JP2008028097A - Superconducting electromagnet - Google Patents

Superconducting electromagnet Download PDF

Info

Publication number
JP2008028097A
JP2008028097A JP2006198222A JP2006198222A JP2008028097A JP 2008028097 A JP2008028097 A JP 2008028097A JP 2006198222 A JP2006198222 A JP 2006198222A JP 2006198222 A JP2006198222 A JP 2006198222A JP 2008028097 A JP2008028097 A JP 2008028097A
Authority
JP
Japan
Prior art keywords
coil
superconducting
unit
coils
unit coils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006198222A
Other languages
Japanese (ja)
Other versions
JP4757129B2 (en
Inventor
Takahiro Matsumoto
隆博 松本
Yoshio Imai
良夫 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006198222A priority Critical patent/JP4757129B2/en
Publication of JP2008028097A publication Critical patent/JP2008028097A/en
Application granted granted Critical
Publication of JP4757129B2 publication Critical patent/JP4757129B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a superconducting electromagnet equipped with a superconducting coil which is capable of withstanding a large electromagnetic force. <P>SOLUTION: The superconducting electromagnet is equipped with a pair of superconducting coils 1, a helium vessel 3 which houses the superconducting electromagnet 1 together with its cooling medium, a cylindrical vacuum vessel 4 which contains the helium vessel 3, and a thermal shield 5 which surrounds the helium vessel 3. A flat board-shaped coil is formed, by winding a superconducting wire 14 into the shape of an ellipse, and fixing it with resin, as a unit coil 15; and the unit coils 15 are curved in the direction of the major or the minor axis, and are laminated therein by means of a coil-laminating jig 22; for instance, an insulating sheet 27 impregnated with resin is interposed between the layers of the unit coils 15, the laminated unit coils 15 are hardened and formed into an integral structure, the whole laminated unit coils 15 is formed into a saddle-shaped superconducting coil 1, and the saddle-shaped superconducting coil 1 is built in the superconducting electromagnet. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、例えば、単結晶引上装置等に用いられ、水平磁場を発生する超電導電磁石に関するものである。   The present invention relates to a superconducting electromagnet that is used in, for example, a single crystal pulling apparatus and generates a horizontal magnetic field.

例えば、シリコン単結晶引上装置では、良質な単結晶を得るために、円筒型炉を内蔵する真空チャンバの外周部に磁場を印加して、シリコンの対流を抑制する方法が採用されている。従来から、磁場を印加する方法として、1対の鞍形のコイルを持つ常電導電磁石を単結晶引上げ用炉の周りに設置し、0.2テスラ程度の水平な磁場を発生するものが知られている。しかし、常電導電磁石を使用した単結晶引上げ装置では常電導コイルを使用しているため、消費電力が数十kWと大きく、効率的な運転が難しかった。
そこで、常電導電磁石に替えて、超電導電磁石を使用する技術として、例えば、磁界発生部が、結晶引上部の両側に設けられた一対の超電導コイルからなる主コイルと、これらの主コイルより直径が小さく同軸で励磁方向が逆の一対の副コイルとで構成され、主コイル及び副コイルがルツボ側に湾曲した鞍形コイルである磁界印加式単結晶製造装置が開示されている(特許文献1参照)。
For example, in a silicon single crystal pulling apparatus, in order to obtain a high-quality single crystal, a method is adopted in which a magnetic field is applied to the outer periphery of a vacuum chamber containing a cylindrical furnace to suppress silicon convection. Conventionally, as a method of applying a magnetic field, a normal conductive magnet having a pair of saddle-shaped coils is installed around a single crystal pulling furnace to generate a horizontal magnetic field of about 0.2 Tesla. ing. However, since a single crystal pulling apparatus using a normal conductive magnet uses a normal conductive coil, the power consumption is as large as several tens of kW, making it difficult to operate efficiently.
Therefore, as a technique of using a superconducting magnet instead of a normal conducting magnet, for example, the magnetic field generator has a main coil composed of a pair of superconducting coils provided on both sides of the crystal pulling upper part, and a diameter larger than these main coils. A magnetic field application type single crystal manufacturing apparatus is disclosed, which is composed of a pair of sub-coils that are small and coaxial and have opposite excitation directions, and in which the main coil and the sub-coil are saddle-shaped coils curved to the crucible side (see Patent Document 1). ).

