焼却により有害ガスが発生し易い。
Polyvinyl chloride, polyolefins such as polyethylene and polypropylene, polystyrene, polyesters such as polyethylene terephthalate and polybutylene terephthalate, and polyamides such as nylon are produced in large quantities and used in a wide range of applications. Yes. For example, a resin molded product made of polypropylene, polycarbonate resin, or the like is often used as a frame for electronic and electrical products.
The above-described polymer is usually produced using petroleum-based resources as raw materials, but petroleum-based resources are limited. When the supply amount of petroleum resources is reduced or when petroleum resources are depleted, polymers made from petroleum resources are likely to cause a significant increase in production costs and may be difficult to manufacture in some cases. Expected.
Moreover, since the above-mentioned polymers derived from petroleum resources are generally stable in the natural environment and difficult to decompose, some of them are recovered and reused after use, but most are disposed of by landfill or incineration. . In the case of landfill disposal, there is a problem of securing a disposal site. In the case of incineration disposal, carbon dioxide generated by incineration is one of the causes of global warming. In addition, polymers containing halogen such as polyvinyl chloride are liable to generate harmful gases upon incineration.

上記の点から、石油系資源に由来する重合体の代替として、繰り返して生産が可能な生物資源(植物、動物、微生物など)に由来する重合体についての研究、開発、生産が近年色々行われるようになっている。
しかし、生物由来の重合体は、そのままでは、耐熱性、力学的特性などの基本物性が、石油系資源に由来する重合体に比べて一般的に劣るため、各種の機能性材料を添加したり、成形方法を工夫して物性を改良することが検討されている。
From the above points, research, development, and production of polymers derived from biological resources that can be repeatedly produced (plants, animals, microorganisms, etc.) have been conducted in recent years as alternatives to polymers derived from petroleum-based resources. It is like that.
However, since biological polymers are generally inferior in basic properties such as heat resistance and mechanical properties to polymers derived from petroleum-based resources, various functional materials can be added. It has been studied to improve the physical properties by devising the molding method.

生物由来の重合体を含めて、有機重合体の力学物性の向上のために、ガラス繊維やカーボン繊維などのような無機繊維を混合することが一般的に行なわれているが、無機繊維は、重合体の混練や成形時に粉砕されて繊維長が1mmよりも短くなってしまい易く、その結果、無機繊維が本来有する補強特性を十分に活用できないという問題がある。無機繊維による補強効果を発揮させるために、有機重合体中に無機繊維を多量に混合した場合には、使用後の廃棄処理が大きな問題となる。   In general, inorganic fibers such as glass fibers and carbon fibers are mixed to improve the mechanical properties of organic polymers, including polymers derived from living organisms. When the polymer is kneaded or molded, the fiber length tends to be shorter than 1 mm, and as a result, there is a problem that the reinforcing properties inherent to the inorganic fiber cannot be fully utilized. When a large amount of inorganic fiber is mixed in the organic polymer in order to exert the reinforcing effect by the inorganic fiber, disposal treatment after use becomes a big problem.

また、パルプ、ケナフ繊維、セルロース繊維などの植物繊維を有機重合体中に混合することが試みられており、そのような技術の1つとして、植物繊維をポリ乳酸などの生物由来の重合体中に混合することが提案されている(特許文献1、2、3など)。しかしながら、これらの従来技術による場合は、植物繊維が重合体中に均一に分散しなかったり、植物繊維による補強効果が十分でなかったり、耐熱性の不足などが生じ易く、十分に満足のゆくものではなかった。   In addition, attempts have been made to mix plant fibers such as pulp, kenaf fiber, and cellulose fiber into an organic polymer. As one of such techniques, plant fibers are contained in a bio-derived polymer such as polylactic acid. It has been proposed to mix them (Patent Documents 1, 2, 3, etc.). However, in the case of these conventional techniques, the plant fiber is not sufficiently dispersed in the polymer, the reinforcing effect by the plant fiber is insufficient, the heat resistance is insufficient, etc. It wasn't.

高強度・高弾性率繊維の1種として溶融液晶性ポリエステル繊維(ポリアリレート繊維)が知られており、溶融液晶性ポリエステル繊維で補強されたプラスチック成形体(FRP)も商品化されている。
また、ポリ乳酸などの生分解性樹脂に植物繊維の1種であるケナフ繊維を混合した樹脂組成物中に、耐衝撃性および耐熱性を向上させる目的でアラミド繊維やポリアリレート繊維(溶融液晶性ポリエステル繊維)などの高強度高耐衝撃繊維を更に混合することが提案されている(特許文献4の段落0032〜0033)。
本発明者らは、ポリ乳酸などの生分解性樹脂中に溶融液晶性ポリエステル繊維(ポリアリレート繊維)を混合するこの既知技術について検討したところ、ポリ乳酸などの生分解性樹脂に溶融液晶性ポリエステル繊維を短繊維状にして配合して混練する際に、溶融液晶性ポリエステル短繊維が嵩高いために、押出機などのような混練装置への供給時にホッパーやその他の供給路部分で塊化して詰まったりして安定に供給・移送しにくかったり、押出機のスクリューへの溶融液晶性ポリエステル短繊維の噛み込みが十分に行なわれず、溶融液晶性ポリエステル短繊維を生分解性樹脂中に円滑に且つ均一に分散含有させるのが困難であることが判明した。
Melt liquid crystalline polyester fiber (polyarylate fiber) is known as one type of high-strength / high elastic modulus fiber, and a plastic molded body (FRP) reinforced with molten liquid crystalline polyester fiber is also commercialized.
In addition, aramid fibers and polyarylate fibers (melting liquid crystal properties) are added to a resin composition in which kenaf fibers, which are one type of plant fiber, are mixed with biodegradable resins such as polylactic acid for the purpose of improving impact resistance and heat resistance. It has been proposed to further mix high-strength, high-impact fibers such as polyester fibers (paragraphs 0032 to 0033 of Patent Document 4).
The present inventors examined this known technique of mixing a molten liquid crystalline polyester fiber (polyarylate fiber) into a biodegradable resin such as polylactic acid. As a result, the liquid crystalline polyester was added to a biodegradable resin such as polylactic acid. When mixing and kneading the fibers in the form of short fibers, the melted liquid crystalline polyester short fibers are bulky, so they are agglomerated in the hopper and other supply path portions when supplied to a kneading apparatus such as an extruder. It is difficult to supply and transport stably due to clogging, and the molten liquid crystalline polyester short fibers are not sufficiently bitten into the screw of the extruder, so that the molten liquid crystalline polyester short fibers are smoothly put into the biodegradable resin and It turned out to be difficult to disperse uniformly.

溶融液晶性ポリエステル繊維をポリ乳酸などのような生分解性の重合体や植物由来の重合体中に円滑に且つ均一に分散含有させるための方法として、溶融液晶性ポリエステル繊維をポリウレタンなどのバインダー樹脂を用いて集束させて繊維束にし、その繊維束を所定の短繊維状に切断した短繊維束を重合体中に配合する方法が考えられる。しかしながら、本発明者らがこの方法について検討したところ、溶融液晶性ポリエステル繊維の集束に用いたバインダー樹脂が、重合体組成物や成形品を製造するための混練時に、ベースをなす生分解性重合体や植物由来重合体に作用して、重合体の劣化、分子量低下などをもたらし、得られる重合体組成物や成形品の物性が低下することが判明した。   As a method for smoothly and uniformly dispersing molten liquid crystalline polyester fibers in biodegradable polymers such as polylactic acid and plant-derived polymers, binder resins such as polyurethane are used. A method is conceivable in which a short fiber bundle obtained by converging the fiber bundle into a fiber bundle and cutting the fiber bundle into a predetermined short fiber shape is blended in the polymer. However, the present inventors have examined this method, and found that the binder resin used for bundling the molten liquid crystalline polyester fibers is a biodegradable heavy material that forms the base during kneading to produce a polymer composition or a molded product. It has been found that it acts on a coalescence or a plant-derived polymer to cause deterioration of the polymer, a decrease in molecular weight, and the like, and the physical properties of the resulting polymer composition and molded product are lowered.

特開平10−273582号公報Japanese Patent Laid-Open No. 10-273582 特開2002−69303号公報JP 2002-69303 A 特開2001−335710号公報JP 2001-335710 A 特開2005−105245号公報JP-A-2005-105245

本発明の目的は、廃棄時の環境負荷が少なく、しかも石油系資源に依存せず、繰り返して生産が可能な生物由来の重合体を用いて、力学的特性、耐久性、耐熱性などの特性に優れる繊維強化重合体組成物を、良好な作業性および工程性で円滑に製造し得る方法を提供することである。
そして、本発明の目的は、力学的特性、耐久性、耐熱性などに優れる各種製品、特に電気・電子部品を円滑に製造することのできる繊維強化生物由来重合体組成物および当該重合体組成物よりなる成形品を提供することである。
An object of the present invention is to use a bio-derived polymer that has a low environmental impact at the time of disposal and does not depend on petroleum resources and can be repeatedly produced, and has characteristics such as mechanical properties, durability, and heat resistance. It is to provide a method capable of smoothly producing a fiber reinforced polymer composition having excellent workability with good workability and processability.
The object of the present invention is to provide various products excellent in mechanical properties, durability, heat resistance, etc., in particular, fiber reinforced bio-derived polymer compositions capable of smoothly producing electric / electronic components and the polymer compositions. It is providing the molded article which consists of.

上記の目的を達成すべく本発明者らは検討を重ねてきた。その結果、生物由来の重合体に補強繊維を混合して繊維強化重合体組成物を製造するに当たって、補強繊維として溶融液晶性ポリエステル繊維よりなる短繊維束を用い、その際に当該短繊維束を構成する単繊維同士を繊維表面で熱融着によって一時的に接着させておくと、当該短繊維束は、押出機などの混練装置や成形装置への供給時に、ホッパーやその他の供給経路で塊化したり、詰まったりせずにスムーズに流動し、しかも押出機のスクリューに良好に噛み込まれて、生物由来重合体中に円滑に混合されることを見出した。
さらに、本発明者らは、溶融液晶性ポリエステル短繊維同士が繊維表面で一時的に熱融着により接着している当該短繊維束は、混練時の熱および/または剪断力によって、良好に開繊されて、生物由来重合体組成物中で、凝集することなく単繊維状で均一に分散含有され、それによって力学的特性、耐久性、耐熱性などに優れる繊維強化生物由来重合体組成物および成形品を、ノズルやゲートなどにおける目詰まりなどを生ずることなく、良好な作業性で円滑に製造できることを見出した。
In order to achieve the above object, the present inventors have repeatedly studied. As a result, in producing a fiber-reinforced polymer composition by mixing reinforcing fibers with a bio-derived polymer, a short fiber bundle made of molten liquid crystalline polyester fiber is used as the reinforcing fiber. When the constituting single fibers are temporarily bonded to each other by heat fusion on the fiber surface, the short fiber bundle is agglomerated by a hopper or other supply path when supplied to a kneading apparatus such as an extruder or a molding apparatus. It has been found that it flows smoothly without clogging or clogging, and is satisfactorily bitten by the screw of the extruder and is smoothly mixed into the biological polymer.
Furthermore, the present inventors have found that the short fiber bundle in which the molten liquid crystalline polyester short fibers are temporarily bonded to each other by heat fusion on the fiber surface can be satisfactorily opened by heat and / or shear force during kneading. A fiber-reinforced biopolymer composition that is finely dispersed and contained uniformly in a single fiber form without aggregation in a biopolymer composition, and thus has excellent mechanical properties, durability, heat resistance, and the like. It has been found that a molded product can be smoothly produced with good workability without causing clogging in a nozzle or a gate.

また、本発明者らは、溶融液晶性ポリエステル短繊維束としては、繊維長が0.5〜20mmのものが補強効果、生物由来重合体中への均一分散性、取扱性などの点から好ましいこと、25℃での引張強度が15cN/dtex以上および引張初期弾性率が400cN/dtex以上である溶融液晶性ポリエステル長繊維束を短繊維状に切断したものを使用すると、生物由来重合体組成物や成形品の力学的特性、耐久性、耐熱性などの特性が良好になることを見出した。
さらに、本発明者らは、生物由来重合体100質量部に対して、溶融液晶性ポリエステル短繊維束を0.5〜50質量部の割合で配合することが、重合体中への均一分散性、補強効果などの点から好ましいことを見出し、それらの知見に基づいて本発明を完成した。
Further, the inventors of the present invention preferably use a molten liquid crystalline polyester short fiber bundle having a fiber length of 0.5 to 20 mm from the viewpoints of reinforcing effect, uniform dispersibility in a bio-derived polymer, handleability, and the like. When a molten liquid crystalline polyester long fiber bundle having a tensile strength at 25 ° C. of 15 cN / dtex or more and an initial tensile modulus of 400 cN / dtex or more is cut into short fibers, a biological polymer composition And found that the properties such as mechanical properties, durability and heat resistance of the molded product are improved.
Furthermore, the present inventors can blend the liquid crystalline polyester short fiber bundle in a proportion of 0.5 to 50 parts by mass with respect to 100 parts by mass of the biological polymer. The present inventors have found that it is preferable from the viewpoint of reinforcing effect and the like, and have completed the present invention based on these findings.

すなわち、本発明は、
(1) 生物由来重合体に溶融液晶性ポリエステル繊維からなる短繊維束を配合し加熱下に混練して繊維強化生物由来重合体組成物を製造する方法であって、溶融液晶性ポリエステル繊維からなる短繊維束として、短繊維束を構成する溶融液晶性ポリエステル短繊維同士が、混練時の熱および/または剪断力によって個々の単繊維に分離する接着強度で互いに熱融着により一時的に接着している短繊維束を用いることを特徴とする、繊維強化生物由来重合体組成物の製造方法である。
That is, the present invention
(1) A method for producing a fiber-reinforced biological polymer composition by blending a short fiber bundle made of molten liquid crystalline polyester fiber into a biological polymer and kneading under heating, comprising a molten liquid crystalline polyester fiber As short fiber bundles, molten liquid crystalline polyester short fibers constituting the short fiber bundle are temporarily bonded to each other by heat fusion with an adhesive strength that separates into individual single fibers by heat and / or shearing force during kneading. It is a manufacturing method of the fiber reinforced bio-derived polymer composition characterized by using the short fiber bundle which is.

そして、本発明は、
(2) 生物由来重合体に溶融液晶性ポリエステル繊維からなる短繊維束の繊維長が0.5〜20mmである前記(1)の繊維強化生物由来重合体組成物の製造方法;
(3) 溶融液晶性ポリエステル繊維からなる短繊維束が、単繊維同士を繊維表面で一時的に熱融着させた引張強度15cN/dtex以上および引張初期弾性率400cN/dtex以上の溶融液晶性ポリエステル長繊維束を短繊維状に切断した短繊維束である前記した(1)または(2)の繊維強化生物由来重合体組成物の製造方法;および、
(4) 生物由来重合体100質量部に対して、溶融液晶性ポリエステル短繊維束を0.5〜50質量部の割合で配合する前記(1)〜(3)のいずれかの繊維強化生物由来重合体組成物の製造方法;
である。
And this invention,
(2) The method for producing a fiber-reinforced biological polymer composition according to (1), wherein a fiber length of a short fiber bundle made of molten liquid crystalline polyester fiber is 0.5 to 20 mm in the biological polymer;
(3) A molten liquid crystalline polyester having a tensile strength of 15 cN / dtex or higher and a tensile initial elastic modulus of 400 cN / dtex or higher, in which short fiber bundles made of molten liquid crystalline polyester fibers are temporarily heat-bonded with each other at the fiber surface. (1) or (2) the method for producing a fiber-reinforced biopolymer composition as described above, which is a short fiber bundle obtained by cutting a long fiber bundle into short fibers; and
(4) The fiber-reinforced biological origin of any one of (1) to (3) above, wherein the molten liquid crystalline polyester short fiber bundle is blended at a ratio of 0.5 to 50 parts by mass with respect to 100 parts by mass of the biological polymer. Production method of polymer composition;
It is.

さらに、本発明は、
(5) 生物由来重合体中に溶融液晶性ポリエステルからなる短繊維が、単繊維状に開繊して分散していることを特徴とする、前記(1)〜(4)のいずれかの製造方法で得られる繊維強化生物由来重合体組成物;および、
(6) 前記(5)の繊維強化生物由来重合体組成物から製造してなる成形品;
である。
Furthermore, the present invention provides:
(5) The production according to any one of (1) to (4) above, wherein the short fibers made of molten liquid crystalline polyester are spread and dispersed in the form of single fibers in the biological polymer. A fiber reinforced biopolymer composition obtained by the method; and
(6) A molded product produced from the fiber-reinforced biological polymer composition of (5) above;
It is.

本発明の製造方法による場合は、短繊維束を構成している溶融液晶性ポリエステル短繊維同士が繊維表面で熱融着によって一時的に接着している溶融液晶性ポリエステル短繊維束が、押出機などの混練装置や成形装置への供給時に、ホッパーやその他の供給経路で塊化したり、詰まったりせずにスムーズに流動し、しかも押出機のスクリューに良好に噛み込まれることにより、繊維強化生物由来重合体組成物を良好な作業性で円滑に製造することができる。
本発明による場合は、溶融液晶性ポリエステル短繊維束が、重合体組成物および/または成形品を製造する際の混練時の熱および/または剪断力によって、良好に開繊されて、生物由来重合体組成物中で凝集することなく単繊維状で均一に分散含有されるため、力学的特性、耐久性、耐熱性などの諸物性に優れる繊維強化生物由来重合体組成物および成形品を、混練装置や成形装置におけるノズルやゲートなどでの目詰まりなどを生ずることなく、良好な作業性で円滑に製造することができる。
また、本発明において、溶融液晶性ポリエステル短繊維束として、繊維長が0.5〜20mmのものを使用した場合、25℃での引張強度が15cN/dtex以上で且つ引張初期弾性率が400cN/dtex以上である溶融液晶性ポリエステル長繊維束を短繊維状に切断したものを使用すると、生物由来重合体組成物や成形品の力学的特性、耐久性、耐熱性などが一層良好になる。
In the case of the production method of the present invention, the molten liquid crystalline polyester short fiber bundle in which the molten liquid crystalline polyester short fibers constituting the short fiber bundle are temporarily bonded to each other by thermal fusion on the fiber surface is used as an extruder. When supplying to kneading equipment and molding equipment such as hoppers and other supply channels, they flow smoothly without being agglomerated or clogged, and they are well bitten into the screw of the extruder, making it a fiber-reinforced organism. The derived polymer composition can be smoothly produced with good workability.
In the case of the present invention, the molten liquid crystalline polyester short fiber bundle is well opened by the heat and / or shearing force during kneading when producing the polymer composition and / or the molded article, and the biological weight Kneaded fiber-reinforced bio-derived polymer composition and molded product with excellent physical properties such as mechanical properties, durability, heat resistance, etc. It can be manufactured smoothly with good workability without causing clogging at nozzles and gates in the apparatus and molding apparatus.
In the present invention, when a molten liquid crystalline polyester short fiber bundle having a fiber length of 0.5 to 20 mm is used, the tensile strength at 25 ° C. is 15 cN / dtex or more and the initial tensile elastic modulus is 400 cN / When a melted liquid crystalline polyester long fiber bundle of dtex or higher is cut into short fibers, the mechanical properties, durability, heat resistance, and the like of the biological polymer composition and the molded product are further improved.

