JP2008029065A - 分散電源の単独運転検出システム - Google Patents

分散電源の単独運転検出システム Download PDF

Info

Publication number
JP2008029065A
JP2008029065A JP2006196394A JP2006196394A JP2008029065A JP 2008029065 A JP2008029065 A JP 2008029065A JP 2006196394 A JP2006196394 A JP 2006196394A JP 2006196394 A JP2006196394 A JP 2006196394A JP 2008029065 A JP2008029065 A JP 2008029065A
Authority
JP
Japan
Prior art keywords
distributed power
injection
current
power source
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006196394A
Other languages
English (en)
Inventor
Fumio Yamamoto
文雄 山本
Soji Nishimura
荘治 西村
Yasukazu Natsuda
育千 夏田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Nissin Electric Co Ltd
Original Assignee
Kansai Electric Power Co Inc
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Nissin Electric Co Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2006196394A priority Critical patent/JP2008029065A/ja
Publication of JP2008029065A publication Critical patent/JP2008029065A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

【課題】 分散電源の単独運転を、例えば0.1秒以内という高速で、しかも高い信頼性で検出することができる単独運転検出システムを提供する。
【解決手段】 この単独運転検出システムは、配電線10に注入次数mの注入電流Jm を注入する電流注入装置30と、配電系統の注入次数mのアドミタンスまたはサセプタンスを計測してその変化から、分散電源22が単独運転になったことを検出すると共に、当該検出後に電流注入装置30から出力する注入電流Jm を増大させる第1単独運転検出装置40と、各分散電源保有設備16内に設けられていて、注入次数mの電圧を計測してその増大から、当該分散電源保有設備16内の分散電源22が単独運転になったことを検出する第2単独運転検出装置80とを備えている。
【選択図】 図1