特開平10−7486号公報(第2頁、図3)Japanese Patent Laid-Open No. 10-7486 (second page, FIG. 3)

超電導コイルを用いた超電導電磁石の場合、超電導線に電流が流れると磁場を発生すると共に、発生した磁場により超電導線自体に大きな電磁力が働く。この電磁力により超電導線の変形量が大きくなると超電導線の相互間に緩みが生じるなどによって、超電導コイルがクエンチしやすくなり、十分な電流を流せなくなるという問題が発生する。特に、鞍形の超電導コイルの場合、その構造上強固なコイルを形成することが困難であった。上記の特許文献1に示す単結晶製造装置では、ルツボ領域での磁界均一度の改善を図るために、主コイル及び副コイルを鞍形超電導コイルで構成したものであるが、鞍形超電導コイルを強固に形成する手段についての言及は無く、いかにして電磁力に対して変形しない強固なコイルを形成するかが依然として重要な課題であった。   In the case of a superconducting electromagnet using a superconducting coil, a magnetic field is generated when a current flows through the superconducting wire, and a large electromagnetic force acts on the superconducting wire itself due to the generated magnetic field. When the amount of deformation of the superconducting wire is increased by this electromagnetic force, the superconducting coil is easily quenched due to loosening between the superconducting wires, and a problem arises that a sufficient current cannot flow. In particular, in the case of a saddle-shaped superconducting coil, it is difficult to form a strong coil because of its structure. In the single crystal manufacturing apparatus shown in Patent Document 1 above, in order to improve the magnetic field uniformity in the crucible region, the main coil and the subcoil are composed of saddle-shaped superconducting coils. There is no mention of means for forming firmly, and how to form a strong coil that does not deform against electromagnetic force remains an important issue.

この発明は上記のような課題を解決するためになされたもので、大きな電磁力に耐える強固な超電導コイルを備えた超電導電磁石を得ることを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a superconducting electromagnet having a strong superconducting coil that can withstand a large electromagnetic force.

この発明の超電導電磁石は、一対の超電導コイルと、超電導コイルをその冷媒と共に内部に収納するヘリウム容器と、ヘリウム容器を収納する円筒状の真空容器と、真空容器内に配設されてヘリウム容器を包囲する熱シールドとを有し、真空容器の軸線に直交する方向に磁場を発生させる超電導電磁石において、超電導コイルは、超電導線が長円状に巻回されて形成された平板状のコイルを単位コイルとし、複数個の単位コイルが長軸又は短軸方向に曲げられて積層され、樹脂で一体に固着されて鞍形に形成されているものである。   The superconducting electromagnet of the present invention includes a pair of superconducting coils, a helium container that houses the superconducting coil together with the refrigerant, a cylindrical vacuum container that houses the helium container, and a helium container disposed in the vacuum container. In a superconducting electromagnet having a surrounding heat shield and generating a magnetic field in a direction perpendicular to the axis of the vacuum vessel, the superconducting coil is a flat coil formed by winding a superconducting wire in an oval shape. A plurality of unit coils are bent and laminated in the major axis or minor axis direction, and are integrally fixed with resin to form a coil.

この発明の超電導電磁石によれば、超電導線を長円状に巻回して形成した平板状の単位コイルを、長軸又は短軸方向に曲げて複数個積層し、樹脂で一体に固着して全体を鞍形の超電導コイルに形成したので、大きな電磁力に対しても変形しない強固な鞍形超電導コイルを得ることができ、安定して強い水平磁場を供給する超電導電磁石を提供することができる。   According to the superconducting electromagnet of the present invention, a plurality of flat unit coils formed by winding a superconducting wire in an oval shape are bent in the major axis or minor axis direction and laminated together, and then fixed integrally with a resin. Is formed into a saddle-shaped superconducting coil, a strong saddle-shaped superconducting coil that is not deformed even by a large electromagnetic force can be obtained, and a superconducting electromagnet that stably supplies a strong horizontal magnetic field can be provided.

実施の形態1.
図1は、実施の形態1による超電導電磁石を示す断面図である。先ず、図に基づいて超電導電磁石の概略構成から説明する。図のように、超電導電磁石は、水平磁場を発生させる一対の超電導コイル1と、超電導コイル1をその冷媒である液体ヘリウム2と共に内部に収納するヘリウム容器3と、ヘリウム容器3を真空断熱空間内に格納する円筒状の真空容器4と、ヘリウム容器3を包囲して真空容器4内に配設され、ヘリウム容器3に浸入する輻射熱を低減する熱シールド5とを備えている。
Embodiment 1 FIG.
1 is a cross-sectional view showing a superconducting electromagnet according to Embodiment 1. FIG. First, a schematic configuration of a superconducting electromagnet will be described with reference to the drawings. As shown in the figure, the superconducting electromagnet includes a pair of superconducting coils 1 that generate a horizontal magnetic field, a helium container 3 that accommodates the superconducting coil 1 together with liquid helium 2 that is the refrigerant, and the helium container 3 in the vacuum insulation space. And a heat shield 5 that surrounds the helium vessel 3 and is disposed in the vacuum vessel 4 to reduce radiant heat entering the helium vessel 3.