また、本発明において、生物由来重合体として植物由来の重合体を使用した場合には、本発明の重合体組成物やそれからなる成形品などを使用後に焼却したときに発生する炭酸ガスは、重合体の原料となる植物によってその光合成時に利用(吸収)されるため、トータルでは大気中での炭酸ガスの増加が生じないため、エコロジー性に優れている。
本発明の繊維強化生物由来重合体組成物、それからなる成形品などは、前記した特性を活かして、電化製品の筐体などの電気・電子機器用途、建材用途、自動車部品用途、日用品用途、医療用途、農業用途などの種々の用途に有効に使用することができる。
In the present invention, when a plant-derived polymer is used as the biological polymer, the carbon dioxide gas generated when the polymer composition of the present invention or a molded product made thereof is incinerated after use is heavy. Since it is used (absorbed) by the plant as a raw material for coalescence at the time of its photosynthesis, the total carbon dioxide gas does not increase in the atmosphere, so it is excellent in ecology.
The fiber-reinforced biopolymer composition of the present invention, a molded product made of the fiber-reinforced polymer composition, and the like are used for electrical and electronic equipment applications such as electrical appliance casings, building materials applications, automotive parts applications, daily necessities applications, medical care, and the like. It can be effectively used for various applications such as applications and agricultural applications.

以下に本発明について詳細に説明する。
本発明では、重合体組成物のベースをなす「生物由来重合体」として、植物、動物または微生物に由来する重合体のいずれもが使用できる。本発明で用いる生物由来重合体は、植物、動物または微生物からそのまま直接得られる重合体(例えば植物、動物または微生物が生産する重合体や前記生物の組織を形成している重合体)であってもよいし、前記した生物に由来する物質を原料の少なくとも一部として用いて化学的方法、微生物学的方法、化学的方法と微生物方法の併用、物理的方法、機械的方法などによって製造(生産)される重合体であってもいずれでもよい。
The present invention is described in detail below.
In the present invention, any of polymers derived from plants, animals or microorganisms can be used as the “biological polymer” that forms the basis of the polymer composition. The biological polymer used in the present invention is a polymer obtained directly from a plant, animal or microorganism as it is (for example, a polymer produced by a plant, animal or microorganism, or a polymer forming the tissue of the organism). It is also possible to produce (produce) a chemical method, a microbiological method, a combination of a chemical method and a microbial method, a physical method, a mechanical method, etc., using a substance derived from the above-mentioned organism as at least a part of the raw material. ) Or any other polymer.

本発明で用いることのできる生物由来重合体の例としては、植物(例えばトウモロコシ、芋類、サトウキビ等)などに含まれる糖質を出発原料として得られる乳酸、コハク酸などのヒドロキシカルボン酸やジカルボン酸を用いて得られるポリ乳酸、乳酸共重合体、ポリブチレンサクシネート、ポリエチレンサクシネート、ブチレンサクシネートとエチレンサクシネートの共重合体などのポリエステル類やその変性体;デンプン、アミロース、セルロース、セルロースエステル、キチン、キトサン、ゲランガム、カルボキシル基含有セルロース、カルボキシル基含有デンプン、ペクチン酸、アルギン酸などの多糖類やその変性体;微生物により合成されるヒドロキシブチレートおよび/またはヒドロキシバリレートの重合体であるポリベータヒドロキシアルカノエート、ポリヒドロキシ酪酸やポリ(ヒドロキシ酪酸/ヒドロキシへキサン酸);微生物による直接発酵などにより製造されるグルタミン酸やその他のアミノ酸に基づくポリアミノ酸類(ポリアミド類)またはその変性体などを挙げることができる。
本発明では生物由来重合体として、前記した重合体の1種または2種以上を用いることができる。
Examples of biological polymers that can be used in the present invention include hydroxycarboxylic acids and dicarboxylic acids such as lactic acid and succinic acid obtained from saccharides contained in plants (eg, corn, moss, sugar cane, etc.) as starting materials. Polylactic acid obtained by using acid, lactic acid copolymer, polybutylene succinate, polyethylene succinate, polyester of butylene succinate and ethylene succinate, and modified products thereof; starch, amylose, cellulose, cellulose Ester, chitin, chitosan, gellan gum, carboxyl group-containing cellulose, carboxyl group-containing starch, pectinic acid, alginic acid and other polysaccharides and modified products thereof; polymers of hydroxybutyrate and / or hydroxyvalerate synthesized by microorganisms Polybetahi Roxyalkanoate, polyhydroxybutyric acid and poly (hydroxybutyric acid / hydroxyhexanoic acid); polyamino acids (polyamides) based on glutamic acid and other amino acids produced by direct fermentation by microorganisms, or modified products thereof Can do.
In the present invention, one or more of the aforementioned polymers can be used as the biological polymer.

そのうちでも、本発明では、生物由来重合体として、溶融混練、溶融成形などが可能で取り扱い性、成形加工性に優れる熱可塑性の生物由来重合体が好ましく用いられる。
本発明で好ましく用いられる熱可塑性の生物由来重合体としては、生物から得られたる乳酸やコハク酸を用いて製造した熱可塑性ポリエステル類(結晶性ポリエステル類)、当該ポリエステル類の変性体(例えば脂肪族ポリオール類などによる変性体)、生物由来の熱可塑性のポリアミノ酸類、当該ポリアミノ酸類の変性体(例えば脂肪族ポリオール類などによる変性体)を挙げることができ、そのうちでも、ポリ乳酸および/またはその変性体が、入手容易性、取り扱い性、物性などの点からより好ましく用いられる。
Among them, in the present invention, a thermoplastic biological polymer that can be melt-kneaded and melt-molded and is excellent in handleability and molding processability is preferably used as the biological polymer.
Examples of the thermoplastic biological polymer preferably used in the present invention include thermoplastic polyesters (crystalline polyesters) produced using lactic acid and succinic acid obtained from living organisms, and modified products (for example, fats) of the polyesters. Modified products of aliphatic polyols, etc.), bio-derived thermoplastic polyamino acids, modified products of the polyamino acids (for example, modified products of aliphatic polyols, etc.), among which polylactic acid and / or Alternatively, the modified product is more preferably used from the viewpoints of availability, handleability, physical properties and the like.

生物由来重合体としてポリ乳酸を用いる場合は、L−乳酸およびD−乳酸のいずれか一方または両方に由来する構造単位から主としてなるポリ乳酸のいずれもが使用でき、またポリ乳酸は必要に応じて他の共重合単位(例えばジグリコール、ジカルボン酸、乳酸以外のヒドロキシカルボン酸、ラクトンなどに由来する構造単位)を含有していることができる。   When polylactic acid is used as the biological polymer, any of polylactic acid mainly composed of structural units derived from one or both of L-lactic acid and D-lactic acid can be used, and polylactic acid can be used as needed. Other copolymer units (for example, structural units derived from diglycol, dicarboxylic acid, hydroxycarboxylic acid other than lactic acid, lactone, etc.) can be contained.

本発明で用いる溶融液晶性ポリエステル繊維からなる短繊維束(以下「溶融液晶性ポリエステル短繊維束」ということがある)を形成している溶融液晶性ポリエステルは、溶融相において光学異方性(溶融液晶性)を示すポリエステルである。ポリエステルが「溶融液晶性」を有するか否かは公知の方法により容易に知ることができ、例えば、ホットステージに載せた試料(ポリエステル)を窒素雰囲気下で昇温加熱してその透過光を観測する方法などによって溶融液晶性の有無を調べることができる。
本発明で用いる溶融液晶性ポリエステル短繊維束を形成している溶融液晶性ポリエステルは、一般に芳香族ジオール、芳香族ジカルボン酸、芳香族ヒドロキシカルボン酸などから誘導される反復構成単位を有しており、代表例としては、下記の(1)〜(11)に示す繰返し構成単位の組合せからなる溶融液晶性ポリエステルを挙げることができる。
The molten liquid crystalline polyester forming a short fiber bundle (hereinafter sometimes referred to as “molten liquid crystalline polyester short fiber bundle”) made of molten liquid crystalline polyester fiber used in the present invention has an optical anisotropy (melted) in the molten phase. Polyester exhibiting liquid crystallinity). Whether or not polyester has “melting liquid crystallinity” can be easily known by a known method. For example, a sample (polyester) placed on a hot stage is heated and heated in a nitrogen atmosphere, and the transmitted light is observed. The presence or absence of melted liquid crystallinity can be examined by a method such as
The molten liquid crystalline polyester forming the short bundle of molten liquid crystalline polyester used in the present invention generally has repeating structural units derived from aromatic diol, aromatic dicarboxylic acid, aromatic hydroxycarboxylic acid and the like. As typical examples, there can be mentioned molten liquid crystalline polyesters comprising combinations of repeating structural units shown in the following (1) to (11).

Figure 2008031332
Figure 2008031332

Figure 2008031332
Figure 2008031332

本発明で用いる溶融液晶性ポリエステル短繊維束は、上記した溶融液晶性ポリエステル(1)〜(11)のいずれから形成されていてもよく、そのうちでも、上記(5)、(8)、(9)または(10)で示される反復構成単位の組み合せからなる溶融液晶性ポリエステルから形成されていることが好ましく、特に上記(5)で示される反復構成単位の組み合せからなる溶融液晶性ポリエステルから形成されていることがより好ましい。
溶融液晶性ポリエステル短繊維束が、上記(5)で示される反復構成単位の組み合せからなる溶融液晶性ポリエステルから形成されている場合には、下記の(A)で示す反復構成単位の割合と(B)で示す反復構成単位の割合が、(A):(B)=96:4〜55:45のモル比である溶融液晶性ポリエステルから形成されていることが、短繊維束の力学的特性、耐熱性が一層高く、且つ吸水率が極めて小さくて、生物由来重合体に対する補強効果が一層良好になる点からより好ましい。
The molten liquid crystalline polyester short fiber bundle used in the present invention may be formed from any of the above-described molten liquid crystalline polyesters (1) to (11), and among them, (5), (8), (9 ) Or (10) and is preferably formed from a molten liquid crystalline polyester comprising a combination of repeating structural units represented by (10), and in particular formed from a molten liquid crystalline polyester comprising a combination of repeating structural units represented by (5) above. More preferably.
When the molten liquid crystalline polyester short fiber bundle is formed from a molten liquid crystalline polyester comprising a combination of repeating structural units represented by (5) above, the proportion of repeating structural units represented by (A) below ( The mechanical properties of the short fiber bundle are such that the ratio of the repeating structural unit represented by B) is formed from a molten liquid crystalline polyester having a molar ratio of (A) :( B) = 96: 4 to 55:45. Further, it is more preferable from the viewpoint that the heat resistance is higher and the water absorption is extremely small, and the reinforcing effect on the biological polymer is further improved.

Figure 2008031332
Figure 2008031332

本発明で用いる溶融液晶性ポリエステル短繊維束を形成する溶融液晶性ポリエステルは250〜350℃、特に260〜320℃の融点を有していることが、ポリエチレンテレフタレートなどの一般的な熱可塑性樹脂と同じ温度領域の繊維化設備を利用できる点、本発明で用いる溶融液晶性ポリエステル短繊維束を生物由来重合体中に投入して混練する際に生物由来重合体の融点との差が大きく混練時の熱などによる影響を受けにくくなる点などから好ましい。本明細書でいう溶融液晶性ポリエステルの融点とは、JIS K7121に準拠した試験方法により測定される融点であって、示差走査熱量計(DSC)[例えば(株)島津製作所製「DSC−60」]で観察される主吸熱ピークのピーク温度である。   The molten liquid crystalline polyester used to form the short bundle of molten liquid crystalline polyester used in the present invention has a melting point of 250 to 350 ° C., particularly 260 to 320 ° C., and a general thermoplastic resin such as polyethylene terephthalate The fiberization equipment in the same temperature range can be used, and when the molten liquid crystalline polyester short fiber bundle used in the present invention is put into the biological polymer and kneaded, the difference from the melting point of the biological polymer is large. From the point of being less susceptible to the effects of heat and the like. The melting point of the molten liquid crystalline polyester referred to in this specification is a melting point measured by a test method based on JIS K7121, and is a differential scanning calorimeter (DSC) [for example, “DSC-60” manufactured by Shimadzu Corporation. ] Is the peak temperature of the main endothermic peak observed.

本発明で用いる溶融液晶性ポリエステル短繊維束は、短繊維束を構成する溶融液晶性ポリエステル短繊維同士が、当該短繊維束を加熱混練装置や成形装置などに供給する前や供給する時点では熱融着による接着状態を維持し、一方生物由来重合体に配合されて加熱下に混練したときに、混練時の熱および/または剪断力によって個々の単繊維(単繊維状短繊維)に開繊(分離)する接着強度で互いに熱融着により一時的に接着していることが必要である。
溶融液晶性ポリエステル短繊維束における単繊維同士の熱融着による接着の程度が弱すぎて生物由来重合体に配合する前の段階や混練装置や成形装置への供給時に単繊維状に開繊(分離)してしまうと、開繊によって嵩が高くなって、押出機などの混練装置や成形装置などに供給したときにホッパーやその他の供給経路で塊化したり、詰まったりしてスムーズに流動しなかったり、押出機のスクリューへの噛み込みが不良になり、重合体組成物の製造時や成形品の製造時の作業性が不良になる。しかも、生物由来重合体中に円滑に且つ均一に混合することが困難になり、重合体組成物中や成形品中に塊状のままで存在したり、偏在し、均一に分散含有されなくなって、成形装置のノズルやゲートなどでの目詰まりを生じたり、得られる重合体組成物や成形品の力学的特性、耐久性、耐熱性の低下などを生ずる。
一方、溶融液晶性ポリエステル短繊維束における単繊維同士の熱融着の程度が強すぎて混練時の熱および/または剪断力によって個々の単繊維(単繊維状短繊維)に開繊(分離)しない場合は、押出機などの混練装置や成形装置などへの供給は容易であっても、加熱混練後も生物由来重合体中に束状のままで存在するため、溶融液晶性ポリエステル短繊維による補強効果が十分に発揮されなくなり、力学的特性、耐久性、耐熱性などに優れる繊維強化生物由来重合体組成物や成形品が得られにくくなる。
The molten liquid crystalline polyester short fiber bundle used in the present invention is heated before or at the time when the molten liquid crystalline polyester short fibers constituting the short fiber bundle are supplied to a heating kneading apparatus or a molding apparatus. While maintaining the adhesive state by fusion, when blended with a bio-derived polymer and kneaded under heating, the individual fibers (single filamentary short fibers) are opened by heat and / or shear force during kneading. It is necessary to temporarily bond each other by heat fusion with the adhesive strength to be separated.
In the melted liquid crystalline polyester short fiber bundle, the degree of adhesion by thermal fusion of single fibers is too weak, and the fibers are opened into single fibers before being blended with the biological polymer or when supplied to the kneading device or molding device ( When the product is separated, the bulk increases due to the opening, and when it is supplied to a kneading device such as an extruder or a molding device, it becomes agglomerated or clogged in a hopper or other supply path and flows smoothly. Otherwise, the biting into the screw of the extruder becomes poor, and the workability during the production of the polymer composition or the molded product becomes poor. Moreover, it becomes difficult to mix smoothly and uniformly in the biological polymer, and it is present in the polymer composition or in the molded product as a lump, unevenly distributed, and uniformly dispersed and not contained. This may cause clogging at the nozzle or gate of the molding apparatus, and decrease the mechanical properties, durability, and heat resistance of the resulting polymer composition or molded product.
On the other hand, the degree of heat fusion between single fibers in the melted liquid crystalline polyester short fiber bundle is too strong, and the individual fibers (single fiber-like short fibers) are opened (separated) by heat and / or shearing force during kneading. If not, even if it is easy to supply to a kneading apparatus such as an extruder or a molding apparatus, it remains in a bundle in the biological polymer even after heating and kneading. The reinforcing effect is not sufficiently exhibited, and it becomes difficult to obtain a fiber-reinforced biopolymer composition or a molded product having excellent mechanical properties, durability, heat resistance and the like.

溶融液晶性ポリエステル短繊維束における、「短繊維束を構成する溶融液晶性ポリエステル短繊維同士が、加熱混練装置や成形装置などへの供給前や供給時にはその溶融接着状態を維持し、一方当該短繊維束を生物由来重合体中に混合するための混練時の熱および/または剪断力によって個々の単繊維(単繊維状短繊維)に開繊(分離)する接着強度(熱融着強度)」は、溶融液晶性ポリエステル短繊維束を形成する溶融液晶性ポリエステルの種類、当該短繊維束の長さ(繊維長)や太さ(繊度)、生物由来重合体への当該短繊維束の配合量、生物由来重合体の種類、当該短繊維束を生物由来重合体中に混合する際の混練温度、剪断力の大きさ、混練時間などによって調整することができる。   In the melted liquid crystalline polyester short fiber bundle, “the melted liquid crystalline polyester short fibers constituting the short fiber bundle maintain their melt-bonded state before or during the supply to the heating and kneading apparatus or the molding apparatus, Adhesive strength (thermal fusion strength) that opens (separates) individual single fibers (single filamentary short fibers) by heat and / or shear force during kneading to mix the fiber bundle into the biological polymer ” Is the type of molten liquid crystalline polyester forming the molten liquid crystalline polyester short fiber bundle, the length (fiber length) and thickness (fineness) of the short fiber bundle, and the blending amount of the short fiber bundle into the biological polymer. The kind of the biological polymer, the kneading temperature when the short fiber bundle is mixed in the biological polymer, the magnitude of the shearing force, the kneading time and the like can be adjusted.

一般的には、本発明では、溶融液晶性ポリエステル短繊維束として、長さ5mmの短繊維束に切断したときに、以下の(a)の方法で求められる「開繊率(延伸処理なし)」の値が20%以下、特に15%以下で且つ以下の(b)の方法で求められる「開繊率(延伸処理あり)」の値が70%以上、特に80%以上である溶融液晶性ポリエステル長繊維束を原料繊維束(以下「原反」ということがある)とし、その溶融液晶性ポリエステル長繊維束を短繊維状に切断して得られる短繊維束を用いることが好ましい。「開繊率(延伸処理なし)」および「開繊率(延伸処理あり)」の値が前記要件を満たす溶融液晶性ポリエステル長繊維束を短繊維状に切断してなる短繊維束は、加熱混練装置や成形装置などへの供給前や供給時にはその溶融接着状態を維持し、一方当該短繊維束を生物由来重合体中に混合するための混練時の熱および/または剪断力によって個々の単繊維(単繊維状短繊維)に良好に開繊(分離)する。   In general, in the present invention, when the melted liquid crystalline polyester short fiber bundle is cut into a short fiber bundle having a length of 5 mm, the “opening rate (no stretching treatment) required by the following method (a)” ”Is 20% or less, particularly 15% or less, and the“ opening ratio (with stretching) ”value obtained by the following method (b) is 70% or more, particularly 80% or more. It is preferable to use a short fiber bundle obtained by cutting a polyester long fiber bundle into a raw fiber bundle (hereinafter sometimes referred to as “raw fabric”) and cutting the molten liquid crystalline polyester long fiber bundle into short fiber shapes. Short fiber bundles obtained by cutting molten liquid crystalline polyester long fiber bundles satisfying the above requirements with the values of “opening rate (without drawing treatment)” and “opening rate (with drawing treatment)” are heated. Before or during supply to a kneading apparatus or molding apparatus, the melt-bonded state is maintained, while individual short fibers are mixed by heat and / or shear force during mixing for mixing the short fiber bundle into the biological polymer. Open (separate) well into fibers (monofilamentary short fibers).