Description

この発明は、上位系統に変電所を介して配電線が接続され、この配電線に、分散電源を有する1以上の分散電源保有設備が接続された構成の配電系統に適用されるものであって、分散電源の単独運転を検出する単独運転検出システムに関する。
配電線で、例えば高圧と低圧間の混触事故を含む地絡事故が発生すると、変電所では、これを検出して変電所内の遮断器を開放する。
この配電線に、分散電源を有する分散電源保有設備が接続されていると、上記遮断器の開放によって分散電源が単独運転になる。この単独運転が継続すると、分散電源から電力が供給され続けるために、上記混触事故を含む地絡事故が継続してしまう可能性がある。従って、分散電源の単独運転を速やかに検出する必要がある。
特に、家庭用太陽光発電設備や燃料電池設備等の低圧連系で逆潮流有り(即ち、分散電源から系統側へ向かう有効電力の流れ有り)の分散電源が配電線に多数接続されていると、上記地絡事故が継続してしまう可能性が高くなる。これを防止するために、非特許文献1の38頁にも記載されているように、分散電源の単独運転検出機能を有する装置を設置する必要がある。
ところで、電気設備技術基準の解釈第19条によれば、地絡事故発生後に分散電源の解列が完了するまでの時間として1秒以内が求められている。
変電所の遮断器は、通常、地絡事故検出後、約0.9秒で解列するので、残された0.1秒以内に分散電源の単独運転を検出することが要請されている。
単独運転検出機能として、非特許文献1の39〜45頁には、次の受動的方式および能動的方式が記載されている。
ア.受動的方式
(ア)電圧位相跳躍検出方式
これは、単独運転移行時に発電出力と負荷の不平衡による電圧位相の急変を検出する方式である。
(イ)3次高調波電圧歪急増検出方式
これは、インバータ(逆変換装置)に電流制御形を用い、単独運転移行時に変圧器に依存する3次高調波電圧の急増を検出する方式である。
(ウ)周波数変化率検出方式
これは、単独運転移行時に発電出力と負荷の不平衡による周波数の急変を検出する方式である。
イ.能動的方式
(ア)周波数シフト方式
これは、インバータの内部発信器等に周波数バイアスを与えておき、単独運転移行時に表れる周波数変化を検出する方式である。
(イ)有効電力変動方式
これは、発電出力に周期的な有効電力変動を与えておき、単独運転移行時に表れる周期的な電圧変動、電流変動あるいは周波数変動を検出する方式である。
(ウ)無効電力変動方式
これは、発電出力に周期的な無効電力変動を与えておき、単独運転移行時に表れる周期的な周波数変動あるいは電流変動を検出する方式である。
(エ)負荷変動方式
これは、発電設備に並列インピーダンスを瞬間的かつ周期的に挿入し、電圧変動または電流変動の急変を検出する方式である。
「分散型電源系統連系技術指針(電気技術指針分散型電源系統連系編)」、JEAG 9701−2001、社団法人日本電気協会 分散型電源系統連系専門部会、平成14年4月15日第3版第2刷発行、38−45頁
上記能動的方式は、(ア)〜(エ)のいずれの方式の場合も、上記非特許文献1の44頁にも記載されているように、検出が遅いという課題がある。
一方、上記受動的方式は、(ア)〜(ウ)のいずれの場合も、上記非特許文献1の44頁にも記載されているように、検出は速いけれども、分散電源の単独運転を検出することができない場合があり、検出の信頼性が低いという課題がある。
例えば、上記電圧位相跳躍検出方式または周波数変化率検出方式を採用している場合、配電系統において分散電源の発電出力と負荷が概ね平衡していると、単独運転になっても電圧や周波数の変動は少ないので、このような場合には単独運転を検出することができない恐れがある。また、上記3次高調波電圧歪急増検出方式を採用している場合、負荷が抵抗負荷またはそれに近い負荷であると、単独運転になっても3次高調波電圧歪はあまり増大しないので、単独運転を検出することができない恐れがある。
上記受動的方式において、単独運転を検出できない恐れを少なくしようとして検出条件を緩くすると、単独運転でない場合を単独運転であると誤検出(不要検出)する可能性が高くなり、やはり検出の信頼性が低下する。
その他、過電圧継電器(OVR)、不足電圧継電器(UVR)、周波数上昇継電器(OFR)、周波数低下継電器(UFR)といった保護継電器方式の場合も、上記非特許文献1の38頁にも記載されているように、分散電源の発電出力と負荷が概ね平衡していると、単独運転になっても電圧や周波数の変動は少ないので、このような場合には単独運転を検出することができず、検出の信頼性は低い。
また、低圧連系の場合は電気設備技術基準では地絡検出機能の設置を必要とされていないけれども、仮にそれを設置しても、それを設置した低圧系統での地絡しか検出することができず、高圧系統の地絡を検出することはできない。なぜなら、間に高圧/低圧の柱状変圧器が存在していてそのインピーダンスの影響で高圧系統の地絡を検出することができないからである。
そこでこの発明は、分散電源の単独運転を、例えば0.1秒以内という高速で、しかも高い信頼性で検出することができる単独運転検出システムを提供することを主たる目的としている。
この発明に係る単独運転検出システムの一つは、(a)前記配電線に、当該配電系統の基本波電圧の1倍よりも大きい非整数倍の注入次数の注入電流を注入するものであって出力する注入電流の大きさを制御可能な電流注入装置と、(b)前記配電系統の前記注入次数のアドミタンスまたはサセプタンスを計測して、当該アドミタンスまたはサセプタンスの変化から、前記分散電源が単独運転になったことを検出すると共に、当該単独運転検出後に前記電流注入装置から出力する注入電流を所定期間増大させる制御を行う第1単独運転検出装置と、(c)前記各分散電源保有設備内に設けられていて、前記注入次数の電圧を計測して、当該電圧の増大から、当該分散電源保有設備内の分散電源が単独運転になったことを検出する第2単独運転検出装置とを備えていることを特徴としている。
この単独運転検出システムにおいては、電流注入装置によって、配電線に、配電系統の基本波電圧の1倍よりも大きい非整数倍の注入次数の注入電流を注入する。分散電源が単独運転になると、第1単独運転検出装置は、注入次数のアドミタンスまたはサセプタンスの変化から単独運転になったことを検出すると共に、単独運転検出後に電流注入装置から出力する注入電流を所定期間増大させる制御を行う。
この注入電流の増大によって、各分散電源保有設備内に設けられている第2単独運転検出装置による単独運転検出を助成することができる。即ち、各第2単独運転検出装置は、注入次数の電圧の増大から、当該分散電源保有設備内の分散電源が単独運転になったことをそれぞれ検出するのであるが、上記注入電流の増大によって、注入次数の電圧が急増するので、単独運転検出の信頼性を高めつつ、高速検出が可能になる。
第1単独運転検出装置は、配電系統の注入次数の正相サセプタンスおよび逆相サセプタンスを計測して、両サセプタンスが所定のサセプタンス判定値以下になったことから、分散電源が単独運転になったことを検出するものでも良い。または、電圧位相跳躍検出方式、3次高調波電圧歪急増検出方式および周波数変化率検出方式の内の少なくとも一つの単独運転検出機能によって、分散電源が単独運転になったことを検出するものでも良い。
第1単独運転検出装置は、電流注入装置から出力する注入電流を、単独運転検出前の2倍以上に増大させる制御を行うものが好ましく、4倍〜6倍に増大させる制御を行うものがより好ましい。