(a)開繊率(延伸処理なし):
溶融液晶性ポリエステル長繊維束を5mm長にカットし、その溶融液晶性ポリエステル短繊維束を105℃の恒温乾燥機中で2時間加熱して乾燥(絶乾)させた後、その短繊維束の0.15g(Wa)を採取して、容量1000mlのビーカー(内径105mm)内に投入し[ビーカーの中央には撹拌ペラ(日本理化機械株式会社製の撹拌機用撹拌翼「マリン翼」、翼径50mm、ステンレス製3枚羽)を予め配置すると共に(ビーカーの内底面と撹拌ペラの下端の距離15mm)、温度25℃の蒸留水500mlを予め入れておく]、水温25℃で、撹拌ペラの回転速度600rpmの条件下に2分間撹拌する。その後、ビーカー内の内容物の全量(水と繊維)を直径11cmに切りだした一般的な模造紙を敷いたブフナーロートに移し、ブフナーロートの下部から水をアスピレーターで吸引して水を分離した後、模造紙上の繊維を室温で一昼夜放置乾燥する。次いで、顕微鏡で模造紙上にある繊維を観察して、0.3mm以上の幅を有する短繊維束をピンセットで全て採取し、それを105℃の恒温乾燥機中で2時間加熱して乾燥(絶乾)させて、そのときの質量(Wb)(g)を測定して、下記の数式(I−1)により開繊率(延伸処理なし)を求める。

開繊率(延伸処理なし)(%)={(Wa−Wb)/Wa}×100 (I−1)
(A) Opening rate (without stretching treatment):
The molten liquid crystalline polyester long fiber bundle is cut into a length of 5 mm, and the molten liquid crystalline polyester short fiber bundle is heated in a constant temperature dryer at 105 ° C. for 2 hours to dry (absolutely dry). 0.15 g (Wa) was sampled and put into a 1000 ml beaker (inner diameter 105 mm) [in the center of the beaker, a stirring peller (stirring blade for a stirrer “Nippon Rika Machinery Co., Ltd.” (50 mm diameter, 3 stainless steel blades) are placed in advance (the distance between the inner bottom surface of the beaker and the lower end of the stirring blade is 15 mm), and 500 ml of distilled water at a temperature of 25 ° C. is put in advance]. The mixture is stirred for 2 minutes under the condition of 600 rpm. After that, the entire contents (water and fibers) in the beaker were transferred to a Buchner funnel with a general imitation paper cut out to a diameter of 11 cm, and the water was separated from the bottom of the Buchner funnel by sucking water with an aspirator. Thereafter, the fibers on the imitation paper are left to dry overnight at room temperature. Next, the fibers on the imitation paper were observed with a microscope, and all the short fiber bundles having a width of 0.3 mm or more were collected with tweezers, and dried for 2 hours by heating in a constant temperature dryer at 105 ° C. for 2 hours. Dried), the mass (Wb) (g) at that time is measured, and the fiber opening rate (without stretching treatment) is determined by the following formula (I-1).

Spreading rate (no stretching treatment) (%) = {(Wa-Wb) / Wa} × 100 (I-1)

(b)開繊率(延伸処理あり):
(b−1) 短繊維束に切断する前の、ボビンに巻き取った溶融液晶性ポリエステル長繊維束をクリールスタンドへ設置し、それを180℃に加熱したネルソン型ローラー(R1)へと50m/分の速度で導き、次いで回転速度をR1よりも1.0%増加させた温度25℃の同じ形式のネルソン型ローラー(R2)で引き取ることで、溶融液晶性ポリエステル長繊維束に1.0%の延伸をかけて、巻き取り機で巻き取る。この延伸処理により、溶融液晶性ポリエステル長繊維束には、張力による単繊維間引き揃えの剪断力がかかり、その剪断力によって単繊維間の熱融着が外される。
(b−2) 次いで、上記(b−1)の延伸処理を施した溶融液晶性ポリエステル長繊維束を5mm長にカットして短繊維束とし、それを105℃の恒温乾燥機中で2時間加熱して乾燥(絶乾)させた後、その短繊維束の0.15g(Wc)を採取して、上記(a)と同じ条件下でビーカー内で水中撹拌処理し、その後、ビーカー内の内容物の全量(水と繊維)を直径11cmに切りだした一般的な模造紙を敷いたブフナーロートに移し、ブフナーロートの下部から水をアスピレーターで吸引して水を分離した後、模造紙上の繊維を室温で一昼夜放置乾燥する。次に、顕微鏡で模造紙上にある繊維を観察して、0.3mm以上の幅を有する短繊維束をピンセットで全て採取し、それを105℃の恒温乾燥機中で2時間加熱して乾燥(絶乾)させて、そのときの質量(Wd)(g)を測定して、下記の数式(I−2)により開繊率(延伸処理あり)を求める。

開繊率(延伸処理あり)(%)={(Wc−Wd)/Wc}×100 (I−2)
(B) Opening rate (with stretching treatment):
(B-1) The melted liquid crystalline polyester long fiber bundle wound around the bobbin before being cut into short fiber bundles was placed on a creel stand and heated to 180 ° C. to a Nelson type roller (R 1 ) 50 m / guided at a rate, and then the rotation speed by taking up in Nelson type roller of the same type of temperature 25 ° C. was increased by 1.0% than the R 1 (R 2), 1 to the molten liquid crystalline polyester filament bundle Apply a stretch of 0.0% and wind up with a winder. By this stretching treatment, the melted liquid crystalline polyester long fiber bundle is subjected to a shearing force for aligning the single fibers by tension, and the thermal fusion between the single fibers is removed by the shearing force.
(B-2) Next, the molten liquid crystalline polyester long fiber bundle subjected to the stretching treatment of the above (b-1) was cut into a 5 mm length to make a short fiber bundle, which was kept in a constant temperature dryer at 105 ° C. for 2 hours. After heating and drying (absolutely dry), 0.15 g (Wc) of the short fiber bundle was collected and stirred in water in the beaker under the same conditions as in (a) above. Transfer the entire contents (water and fiber) to a Buchner funnel with a general imitation paper cut out to a diameter of 11 cm. After separating the water by aspirating water from the bottom of the Buchner funnel, The fiber is left to dry overnight at room temperature. Next, the fibers on the imitation paper were observed with a microscope, and all short fiber bundles having a width of 0.3 mm or more were collected with tweezers, and dried by heating in a constant temperature dryer at 105 ° C. for 2 hours ( (Absolutely dried), the mass (Wd) (g) at that time is measured, and the fiber opening rate (with stretching treatment) is determined by the following mathematical formula (I-2).

Spreading rate (with stretching treatment) (%) = {(Wc−Wd) / Wc} × 100 (I-2)

生物由来重合体に配合する溶融液晶性ポリエステル短繊維束の長さ(繊維長)は、取り扱い性、生物由来重合体中への均一な混合・分散性、補強効果などの点から、0.5〜20mmであることが好ましく、1〜15mmであることがより好ましく、2〜10mmであることが更に好ましい。溶融液晶性ポリエステル短繊維束の繊維長が短すぎると、十分な補強効果が得られないことがあり、一方長すぎると単繊維同士が絡まって生物由来重合体中に均一に混合分散されにくくなり、また混合するための混練時に単繊維の切断が生じ易くなる。   The length (fiber length) of the melted liquid crystalline polyester short fiber bundle to be blended with the biological polymer is 0.5 from the viewpoints of handleability, uniform mixing / dispersibility in the biological polymer, and reinforcing effect. It is preferably ˜20 mm, more preferably 1 to 15 mm, and even more preferably 2 to 10 mm. If the fiber length of the melted liquid crystalline polyester short fiber bundle is too short, a sufficient reinforcing effect may not be obtained. On the other hand, if the fiber length is too long, the single fibers are entangled with each other and are difficult to be uniformly mixed and dispersed in the biological polymer. Moreover, the single fiber is likely to be cut during kneading for mixing.

溶融液晶性ポリエステル短繊維束の形状は、多くの場合にテープ状であるが、場合によっては円柱状であっても構わない。このため、溶融液晶性ポリエステル短繊維束の横断面形状は、変形の生じた長方形または円形が多く、その幅(直径)は50μm〜10mmが好ましく、100μm〜5mmがより好ましく、200μm〜3mmが更に好ましい。
また、溶融液晶性ポリエステル短繊維束の繊度(総繊度)でいうと、50dtex〜150万dtexが好ましく、150dtex〜50万dtexがより好ましく、500dtex〜15万dtexであることが更に好ましい。
溶融液晶性ポリエステル短繊維束の太さ(短繊維束の直径または総繊度)が、前記範囲であると、生物由来重合体に配合する際の取り扱い性、生物由来重合体への均一混合性、混練時の熱および/または剪断による単繊維への開繊性(分離性)などが良好になる。
The shape of the molten liquid crystalline polyester short fiber bundle is often a tape shape, but may be a columnar shape in some cases. For this reason, the cross-sectional shape of the melted liquid crystalline polyester short fiber bundle is often deformed rectangular or circular, and the width (diameter) is preferably 50 μm to 10 mm, more preferably 100 μm to 5 mm, and further 200 μm to 3 mm. preferable.
In terms of the fineness (total fineness) of the molten liquid crystalline polyester short fiber bundle, 50 dtex to 1.5 million dtex is preferable, 150 dtex to 500,000 dtex is more preferable, and 500 dtex to 150,000 dtex is further preferable.
When the thickness of the melted liquid crystalline polyester short fiber bundle (diameter or total fineness of the short fiber bundle) is within the above range, the handling property when blended with the biological polymer, the uniform mixing property with the biological polymer, The openability (separability) into single fibers by heat and / or shear during kneading is improved.

溶融液晶性ポリエステル短繊維束を構成する各単繊維の単繊維繊度は、生物由来重合体に対する補強効果、混練時の切断防止、当該繊維の製造の容易性などの点から、0.9〜50dtexであることが好ましく、1〜30dtexであることがより好ましく、1〜10dtexであることが更に好ましい。
溶融液晶性ポリエステル短繊維束を構成する各単繊維の単繊維繊度が小さすぎると、生物由来重合体中に混合するための加熱混練および/または剪断時に繊維形態に損傷を受けて繊維の切断が生じ、十分な補強作用を発揮しにくくなり、一方単繊維繊度が大きすぎると生物由来重合体との接着性が不足して補強作用を発揮しにくくなる。
The single fiber fineness of each single fiber constituting the melted liquid crystalline polyester short fiber bundle is 0.9 to 50 dtex from the viewpoints of reinforcing effect on the biological polymer, prevention of cutting during kneading, ease of production of the fiber, and the like. It is preferably 1 to 30 dtex, more preferably 1 to 10 dtex.
If the single fiber fineness of each single fiber constituting the melted liquid crystalline polyester short fiber bundle is too small, the fiber shape is damaged at the time of heat-kneading and / or shearing for mixing into the biological polymer, and the fiber is cut. It is difficult to exert a sufficient reinforcing action. On the other hand, if the single fiber fineness is too large, the adhesiveness with the biological polymer is insufficient and the reinforcing action is hardly exhibited.

溶融液晶性ポリエステル短繊維束を構成する各単繊維の断面形状は特に限定されず、例えば、円形、楕円形、三角形、方形、多角形、偏平形、多葉形、ドッグボーン形、V字形、それ以外の凹凸のある形状や不定形などのいずれであってもよい。短繊維の表面積が大きいと、生物由来重合体との接合面積が大きくなり、補強効果が向上する。   The cross-sectional shape of each single fiber constituting the melted liquid crystalline polyester short fiber bundle is not particularly limited. For example, a circular shape, an elliptical shape, a triangular shape, a rectangular shape, a polygonal shape, a flat shape, a multileaf shape, a dogbone shape, a V shape, Any other irregular shape or irregular shape may be used. When the surface area of the short fiber is large, the bonding area with the biological polymer is increased, and the reinforcing effect is improved.

溶融液晶性ポリエステル短繊維束を構成する短繊維は、生物由来重合体との親和性の向上のために、必要に応じて、表面処理を施してあってもよい。その際の表面処理方法としては、シラン系、チタネート系などのカップリング剤による処理、オゾンやプラズマ処理、アルキルリン酸エステル型の界面活性剤による処理などが有効であるが、これらに限定されるものではなく、充填材の表面改質のために通常使用されている処理方法を採用することができる。   The short fibers constituting the molten liquid crystalline polyester short fiber bundle may be subjected to a surface treatment, if necessary, in order to improve the affinity with the biological polymer. As the surface treatment method in this case, treatment with a coupling agent such as silane or titanate, ozone or plasma treatment, treatment with an alkyl phosphate ester type surfactant, etc. are effective, but are not limited thereto. Instead, a treatment method that is usually used for surface modification of the filler can be employed.

溶融液晶性ポリエステル短繊維束を形成する溶融液晶性ポリエステルは、本発明の効果を損なわない範囲で、必要に応じて、ポリエチレンテレフタレート、変性ポリエチレンテレフタレート、ポリオレフィン、ポリカーボネート、ポリアリレート、ポリアミド、ポリフェニレンサルファイド、ポリエステルエーテルケトン、フッ素樹脂などの他の熱可塑性重合体、酸化チタン、カオリン、シリカ、酸化バリウムなどの無機物、カーボンブラック、染料や顔料などの着色剤、酸化防止剤、紫外線吸収剤、光安定剤などの各種添加剤の1種または2種以上を含有していてもよい。   The molten liquid crystalline polyester forming the molten liquid crystalline polyester short fiber bundle is a polyethylene terephthalate, modified polyethylene terephthalate, polyolefin, polycarbonate, polyarylate, polyamide, polyphenylene sulfide, as long as the effects of the present invention are not impaired. Other thermoplastic polymers such as polyester ether ketone and fluororesin, inorganic substances such as titanium oxide, kaolin, silica and barium oxide, colorants such as carbon black, dyes and pigments, antioxidants, UV absorbers, light stabilizers 1 type or 2 types or more of various additives, such as, may be contained.

本発明で用いる溶融液晶性ポリエステル短繊維束の製法は特に制限されず、短繊維束を構成する溶融液晶性ポリエステル短繊維同士が、加熱混練前には単繊維状に分離せずに束状に集束し、一方混練時の熱および/または剪断力によって個々の単繊維に開繊(分離)する接着強度で互いに熱融着により接着している短繊維束を製造し得る方法であれば、いずれの方法で製造してもよい。
そのうちでも、本発明で用いる溶融液晶性ポリエステル短繊維束は、溶融液晶性ポリエステル長繊維(フィラメント)よりなる繊維束(以下「溶融液晶性ポリエステル長繊維束」ということがある)を、当該繊維束の製造に際して行う後述の固相重合処理温度より0〜20℃高い雰囲気温度で加熱して長繊維束を構成しているフィラメント同士を繊維表面で一時的に熱融着により接着させた後に当該長繊維束を短繊維状に切断する方法を採用することによって円滑に製造することができる。この場合に、加熱時間が長すぎると、熱によって繊維が溶断したり、強固な膠着が発生して生物由来重合体中で混練したときに単繊維状に開繊(分離)しなくなるので注意を要する。溶融液晶性ポリエステル長繊維束を形成しているフィラメント同士を接着(溶着)させるための熱処理時間は、長繊維束を形成している溶融液晶性ポリエステルの種類や融点、熱処理温度などによって異なり得るが、一般的には、30秒〜90分程度、特に1分〜60分程度であることが好ましい。
また、この熱処理は、窒素などの不活性ガス雰囲気下で行なうことが好ましい。
さらにこの熱処理を、繊維束を構成する溶融液晶性ポリエステル長繊維同士の熱融着による一時的な接着が良好に行なわれるように、加圧雰囲気下で行ったり、長繊維束を緊張させた状態で行なってもよい。
The method for producing the molten liquid crystalline polyester short fiber bundle used in the present invention is not particularly limited, and the molten liquid crystalline polyester short fibers constituting the short fiber bundle are not separated into single fibers before heating and kneading into a bundle. Any method can be used as long as it can produce short fiber bundles that are bonded to each other by thermal fusion with the adhesive strength that converges and opens (separates) into individual single fibers by heat and / or shear force during kneading. You may manufacture by the method of.
Among them, the molten liquid crystalline polyester short fiber bundle used in the present invention is a fiber bundle composed of molten liquid crystalline polyester long fibers (filaments) (hereinafter sometimes referred to as “molten liquid crystalline polyester long fiber bundle”). After the filaments constituting the long fiber bundle are temporarily bonded to each other on the fiber surface by heat-sealing by heating at an atmospheric temperature 0 to 20 ° C. higher than the solid-state polymerization treatment temperature described later in the production of the By adopting a method of cutting a fiber bundle into short fibers, it can be produced smoothly. In this case, if the heating time is too long, the fibers may be melted by heat, or strong sticking will occur, and when kneaded in the biological polymer, it will not be opened (separated) into a single fiber. Cost. The heat treatment time for adhering (welding) the filaments forming the melted liquid crystalline polyester long fiber bundle may vary depending on the type, melting point, heat treatment temperature, etc. of the melted liquid crystalline polyester forming the long fiber bundle. In general, it is preferably about 30 seconds to 90 minutes, particularly preferably about 1 minute to 60 minutes.
The heat treatment is preferably performed in an inert gas atmosphere such as nitrogen.
Furthermore, this heat treatment is performed in a pressurized atmosphere or in a state where the long fiber bundle is tensioned so that the temporary adhesion by heat fusion between the molten liquid crystalline polyester long fibers constituting the fiber bundle is performed well. You may do it.

また、溶融液晶性ポリエステル長繊維束を加熱雰囲気中で加熱して長繊維束を構成するフィラメント同士を繊維表面で熱融着させて一時的に接着させる前記方法以外に、溶融液晶性ポリエステル長繊維束を熱ローラーなどで加熱プレスしてフィラメント同士を熱融着により一時的に接着させる方法を採用してもよいが、加熱プレス時の圧力が高すぎたり、温度が高すぎると、繊維物性の低下、繊維の切断、繊維(フィラメント)同士の完全な融着などが生ずるので、それらの問題が生じないように加熱温度並びに融着力(圧力)を制御する必要がある。   In addition to the above-mentioned method, in which the melted liquid crystalline polyester long fiber bundle is heated in a heating atmosphere and the filaments constituting the long fiber bundle are thermally fused together on the fiber surface to temporarily bond the melted liquid crystalline polyester long fiber bundle. A method may be adopted in which the bundle is heated and pressed with a heat roller and the filaments are temporarily bonded to each other by heat fusion, but if the pressure at the time of heating is too high or the temperature is too high, Reduction, fiber cutting, and complete fusion of fibers (filaments) occur. Therefore, it is necessary to control the heating temperature and the fusion force (pressure) so that these problems do not occur.