請求項1に記載の発明によれば、第1単独運転検出装置と第2単独運転検出装置とを併用していて、しかも第1単独運転検出装置によって、単独運転検出後に、電流注入装置から出力する注入電流を増大させて、第2単独運転検出装置による単独運転検出を助成することができるので、分散電源の単独運転を、例えば0.1秒以内という高速で、しかも高い信頼性で検出することができる。
請求項2に記載の発明によれば、請求項1に記載の発明の効果と同様の効果に加えて、次のような更なる効果を奏する。即ち、第1単独運転検出装置は、配電系統の注入次数の正相サセプタンスおよび逆相サセプタンスを計測して、両サセプタンスが所定のサセプタンス判定値以下になったことから、分散電源が単独運転になったことを検出するものであるので、第1単独運転検出装置において、不要検出の可能性をより少なくして信頼性をより高めつつ、単独運転検出を高速で行うことができる。
請求項3に記載の発明によれば、第1単独運転検出装置は、受動的方式の単独運転検出機能を有しているので、高速で単独運転を検出することができる。しかも、不検出の可能性を少なくするために上記単独運転検出機能の検出条件を緩くすることができ、それによって不要検出が起こったとしても、各分散電源保有設備内に設けた第2単独運転検出装置による単独運転検出を併用しているので、不要検出の可能性を排除または小さく抑えることができる。その結果、分散電源の単独運転を、例えば0.1秒以内という高速で、しかも高い信頼性で検出することができる。
請求項4に記載の発明によれば、注入電流を、単独運転検出前の2倍以上に増大させるので、注入電流増大の作用効果をより確実に発揮させることができ、単独運転検出の信頼性をより向上させることができる。
請求項5に記載の発明によれば、注入電流を、単独運転検出前の4倍〜6倍に増大させるので、注入電流増大の作用効果をより一層確実に発揮させることができ、単独運転検出の信頼性をより一層向上させることができる。
図1は、この発明に係る分散電源の単独運転検出システムを備える配電系統の一例を示す単線接続図である。この配電系統は、上位系統2に変電所4を介して配電線10が接続された構成をしている。変電所4は、変圧器6と、その2次側と配電線10とを接続する遮断器8とを備えている。配電線10の電圧は、例えば6.6kVであるが、これに限られるものではない。
配電線10には、この例では変圧器12およびその2次側に接続された引込線14を介して、分散電源22を有する1以上の分散電源保有設備16が接続されている。より具体例を挙げると、逆潮流有りの契約をしている低圧連系の分散電源保有設備16が多数高い密度で接続されている。各変圧器12は、例えば、6600V/210Vの柱状変圧器である。一つの変圧器12に複数の分散電源保有設備16が接続されていても良く、通常はそのように接続されている。
各分散電源保有設備16は、この実施形態では、それぞれ、太陽電池、燃料電池等の直流電源から成る分散電源22と、それからの直流電力を交流電力に変換するインバータ(逆変換装置)および系統連系用保護装置を含むパワーコンディショナ20と、それと引込線14との間に設けられた遮断器18と、引込線14の線間電圧を計測する計器用変圧器23と、第2単独運転検出装置80とを有している。
各分散電源保有設備16は、低圧連系では、配電線10とは単相接続されている。従って、計器用変圧器23は当該単相接続されている相間(線間)の電圧を計測する。例えば、a相b相接続の分散電源保有設備16ではa相b相間の線間電圧を計測する。同様に、b相c相接続の分散電源保有設備16ではb相c相間の線間電圧を、c相a相接続の分散電源保有設備16ではc相a相間の線間電圧を、それぞれ計測する。計器用変圧器23で計測して得られる単相の計測電圧Vd が第2単独運転検出装置80に供給される。第2単独運転検出装置80の構成については後で詳述する。
配電線10には、接続線24を介して、注入・検出装置26が接続されている。この注入・検出装置26は、分散電源保有設備16が配電線10に多数高い密度で接続された地域の近辺に設けるのが好ましい。その方が、各分散電源保有設備16の近くから配電線10に後述する注入電流Jm を注入して、注入次数mの計測電圧Vd の大きさをより大きくすることができるので、SN比を良くして計測電圧Vd の変化を第2単独運転検出装置80によって検出することがより正確になるからである。
この実施形態では、この注入・検出装置26内に、電流注入装置30、第1単独運転検出装置40、変圧器28、計器用変圧器32および計器用変流器34が設けられている。但し、これらの構成要素は、必ず一つの注入・検出装置26内に設けなければならないものではない。
変圧器28は、電圧整合用のものであり、例えば6600V/210Vの3相変圧器である。この変圧器28の1次側(高圧側)および2次側(低圧側)に、3相の電圧および電流をそれぞれ計測する計器用変圧器32および計器用変流器34が接続されており、これら32、34で計測して得られる3相の計測電圧Vt および計測電流It が第1単独運転検出装置40に供給される。計測電圧Vt および計測電流It を3相で表現する場合は、電圧Vta、Vtb、Vtcおよび電流Ita、Itb、Itcとする。添字のa、b、cは、a相、b相、c相をそれぞれ示す(以下同様)。
電流注入装置30は、この実施形態では、変圧器28および接続線24を介して、配電線10に、当該配電系統の基本波電圧の1倍よりも大きい非整数倍(即ち帯小数倍)の注入次数mの注入電流Jm を単相注入するものである。即ち、単相の注入電流Jm を、3相の接続線24ひいては配電線10の任意の2相間(例えばa相b相間)に注入するものである。この注入電流Jm 、後述する電圧V、電流I等の符号に付した添字のmは、上記注入次数を表している。
注入電流Jm の次数(即ち注入次数)mは、単独運転の検出精度を高めるためには、1<m≦3.6(但しm≠2、m≠3)の範囲内が好ましいことが実験によって確かめられている。より具体的には、例えば、2.17次または2.25次の注入次数mを用いる。
電流注入装置30は、それから出力する注入電流Jm の大きさを、第1単独運転検出装置40から与えられる単独運転検出信号S3 によって制御する(変化させる)ことができる。具体的には、平生は所定値の注入電流Jm を出力しており、単独運転検出信号S3 が与えられると、平生よりも注入電流Jm を増大させる。例えば、2倍以上に、または4倍〜6倍に増大させる。
配電系統の注入次数mの等価回路は、簡略化すれば、図13に示すように表すことができる。Zm は注入次数mのインピーダンスである。従って、例えばa相b相間に注入電流Jm を単相注入することによって、配電線10のa相b相間に注入次数mの電圧Vm が発生するとすると、b相c相間、c相a相間には、それぞれ、(1/2)Vm の大きさの電圧が発生する。これは、注入電流Jm が流れるインピーダンスZm は、a相b相間のそれぞれ1/2だからである。各電圧は互いに同相である。
なお、三つの線間に注入電流Jm を3相注入することがより基本的であるが、その場合は、単相の電流注入装置30が3台または3相の電流注入装置30が必要となるため、電流注入装置が複雑かつ大型化する。その代わりに、各線間に発生する注入次数mの電圧の大きさは、互いに同じになる。三つの線間で発生する電圧のバランスを取るために、このような3相注入構成の電流注入装置30を採用しても良い。
再び図1を参照して、第1単独運転検出装置40は、上記計測電圧Vt および計測電流It に基づいて、配電系統の注入次数mのアドミタンスまたはサセプタンスを計測して、当該アドミタンスまたはサセプタンスの変化から、上記遮断器8が開放されて分散電源22が単独運転になったことを検出して、上記単独運転検出信号S3 を出力すると共に、当該単独運転検出信号S3 を用いて、単独運転検出後に、より具体的には単独運転検出直後に、電流注入装置30から出力する注入電流Jm を所定期間増大させる制御を行う。
この注入電流Jm の増大によって、各分散電源保有設備16内に設けられている第2単独運転検出装置80による単独運転検出を助成(援助)することができる。即ち、各第2単独運転検出装置80は、注入次数mの電圧の増大から、当該分散電源保有設備16内の、即ちその第2単独運転検出装置80が属する(設けられている)分散電源保有設備16内の分散電源22が単独運転になったことをそれぞれ検出するのであるが、上記注入電流Jm の増大によって、注入次数mの電圧が急増するので、単独運転の検出の信頼性を高めつつ、高速検出が可能になる。
電流注入装置30から出力する注入電流Jm をどの程度増大させるかについては、平生の(即ち単独運転検出前の)2倍以上に増大させるのが好ましく、4倍〜6倍に増大させるのがより好ましい。2倍以上に増大させると、注入電流増大の作用効果をより確実に発揮させることができるので、単独運転検出の信頼性をより向上させることができる。4倍〜6倍に増大させると、注入電流増大の作用効果をより一層確実に発揮させることができるので、単独運転検出の信頼性をより一層向上させることができる。
電流注入装置30から出力する注入電流Jm を増大させる期間は、例えば、(a)少なくとも第1単独運転検出装置40による単独運転検出中(即ち単独運転検出信号S3 が出力されている期間中)増大させるようにしても良いし、(b)第1単独運転検出装置40による単独運転検出直後の所定期間(例えば1秒〜5秒間程度)だけ増大させるようにしても良い。
第1単独運転検出装置40は、より具体例を挙げると、例えば特開2001−251767号公報に記載されている技術と同様に、上記計測電圧Vt および計測電流It から注入次数mの電圧Vtmおよび電流Itmを抽出し、次式の演算を行って配電系統の注入次数mのアドミタンスYm を算出する。そしてこのアドミタンスYm を所定の基準値と比較して、アドミタンスYm が当該基準値以下になれば上記単独運転検出信号S3 を出力する。
[数1]
m =Itm/Vtm
第1単独運転検出装置40における単独運転検出手段として、例えば上記特許公報に記載されている技術と同様に、上記アドミタンスYm の成分である注入次数mのサセプタンスBm を計測して、当該サセプタンスBm の変化から単独運転検出を行うものを採用しても良い。サセプタンスBm の計測もアドミタンスYm の計測の一種であると考えることができる。単独運転になると注入次数mの電圧Vm よりもサセプタンスBm の変化の方が大きいので、サセプタンスBm を監視する方が単独運転をより確実に検出することができる。
また、第1単独運転検出装置40における単独運転検出手段として、注入次数mの正相サセプタンスおよび逆相サセプタンスを計測して、両サセプタンスが共に所定のサセプタンス判定値以下になったことから、分散電源が単独運転になったことを検出するものを採用しても良い。そのようにすると、不要検出の可能性をより少なくして信頼性をより高めつつ、単独運転検出を高速で行うことができる。この場合の第1単独運転検出装置40の構成の一例を図2を参照して説明する。
この第1単独運転検出装置40は、六つのフィルタ42〜47、六つの離散フーリエ変換器52〜57、電圧演算器60、電流演算器62、アドミタンス演算器64、66、サセプタンス演算器68、70、判定器72、74およびAND回路76を有している。
各フィルタ42〜47は、3相の上記計測電圧Vta、Vtb、Vtc、計測電流Ita、Itb、Itcをそれぞれ受けて、系統電圧・電流の主成分である基本波(1次)および整数次高調波を除去し、注入次数m(例えば2.25次)の電圧、電流をそれぞれ通過させるものである。このようなフィルタ42〜47を設けておくと、SN比を高めて、離散フーリエ変換器52〜57における注入次数mの電圧Vam、Vbm、Vcmおよび電流Iam、Ibm、Icmの抽出を精度良く行うことができる。
各離散フーリエ変換器52〜57は、各フィルタ42〜47からの電圧、電流をそれぞれ受けて、それらをそれぞれ離散フーリエ変換して、注入次数mの3相の電圧Vam、Vbm、Vcmおよび電流Iam、Ibm、Icmをそれぞれ抽出して出力するものである。各離散フーリエ変換器52〜57には、例えば、特開2001−45666号公報に記載されているような、回帰型離散フーリエ変換器を用いるのが好ましい。そのようにすると、演算時間を大幅に短縮することができる。
また、各離散フーリエ変換器52〜57においては、離散フーリエ変換を行うために過去データを計測する計測期間をできるだけ短くするのが好ましい。例えば、当該計測期間を0.1秒よりも短くするのが好ましい。そのようにすると、上記電圧、電流の抽出が速くなり、ひいては後述するアドミタンスY1m、Y2m、サセプタンスB1m、B2mの変化が急になるので、単独運転をより高速で検出することができる。
電圧演算器60は上記抽出した電圧Vam、Vbm、Vcmから数2に従って注入次数mの正相電圧V1mおよび逆相電圧V2mを算出し、電流演算器62は上記抽出した電流Iam、Ibm、Icmから数3に従って注入次数mの正相電流I1mおよび逆相電流I2mを算出して出力するものである。aは数4で表される回転因子である。電圧V、電流I、アドミタンスYおよびサセプタンスBの符号に付した添字の1は正相を、2は逆相をそれぞれ示す。
[数2]
1m=(1/3)(Vam+a・Vbm+a2 ・Vcm
2m=(1/3)(Vam+a2 ・Vbm+a・Vcm
[数3]
1m=(1/3)(Iam+a・Ibm+a2 ・Icm
2m=(1/3)(Iam+a2 ・Ibm+a・Icm
[数4]
a=exp(j2π/3)
なお、電圧Vam、Vbm、Vcm、電流Iam、Ibm、Icm、正相電圧V1m、逆相電圧V2m、正相電流I1m、逆相電流I2m、正相アドミタンスY1m、逆相アドミタンスY2mは、いずれもベクトルであり、複素数の形で表される。
アドミタンス演算器64は上記正相電圧V1mおよび正相電流I1mから数5に従って注入次数mの正相アドミタンスY1mを算出して出力し、アドミタンス演算器66は上記逆相電圧V2mおよび逆相電流I2mから数6に従って注入次数mの逆相アドミタンスY2mを算出して出力するものである。
[数5]
1m=I1m/V1m
[数6]
2m=I2m/V2m
サセプタンス演算器68は上記正相アドミタンスY1mの虚部を抽出することによって注入次数mの正相サセプタンスB1mを算出して出力し、サセプタンス演算器70は上記逆相アドミタンスY2mの虚部を抽出することによって注入次数mの逆相サセプタンスB2mを算出して出力するものである。
判定器72、74は、それぞれ、上記正相サセプタンスB1m、逆相サセプタンスB2mを所定のサセプタンス判定値Bjuと比較して、正相サセプタンスB1m、逆相サセプタンスB2mがサセプタンス判定値Bju以下になれば検出信号S1 、S2 をそれぞれ出力するものである。この実施形態では、両判定器72、74に設定するサセプタンス判定値Bjuは互いに同じ値であるが、互いに異なる値を設定しても良い。