溶融液晶性ポリエステル短繊維束の製造に用いる、熱処理を行なう前の前記した溶融液晶性ポリエステル長繊維束の製法は特に制限されず、従来と同様に、溶融液晶性ポリエステルを口金の紡糸孔からフィラメント状(長繊維状)に溶融紡出させ、溶融紡出した複数のフィラメントを集束することによって製造することができる。これにより得られる溶融液晶性ポリエステル長繊維束は、それ自体で力学的性能および熱的性能に優れ、特に寸法安定性を有しているので、そのままで、長繊維束を構成するフィラメント同士を一時的に熱融着により接着させるための上記した熱処理に供することができるが、溶融吐出−集束後に更に固相重合させて力学的特性を一層向上させてから用いることが、生物由来重合体に対する補強効果および耐熱性の向上効果が一層高くなることから好ましい。
溶融紡糸により得られる溶融液晶性ポリエステル長繊維束の固相重合は、窒素ガスなどの不活性ガス雰囲気中、空気のような酸素含有の活性ガス雰囲気中、または減圧下で、溶融液晶性ポリエステル長繊維束を、長繊維束を形成する溶融液晶性ポリエステルの[融点−60℃]から[融点+10℃]の範囲内の温度に加熱して行なうことが好ましい。この固相重合処理は、長繊維束を短繊維束に切断する前に行うのが好ましいが、場合によっては短繊維束に切断した後に行なってもよい。
かかる固相重合処理を行うことにより、繊維を形成している溶融液晶性ポリエステルの固相重合が促進されて分子量が増大し、繊維の力学物性の向上、融点上昇や不融化による耐熱性の向上を図ることができる。
The method for producing the above-mentioned molten liquid crystalline polyester long fiber bundle before the heat treatment used for the production of the molten liquid crystalline polyester short fiber bundle is not particularly limited, and the molten liquid crystalline polyester is filamented from the spinneret of the die as in the prior art. It can be produced by melt spinning into a shape (long fiber shape) and converging a plurality of melt spun filaments. The melted liquid crystalline polyester long fiber bundle obtained in this way is excellent in mechanical performance and thermal performance by itself, and particularly has dimensional stability. Therefore, the filaments constituting the long fiber bundle are temporarily put together. It can be subjected to the above-mentioned heat treatment for adhesion by thermal fusion, but it can be used after further solid phase polymerization after melt discharge-bundling to further improve the mechanical properties. This is preferable because the effect and the effect of improving heat resistance are further enhanced.
Solid phase polymerization of a melt liquid crystalline polyester long fiber bundle obtained by melt spinning is performed in an inert gas atmosphere such as nitrogen gas, an active gas atmosphere containing oxygen such as air, or under reduced pressure. The fiber bundle is preferably heated to a temperature within the range of [melting point−60 ° C.] to [melting point + 10 ° C.] of the molten liquid crystalline polyester forming the long fiber bundle. This solid phase polymerization treatment is preferably performed before the long fiber bundle is cut into short fiber bundles, but may be performed after being cut into short fiber bundles in some cases.
By performing such solid-phase polymerization treatment, the solid-phase polymerization of the melted liquid crystalline polyester forming the fiber is promoted, the molecular weight is increased, the mechanical properties of the fiber are improved, and the heat resistance is improved by increasing the melting point or making it infusible. Can be achieved.

上記した固相重合を行なった溶融液晶性ポリエステル長繊維束、および固相重合後の当該長繊維束を溶融液晶性ポリエステルの融点よりも高い温度で熱処理して長繊維束を構成しているフィラメント同士を熱融着により一時的に接着させた溶融液晶性ポリエステル長繊維束は、一般に25℃での15cN/dtex以上の引張強度と、400cN/dtex以上の引張初期弾性率を有していて、力学物性および耐熱性において極めて優れている。そのため、前記した引張強度および引張初期弾性率を有する溶融液晶性ポリエステル長繊維束を短繊維状に切断した溶融液晶性ポリエステル短繊維束を用いて本発明の生物由来重合体組成物を製造すると、生物由来重合体に当該溶融液晶性ポリエステル短繊維束を配合して混合装置や成形装置中で加熱下に混練および/または成形したときに、溶融液晶性ポリエステル短繊維の溶融、繊維形態の崩壊、繊維物性の低下などがより効果的に防止されて、力学的特性および耐熱性に一層優れる生物由来重合体組成物および成形品を得ることができる。   The melt-liquid crystalline polyester long fiber bundle subjected to the solid phase polymerization described above, and the filament constituting the long fiber bundle by heat-treating the long fiber bundle after the solid phase polymerization at a temperature higher than the melting point of the melt liquid crystalline polyester The melted liquid crystalline polyester long fiber bundle temporarily bonded to each other by heat fusion generally has a tensile strength of 15 cN / dtex or more at 25 ° C. and a tensile initial elastic modulus of 400 cN / dtex or more, Excellent mechanical properties and heat resistance. Therefore, when producing the biopolymer composition of the present invention using a molten liquid crystalline polyester short fiber bundle obtained by cutting the molten liquid crystalline polyester long fiber bundle having the tensile strength and tensile initial elastic modulus into short fibers, When the molten liquid crystalline polyester short fiber bundle is blended into the biological polymer and kneaded and / or molded under heating in a mixing apparatus or molding apparatus, melting of the molten liquid crystalline polyester short fiber, collapse of the fiber form, It is possible to obtain a biological polymer composition and a molded article that are more effectively prevented from lowering the physical properties of the fiber and are further excellent in mechanical properties and heat resistance.

特に、上記の〔化3〕に示す反復構成単位(A)および(B)からなっていて、且つ[反復構成単位(A)]:[反復構成単位(B)]のモル比が96:4〜55:45である溶融液晶性ポリエステルから形成されている固相重合後の長繊維束は、一般に、25℃においてその引張強度が20cN/dtex以上、引張弾性率が450cN/dtex以上であって、極めて高い力学的特性を有し、しかも耐熱性や非吸水性などにおいても極めて優れているので、本発明において、溶融液晶性ポリエステル短繊維束として、当該溶融液晶性ポリエステル長繊維束から得られる溶融液晶性ポリエステル短繊維束を用いた場合には、力学的特性、耐熱性などの特性に極めて優れる生物由来重合体組成物および成形品を得ることができる。   In particular, it consists of the repeating structural units (A) and (B) shown in the above [Chemical Formula 3], and the molar ratio of [repeating structural unit (A)]: [repeating structural unit (B)] is 96: 4. The long fiber bundle after solid phase polymerization formed from a melt liquid crystalline polyester having a molecular weight of ˜55: 45 generally has a tensile strength of 20 cN / dtex or more and a tensile modulus of 450 cN / dtex or more at 25 ° C. In the present invention, it is obtained from the molten liquid crystalline polyester long fiber bundle as a molten liquid crystalline polyester short fiber bundle because it has extremely high mechanical properties and is extremely excellent in heat resistance and non-water absorption. When a molten liquid crystalline polyester short fiber bundle is used, a biological polymer composition and a molded product that are extremely excellent in properties such as mechanical properties and heat resistance can be obtained.

本発明で用いる溶融液晶性ポリエステル短繊維束の製造に当たっては、工程通過性を良好にしてガイドなどとの摩耗による繊維損傷を防止するために、必要に応じて平滑剤、帯電防止剤(有機界面活性剤成分など)、その他の成分を含む一般的な油剤などの処理剤を繊維表面に付与してもよい。但し、繊維表面に付与した処理剤は、溶融液晶性ポリエステル短繊維と生物由来重合体との加熱混練時に熱分解して生物由来重合体の劣化を引き起こし、生物由来重合体組成物や成形品の外観品位、力学的特性などを低下させる場合があるので、処理剤の付与量は少なくすることが望ましく、一般に溶融液晶性ポリエステル繊維の質量に基づいて1.5質量%以下、特に0.2〜1.3質量%程度にするのがよい。
繊維表面への処理剤の付与は、短繊維状に切断する前の溶融液晶性ポリエステル長繊維束の製造時、当該溶融液晶性ポリエステル長繊維束の固相重合時、溶融液晶性ポリエステル長繊維束を形成しているフィラメント同士を熱融着により一時的に接着させるための熱処理時、溶融液晶性ポリエステル長繊維束の短繊維への切断時、生物由来重合体への溶融液晶性ポリエステル短繊維束の配合時などのいずれの段階で行ってもよい。
In producing the melted liquid crystalline polyester short fiber bundle used in the present invention, a smoothing agent, an antistatic agent (organic interface) is used as necessary in order to improve process passability and prevent fiber damage due to abrasion with a guide or the like. A treatment agent such as a general oil containing an active agent component and other components may be applied to the fiber surface. However, the treatment agent applied to the fiber surface is thermally decomposed during the heat-kneading of the molten liquid crystalline polyester short fiber and the biological polymer to cause degradation of the biological polymer, and the biological polymer composition or molded product Since appearance quality, mechanical properties, and the like may be lowered, it is desirable to reduce the amount of treatment agent applied, generally 1.5% by mass or less based on the mass of the molten liquid crystalline polyester fiber, particularly 0.2 to It should be about 1.3% by mass.
The treatment agent is applied to the fiber surface during the production of a melted liquid crystalline polyester long fiber bundle before being cut into short fibers, during the solid phase polymerization of the melted liquid crystalline polyester long fiber bundle, When a heat treatment for temporarily adhering the filaments forming the fiber to each other by thermal fusion, when cutting a molten liquid crystalline polyester long fiber bundle into short fibers, a molten liquid crystalline polyester short fiber bundle into a biological polymer It may be carried out at any stage such as when blending.

短繊維同士が熱融着により一時的に接着している溶融液晶性ポリエステル短繊維束を生物由来重合体に配合し、加熱下に混練して、加熱混練時の温度および/または剪断力によって溶融液晶性ポリエステル短繊維束を構成している単繊維を短繊維状に開繊(分離)させて、溶融液晶性ポリエステル短繊維が単繊維状で生物由来重合体中に混合分散した繊維強化生物由来重合体組成物を製造する。   A molten liquid crystalline polyester short fiber bundle in which short fibers are temporarily bonded by thermal fusion is blended with a biological polymer, kneaded under heating, and melted by the temperature and / or shearing force during heating and kneading. Fiber-reinforced polyester-derived short fiber bundles are opened (separated) into short fibers, and the melted liquid crystalline polyester short fibers are in the form of single fibers mixed and dispersed in biological polymers. A polymer composition is produced.

溶融液晶性ポリエステル短繊維束の配合量は、生物由来重合体中への溶融液晶性ポリエステル短繊維の分散性、得られる生物由来重合体組成物および成形品の力学的特性、耐熱性、寸法安定性、射出成形時などの成形性などの点から、生物由来重合体100質量部に対して、0.5〜50質量部であることが好ましく、1〜40質量部であることがより好ましく、1〜20質量部であることが更に好ましい。
溶融液晶性ポリエステル短繊維束の配合量が少なすぎると、溶融液晶性ポリエステル短繊維による十分な補強効果が得られにくくなり、一方配合量が多すぎると、生物由来重合体中への溶融液晶性ポリエステル短繊維の分散性が悪くなり、重合体組成物を製造する際の作業性、得られる生物由来重合体組成物や成形品の外観不良、力学的特性の低下、 などが生じ易くなる。
The amount of molten liquid crystalline polyester short fiber bundle is determined by the dispersibility of the molten liquid crystalline polyester short fibers in the biological polymer, the mechanical properties of the resulting biological polymer composition and molded product, heat resistance, and dimensional stability. From the viewpoint of moldability at the time of injection property and injection molding, it is preferably 0.5 to 50 parts by mass, more preferably 1 to 40 parts by mass with respect to 100 parts by mass of the biological polymer. More preferably, it is 1-20 mass parts.
If the amount of the melted liquid crystalline polyester short fiber bundle is too small, it will be difficult to obtain a sufficient reinforcing effect by the melted liquid crystalline polyester short fiber, while if the amount is too large, the melted liquid crystallinity in the biological polymer will be lost. The dispersibility of the polyester short fiber is deteriorated, and the workability in producing the polymer composition, the appearance defect of the obtained biopolymer composition or the molded product, and the deterioration of the mechanical properties are likely to occur.

溶融液晶性ポリエステル短繊維束を生物由来重合体に配合するに当たっては、加熱混練時に生物由来重合体が水分によって分解するのを防止するために、十分に乾燥して水分を除去した溶融液晶性ポリエステル短繊維束を用いることが望ましい。水分を除去するための溶融液晶性ポリエステル短繊維束の乾燥処理は一般に140℃以下で行うことが好ましい。乾燥温度が高すぎると、短繊維束中で繊維同士が強く熱融着してしまい、加熱混練時に単繊維状に開繊(分離)しなくなる。
本発明で用いる溶融液晶性ポリエステル繊維は、重合体分子が主に疎水性構造単位から形成されていて、しかも繊維構造が緻密でボイドなどの空隙を有していないため、繊維の平衡水分率が極めて低い。かかる点から、水分を除去するための溶融液晶性ポリエステル短繊維束の乾燥処理は容易に行うことができ、しかも乾燥処理後の溶融液晶性ポリエステル短繊維束は水分を殆ど含有していないために、生物由来重合体に配合して加熱混練したときに繊維から放出される水分は極めて少なく、加熱混練や加熱成形時に水分による生物由来重合体の分解や劣化などの悪影響も極めて少ない。
When blending molten liquid crystalline polyester short fiber bundles with a biological polymer, the molten liquid crystalline polyester is sufficiently dried to prevent the biological polymer from being decomposed by moisture during heating and kneading. It is desirable to use short fiber bundles. In general, the drying treatment of the molten liquid crystalline polyester short fiber bundle for removing water is preferably performed at 140 ° C. or lower. If the drying temperature is too high, the fibers are strongly heat-sealed in the short fiber bundle, and are not opened (separated) into a single fiber during heating and kneading.
In the melt liquid crystalline polyester fiber used in the present invention, the polymer molecules are mainly formed from hydrophobic structural units, and the fiber structure is dense and has no voids such as voids. Very low. From this point, the drying treatment of the molten liquid crystalline polyester short fiber bundle for removing moisture can be easily performed, and the molten liquid crystalline polyester short fiber bundle after the drying treatment contains almost no moisture. The water released from the fibers when blended with the biological polymer and heat-kneaded is extremely small, and the adverse effects such as decomposition and deterioration of the biological polymer due to the water during heat-kneading and thermoforming are extremely small.

本発明の生物由来重合体組成物を製造するに当たっては、生物由来重合体への溶融液晶性ポリエステル短繊維束の配合方法、加熱混練方法は、特に制限されず、生物由来重合体の種類、溶融液晶性ポリエステル短繊維束の配合量、生物由来重合体組成物の用途などに応じて適当な方法を採用すればよい。
また、生物由来重合体に溶融液晶性ポリエステル短繊維束を配合し加熱混練して、ペレット状やその他の適当な形態の繊維強化生物由来重合体組成物を一旦製造した後にその繊維強化生物由来重合体組成物を用いて成形品などの各種製品を製造してもよいし、または生物由来重合体に溶融液晶性ポリエステル短繊維束を配合し加熱混練・成形を行って成形品などの製品をそのまま直接製造してもよい。
繊維強化生物由来重合体組成物を製造するための加熱混練操作は、例えば、ニーダールーダー、押出し機、ミキシングロール、バンバリーミキサーなどの既知の混合または混練装置を使用して行うことができる。
In producing the biological polymer composition of the present invention, the method of blending the molten liquid crystalline polyester short fiber bundle with the biological polymer and the heat-kneading method are not particularly limited, and the type of the biological polymer, melting What is necessary is just to employ | adopt an appropriate method according to the compounding quantity of a liquid crystalline polyester short fiber bundle, the use of a biological origin polymer composition, etc.
In addition, a molten liquid crystalline polyester short fiber bundle is blended into a biological polymer and heated and kneaded to once produce a fiber reinforced biological polymer composition in a pellet form or other suitable form, and then the fiber reinforced biological fiber. Various products such as molded products may be produced using the combined composition, or a product such as molded products may be used as it is by blending a melt-liquid crystalline polyester short fiber bundle with a biological polymer and kneading and molding. You may manufacture directly.
The heating and kneading operation for producing the fiber-reinforced biological polymer composition can be performed using a known mixing or kneading apparatus such as a kneader-luder, an extruder, a mixing roll, or a Banbury mixer.

本発明の繊維強化生物由来重合体組成物の製造に当たっては、本発明の効果を損なわない範囲内で、生物由来重合体と共に、必要に応じて、石油系資源に由来する重合体などの他の重合体を混合してもよい。他の重合体の例としては、ポリエチレン、ポリプロピレン、ポリスチレン、ABS、ナイロン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリカーボネートなどの熱可塑性重合体、尿素樹脂、メラミン樹脂、アルキド樹脂、アクリル樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、エポキシ樹脂、シリコーン樹脂、シアネート系樹脂、フラン樹脂、ケトン樹脂、キシレン樹脂、熱硬化型ポリイミド、熱硬化型ポリアミド、スチリルピリジン系樹脂、二トリル末端型樹脂、付加硬化型キノキサリン、付加硬化型ポリキノキサリン樹脂などの熱硬化性樹脂、前記熱可塑性重合体または熱硬化性樹脂と生物由来重合体のアロイなどを挙げることができる。熱硬化型樹脂を併用する場合は、硬化反応に必要な硬化剤や硬化促進剤を使用することができる。   In the production of the fiber-reinforced biological polymer composition of the present invention, within the range that does not impair the effects of the present invention, together with the biological polymer, if necessary, other polymers such as polymers derived from petroleum-based resources. A polymer may be mixed. Examples of other polymers include thermoplastic polymers such as polyethylene, polypropylene, polystyrene, ABS, nylon, polyethylene terephthalate, polybutylene terephthalate, polycarbonate, urea resin, melamine resin, alkyd resin, acrylic resin, unsaturated polyester resin Diallyl phthalate resin, epoxy resin, silicone resin, cyanate resin, furan resin, ketone resin, xylene resin, thermosetting polyimide, thermosetting polyamide, styrylpyridine resin, nitrile terminal type resin, addition curable quinoxaline, Examples thereof include thermosetting resins such as addition-curable polyquinoxaline resins, alloys of the thermoplastic polymers or thermosetting resins and biological polymers. When a thermosetting resin is used in combination, a curing agent and a curing accelerator necessary for the curing reaction can be used.

また、本発明の繊維強化生物由来重合体組成物の製造に当たっては、必要に応じて、無機充填材、溶融液晶性ポリエステル繊維以外の繊維補強材、着色剤(酸化チタンなど)、安定剤(ラジカル捕捉剤、酸化防止剤など)、難燃剤(金属水和物やハロゲン系難燃剤、リン系難燃剤など)、公知の結晶核剤(タルクなど)、抗菌剤、防かび剤などを併用できる。その際に、前記無機充填材としては、例えば、シリカ、アルミナ、砂、粘土、鉱滓などを挙げることができ、前記補強材としては、例えば針状無機物などを挙げることができる。また、前記抗菌剤としては、例えば、銀イオン、銅イオンまたはこれらを含有するゼオライトなどを使用することができる。   Further, in the production of the fiber-reinforced biopolymer composition of the present invention, if necessary, inorganic fillers, fiber reinforcing materials other than molten liquid crystalline polyester fibers, colorants (such as titanium oxide), stabilizers (radicals). Scavengers, antioxidants, etc.), flame retardants (metal hydrates, halogen flame retardants, phosphorus flame retardants, etc.), known crystal nucleating agents (talc, etc.), antibacterial agents, fungicides, etc. can be used in combination. In that case, examples of the inorganic filler include silica, alumina, sand, clay, and iron, and examples of the reinforcing material include acicular inorganic substances. Moreover, as said antibacterial agent, a silver ion, a copper ion, or the zeolite containing these can be used, for example.