AND回路76は、上記検出信号S1 とS2 との論理積を取り、両検出信号S1 、S2 が共に出力されているときに、即ち両サセプタンスB1m、B2mが共にサセプタンス判定値Bju以下のときに、上記単独運転検出信号S3 を出力する。
なお、電流源型の電流注入装置30を用いれば、それから出力する注入電流Jm の大きさおよび位相は、電流注入装置30内での制御データとほぼ一致しているので、上記実施形態のように計器用変流器34を用いて注入電流Jm を計測する代わりに、電流注入装置30内での制御データを用いても良い。
各分散電源保有設備16内に設けられている第2単独運転検出装置80は、上記注入次数mの電圧を計測して、当該電圧の増大から、当該分散電源保有設備16内の、即ちその第2単独運転検出装置80が属する(設けられている)分散電源保有設備16内の分散電源22が単独運転になったことをそれぞれ検出するものである。
この第2単独運転検出装置80の構成の一例を図3を参照して説明する。この第2単独運転検出装置80は、フィルタ82、離散フーリエ変換器84、絶対値演算器86、判定器88および継続時間判定器90を有している。
フィルタ82は、上記計測電圧Vd を受けて、系統電圧の主成分である基本波(1次)および整数次高調波を除去し、注入次数m(例えば2.25次)の電圧を通過させるものである。このようなフィルタ82を設けておくと、SN比を高めて、離散フーリエ変換器84における注入次数mの電圧Vdmの抽出を精度良く行うことができる。
離散フーリエ変換器84は、フィルタ82からの電圧を受けて、それを離散フーリエ変換して、注入次数mの電圧Vdmを抽出して出力するものである。このフィルタ84にも、前記と同様に、例えば、特開2001−45666号公報に記載されているような、回帰型離散フーリエ変換器を用いるのが好ましい。そのようにすると、演算時間を大幅に短縮することができる。
また、この離散フーリエ変換器84においても、前記と同様に、離散フーリエ変換を行うために過去データを計測する計測期間をできるだけ短くするのが好ましい。例えば、当該計測期間を0.1秒よりも短くするのが好ましい。そのようにすると、上記電圧Vdmの抽出が速くなって電圧Vdmの変化が急になるので、単独運転をより高速で検出することができる。
絶対値演算器86は、上記電圧Vdmの絶対値|Vdm|を算出して出力するものである。
判定器88は、上記絶対値|Vdm|を所定の電圧判定値Vjuと比較して、絶対値|Vdm|が電圧判定値Vju以上になれば検出信号S4 を出力するものである。
上記検出信号S4 を単独運転検出信号としてこの第2単独運転検出装置80からそのまま出力するよりも、この実施形態のように、継続時間判定器90によって、検出信号S4 が所定の継続確認時間T0 継続していることを判定して継続したときに単独運転検出信号S5 を出力するようにするのが好ましい。そのようにすると、単独運転以外の何らかの原因による計測電圧Vd 等の瞬時の変動による誤検出を防止することができる。この継続確認時間T0 は、それを長くすると、その分、第2単独運転検出装置80による単独運転検出が遅くなるので、例えば0.05秒程度にすれば良い。この実施形態ではこの単独運転検出信号S5 の出力によって、第2単独運転検出装置80は、最終的に、それが設けられている分散電源保有設備16内の分散電源22が単独運転になったことを検出したことになる。
以上のようにこの単独運転検出システムにおいては、分散電源22が単独運転になると、第1単独運転検出装置40は、注入次数mのアドミタンスYm 等の変化から単独運転になったことを検出すると共に、単独運転検出直後に電流注入装置30から出力する注入電流Jm を所定期間増大させる制御を行う。この注入電流Jm の増大によって、各分散電源保有設備16内に設けられている第2単独運転検出装置80による単独運転検出を助成することができる。
即ち、各第2単独運転検出装置80は、注入次数mの電圧Vdmの増大から、当該分散電源保有設備16内の分散電源22が単独運転になったことを検出する。その場合、変電所4の遮断器8が開放されて分散電源22が単独運転になると、配電線10に接続された変圧器6の並列インピーダンスが無くなって配電系統のインピーダンスは大きくなり(換言すればアドミタンスは小さくなり)、それに伴って、注入電流Jm を増大させなくても、注入次数mの電圧Vdmはある程度大きくなるけれども、これに注入次数mの増大を併用すると、それが電圧Vdmの増大を助けて、注入次数mの電圧Vdmは急増するので、単独運転検出の信頼性を高めつつ、高速検出が可能になる。
このように、この単独運転検出システムによれば、第2単独運転検出装置80のみで分散電源22の単独運転検出を行うのではなく、第1単独運転検出装置40、それに応答する電流注入装置30および各分散電源保有設備16内の第2単独運転検出装置80が協働して単独運転検出を行うので、分散電源22の単独運転を、例えば0.1秒以内という高速で、しかも高い信頼性で検出することができる。
なお、第2単独運転検出装置80による単独運転検出後に分散電源22の解列を行うには、上記単独運転検出信号S5 によって遮断器18を開放しても良いし、上記単独運転検出信号S5 によってパワーコンディショナ20内のインバータにゲートブロックをかけて当該インバータを停止しても良いし、両者を併用しても良い。低圧連系逆潮流有りの分散電源は、出力部にインバータを使用している(この方式しか電気設備技術基準で認められていない)ので、このインバータに対するゲートブロックを使用することができる。ゲートブロックは瞬時に行われるので、ゲートブロックを使用する場合は、第2単独運転検出装置80による単独運転検出後の解列時間は無視することができる。
ところで、第1単独運転検出装置40における単独運転検出手段として、例えば上記非特許文献1にも記載されているような、上記受動的方式の内の少なくとも一つ、即ち(ア)電圧位相跳躍検出方式、(イ)3次高調波電圧歪急増検出方式、および(ウ)周波数変化率検出方式の内の少なくとも一つの単独運転検出機能を採用しても良い。これによって単独運転検出を行って上記単独運転検出信号S3 を出力し、それによって電流注入装置30を制御することについては、上記例の場合と同様である。
この場合、第1単独運転検出装置40は、受動的方式の単独運転検出機能を有しているので、前述したように高速で単独運転を検出することができる。不検出の可能性がある課題については、不検出の可能性を少なくするために上記単独運転検出機能の検出条件を緩くすることができ、それによって不要検出が起こったとしても、各分散電源保有設備16内に設けた第2単独運転検出装置80による単独運転検出を併用しているので、不要検出の可能性を排除または小さく抑えることができる。その結果、分散電源の単独運転を、例えば0.1秒以内という高速で、しかも高い信頼性で検出することができる。
[シミュレーション例]
図1に示した配電系統を模した図4に示すシミュレーションモデルを用いてシミュレーションを行った。ここで、6.6kV、10MVAをベースとして、変電所変圧器6のインピーダンス(正確にはパーセントインピーダンス。以下同様)はj8%、配電線10のインピーダンスはj8%、低圧連系の複数の分散電源保有設備16の集合体16aの連系インピーダンスは厳しめの条件としてj50%とした。複数の分散電源保有設備16の集合体16aの合計容量は1MW、抵抗負荷94の容量は10MVAとした。