繊維強化生物由来重合体組成物を一旦製造した後にその組成物を用いて成形品を製造する場合、または繊維強化生物由来重合体組成物の製造と成形を同時に行う場合のいずれの場合にも、従来から知られている成形加工方法や成形加工装置を用いて成形加工することができ、例えば、押出成形、射出成形、圧縮成形、ブロー成形、カレンダー成形、真空成形、発泡成形などの任意の成形加工法によって成形加工することができ、また溶融紡糸して繊維を製造することもできる。それによってシート、フィルム、パイプ、型物、積層体などの任意の形態の成形品や、繊維、繊維製品などを得ることができ、それによって得られる成形品や製品は、例えば、電化製品の筐体などの電気・電子機器用途、建材用途、自動車部品用途、日用品用途、医療用途、農業用途などに用いることができる。
特に、生物由来重合体が、ポリ乳酸やその他の熱可塑性の生物由来重合体である場合には、本発明の繊維強化生物由来重合体組成物を用いて、熱可塑性重合体に対して従来から汎用されている各種の溶融成形方法を採用して、電気・電子機器製品やその他の各種製品を容易に且つ円滑に製造することができる。溶融成形を行う場合は、成形温度を、生物由来重合体の溶融温度以上で且つ溶融液晶性ポリエステル繊維や生物由来重合体が熱劣化しない範囲に設定すればよい。
In either case where a fiber-reinforced biological polymer composition is once produced and then a molded product is produced using the composition, or when a fiber-reinforced biological polymer composition is produced and molded simultaneously, Molding can be performed using a conventionally known molding method or molding processing apparatus, for example, any molding such as extrusion molding, injection molding, compression molding, blow molding, calendar molding, vacuum molding, foam molding, etc. It can be molded by a processing method, and can be melt-spun to produce a fiber. As a result, it is possible to obtain a molded product of an arbitrary form such as a sheet, a film, a pipe, a mold, a laminate, a fiber, a fiber product, and the like. It can be used for electrical and electronic equipment applications such as body, building material applications, automotive parts applications, daily necessities applications, medical applications, and agricultural applications.
In particular, when the biological polymer is polylactic acid or other thermoplastic biological polymer, the fiber-reinforced biological polymer composition of the present invention is used to make a conventional thermoplastic polymer. By adopting various melt molding methods that are widely used, electrical and electronic equipment products and other various products can be manufactured easily and smoothly. In the case of performing melt molding, the molding temperature may be set to a temperature that is not less than the melting temperature of the biological polymer and the molten liquid crystalline polyester fiber or biological polymer is not thermally deteriorated.

以下に実施例などによって本発明についてさらに具体的に説明するが、本発明は以下の例により何ら限定されるものではない。
なお、以下の例において、各種の物性、作業性、性能などの評価は次のようにして行った。
Hereinafter, the present invention will be described more specifically with reference to examples and the like, but the present invention is not limited to the following examples.
In the following examples, various physical properties, workability, performance, and the like were evaluated as follows.

(1)ポリ乳酸の重量平均分子量(Mw)および数平均分子量(Mn):
(i)ポリ乳酸組成物の製造原料として用いたポリ乳酸の分子量:
ポリ乳酸組成物の製造に用いたポリ乳酸10mgをクロロホルム5gに溶解した溶液を用いて、ゲルパーミエーションクロマトグラフ(GPC)[(株)島津製作所製「Prominence GPCシステム」]を使用し、クロロホル溶媒を用いて、ポリスチレン換算のポリ乳酸の重量平均分子量(Mw)および数平均分子量(Mn)を測定した。
(ii)成形品中のポリ乳酸の分子量:
以下の例(実施例1〜2および比較例1〜3)で得られたそれぞれの成形品(試験片)をクロロホルムに溶解し、溶融液晶性ポリエステル短繊維を含むものでは不溶性の溶融液晶性ポリエステル短繊維を濾過して除去し、ポリ乳酸を溶解してなる濾液を用いて、ゲルパーミエーションクロマトグラフ(GPC)[(株)島津製作所製「Prominence GPCシステム」]を使用し、クロロホルム溶媒を用いて、ポリスチレン換算のポリ乳酸の重量平均分子量(Mw)および数平均分子量(Mn)を測定した。
(1) Weight average molecular weight (Mw) and number average molecular weight (Mn) of polylactic acid:
(I) Molecular weight of polylactic acid used as a raw material for producing the polylactic acid composition:
Using a solution obtained by dissolving 10 mg of polylactic acid used in the production of the polylactic acid composition in 5 g of chloroform, using a gel permeation chromatograph (GPC) [“Prominence GPC system” manufactured by Shimadzu Corporation], a chloroform solvent Was used to measure the weight average molecular weight (Mw) and number average molecular weight (Mn) of polylactic acid in terms of polystyrene.
(Ii) Molecular weight of polylactic acid in the molded product:
Each molded product (test piece) obtained in the following examples (Examples 1 and 2 and Comparative Examples 1 to 3) is dissolved in chloroform, and insoluble in the liquid crystal polyester short fibers containing the melted liquid crystal polyester short fibers. Using a filtrate obtained by filtering short fibers and dissolving polylactic acid, a gel permeation chromatograph (GPC) ["Prominence GPC system" manufactured by Shimadzu Corporation] and using a chloroform solvent Then, the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the polylactic acid in terms of polystyrene were measured.

(2)繊維の製造に使用した溶融液晶性ポリエステルの融点(℃)および溶融粘度(Pa・s):
(i)溶融液晶性ポリエステルの融点(℃):
溶融液晶性ポリエステル試料10〜20mgを採取し、アルミ製パンに封入した後、示差走査熱量計(DSC)[(株)島津製作所製「DSC−60」]を使用して、キャリアーガスとして窒素ガスを100ml/分の流量にて注入しながら、昇温速度20℃/分で昇温したときの吸熱ピーク温度を測定して(1st Run)、融点(℃)とした。
重合体の種類によっては前記1st Runで明確な吸熱ピークが出現しない場合があるので、その場合には50℃/分の昇温速度で、予想される融点よりも50℃高い温度まで昇温し、その温度で3分間以上保持し完全に溶解した後、50〜80℃/分の降温速度で50℃まで冷却し、しかる後20℃/分の昇温速度で吸熱ピークを測定して融点(℃)とした。
(ii)溶融液晶性ポリエステルの溶融粘度(Pa・s):
株式会社東洋精機製「キャピログラフ1B型」を用いて、溶融温度300℃、剪断速度1000sec-1の条件で溶融液晶性ポリエステルの溶融粘度(Pa・s)を測定した。
(2) Melting point (° C.) and melt viscosity (Pa · s) of melted liquid crystalline polyester used for fiber production:
(I) Melting point (° C) of molten liquid crystalline polyester:
After taking 10-20 mg of molten liquid crystalline polyester sample and sealing it in an aluminum pan, a differential scanning calorimeter (DSC) [“DSC-60” manufactured by Shimadzu Corporation] is used and nitrogen gas is used as a carrier gas. Was injected at a flow rate of 100 ml / min, and the endothermic peak temperature when the temperature was raised at a rate of temperature rise of 20 ° C./min was measured (1st Run) to obtain the melting point (° C.).
Depending on the type of polymer, a clear endothermic peak may not appear at 1st Run. In that case, the temperature is increased to 50 ° C. higher than the expected melting point at a rate of temperature increase of 50 ° C./min. Then, hold at that temperature for 3 minutes or more and completely dissolve, then cool to 50 ° C. at a temperature lowering rate of 50 to 80 ° C./min, and then measure an endothermic peak at a temperature rising rate of 20 ° C./min. ° C).
(Ii) Melt viscosity (Pa · s) of molten liquid crystalline polyester:
The melt viscosity (Pa · s) of the molten liquid crystalline polyester was measured under the conditions of a melting temperature of 300 ° C. and a shear rate of 1000 sec −1 using “Capillograph 1B type” manufactured by Toyo Seiki Co., Ltd.

(3)溶融液晶性ポリエステル長繊維束の引張特性(引張強度、引張初期弾性率および引張伸度):
以下の製造例1の(2)、製造例2の(1)、製造例3の(2)、製造例4の(2)、製造例7の(1)、製造例8の(1)および製造例9の(1)で得られた熱処理後の溶融液晶性ポリエステル長繊維束のそれぞれについて、JIS L1013試験法に準拠して、インストロン社製万能材料試験機4301型を使用して、試長20cm、初荷重0.1g/dtex、引張速度10cm/minの条件下で引張強度、引張初期弾性率および引張伸度をそれぞれ測定した。同じ試験を5点行って、その平均値を採って、引張強度(cN/dtex)、引張初期弾性率(cN/dtex)および引張伸度(%)として採用した。
(3) Tensile properties (tensile strength, initial tensile modulus and tensile elongation) of melted liquid crystalline polyester long fiber bundle:
Production Example 1 (2), Production Example 2 (1), Production Example 3 (2), Production Example 4 (2), Production Example 7 (1), Production Example 8 (1) and Each of the molten liquid crystalline polyester long fiber bundles obtained after the heat treatment obtained in (1) of Production Example 9 was tested using a universal material testing machine 4301 manufactured by Instron in accordance with JIS L1013 test method. Tensile strength, initial tensile modulus, and tensile elongation were measured under the conditions of a length of 20 cm, an initial load of 0.1 g / dtex, and a tensile speed of 10 cm / min. The same test was performed 5 times, and the average value was taken and adopted as tensile strength (cN / dtex), initial tensile modulus (cN / dtex) and tensile elongation (%).

(4)溶融液晶性ポリエステル長繊維束(原反)を長さ5mmの短繊維束に切断したときの開繊率:
以下の製造例1〜9で得られた、短繊維束に切断する前の溶融液晶性ポリエステル長繊維束(原反)のそれぞれについて、前記した「(a)開繊率(延伸処理なし)」の項で説明したのと同じ操作を行って、上記した数式(I−1)により、「開繊率(延伸処理なし)」(%)を求めると共に、前記した「(b)開繊率(延伸処理あり)」の項で説明したのと同じ操作を行って、上記した数式(I−2)により、「開繊率(延伸処理あり)」(%)を求めた。
なお、上述のように、本発明で用いる溶融液晶性ポリエステル短繊維束は、上記した(a)の方法で求められる「開繊率(延伸処理なし)」が20%以下、特に15%以下で、且つ上記した(b)の方法で求められる「開繊率(延伸処理あり)」が70%以上、特に80%以上である溶融液晶性ポリエステル長繊維束(原反)を短繊維状に切断して得られる短繊維束であることが好ましい。
(4) Opening rate when a melted liquid crystalline polyester long fiber bundle (raw fabric) is cut into a short fiber bundle having a length of 5 mm:
For each of the melted liquid crystalline polyester long fiber bundles (raw fabrics) obtained in the following Production Examples 1 to 9 before being cut into short fiber bundles, the “(a) fiber opening rate (no stretching treatment)” described above. The same operation as described in the section is performed to obtain the “opening rate (no stretching treatment)” (%) by the above formula (I-1) and the above-mentioned “(b) opening rate ( The same operation as described in the section “With stretching treatment” was performed, and “Opening rate (with stretching treatment)” (%) was obtained by the above-described equation (I-2).
As described above, the melt liquid crystalline polyester short fiber bundle used in the present invention has a “opening ratio (no stretching treatment)” obtained by the above-described method (a) of 20% or less, particularly 15% or less. In addition, a melted liquid crystalline polyester long fiber bundle (raw fabric) having an “opening ratio (with stretching treatment)” required by the method (b) of 70% or more, particularly 80% or more, is cut into short fibers. It is preferable that it is a short fiber bundle obtained as described above.

(5)溶融液晶性ポリエステル短繊維束または短繊維の凝集性:
以下の製造例1の(3)、製造例2の(2)、製造例3の(3)、製造例4の(3)、製造例5、製造例6、製造例8の(2)および製造例9の(2)で得られた溶融液晶性ポリエステル短繊維束並びに製造例7の(2)で得られた非集束溶融液晶性ポリエステル短繊維のそれぞれ20gを、1cm角の目開きを有する円形の篩(直径20cm)に平らに載せ、上下1cmの震とうを1回/1秒の震とう速度で20回加えた後(上下1往復を1回とする)、篩上に残留している短繊維の質量(束状および単繊維状の短繊維の合計質量)(g)を測定し、以下の数式(II)から篩上に残留している溶融液晶性ポリエステル短繊維の割合(質量%)を求めて凝集性の指標とした。

凝集性(質量%)={篩上に残留している短繊維の質量(g)/試料量(20g)}×100 (II)

篩上に残留している溶融液晶性ポリエステル短繊維の割合(質量%)が多いほど、凝集し易い(ダマを形成し易い)ことを示す。
(5) Cohesiveness of molten liquid crystalline polyester short fiber bundle or short fiber:
Production Example 1 (3), Production Example 2 (2), Production Example 3 (3), Production Example 4 (3), Production Example 5, Production Example 6, Production Example 8 (2) and 20 g of each of the molten liquid crystalline polyester short fiber bundle obtained in (2) of Production Example 9 and the unfocused molten liquid crystalline polyester short fiber obtained in (2) of Production Example 7 has an opening of 1 cm square. Place it flatly on a circular sieve (diameter 20cm), add 20cm of shaking up and down 1cm at a shaking speed of 1 time / sec. The mass of short fibers (total mass of bundled and monofilamentary short fibers) (g) was measured, and the ratio (mass of molten liquid crystalline polyester short fibers remaining on the sieve from the following formula (II) %) As an index of cohesion.

Aggregability (mass%) = {mass of short fibers remaining on the sieve (g) / sample amount (20 g)} × 100 (II)

It shows that it is easy to aggregate (it is easy to form a dama), so that there are many ratios (mass%) of the molten liquid crystalline polyester short fiber which remains on a sieve.

(6)溶融液晶性ポリエステル短繊維束または短繊維の流動性:
以下の製造例1の(3)、製造例2の(2)、製造例3の(3)、製造例4の(3)、製造例5、製造例6、製造例8の(2)および製造例9の(2)で得られた溶融液晶性ポリエステル短繊維束並びに製造例7の(2)で得られた非集束溶融液晶性ポリエステル短繊維のそれぞれを、投入速度(単位時間当たりの投入量)を変えることのできるスクリュー形式の連続投入装置を使用して、テーパー管状の円錐形ホッパー(上部開口の内径14cm、下部開口の内径4cm、高さ15cm)に、円錐形ホッパーの上部開口から約10cm離れた上方位置から垂直下方に連続的に投入し、溶融液晶性ポリエステル短繊維束または短繊維がホッパーを閉塞しないで通過できる上限の投入速度(単位時間当たりの投入量)を測定して流動性の指標とした。
(6) Flowability of molten liquid crystalline polyester short fiber bundle or short fiber:
Production Example 1 (3), Production Example 2 (2), Production Example 3 (3), Production Example 4 (3), Production Example 5, Production Example 6, Production Example 8 (2) and Each of the molten liquid crystalline polyester short fiber bundle obtained in (2) of Production Example 9 and the unfocused molten liquid crystalline polyester short fiber obtained in (2) of Production Example 7 was charged at a charging speed (input per unit time). From a top opening of a conical hopper to a tapered tubular conical hopper (inner diameter of the upper opening 14 cm, inner diameter of the lower opening 4 cm, height 15 cm) Continuously throwing vertically downward from an upper position about 10 cm away, and measuring the upper feeding speed (amount charged per unit time) at which a melted liquid crystalline polyester short fiber bundle or short fiber can pass without blocking the hopper Liquidity indicators and It was.

(7)試験片(成形品)の曲げ強度および曲げ弾性率:
以下の実施例3〜15および比較例4〜6で製造した試験片(成形品)について、材料試験機[(株)島津製作所製「オートグラフAG/R」]を使用して、JIS K 7171試験法に準拠して、曲げ強度および曲げ弾性率を測定した。測定条件は、支点間距離を50mm、圧子の押込み速度を1.6mm/minとした。
(7) Bending strength and flexural modulus of test piece (molded product):
About the test piece (molded article) manufactured in the following Examples 3 to 15 and Comparative Examples 4 to 6, using a material testing machine [“Autograph AG / R” manufactured by Shimadzu Corporation], JIS K 7171 Based on the test method, the bending strength and the flexural modulus were measured. The measurement conditions were a distance between fulcrums of 50 mm and an indenter push speed of 1.6 mm / min.

(8)試験片(成形品)の耐衝撃性:
以下の実施例3〜15および比較例4〜6で製造した試験片(成形品)について、衝撃試験機[(株)東洋精機製作所製「JISL−D」]を使用して、JIS K 7110試験法に準拠して、ノッチ付き試験片のアイゾット衝撃強さを測定した。なお、ここで使用した試験片は、2号A型試験片に準拠した成形体で、ノッチ付(d=2.54mm、r=0.25mm)で、長さl(L)が64mm、幅bが約3.2mm、厚さtが約10.3mmである。
(8) Impact resistance of test piece (molded product):
About the test piece (molded article) manufactured in the following Examples 3 to 15 and Comparative Examples 4 to 6, an impact tester ["JISL-D" manufactured by Toyo Seiki Seisakusho Co., Ltd.] was used. In accordance with the law, the Izod impact strength of the notched specimen was measured. In addition, the test piece used here is a molded product based on No. 2 type A test piece, with a notch (d = 2.54 mm, r = 0.25 mm), length l (L) of 64 mm, width b is about 3.2 mm, and thickness t is about 10.3 mm.

(9)試験片(成形品)の耐熱性:
以下の実施例3〜15および比較例4〜6で製造した試験片(成形品)について、HTD/VSPT測定装置[(株)上島製作所製「TM−4126」]を使用して、JIS K 7191−2試験法に準拠して、荷重たわみ温度(HDT)を測定した。測定条件は、荷重1.8MPa、昇温速度2℃/min、支点間距離100mmとした。このようにして測定されたHDTを耐熱性の指標とした。
(9) Heat resistance of test piece (molded product):
About the test piece (molded article) manufactured in the following Examples 3 to 15 and Comparative Examples 4 to 6, using an HTD / VSPT measuring device [“TM-4126” manufactured by Ueshima Seisakusho Co., Ltd.], JIS K 7191 -2 The deflection temperature under load (HDT) was measured according to the test method. The measurement conditions were a load of 1.8 MPa, a temperature increase rate of 2 ° C./min, and a fulcrum distance of 100 mm. The HDT measured in this way was used as an index of heat resistance.