注入・検出装置26内の第1単独運転検出装置40の構成は図2に示すものを用い、各分散電源保有設備16内の第2単独運転検出装置80の構成は図3に示したものを用いた。注入・検出装置26内の電流注入装置30による注入電流Jm の注入は、a相b相間の単相注入とし、その注入次数mは2.17次とした。この電流注入装置30は、上記単独運転検出信号S3 に応答して注入電流Jm を5倍に増大させるものである。リアクトル付き力率改善用コンデンサ(L付きSC)98は負荷変動時のシミュレーション時に遮断器96を投入して使用するものであり、6%のリアクトル付きで、容量は300kVAである。
(1)単独運転発生時
10MVA負荷時に、計測開始から0.50秒後の時刻t0 で変電所遮断器8を開放して単独運転を発生させた。このときの上記正相サセプタンスB1m、逆相サセプタンスB2mの波形を図5、図6にそれぞれ示す。上記サセプタンス判定値Bjuは0.4[S]とした。後述する図9、図10においても同様である。
正相サセプタンスB1mは時刻t0 =0.51秒でサセプタンス判定値Bju以下になり、逆相サセプタンスB2mは時刻t2 =0.53秒でサセプタンス判定値Bju以下になり、上記第1単独運転検出装置40は両者のAND条件で、即ちB1m≦BjuおよびB2m≦Bjuで判定するから、遅い方の時刻t2 =0.53秒で単独運転を検出した。
注入・検出装置26内の電流注入装置30から出力している注入電流Jm の波形を図7に示す。単独運転検出した上記時刻t2 =0.53秒以降において、大きさ(振幅)が5倍に増大している。
各分散電源保有設備16内の第2単独運転検出装置80における注入次数電圧Vdmの波形を図8に示す。a相b相接続の分散電源保有設備16内の第2単独運転検出装置80における上記電圧判定値Vjuは、定常時の電圧Vdmの10倍に設定している(図8A)。これは、単独運転検出時に注入電流Jm を上記のように5倍にすることと、単独運転時に配電系統のサセプタンスは少なくとも1/2未満になることとを併せると、単独運転時は注入次数電圧Vdmは定常時の10倍以上になることが想定されたからである。注入電流Jm をa相b相間に注入するため、b相c相接続の分散電源保有設備16およびc相a相接続の分散電源保有設備16においては、先に図13を参照して説明したように、定常時の注入次数電圧Vdmはa相b相間の1/2になるため、第2単独運転検出装置80における電圧判定値Vjuはa相b相接続の1/2に設定している(図8B、C)。後述する図12においても同様である。
いずれの分散電源保有設備16内の第2単独運転検出装置80においても、上記時刻t2 とほぼ同時の時刻t3 =0.53秒で注入次数電圧Vdmが電圧判定値Vju以上となり、一応の単独運転検出が行われた。より正確には、上記検出信号S4 が出力された。最終的な単独運転検出は、即ち上記単独運転検出信号S5 の出力は、0.05秒に設定している上記継続確認時間T0 の経過後に行われた。
単独運転発生から最終的な単独運転検出までの時間T0 は次式で表されるので、0.1秒以内の高速検出を行うことができたことが分かる。
[数7]
1 =(t3 −t0 )+T0
=(0.53−0.50)+0.05
=0.08 [秒]
(2)系統健全時で負荷変動時
10MVA負荷時に、計測開始から0.05秒後の時刻t0 で上記遮断器96を投入して上記300kVAの6%L付きSC98を投入して負荷変動を発生させた。このような値のL付きSC98の投入は、一番負荷変動が大きいと考えられる場合を想定したものである。このときの上記正相サセプタンスB1m、逆相サセプタンスB2mの波形を図9、図10にそれぞれ示す。
正相サセプタンスB1mは初めの時刻t4 =0.51秒から時刻t5 =0.547秒の間でサセプタンス判定値Bju以下になり、逆相サセプタンスB2mは時刻t4 =0.51秒から時刻t6 =0.54秒の間でサセプタンス判定値Bju以下になり、上記第1単独運転検出装置40は両者のAND条件で判定するから、重複する時刻t4 からt6 までの間は単独運転であると判定してしまう。これは、不要検出(誤検出)である。これは、上述したように、厳しい条件でシミュレーションしたことも関係している。
それに応じて、電流注入装置30から出力する注入電流Jm も、図11に示すように、時刻t4 からt6 までの間、大きさが5倍に増大している。
各分散電源保有設備16内の第2単独運転検出装置80での注入次数電圧Vdmの波形を図12に示す。a相b相接続の分散電源保有設備16内の第2単独運転検出装置80においては(図12A)、注入次数電圧Vdmは常に電圧判定値Vjuよりも小さいので、単独運転検出は行われない。従って、不要検出を防止することができた。
b相c相接続の分散電源保有設備16内の第2単独運転検出装置80においては(図12B)、時刻t7 、t8 、t9 で注入次数電圧Vdmは電圧判定値Vju以上になり上記検出信号S4 が出力されるけれども、その状態は上記継続確認時間T0 =0.05秒よりもいずれも短いため、最終的な単独運転の検出は、即ち単独運転検出信号S5 の出力は行われない。従って、不要検出を防止することができた。
c相a相接続の分散電源保有設備16内の第2単独運転検出装置80においては(図12C)、時刻t10、t11で注入次数電圧Vdmは電圧判定値Vju以上になり上記検出信号S4 が出力されるけれども、その状態は上記継続確認時間T0 =0.05秒よりもいずれも短いため、最終的な単独運転の検出は、即ち単独運転検出信号S5 の出力は行われない。従って、不要検出を防止することができた。
この発明に係る分散電源の単独運転検出システムを備える配電系統の一例を示す単線接続図である。 図1中の第1単独運転検出装置の構成の一例を示すブロック図である。 図1中の第2単独運転検出装置の構成の一例を示すブロック図である。 図1の配電系統を模したシミュレーションモデルの一例を示す図である。 単独運転発生時のシミュレーションにおける正相サセプタンスの変化の一例を示す図である。 単独運転発生時のシミュレーションにおける逆相サセプタンスの変化の一例を示す図である。 単独運転発生時のシミュレーションにおける注入電流の変化の一例を示す図である。 単独運転発生時のシミュレーションにおける各分散電源保有設備での注入次数電圧の変化の一例を示す図であり、(A)はa相b相接続の分散電源保有設備におけるもの、(B)はb相c相接続の分散電源保有設備におけるもの、(C)はc相a相接続の分散電源保有設備におけるものを示す。 系統健全時で負荷変動時のシミュレーションにおける正相サセプタンスの変化の一例を示す図である。 系統健全時で負荷変動時のシミュレーションにおける逆相サセプタンスの変化の一例を示す図である。 系統健全時で負荷変動時のシミュレーションにおける注入電流の変化の一例を示す図である。 系統健全時で負荷変動時のシミュレーションにおける各分散電源保有設備での注入次数電圧の変化の一例を示す図であり、(A)はa相b相接続の分散電源保有設備におけるもの、(B)はb相c相接続の分散電源保有設備におけるもの、(C)はc相a相接続の分散電源保有設備におけるものを示す。 配電系統の注入次数の等価回路を簡略化して示す図である。
符号の説明
2 上位系統
4 変電所
10 配電線
16 分散電源保有設備
22 分散電源
26 注入・検出装置
30 電流注入装置
40 第1単独運転検出装置
80 第2単独運転検出装置
m 注入次数
m 注入電流