《製造例1》[溶融液晶性ポリエステル短繊維束(a1)の製造]
(1) 上記の〔化3〕で示した反復構成単位(A):(B)のモル比が73:27である溶融液晶性ポリエステル[ポリプラスチックス(株)社製「ベクトラA」)(融点=281℃、溶融粘度=42.5Pa・s)を溶融紡糸装置に供給して、口金より紡糸温度305℃で吐出させて糸条化させ、速度1000m/minの回転ローラーにて引取り、捲取機にて巻き取って、繊度1670dtex/600フィラメント(フィラメントの単繊維繊度2.8dtex)の紡糸原糸を製造した。
(2) 上記(1)で得られた紡糸原糸を、固相重合を行うためにステンレス製のボビンに捲き返し、窒素ガス雰囲気中で、250℃で6時間、次いで275℃で10時間処理した後、引き続いて290℃で30分間熱処理して単繊維(フィラメント)同士が熱融着により一時的に接着した溶融液晶性ポリエステル長繊維束(長繊維束の横断面は、厚み約0.1mm、幅約2mm)を製造した。
これにより得られた熱処理後の溶融液晶性ポリエステル長繊維束の引張特性を上記した方法で測定したところ、引張強度が23cN/dtex、引張初期弾性率が525cN/dtexおよび引張伸度が4.0%であった。
また、得られた熱処理後の溶融液晶性ポリエステル長繊維束(原反)の「開繊率(延伸処理なし)」および「開繊率(延伸処理あり)」を上記した方法で測定したところ、下記の表1に示すとおりであった。
(3) 上記(2)で得られた熱処理後の溶融液晶性ポリエステル長繊維束をカッター刃にて長さ3mmに切断して、繊維束長3mmの溶融液晶性ポリエステル短繊維束[「溶融液晶性ポリエステル短繊維束(a1)」という]を製造した。
これにより得られた溶融液晶性ポリエステル短繊維束(a1)の凝集性および流動性を上記した方法で調べたところ、下記の表1に示すとおりであった。
<< Production Example 1 >> [Production of Molten Liquid Crystalline Polyester Short Fiber Bundle (a 1 )]
(1) Molten liquid crystalline polyester having a recurring structural unit (A) :( B) molar ratio of 73:27 shown in the above [Chemical Formula 3] [“Vectra A” manufactured by Polyplastics Co., Ltd.) ( (Melting point = 281 ° C., melt viscosity = 42.5 Pa · s) is supplied to the melt spinning apparatus, discharged from the die at a spinning temperature of 305 ° C. to form a yarn, and taken up by a rotating roller at a speed of 1000 m / min. The yarn was wound with a winder to produce a spinning yarn having a fineness of 1670 dtex / 600 filament (filament single fiber fineness of 2.8 dtex).
(2) The spinning yarn obtained in (1) above is turned over to a stainless steel bobbin for solid-phase polymerization and treated in a nitrogen gas atmosphere at 250 ° C. for 6 hours and then at 275 ° C. for 10 hours. After that, a melted liquid crystalline polyester long fiber bundle in which single fibers (filaments) are temporarily bonded by thermal fusion by heat treatment at 290 ° C. for 30 minutes (the cross section of the long fiber bundle has a thickness of about 0.1 mm). , Width about 2 mm).
When the tensile properties of the melted liquid crystalline polyester long fiber bundle obtained by this treatment were measured by the method described above, the tensile strength was 23 cN / dtex, the initial tensile modulus was 525 cN / dtex, and the tensile elongation was 4.0. %Met.
Moreover, when the "opening rate (without stretching treatment)" and "opening rate (with stretching treatment)" of the obtained melt liquid crystalline polyester long fiber bundle (raw fabric) after heat treatment was measured by the method described above, It was as shown in Table 1 below.
(3) The molten liquid crystalline polyester long fiber bundle after heat treatment obtained in the above (2) is cut into a length of 3 mm with a cutter blade, and a molten liquid crystalline polyester short fiber bundle having a fiber bundle length of 3 mm [“molten liquid crystal The short polyester fiber bundle (a 1 ) ”was produced.
The cohesiveness and fluidity of the melted liquid crystalline polyester short fiber bundle (a 1 ) thus obtained were examined by the method described above, and as shown in Table 1 below.

《製造例2》[溶融液晶性ポリエステル短繊維束(a2)の製造]
(1) 製造例1の(1)で得られた紡糸原糸を、固相重合を行うためにステンレス製のボビンに捲き返し、窒素ガス雰囲気中で、250℃で6時間、次いで275℃で10時間処理した。その後、この固相重合した原糸をクリール架台に6本準備し、この6本の糸条を引き揃えて10020dtex/3600fの糸条とし、ステンレス製ボビンに巻き返した。次にこのボビンを、窒素ガス雰囲気中で、290℃で60分間熱処理し、長繊維同士が熱融着により一時的に接着した溶融液晶性ポリエステル長繊維束(長繊維束横断面の厚み約0.5mm、幅約4mm)を製造した。
これにより得られた熱処理後の溶融液晶性ポリエステル長繊維束の引張特性を上記した方法で測定したところ、引張強度が23cN/dtex、引張初期弾性率が510cN/dtexおよび引張伸度が3.9%であった。
また、得られた熱処理後の溶融液晶性ポリエステル長繊維束(原反)の「開繊率(延伸処理なし)」および「開繊率(延伸処理あり)」を上記した方法で測定したところ、下記の表1に示すとおりであった。
(2) 上記(1)で得られた熱処理後の溶融液晶性ポリエステル長繊維束をカッター刃にて長さ3mmに切断して、繊維束長3mmの溶融液晶性ポリエステル短繊維束[「溶融液晶性ポリエステル短繊維束(a2)」という]を製造した。
これにより得られた溶融液晶性ポリエステル短繊維束(a2)の凝集性および流動性を上記した方法で調べたところ、下記の表1に示すとおりであった。
<< Production Example 2 >> [Production of Molten Liquid Crystalline Polyester Short Fiber Bundle (a 2 )]
(1) The spinning yarn obtained in (1) of Production Example 1 was turned over to a stainless steel bobbin for solid-phase polymerization, and in a nitrogen gas atmosphere at 250 ° C. for 6 hours and then at 275 ° C. Treated for 10 hours. Thereafter, six solid phase polymerized yarns were prepared on a creel frame, and the six yarns were aligned to form a 10020 dtex / 3600f yarn, which was wound around a stainless steel bobbin. Next, this bobbin was heat-treated at 290 ° C. for 60 minutes in a nitrogen gas atmosphere, and a melted liquid crystalline polyester long fiber bundle (long fiber bundle cross-sectional thickness of about 0) was obtained by temporarily adhering long fibers to each other by heat fusion. 0.5 mm, width of about 4 mm).
When the tensile properties of the melted liquid crystalline polyester long fiber bundle thus obtained were measured by the above method, the tensile strength was 23 cN / dtex, the initial tensile modulus was 510 cN / dtex, and the tensile elongation was 3.9. %Met.
Moreover, when the "opening rate (without stretching treatment)" and "opening rate (with stretching treatment)" of the obtained melt liquid crystalline polyester long fiber bundle (raw fabric) after heat treatment was measured by the method described above, It was as shown in Table 1 below.
(2) The molten liquid crystalline polyester long fiber bundle after the heat treatment obtained in the above (1) is cut into a length of 3 mm with a cutter blade, and a molten liquid crystalline polyester short fiber bundle having a fiber bundle length of 3 mm [“molten liquid crystal The short polyester fiber bundle (a 2 ) ”was produced.
The cohesiveness and fluidity of the molten liquid crystalline polyester short fiber bundle (a 2 ) thus obtained were examined by the method described above, and as shown in Table 1 below.

《製造例3》[溶融液晶性ポリエステル短繊維束(a3)の製造]
(1) 製造例1の(1)で使用したのと同じ溶融液晶性ポリエステルを製造例1の(1)で使用したのと同じ溶融紡糸装置に供給して、口金より紡糸温度305℃で吐出させて糸条化させ、速度1000m/minの回転ローラーにて引取り、捲取機にて巻き取って、繊度510dtex/300フィラメント(フィラメントの単繊維繊度1.7dtex)の紡糸原糸を採取した。
(2) 上記(1)で得られた紡糸原糸を、製造例1の(2)と同じように、固相重合処理を行うためにステンレス製のボビンに捲き返し、窒素ガス雰囲気中で、250℃で6時間、次いで275℃で10時間固相重合処理した後、引き続いて290℃で30分間熱処理して単繊維(フィラメント)同士が熱融着により一時的に接着した溶融液晶性ポリエステル長繊維束(長繊維束の横断面は、厚み約0.1mm、配列番号約0.5mm)を製造した。
これにより得られた熱処理後の溶融液晶性ポリエステル長繊維束の引張特性を上記した方法で測定したところ、引張強度が25cN/dtex、引張初期弾性率が530cN/dtexおよび引張伸度が4.0%であった。
また、得られた熱処理後の溶融液晶性ポリエステル長繊維束(原反)の「開繊率(延伸処理なし)」および「開繊率(延伸処理あり)」を上記した方法で測定したところ、下記の表1に示すとおりであった。
(3) 上記(2)で得られた熱処理後の溶融液晶性ポリエステル長繊維束をカッター刃にて長さ3mmに切断して、繊維束長3mmの溶融液晶性ポリエステル短繊維束[「溶融液晶性ポリエステル短繊維束(a3)」という]を製造した。
これにより得られた溶融液晶性ポリエステル短繊維束(a3)の凝集性および流動性を上記した方法で調べたところ、下記の表1に示すとおりであった。
<< Production Example 3 >> [Production of Molten Liquid Crystalline Polyester Short Fiber Bundle (a 3 )]
(1) Supply the same molten liquid crystalline polyester used in (1) of Production Example 1 to the same melt spinning apparatus used in (1) of Production Example 1, and discharge from the die at a spinning temperature of 305 ° C. The yarn was made into a yarn, taken up with a rotating roller at a speed of 1000 m / min, and taken up with a take-up machine, and a spinning original yarn having a fineness of 510 dtex / 300 filament (filament single fiber fineness of 1.7 dtex) was collected. .
(2) In the same manner as in Production Example 1 (2), the spinning yarn obtained in (1) above was rolled back onto a stainless steel bobbin to perform a solid phase polymerization treatment, and in a nitrogen gas atmosphere, After a solid state polymerization treatment at 250 ° C. for 6 hours and then at 275 ° C. for 10 hours, the melted liquid crystalline polyester is obtained by subsequently heat-treating at 290 ° C. for 30 minutes and temporarily bonding the single fibers (filaments) by thermal fusion. A fiber bundle (the cross section of the long fiber bundle has a thickness of about 0.1 mm and an array number of about 0.5 mm) was produced.
When the tensile properties of the melted liquid crystalline polyester long fiber bundle obtained by this treatment were measured by the method described above, the tensile strength was 25 cN / dtex, the initial tensile modulus was 530 cN / dtex, and the tensile elongation was 4.0. %Met.
Moreover, when the "opening rate (without stretching treatment)" and "opening rate (with stretching treatment)" of the obtained melt liquid crystalline polyester long fiber bundle (raw fabric) after heat treatment was measured by the method described above, It was as shown in Table 1 below.
(3) The molten liquid crystalline polyester long fiber bundle after heat treatment obtained in the above (2) is cut into a length of 3 mm with a cutter blade, and a molten liquid crystalline polyester short fiber bundle having a fiber bundle length of 3 mm [“molten liquid crystal The short polyester fiber bundle (a 3 ) ”was produced.
The cohesiveness and fluidity of the molten liquid crystalline polyester short fiber bundle (a 3 ) thus obtained were examined by the method described above, and as shown in Table 1 below.

《製造例4》[溶融液晶性ポリエステル短繊維束(a4)の製造]
(1) 製造例1の(1)で使用したのと同じ溶融液晶性ポリエステルを製造例1の(1)で使用したのと同じ溶融紡糸装置に供給して、口金より紡糸温度305℃で吐出させて糸条化させ、速度1000m/minの回転ローラーにて引取り、捲取機にて巻き取って、繊度1670dtex/300フィラメント(フィラメントの単繊維繊度5.6dtex)の紡糸原糸を採取した。
(2) 上記(1)で得られた紡糸原糸を、製造例1の(2)と同じように、固相重合処理を行うためにステンレス製のボビンに捲き返し、窒素ガス雰囲気中で、250℃で6時間、次いで275℃で10時間固相重合処理した後、引き続いて295℃で1時間熱処理して単繊維(フィラメント)同士が熱融着により一時的に接着した溶融液晶性ポリエステル長繊維束(長繊維束の横断面は、厚み約0.1mm、幅約2mm)を製造した。
これにより得られた熱処理後の溶融液晶性ポリエステル長繊維束の引張特性を上記した方法で測定したところ、引張強度が23.5cN/dtex、引張初期弾性率が520cN/dtexおよび引張伸度が4.0%であった。
また、得られた熱処理後の溶融液晶性ポリエステル長繊維束(原反)の「開繊率(延伸処理なし)」および「開繊率(延伸処理あり)」を上記した方法で測定したところ、下記の表1に示すとおりであった。
(3) 上記(2)で得られた熱処理後の溶融液晶性ポリエステル長繊維束をカッター刃にて長さ3mmに切断して、繊維束長3mmの溶融液晶性ポリエステル短繊維束[「溶融液晶性ポリエステル短繊維束(a4)」という]を製造した。
これにより得られた溶融液晶性ポリエステル短繊維束(a4)の凝集性および流動性を上記した方法で調べたところ、下記の表1に示すとおりであった。
<< Production Example 4 >> [Production of Molten Liquid Crystalline Polyester Short Fiber Bundle (a 4 )]
(1) Supply the same molten liquid crystalline polyester used in (1) of Production Example 1 to the same melt spinning apparatus used in (1) of Production Example 1, and discharge from the die at a spinning temperature of 305 ° C. The yarn was made into a yarn, taken up with a rotating roller at a speed of 1000 m / min, and taken up with a winder, and a spinning yarn having a fineness of 1670 dtex / 300 filament (filament single fiber fineness of 5.6 dtex) was collected. .
(2) In the same manner as in Production Example 1 (2), the spinning yarn obtained in (1) above was rolled back onto a stainless steel bobbin to perform a solid phase polymerization treatment, and in a nitrogen gas atmosphere, After a solid phase polymerization treatment at 250 ° C. for 6 hours and then at 275 ° C. for 10 hours, and then heat treatment at 295 ° C. for 1 hour, the melted liquid crystalline polyester in which the single fibers (filaments) are temporarily bonded by thermal fusion A fiber bundle (the cross section of the long fiber bundle has a thickness of about 0.1 mm and a width of about 2 mm) was produced.
When the tensile properties of the melted liquid crystalline polyester long fiber bundle obtained by this treatment were measured by the method described above, the tensile strength was 23.5 cN / dtex, the initial tensile modulus was 520 cN / dtex, and the tensile elongation was 4 0.0%.
Moreover, when the "opening rate (without stretching treatment)" and "opening rate (with stretching treatment)" of the obtained melt liquid crystalline polyester long fiber bundle (raw fabric) after heat treatment was measured by the method described above, It was as shown in Table 1 below.
(3) The molten liquid crystalline polyester long fiber bundle after heat treatment obtained in the above (2) is cut into a length of 3 mm with a cutter blade, and a molten liquid crystalline polyester short fiber bundle having a fiber bundle length of 3 mm [“molten liquid crystal The short polyester fiber bundle (a 4 ) ”was produced.
The cohesiveness and fluidity of the molten liquid crystalline polyester short fiber bundle (a 4 ) thus obtained were examined by the method described above, and as shown in Table 1 below.

《製造例5〜6》[溶融液晶性ポリエステル短繊維束(a5)及び(a6)の製造]
製造例1の(2)で得られた熱処理後の溶融液晶性ポリエステル長繊維束を、カッター刃にて長さ1mmに切断するか(製造例5)または長さ6mmに切断して(製造例6)、繊維束長1mmの溶融液晶性ポリエステル短繊維束[「溶融液晶性ポリエステル短繊維束(a5)」という]および繊維束長6mmの溶融液晶性ポリエステル短繊維束[「溶融液晶性ポリエステル短繊維束(a6)」という]を製造した。
これにより得られた溶融液晶性ポリエステル短繊維束(a5)および(a6)の凝集性、流動性を上記した方法で調べたところ、下記の表1に示すとおりであった。
"Production Example 5-6" Production of liquid crystalline polyester short fiber bundles (a 5) and (a 6)]
The molten liquid crystalline polyester long fiber bundle after heat treatment obtained in (2) of Production Example 1 is cut into a length of 1 mm with a cutter blade (Production Example 5) or cut into a length of 6 mm (Production Example). 6) a molten liquid crystalline polyester short fiber bundle having a fiber bundle length of 1 mm [referred to as “molten liquid crystalline polyester short fiber bundle (a 5 )”] and a molten liquid crystalline polyester short fiber bundle having a fiber bundle length of 6 mm [“melted liquid crystalline polyester Short fiber bundle (referred to as “a 6 ”) ”was manufactured.
When the cohesiveness and fluidity of the melted liquid crystalline polyester short fiber bundles (a 5 ) and (a 6 ) thus obtained were examined by the methods described above, they were as shown in Table 1 below.

《製造例7》[溶融液晶性ポリエステル短繊維(b)の製造]
(1) 製造例1の(2)において、溶融液晶性ポリエステル長繊維束の固相重合を、窒素ガス雰囲気中で、250℃で6時間、次いで275℃で10時間行っただけで終了した(290℃での最後の熱処理を行わなかった)以外は、製造例1の(1)および(2)と同様の操作を行って、単繊維(フィラメント)同士が熱融着していない溶融液晶性ポリエステル長繊維束(1670dtex/600f)を製造した。
これにより得られた熱処理後の溶融液晶性ポリエステル長繊維束の引張特性を上記した方法で測定したところ、引張強度が23cN/dtex、引張初期弾性率が525cN/dtexおよび引張伸度が4.0%であった。
また、得られた熱処理後の溶融液晶性ポリエステル長繊維束(原反)の「開繊率(延伸処理なし)」および「開繊率(延伸処理あり)」を上記した方法で測定したところ、下記の表1に示すとおりであった。
(2) 上記(1)で得られた熱処理後の溶融液晶性ポリエステル長繊維束をカッター刃にて長さ3mmに切断して、繊維長3mmの溶融液晶性ポリエステル短繊維[「溶融液晶性ポリエステル短繊維束(b)」という]を製造した。
これにより得られた溶融液晶性ポリエステル短繊維(b)の凝集性および流動性を上記した方法で調べたところ、下記の表1に示すとおりであった。
<< Production Example 7 >> [Production of Melt Liquid Crystalline Polyester Short Fiber (b)]
(1) In Production Example 1 (2), the solid-phase polymerization of the melted liquid crystalline polyester long fiber bundle was completed in a nitrogen gas atmosphere at 250 ° C. for 6 hours and then at 275 ° C. for 10 hours ( Except that the final heat treatment at 290 ° C. was not performed), the same operations as in Production Example 1 (1) and (2) were performed, and the melted liquid crystal properties in which the single fibers (filaments) were not thermally fused together A polyester long fiber bundle (1670 dtex / 600f) was produced.
When the tensile properties of the melted liquid crystalline polyester long fiber bundle obtained by this treatment were measured by the method described above, the tensile strength was 23 cN / dtex, the initial tensile modulus was 525 cN / dtex, and the tensile elongation was 4.0. %Met.
Moreover, when the "opening rate (without stretching treatment)" and "opening rate (with stretching treatment)" of the obtained melt liquid crystalline polyester long fiber bundle (raw fabric) after heat treatment was measured by the method described above, It was as shown in Table 1 below.
(2) The heat-treated molten liquid crystalline polyester long fiber bundle obtained in (1) above is cut into a length of 3 mm with a cutter blade, and a molten liquid crystalline polyester short fiber having a fiber length of 3 mm ["melted liquid crystalline polyester" Short fiber bundle (b) ".
The cohesiveness and fluidity of the molten liquid crystalline polyester short fiber (b) thus obtained were examined by the method described above, and as shown in Table 1 below.