Claims (5)

  1. 上位系統に変電所を介して配電線が接続され、この配電線に、分散電源を有する1以上の分散電源保有設備が接続された構成の配電系統に適用されるものであって、
    前記配電線に、当該配電系統の基本波電圧の1倍よりも大きい非整数倍の注入次数の注入電流を注入するものであって出力する注入電流の大きさを制御可能な電流注入装置と、 前記配電系統の前記注入次数のアドミタンスまたはサセプタンスを計測して、当該アドミタンスまたはサセプタンスの変化から、前記分散電源が単独運転になったことを検出すると共に、当該単独運転検出後に前記電流注入装置から出力する注入電流を所定期間増大させる制御を行う第1単独運転検出装置と、
    前記各分散電源保有設備内に設けられていて、前記注入次数の電圧を計測して、当該電圧の増大から、当該分散電源保有設備内の分散電源が単独運転になったことを検出する第2単独運転検出装置とを備えていることを特徴とする分散電源の単独運転検出システム。
  2. 上位系統に変電所を介して配電線が接続され、この配電線に、分散電源を有する1以上の分散電源保有設備が接続された構成の配電系統に適用されるものであって、
    前記配電線に、当該配電系統の基本波電圧の1倍よりも大きい非整数倍の注入次数の注入電流を注入するものであって出力する注入電流の大きさを制御可能な電流注入装置と、 前記配電系統の前記注入次数の正相サセプタンスおよび逆相サセプタンスを計測して、両サセプタンスが所定のサセプタンス判定値以下になったことから、前記分散電源が単独運転になったことを検出すると共に、当該単独運転検出後に前記電流注入装置から出力する注入電流を所定期間増大させる制御を行う第1単独運転検出装置と、
    前記各分散電源保有設備内に設けられていて、前記注入次数の電圧を計測して、当該電圧の増大から、当該分散電源保有設備内の分散電源が単独運転になったことを検出する第2単独運転検出装置とを備えていることを特徴とする分散電源の単独運転検出システム。
  3. 上位系統に変電所を介して配電線が接続され、この配電線に、分散電源を有する1以上の分散電源保有設備が接続された構成の配電系統に適用されるものであって、
    前記配電線に、当該配電系統の基本波電圧の1倍よりも大きい非整数倍の注入次数の注入電流を注入するものであって出力する注入電流の大きさを制御可能な電流注入装置と、 電圧位相跳躍検出方式、3次高調波電圧歪急増検出方式および周波数変化率検出方式の内の少なくとも一つの単独運転検出機能によって、前記分散電源が単独運転になったことを検出すると共に、当該単独運転検出後に前記電流注入装置から出力する注入電流を所定期間増大させる制御を行う第1単独運転検出装置と、
    前記各分散電源保有設備内に設けられていて、前記注入次数の電圧を計測して、当該電圧の増大から、当該分散電源保有設備内の分散電源が単独運転になったことを検出する第2単独運転検出装置とを備えていることを特徴とする分散電源の単独運転検出システム。
  4. 前記第1単独運転検出装置は、前記電流注入装置から出力する注入電流を、前記単独運転検出前の2倍以上に増大させる制御を行う請求項1、2または3記載の分散電源の単独運転検出システム。
  5. 前記第1単独運転検出装置は、前記電流注入装置から出力する注入電流を、前記単独運転検出前の4倍〜6倍に増大させる制御を行う請求項1、2または3記載の分散電源の単独運転検出システム。
JP2006196394A 2006-07-19 2006-07-19 分散電源の単独運転検出システム Pending JP2008029065A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006196394A JP2008029065A (ja) 2006-07-19 2006-07-19 分散電源の単独運転検出システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006196394A JP2008029065A (ja) 2006-07-19 2006-07-19 分散電源の単独運転検出システム

Publications (1)

Publication Number Publication Date
JP2008029065A true JP2008029065A (ja) 2008-02-07

Family

ID=39119161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006196394A Pending JP2008029065A (ja) 2006-07-19 2006-07-19 分散電源の単独運転検出システム

Country Status (1)

Country Link
JP (1) JP2008029065A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104215841A (zh) * 2013-05-31 2014-12-17 阳光电源股份有限公司 孤岛检测方法、装置、变流器和分布式发电系统
JP2017005859A (ja) * 2015-06-10 2017-01-05 日新電機株式会社 分散電源の単独運転検出装置
CN107196337A (zh) * 2017-06-29 2017-09-22 广东电网有限责任公司电力调度控制中心 一种孤岛静态工作点校验方法及系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104215841A (zh) * 2013-05-31 2014-12-17 阳光电源股份有限公司 孤岛检测方法、装置、变流器和分布式发电系统
JP2017005859A (ja) * 2015-06-10 2017-01-05 日新電機株式会社 分散電源の単独運転検出装置
CN107196337A (zh) * 2017-06-29 2017-09-22 广东电网有限责任公司电力调度控制中心 一种孤岛静态工作点校验方法及系统
CN107196337B (zh) * 2017-06-29 2019-08-20 广东电网有限责任公司电力调度控制中心 一种孤岛静态工作点校验方法及系统

Similar Documents

Publication Publication Date Title
Luo et al. A directional protection scheme for HVDC transmission lines based on reactive energy
Dash et al. A hybrid time–frequency approach based fuzzy logic system for power island detection in grid connected distributed generation
Liu et al. Passive islanding detection approach based on tracking the frequency-dependent impedance change
Guha et al. A passive islanding detection approach for inverter-based distributed generation using rate of change of frequency analysis
Meng et al. Zero-sequence voltage trajectory analysis for unbalanced distribution networks on single-line-to-ground fault condition
Khederzadeh et al. STATCOM modeling impacts on performance evaluation of distance protection of transmission lines
Lien et al. A novel fault protection system using communication-assisted digital relays for AC microgrids having a multiple grounding system
Zhou et al. Adaptive current differential protection for active distribution network considering time synchronization error
Karimi et al. A protection strategy for inverter-interfaced islanded microgrids with looped configuration
Karady et al. Fault management and protection of FREEDM systems
Wang et al. Adaptive reclosing strategy for single outgoing line of converter-interfaced wind park using distance relaying algorithm
Liu et al. Protection of microgrids with high amounts of renewables: Challenges and solutions
Tajani et al. A novel differential protection scheme for AC microgrids based on discrete wavelet transform
Xu et al. Study on fault characteristics and distance protection applicability of VSC-HVDC connected offshore wind power plants
Zheng et al. Fault identification scheme for UPFC compensated transmission line based on characteristic voltage active injection
Tao et al. An advanced islanding detection strategy coordinating the newly proposed v detection and the rocof detection
Wang et al. A novel directional element for transmission line connecting inverter-interfaced renewable energy power plant
Schönleber et al. Handling of unbalanced faults in HVDC-connected wind power plants
JP2008029065A (ja) 分散電源の単独運転検出システム
Xie et al. Online parameter determination based adaptive single‐phase reclosing scheme for wind‐powered outgoing lines with shunt reactors
CN114966323B (zh) 一种基于全时域突变信息的故障识别方法及系统
Jia et al. Incipient Fault Identification-Based Protection for a Photovoltaic DC Integration System
Zhang et al. Active phase control to enhance distance relay in converter-interfaced renewable energy systems
Ma et al. Active voltage-type arc suppression device for single-line-to-ground fault in distribution networks with consideration of line impedance
Barik et al. Detection & mitigation of power quality disturbances using WPT & FACTS technology

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080909