《製造例8》[溶融液晶性ポリエステル短繊維(c1)の製造]
(1) 製造例1の(2)において、溶融液晶性ポリエステル長繊維束の固相重合を、窒素ガス雰囲気中で、250℃で6時間、次いで275℃で10時間行っただけで終了した(290℃での最後の熱処理を行わなかった)以外は、製造例1の(2)と同様の操作を行って、単繊維(フィラメント)同士が接着していない溶融液晶性ポリエステル長繊維束(1670dtex/600f)を製造した。
これにより得られた熱処理後の溶融液晶性ポリエステル長繊維束の引張特性を上記した方法で測定したところ、引張強度が23cN/dtex、引張初期弾性率が530cN/dtexおよび引張伸度が4.0%であった。
(2) 上記(1)で得られた単繊維同士が接着していない熱処理後の溶融液晶性ポリエステル長繊維束のボビン10本をクリール台に設置してボビンから引き出してガイドで集束させて1本の糸条にした後、ポリウレタン樹脂(大日本インキ化学株式会社製「ボンディック2220」)のエマルジヨン液(固形分濃度9質量%)中に導いて糸条にポリウレタ樹脂エマルジヨン液を含浸させ、次いでマングル設備で余分な付着液を絞り、130℃の熱風乾燥機中で乾燥させて、ポリウレタン樹脂で接着された溶融液晶性ポリエステル長繊維束[長繊維束の太さ(直径)1.0mm]を製造した。このとき、繊維100質量部に対してポリウレタン樹脂の付着量は7質量部であった。
これにより得られたポリウレタン樹脂付着後の溶融液晶性ポリエステル長繊維束(原反)の「開繊率(延伸処理なし)」および「開繊率(延伸処理あり)」を上記した方法で測定したところ、下記の表1に示すとおりであった。
(3) 上記(2)で得られたポリウレタン樹脂処理後の溶融液晶性ポリエステル長繊維束をカッター刃にて長さ3mmに切断して、繊維束長3mmの溶融液晶性ポリエステル短繊維束[「溶融液晶性ポリエステル短繊維束(c1)」という]を製造した。
これにより得られた溶融液晶性ポリエステル短繊維束(c1)の凝集性および流動性を上記した方法で調べたところ、下記の表1に示すとおりであった。
<< Production Example 8 >> [Production of Molten Liquid Crystalline Polyester Short Fiber (c 1 )]
(1) In Production Example 1 (2), the solid-phase polymerization of the melted liquid crystalline polyester long fiber bundle was completed in a nitrogen gas atmosphere at 250 ° C. for 6 hours and then at 275 ° C. for 10 hours ( A melt liquid crystalline polyester long fiber bundle (1670 dtex) in which the single fibers (filaments) are not bonded to each other by performing the same operation as in (2) of Production Example 1 except that the final heat treatment at 290 ° C. was not performed. / 600f).
When the tensile properties of the melted liquid crystalline polyester long fiber bundle obtained by this treatment were measured by the method described above, the tensile strength was 23 cN / dtex, the initial tensile modulus was 530 cN / dtex, and the tensile elongation was 4.0. %Met.
(2) Ten bobbins of a melted liquid crystalline polyester long fiber bundle after heat treatment in which the single fibers obtained in (1) above are not bonded to each other are placed on a creel table, pulled out from the bobbin, and converged by a guide 1 After forming the yarn, the yarn is introduced into the emulsion liquid (solid content concentration 9% by mass) of the polyurethane resin (Dainippon Ink Chemical Co., Ltd. “Bondic 2220”), and the yarn is impregnated with the polyurethane resin emulsion liquid. Next, the excess adhering liquid was squeezed with a mangle equipment, dried in a hot air drier at 130 ° C., and a melted liquid crystalline polyester long fiber bundle adhered with a polyurethane resin [thickness (diameter) 1.0 mm of the long fiber bundle]. Manufactured. At this time, the adhesion amount of the polyurethane resin was 7 parts by mass with respect to 100 parts by mass of the fiber.
The “opening rate (without stretching treatment)” and “opening rate (with stretching treatment)” of the melted liquid crystalline polyester long fiber bundle (raw fabric) after adhesion of the polyurethane resin thus obtained were measured by the method described above. However, it was as shown in Table 1 below.
(3) The molten liquid crystalline polyester long fiber bundle after the polyurethane resin treatment obtained in (2) is cut into a length of 3 mm with a cutter blade, and a molten liquid crystalline polyester short fiber bundle having a fiber bundle length of 3 mm [" A molten liquid crystalline polyester short fiber bundle (c 1 ) ”was produced.
The cohesiveness and fluidity of the melted liquid crystalline polyester short fiber bundle (c 1 ) thus obtained were examined by the method described above, and as shown in Table 1 below.

《製造例9》[溶融液晶性ポリエステル短繊維(c2)の製造]
(1) 製造例1の(2)において、溶融液晶性ポリエステル長繊維束の固相重合を、窒素ガス雰囲気中で、250℃で6時間、次いで275℃で10時間熱処理しただけで終了した(290℃での最後の熱処理を行わなかった)以外は、製造例1の(1)および(2)と同様の操作を行って、単繊維(フィラメント)同士が熱融着していない溶融液晶性ポリエステル長繊維束(1670dtex/600f)を製造した。
これにより得られた熱処理後の溶融液晶性ポリエステル長繊維束の引張特性を上記した方法で測定したところ、引張強度が23cN/dtex、引張初期弾性率が530cN/dtexおよび引張伸度が4.0%であった。
(2) 上記(1)で得られた単繊維同士が熱融着していない熱処理後の溶融液晶性ポリエステル長繊維束のボビン10本をクリール台に設置してボビンから引き出してガイドで集束させて1本の糸条にした後、ポリ乳酸樹脂(ユニチカ株式会社製「テラマックLAE−013N」)のエマルジヨン液(固形分濃度40質量%)中に導いて糸条にポリ乳酸樹脂エマルジヨン液を含浸させ、次いでマングル設備で余分な付着液を絞り、130℃の熱風乾燥機中で乾燥させてポリ乳酸樹脂で接着された溶融液晶性ポリエステル長繊維束[長繊維束の太さ(直径)1.1mm]を製造した。このとき、繊維100質量部に対してポリ乳酸樹脂の付着量は28質量部であった。
これにより得られたポリ乳酸樹脂付着後の溶融液晶性ポリエステル長繊維束(原反)の「開繊率(延伸処理なし)」および「開繊率(延伸処理あり)」を上記した方法で測定したところ、下記の表1に示すとおりであった。
(3) 上記(2)で得られたポリ乳酸樹脂処理後の溶融液晶性ポリエステル長繊維束をカッター刃にて長さ3mmに切断して、繊維束長3mmの溶融液晶性ポリエステル短繊維束[「溶融液晶性ポリエステル短繊維束(c2)」という]を製造した。
これにより得られた溶融液晶性ポリエステル短繊維束(c2)の凝集性および流動性を上記した方法で調べたところ、下記の表1に示すとおりであった。
<< Production Example 9 >> [Production of Melt Liquid Crystalline Polyester Short Fiber (c 2 )]
(1) In Production Example 1 (2), the solid-phase polymerization of the melted liquid crystalline polyester long fiber bundle was completed only by heat treatment in a nitrogen gas atmosphere at 250 ° C. for 6 hours and then at 275 ° C. for 10 hours ( Except that the final heat treatment at 290 ° C. was not performed), the same operations as in Production Example 1 (1) and (2) were performed, and the melted liquid crystal properties in which the single fibers (filaments) were not thermally fused together A polyester long fiber bundle (1670 dtex / 600f) was produced.
When the tensile properties of the melted liquid crystalline polyester long fiber bundle obtained by this treatment were measured by the method described above, the tensile strength was 23 cN / dtex, the initial tensile modulus was 530 cN / dtex, and the tensile elongation was 4.0. %Met.
(2) Ten bobbins of the melted liquid crystalline polyester long fiber bundle after heat treatment in which the single fibers obtained in the above (1) are not thermally fused are placed on a creel table, pulled out from the bobbin, and converged by a guide. Into one yarn, and then introduced into an emulsion solution (solid concentration 40% by mass) of polylactic acid resin ("Terramac LAE-013N" manufactured by Unitika Ltd.) to impregnate the yarn with polylactic acid resin emulsion solution. Next, the excess adhering liquid was squeezed out with a mangle equipment, dried in a hot air dryer at 130 ° C., and bonded with a polylactic acid resin [long fiber bundle thickness (diameter) 1. 1 mm] was produced. At this time, the adhesion amount of the polylactic acid resin was 28 parts by mass with respect to 100 parts by mass of the fiber.
Measure the "opening rate (without stretching treatment)" and "opening rate (with stretching treatment)" of the molten liquid crystalline polyester long fiber bundle (raw fabric) after adhesion of the polylactic acid resin obtained by the above method. As a result, it was as shown in Table 1 below.
(3) The melted liquid crystalline polyester long fiber bundle after the polylactic acid resin treatment obtained in (2) is cut into a length of 3 mm with a cutter blade, and a melted liquid crystalline polyester short fiber bundle having a fiber bundle length of 3 mm [ “Fused liquid crystalline polyester short fiber bundle (c 2 )” was produced.
The cohesiveness and fluidity of the molten liquid crystalline polyester short fiber bundle (c 2 ) thus obtained were examined by the method described above, and as shown in Table 1 below.

Figure 2008031332
Figure 2008031332

上記の表1の結果にみるように、製造例1〜6の溶融液晶性ポリエステル短繊維束(a1)〜(a6)は、短繊維束を形成している短繊維同士が熱融着によって接着していて、しかも上記した「開繊率(延伸処理なし)」の値が小さく且つ「「開繊率(延伸処理あり)」の値が大きい溶融液晶性ポリエステル長繊維束(原反)から得られたものであるため、取り扱いの初期の段階では、ダマの発生がなく、ホッパーなどの供給装置での詰まりが生じず、流動性および取り扱い性に優れており、しかも撹拌・混合、混練などが進んだ段階では一時的な接着が解消されて単繊維状の短繊維に良好に分離・開繊する。
また、接着剤(ポリウレタン樹脂またはポリ乳酸樹脂)によって繊維同士を接着した溶融液晶性ポリエステル長繊維束(原反)を短繊維状に切断して得られた製造例8〜9の溶融液晶性ポリエステル短繊維束(c1)〜(c2)も、短繊維束における短繊維同士が接着剤によって結合されているため、凝集性が低く、流動性もほぼ高いものとなっている。
それに対して、製造例7の溶融液晶性ポリエステル短繊維束(b)は、短繊維同士の接着がなされていないため、凝集性が大きくてダマが発生し、ホッパーなどの供給装置での流動性が悪い。
As can be seen from the results in Table 1 above, in the melted liquid crystalline polyester short fiber bundles (a 1 ) to (a 6 ) of Production Examples 1 to 6 , the short fibers forming the short fiber bundle are thermally fused to each other. A melted liquid crystalline polyester long fiber bundle (raw fabric) having a small value of “opening rate (without stretching treatment)” and a large value of “opening rate (with stretching treatment)”. Therefore, in the initial stage of handling, there is no generation of lumps, clogging in a feeding device such as a hopper does not occur, fluidity and handling are excellent, and stirring, mixing, and kneading At the advanced stage, the temporary adhesion is eliminated, and the single fibers are well separated and opened.
Further, the melted liquid crystalline polyesters of Production Examples 8 to 9 obtained by cutting a melted liquid crystalline polyester long fiber bundle (raw fabric) in which fibers are bonded with an adhesive (polyurethane resin or polylactic acid resin) into short fibers. In the short fiber bundles (c 1 ) to (c 2 ), the short fibers in the short fiber bundle are bonded to each other by an adhesive, so that the cohesiveness is low and the fluidity is almost high.
On the other hand, the melted liquid crystalline polyester short fiber bundle (b) of Production Example 7 has no cohesion between the short fibers, so that the cohesiveness is large and lumps are generated, and the fluidity in a feeding device such as a hopper is obtained. Is bad.

《実施例1〜2および比較例1〜3》
(1) 製造例1〜2および7〜9で得られた溶融液晶性ポリエステル短繊維束または非集束溶融液晶性ポリエステル短繊維のそれぞれ5質量部を、ポリ乳酸(ユニチカ株式会社製「TE−4000」、Mw約13万、Mn約7万)のペレット(直径約2mm×長さ4mmの円柱状ペレット)95質量部と予め混合した後、この混合物を、同方向二軸押出混練機に設けたテーパー管状の円錐形ホッパー(上部開口の内径14cm、下部開口の内径4cm、高さ15cm)から毎時1kgの供給速度で連続的に投入して、190℃で混練した後、ストランド状に押出し、切断して、溶融液晶性ポリエステル短繊維を含有するポリ乳酸組成物のペレットを製造した。
このポリ乳酸組成物ペレットの製造作業中に、混練作業の安定性を調べるために、混練機のホッパー(投入口)が短繊維束または短繊維で閉塞して作業が中断する回数の1時間あたりの平均値を測定したところ、下記の表2に示すとおりであった。
(2) 上記(1)で得られたポリ乳酸組成物のペレットを、射出成形機を使用して、射出圧力100MPa、射出成形機のバレルおよびノズルの温度190℃の条件下に、0.75mm径のピンゲートを備えた金型(板厚1.6mm×長さ80mm×幅12mm)に射出成形した。溶融液晶性ポリエステル短繊維のポリ乳酸中での分散性を調べるために、この射出成形を100回(100ショット)行い、ゲートの詰まりが発生した回数を数えところ、下記の表2に示すとおりであった。
また、これにより得られた成形品(試験片)中のポリ乳酸の重量平均分子量(Mw)および数平均分子量(Mn)を上記した方法で測定したところ、下記の表1に示すとおりであった。
<< Examples 1-2 and Comparative Examples 1-3 >>
(1) 5 parts by mass of each of the molten liquid crystalline polyester short fiber bundles or the unfocused molten liquid crystalline polyester short fibers obtained in Production Examples 1 and 2 and 7 to 9 was mixed with polylactic acid (TE-4000 manufactured by Unitika Ltd.). After premixing with 95 parts by mass of Mw (about 130,000, Mn about 70,000) pellets (cylindrical pellets having a diameter of about 2 mm and a length of 4 mm), this mixture was provided in a co-directional twin-screw extrusion kneader. It is continuously fed at a feed rate of 1 kg / h from a tapered tubular conical hopper (the inner diameter of the upper opening is 14 cm, the inner diameter of the lower opening is 4 cm, and the height is 15 cm), kneaded at 190 ° C, extruded into a strand, and cut And the pellet of the polylactic acid composition containing a melt liquid crystalline polyester short fiber was manufactured.
During the manufacturing operation of the polylactic acid composition pellets, in order to investigate the stability of the kneading operation, the hopper (input port) of the kneading machine is blocked by short fiber bundles or short fibers and the operation is interrupted per hour. When the average value of was measured, it was as shown in Table 2 below.
(2) The pellet of the polylactic acid composition obtained in the above (1) was 0.75 mm using an injection molding machine under the conditions of an injection pressure of 100 MPa and a barrel and nozzle temperature of 190 ° C. It was injection-molded into a mold (plate thickness 1.6 mm × length 80 mm × width 12 mm) equipped with a pin gate having a diameter. In order to investigate the dispersibility of the melted liquid crystalline polyester short fibers in polylactic acid, this injection molding was performed 100 times (100 shots), and the number of gate cloggings was counted, as shown in Table 2 below. there were.
Moreover, when the weight average molecular weight (Mw) and number average molecular weight (Mn) of the polylactic acid in the molded article (test piece) obtained by this were measured by the above method, they were as shown in Table 1 below. .

Figure 2008031332
Figure 2008031332

上記の表2の結果にみるように、実施例1〜2および比較例2〜3では、熱融着または接着剤(ポリウレタン樹脂またはポリ乳酸樹脂)によって短繊維同士が一時的に接着した溶融液晶性ポリエステル短繊維束をポリ乳酸に混合してポリ乳酸組成物を製造し、そのポリ乳酸組成物を用いて成形を行ったことにより、ポリ乳酸組成物を製造する際の混練・押出時に溶融液晶性ポリエステル短繊維がホッパーで詰まることなく混練機に円滑に供給でき、作業性に優れており、しかもそれにより得られるポリ乳酸組成物では、溶融液晶性ポリエステル短繊維が単繊維状になってポリ乳酸中に均一に分散していることによりゲートでのめ目詰まりが生じず、射出成形を円滑に行うことができる。
それに対して、比較例1では、溶融液晶性ポリエステル短繊維同士が束状に接着していない短繊維をそのまま用いたことにより、ポリ乳酸組成物を製造する際の混練・押出時に溶融液晶性ポリエステル短繊維がホッパーで頻繁に詰まり、混練機に円滑に供給することができず作業性に劣っており、しかもそれにより得られるポリ乳酸組成物中では、溶融液晶性ポリエステル短繊維が単繊維状でポリ乳酸中に均一に分散していないために、ゲートでの目詰まりが生じ、射出成形を円滑に行うことができない。
As seen from the results in Table 2 above, in Examples 1-2 and Comparative Examples 2-3, molten liquid crystals in which short fibers are temporarily bonded to each other by heat fusion or an adhesive (polyurethane resin or polylactic acid resin). A polylactic acid composition is produced by mixing a bundle of short polyester fiber fibers with polylactic acid, and molding is performed using the polylactic acid composition, so that a liquid crystal melted during kneading and extrusion when producing the polylactic acid composition. The short polyester fiber can be smoothly supplied to the kneader without clogging with the hopper, and the workability is excellent.In addition, in the polylactic acid composition obtained thereby, the molten liquid crystalline polyester short fiber becomes a single fiber and becomes a poly fiber. By uniformly dispersing in lactic acid, clogging at the gate does not occur, and injection molding can be performed smoothly.
On the other hand, in Comparative Example 1, the melted liquid crystalline polyester was used at the time of kneading and extruding when producing the polylactic acid composition by using the short fibers in which the melted liquid crystalline polyester short fibers were not bonded together in a bundle. Short fibers are frequently clogged with a hopper and cannot be supplied smoothly to a kneader, resulting in inferior workability, and in the polylactic acid composition obtained thereby, the molten liquid crystalline polyester short fibers are in the form of single fibers. Since it is not uniformly dispersed in polylactic acid, clogging occurs at the gate, and injection molding cannot be performed smoothly.

さらに、短繊維同士が熱融着によって一時的に接着している溶融液晶性ポリエステル短繊維束を用いた実施例1および2では、射出成形により得られた成形品中のポリ乳酸の分子量の低下が小さい。
それに対して、ポリウレタン樹脂またはポリ乳酸樹脂よりなる接着剤で短繊維同士が接着している溶融液晶性ポリエステル短繊維束(c1)または(c2)を用いた比較例2および3では、使用した溶融液晶性ポリエステル短繊維束(c1)または(c2)の「開繊率(延伸処理あり)」の値は付着させたポリウレタン樹脂が延伸処理後も接着剤として引き続き作用しているため低かったが(表1)、マトリックス樹脂(ポリ乳酸樹脂)中にそれらの短繊維束(c1)または(c2)を添加混練すると、接着剤樹脂(ポリウレタン樹脂)が温度およびマトリックス樹脂との高い剪断力で引きはがされ、短繊維束はほぼ完全に開繊していた。しかしながら、比較例2および3では、表2に見るように、射出成形により得られた成形品を構成するポリ乳酸の分子量が、実施例1および2に比べて、大きく低下しており、重合体材料の劣化が生じている。
Further, in Examples 1 and 2 using the melt liquid crystalline polyester short fiber bundle in which the short fibers are temporarily bonded to each other by thermal fusion, the molecular weight of polylactic acid in the molded product obtained by injection molding is reduced. Is small.
On the other hand, in Comparative Examples 2 and 3 using a melted liquid crystalline polyester short fiber bundle (c 1 ) or (c 2 ) in which short fibers are bonded to each other with an adhesive made of polyurethane resin or polylactic acid resin, The value of the “opening ratio (with stretching treatment)” of the melted liquid crystalline polyester short fiber bundle (c 1 ) or (c 2 ) obtained is that the adhered polyurethane resin continues to act as an adhesive even after the stretching treatment. Although it was low (Table 1), when those short fiber bundles (c 1 ) or (c 2 ) were added and kneaded into the matrix resin (polylactic acid resin), the adhesive resin (polyurethane resin) was changed to the temperature and the matrix resin. It was peeled off by a high shearing force, and the short fiber bundle was almost completely opened. However, in Comparative Examples 2 and 3, as shown in Table 2, the molecular weight of polylactic acid constituting the molded product obtained by injection molding is greatly reduced as compared with Examples 1 and 2, and the polymer Material degradation has occurred.

《実施例3〜8および比較例4〜5》
(1) 製造例1、3〜6および8で得られた溶融液晶性ポリエステル短繊維束(a1)、(a3)〜(a6)および(c1)のうちのいずれかと、ポリ乳酸(ユニチカ株式会社製「TE−4000」、Mw約13万、Mn約7万)のペレット(直径約2mm×長さ4mmの円柱状ペレット)を、下記の表3に示す量で予め混合し、この混合物を実施例1で使用したのと同じ、円錐形ホッパー付きの押出混練機に毎時1kgの供給速度で連続的に投入して190℃で混練した後、ストランド状に押出し、切断して、溶融液晶性ポリエステル短繊維を含有するポリ乳酸組成物のペレットを製造した。
(2) 上記(1)で得られたポリ乳酸組成物のペレットを用いるか(実施例3〜8および比較例5)、または溶融液晶性ポリエステル短繊維束を混合してないポリ乳酸ペレットを用いて(比較例4)、実施例1で使用したのと同じ射出成形機を使用して、射出成形機のバレルおよびノズルの温度190℃の条件下で、板厚3.2mm×長さ130mm×幅12mmの成形品(試験片)を製造した。
(3) 上記(2)で得られた試験片(成形品)を使用して、曲げ強度、曲げ弾性率、耐衝撃性(ノッチ付きアイゾット衝撃強さ)および耐熱性(荷重たわみ温度:HDT)を上記した方法で測定したところ、下記の表3に示すとおりであった。
<< Examples 3-8 and Comparative Examples 4-5 >>
(1) One of melted liquid crystalline polyester short fiber bundles (a 1 ), (a 3 ) to (a 6 ) and (c 1 ) obtained in Production Examples 1 , 3 to 6 and 8, and polylactic acid Unite ("TE-4000" manufactured by Unitika Ltd., Mw about 130,000, Mn about 70,000) pellets (columnar pellets having a diameter of about 2 mm x length of 4 mm) are mixed in advance in the amounts shown in Table 3 below. This mixture was continuously fed into an extrusion kneader with a conical hopper as used in Example 1 at a feed rate of 1 kg per hour and kneaded at 190 ° C., then extruded into strands, cut, Pellets of polylactic acid composition containing molten liquid crystalline polyester short fibers were produced.
(2) Use pellets of the polylactic acid composition obtained in (1) above (Examples 3 to 8 and Comparative Example 5), or use polylactic acid pellets not mixed with molten liquid crystalline polyester short fiber bundles (Comparative Example 4) Using the same injection molding machine used in Example 1, under the conditions of the barrel and nozzle temperature of 190 ° C. of the injection molding machine, plate thickness 3.2 mm × length 130 mm × A molded article (test piece) having a width of 12 mm was produced.
(3) Using the test piece (molded product) obtained in (2) above, bending strength, flexural modulus, impact resistance (Izod impact strength with notch) and heat resistance (load deflection temperature: HDT) Was measured by the method described above, and was as shown in Table 3 below.

Figure 2008031332
Figure 2008031332

上記の表3の結果にみるように、実施例3〜8では、短繊維同士が熱融着により一時的に接着している溶融液晶性ポリエステル短繊維束を配合して溶融混練を行って繊維強化ポリ乳酸組成物を製造し、その繊維強化ポリ乳酸組成物を用いて成形品(試験片)を製造したことにより、ポリ乳酸のみを用いて成形品を製造した比較例4に比べて、耐衝撃性および耐熱性に優れる成形品が得られている。
また、実施例3〜8で得られた成形品は、短繊維同士がポリウレタン樹脂により接着されている溶融液晶性ポリエステル短繊維束を用いて製造したポリ乳酸組成物からなる比較例5の成形品に比べて、曲げ強度および耐衝撃性において優れている。
As can be seen from the results of Table 3 above, in Examples 3 to 8, a melted liquid crystalline polyester short fiber bundle in which short fibers are temporarily bonded to each other by thermal fusion is blended and melt kneaded to produce fibers. Compared to Comparative Example 4 in which a reinforced polylactic acid composition was produced and a molded article (test piece) was produced using the fiber-reinforced polylactic acid composition, the molded article was produced using only polylactic acid. Molded articles having excellent impact and heat resistance have been obtained.
In addition, the molded products obtained in Examples 3 to 8 were molded products of Comparative Example 5 made of a polylactic acid composition manufactured using a molten liquid crystalline polyester short fiber bundle in which short fibers were bonded to each other with a polyurethane resin. Compared to, it is excellent in bending strength and impact resistance.

《実施例9〜15および比較例6》
(1) ポリ乳酸(ユニチカ株式会社製「TE−4000」、Mw約13万、Mn約7万)のペレット(直径約2mm×長さ4mmの円柱状ペレット)に、製造例1および3〜6で得られた溶融液晶性ポリエステル短繊維束(a1)および(a3)〜(a6)のうちのいずれかと無機充填剤(水酸化アルミニウム、平均粒径4μm)を、下記の表4に示す量で予め混合するか、または前記のポリ乳酸に無機充填剤(前記の水酸化アルミニウム)のみを混合し、この混合物を実施例1で使用したのと同じ、円錐形ホッパー付きの押出混練機に毎時1kgの供給速度で連続的に投入して、190℃で混練した後、ストランド状に押出し、切断して、溶融液晶性ポリエステル短繊維と無機充填剤を含有するポリ乳酸組成物のペレットまたは無機充填剤のみを含有するポリ乳酸組成物のペレットを製造した。
(2) 上記(1)で得られたポリ乳酸組成物のペレットを用いて、実施例1で使用したのと同じ射出成形機を使用して、射出成形機のバレルおよびノズルの温度190℃の条件で板厚3.2mm×長さ130mm×幅12mmの成形品(試験片)を製造した。
(3) 上記(2)で得られた試験片(成形品)を使用して、曲げ強度、曲げ弾性率、耐衝撃性(ノッチ付きアイゾット衝撃強さ)および耐熱性(荷重たわみ温度:HDT)を上記した方法で測定したところ、下記の表4に示すとおりであった。
<< Examples 9 to 15 and Comparative Example 6 >>
(1) Production Examples 1 and 3 to 6 were made into pellets of polylactic acid (“TE-4000” manufactured by Unitika Ltd., Mw about 130,000, Mn about 70,000) (columnar pellets having a diameter of about 2 mm × a length of 4 mm). Table 4 below shows one of the molten liquid crystalline polyester short fiber bundles (a 1 ) and (a 3 ) to (a 6 ) and the inorganic filler (aluminum hydroxide, average particle size 4 μm) obtained in Pre-mixed in the indicated amount, or mixed only with an inorganic filler (the aluminum hydroxide) in the polylactic acid, and this mixture was used in Example 1 as an extrusion kneader with a conical hopper. Is continuously fed at a feed rate of 1 kg per hour, kneaded at 190 ° C., extruded into strands, cut, and pellets of a polylactic acid composition containing molten liquid crystalline polyester short fibers and an inorganic filler or Inorganic filler To prepare pellets of the polylactic acid composition containing only.
(2) Using the polylactic acid composition pellets obtained in (1) above, using the same injection molding machine as used in Example 1, the temperature of the barrel and nozzle of the injection molding machine was 190 ° C. Under the conditions, a molded product (test piece) having a plate thickness of 3.2 mm, a length of 130 mm, and a width of 12 mm was produced.
(3) Using the test piece (molded product) obtained in (2) above, bending strength, flexural modulus, impact resistance (Izod impact strength with notch) and heat resistance (load deflection temperature: HDT) Was measured by the method described above, and was as shown in Table 4 below.

Figure 2008031332
Figure 2008031332

上記の表4の結果にみるように、実施例9〜15では、短繊維同士が熱融着により一時的に接着している溶融液晶性ポリエステル短繊維束と無機充填剤(水酸化アルミニウム)を配合して溶融混練を行って繊維強化ポリ乳酸組成物を製造し、その繊維強化ポリ乳酸組成物を用いて成形品(試験片)を製造したことにより、無機充填剤(水酸化アルミニウム)のみを配合したポリ乳酸組成物を用いて成形品を製造した比較例6に比べて、耐衝撃性および耐熱性に優れる成形品が得られている。   As seen in the results of Table 4 above, in Examples 9 to 15, a short bundle of liquid crystalline polyester fibers and an inorganic filler (aluminum hydroxide) in which short fibers are temporarily bonded to each other by thermal fusion. Mixing and melt-kneading to produce a fiber reinforced polylactic acid composition, and using the fiber reinforced polylactic acid composition to produce a molded article (test piece), only the inorganic filler (aluminum hydroxide) Compared to Comparative Example 6 in which a molded article was produced using the blended polylactic acid composition, a molded article having excellent impact resistance and heat resistance was obtained.

本発明による場合は、溶融液晶性ポリエステル短繊維束が、押出機などの混練装置や成形装置への供給時に、ホッパーやその他の供給経路で塊化したり、詰まったりせずにスムーズに流動し、しかも押出機のスクリューに良好に噛み込まれることにより、溶融液晶性ポリエステル短繊維で強化された生物由来重合体組成物を良好な作業性で円滑に製造することができる。しかも、それにより得られる生物由来重合体組成物では、溶融液晶性ポリエステル短繊維が単繊維状で均一に分散しているため、当該生物由来重合体組成物を用いて成形を行う際にノズルやゲートなどでの目詰まりなどを生ずることなく、各種の成形品などを良好な作業性で円滑に製造することができるので、本発明で得られる繊維強化生物由来重合体組成物は、電化製品の筐体などの電気・電子機器、建材、自動車部品、日用品、医療用品、農業用品などの種々の製品の製造に有効に使用することができる。

In the case of the present invention, the molten liquid crystalline polyester short fiber bundle flows smoothly without being agglomerated or clogged in a hopper or other supply path when supplied to a kneading apparatus such as an extruder or a molding apparatus. In addition, the biopolymer composition reinforced with molten liquid crystalline polyester short fibers can be smoothly produced with good workability by being well bitten into the screw of the extruder. Moreover, in the biological polymer composition obtained thereby, the melted liquid crystalline polyester short fibers are monofilamentous and uniformly dispersed, so when performing molding using the biological polymer composition, a nozzle or Since it is possible to smoothly produce various molded articles with good workability without causing clogging at a gate or the like, the fiber-reinforced biopolymer composition obtained in the present invention is an It can be used effectively in the manufacture of various products such as electrical and electronic equipment such as housings, building materials, automobile parts, daily necessities, medical supplies, and agricultural supplies.

Claims (6)

生物由来重合体に溶融液晶性ポリエステル繊維からなる短繊維束を配合し加熱下に混練して繊維強化生物由来重合体組成物を製造する方法であって、溶融液晶性ポリエステル繊維からなる短繊維束として、短繊維束を構成する溶融液晶性ポリエステル短繊維同士が、混練時の熱および/または剪断力によって個々の単繊維に分離する接着強度で互いに熱融着により一時的に接着している短繊維束を用いることを特徴とする、繊維強化生物由来重合体組成物の製造方法。   A method for producing a fiber-reinforced biological polymer composition by blending a short fiber bundle made of molten liquid crystalline polyester fiber into a biological polymer and kneading under heating, wherein the short fiber bundle made of molten liquid crystalline polyester fiber As a short, the melted liquid crystalline polyester short fibers constituting the short fiber bundle are temporarily bonded to each other by heat fusion with an adhesive strength that separates into individual single fibers by heat and / or shear force during kneading. A method for producing a fiber-reinforced biological polymer composition, comprising using a fiber bundle. 溶融液晶性ポリエステル繊維からなる短繊維束の繊維長が0.5〜20mmである請求項1に記載の繊維強化生物由来重合体組成物の製造方法。   The method for producing a fiber-reinforced biopolymer composition according to claim 1, wherein the fiber length of the short fiber bundle made of molten liquid crystalline polyester fiber is 0.5 to 20 mm. 溶融液晶性ポリエステル繊維からなる短繊維束が、単繊維同士を繊維表面で一時的に熱融着させた引張強度15cN/dtex以上および引張初期弾性率400cN/dtex以上の溶融液晶性ポリエステル長繊維束を短繊維状に切断した短繊維束である請求項1または2に記載の繊維強化生物由来重合体組成物の製造方法。   A short bundle of molten liquid crystalline polyester fibers is a molten liquid crystalline polyester long fiber bundle having a tensile strength of 15 cN / dtex or more and a tensile initial elastic modulus of 400 cN / dtex or more obtained by temporarily heat-bonding single fibers to each other on the fiber surface. The method for producing a fiber-reinforced biopolymer composition according to claim 1 or 2, wherein the fiber is a short fiber bundle cut into short fibers. 生物由来重合体100質量部に対して、溶融液晶性ポリエステル短繊維束を0.5〜50質量部の割合で配合する請求項1〜3のいずれか1項に記載の繊維強化生物由来重合体組成物の製造方法。   The fiber-reinforced biopolymer according to any one of claims 1 to 3, wherein a molten liquid crystalline polyester short fiber bundle is blended at a ratio of 0.5 to 50 parts by mass with respect to 100 parts by mass of the biopolymer. A method for producing the composition. 生物由来重合体中に溶融液晶性ポリエステルからなる短繊維が、単繊維状に開繊して分散していることを特徴とする、請求項1〜4のいずれか1項の製造方法で得られる繊維強化生物由来重合体組成物。   It is obtained by the production method according to any one of claims 1 to 4, wherein short fibers made of molten liquid crystalline polyester are dispersed in a biological polymer in the form of single fibers. Fiber reinforced biological polymer composition. 請求項5に記載の繊維強化生物由来重合体組成物から製造してなる成形品。
A molded article produced from the fiber-reinforced biopolymer composition according to claim 5.
JP2006207481A 2006-07-31 2006-07-31 Fiber-reinforced polymer composition derived from organism and process for producing the same Pending JP2008031332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006207481A JP2008031332A (en) 2006-07-31 2006-07-31 Fiber-reinforced polymer composition derived from organism and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006207481A JP2008031332A (en) 2006-07-31 2006-07-31 Fiber-reinforced polymer composition derived from organism and process for producing the same

Publications (1)

Publication Number Publication Date
JP2008031332A true JP2008031332A (en) 2008-02-14

Family

ID=39121109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006207481A Pending JP2008031332A (en) 2006-07-31 2006-07-31 Fiber-reinforced polymer composition derived from organism and process for producing the same

Country Status (1)

Country Link
JP (1) JP2008031332A (en)

Similar Documents

Publication Publication Date Title
Habibi et al. Processing and characterization of reinforced polyethylene composites made with lignocellulosic fibers from Egyptian agro-industrial residues
Kim et al. Thermal and mechanical properties of cassava and pineapple flours-filled PLA bio-composites
JP4013870B2 (en) Method for producing aliphatic polyester composition
Wang et al. Effects of coupling agent and interfacial modifiers on mechanical properties of poly (lactic acid) and wood flour biocomposites
Mihai et al. Formulation‐properties versatility of wood fiber biocomposites based on polylactide and polylactide/thermoplastic starch blends
Kaseem et al. A review on recent researches on polylactic acid/carbon nanotube composites
Shavandi et al. Keratin based thermoplastic biocomposites: a review
Bakri et al. Potential of Borneo Acacia wood in fully biodegradable bio-composites’ commercial production and application
Ranjan et al. Mechanical characterization of banana/sisal fibre reinforced PLA hybrid composites for structural application
Zaman et al. Study on binary low-density polyethylene (LDPE)/thermoplastic sago starch (TPS) blend composites
Sessini et al. Sustainable pathway towards large scale melt processing of the new generation of renewable cellulose–polyamide composites
Rohner et al. Mechanical properties of polyamide 11 reinforced with cellulose nanofibres from Triodia pungens
Le Moigne et al. Modification of the interface/interphase in natural fibre reinforced composites: Treatments and processes
JP2021095432A (en) Composition for molding and molding
JP2009263495A (en) Microfibrillated cellulose/resin composite mat, method for producing it, microfibrillated cellulose/resin composite material, and molded product
US20150111452A1 (en) Degradable Polymer Fibers with Enhanced Degradability
JP6935650B2 (en) Aliphatic polyester resin composition and molded article
Baruah Biodegradable polymer: the promises and the problems
Subyakto et al. Injection molded of bio-micro-composites from natural fibers and polylactic acid
Gunning et al. Effect of compatibilizer content on the mechanical properties of bioplastic composites via hot melt extrusion
JP7330594B2 (en) macromolecular complex
Jalali et al. A novel semi-bionanofibers through Introducing tragacanth Gum into PET attaining rapid wetting and degradation
JP2008031332A (en) Fiber-reinforced polymer composition derived from organism and process for producing the same
Shah et al. Advancement in packaging film using microcrystalline cellulose and TiO2
JP2007262649A (en) Process for production of aliphatic polyester composition, pulp to be used therein, and process for microfibrillation thereof