ヘリウム容器3は、円筒状のコイル支持枠6と、その外周側を覆う外筒7とが一体になって構成されており、このコイル支持枠6に、鞍形をした1対の超電導コイル1が左右に対向配置されて支持されている。更に、超電導コイル1を固定するために、コイル支持枠6にコイル押え部材8が設けられており、このコイル押え部材8は、超電導コイル1に発生する電磁力のうち、外周面に対し面方向の電磁力を支持する側枠部8aと、外周面に対し法線方向の電磁力を支持する押え板部8bとで構成されている。超電導コイル1の詳細については後述する。   The helium vessel 3 is formed by integrating a cylindrical coil support frame 6 and an outer cylinder 7 covering the outer peripheral side thereof. A pair of superconducting coils 1 having a bowl shape is formed on the coil support frame 6. Is supported by being opposed to the left and right. Furthermore, in order to fix the superconducting coil 1, a coil pressing member 8 is provided on the coil support frame 6, and this coil pressing member 8 is a surface direction with respect to the outer peripheral surface of the electromagnetic force generated in the superconducting coil 1. The side frame portion 8a that supports the electromagnetic force of the outer periphery and the presser plate portion 8b that supports the electromagnetic force in the normal direction to the outer peripheral surface. Details of the superconducting coil 1 will be described later.

真空容器4の外部には、ヘリウム容器3及び熱シールド5を冷却する冷凍機9が、真空容器4に設けられた冷凍機取付ジャケット10を介して取付けられている。冷凍機9は、60K程度の温度に冷却される60Kステージ11と、4K程度の温度に冷却される4Kステージ12とを備え、60Kステージ11は、熱シールド5を60K程度に冷却し、4Kステージ12は、ヘリウム容器3に接続して4K程度に冷却し、内部に充填されている液体ヘリウム3を再凝縮させるように構成されている。
更に、冷凍機9は、別に設置されている圧縮機(図示せず)に接続されて、2.3MPa程度の高圧ガスの供給を受け、1MPa程度の低圧のガスを返している。
A refrigerator 9 for cooling the helium container 3 and the heat shield 5 is attached to the outside of the vacuum container 4 via a refrigerator mounting jacket 10 provided in the vacuum container 4. The refrigerator 9 includes a 60K stage 11 cooled to a temperature of about 60K and a 4K stage 12 cooled to a temperature of about 4K. The 60K stage 11 cools the heat shield 5 to about 60K, and the 4K stage. 12 is connected to the helium vessel 3 and cooled to about 4K, and the liquid helium 3 filled therein is recondensed.
Further, the refrigerator 9 is connected to a separately installed compressor (not shown), is supplied with a high-pressure gas of about 2.3 MPa, and returns a low-pressure gas of about 1 MPa.

超電導電磁石は以上のように構成されており、超電導コイル1はヘリウム容器3に充填された液体ヘリウム2により冷却され、超電導になる温度に維持される。ヘリウム容器3を収容する真空容器4は、内部が真空引されて空気の対流が絶たれ、更にヘリウム容器3と真空容器4との間に設けられた熱シールド5が冷凍機9により冷却されているので、真空容器4側からの輻射熱が遮蔽され、非常に良い断熱がなされている。
このため、超電導電磁石として強力な水平磁場を発生することができるので、例えば、単結晶引上装置に使用された場合、単結晶原料が充填された炉に水平磁場を提供して、良質な単結晶の引上げに供することができる。
The superconducting electromagnet is configured as described above, and the superconducting coil 1 is cooled by the liquid helium 2 filled in the helium vessel 3 and maintained at a temperature at which it becomes superconducting. The vacuum container 4 that accommodates the helium container 3 is evacuated to cut off the air convection, and the heat shield 5 provided between the helium container 3 and the vacuum container 4 is cooled by the refrigerator 9. Therefore, the radiant heat from the vacuum container 4 side is shielded, and very good heat insulation is made.
For this reason, a strong horizontal magnetic field can be generated as a superconducting electromagnet. Therefore, for example, when used in a single crystal pulling apparatus, a horizontal magnetic field is provided to a furnace filled with a single crystal raw material to provide a high-quality single magnetic field. It can be used for pulling up crystals.

本実施の形態の発明は、上記のように構成した超電導電磁石の超電導コイル1の構成に特徴を有するものなので、以下、この超電導コイル1について更に詳しく説明する。
超電導電磁石は前述のように鞍形の超電導コイル1を有しており、この超電導コイル1は次のような3段階の手順で製作される。
第1段階:平板のパンケーキ状にコイルを巻く。
第2段階:パンケーキ状のコイルを鞍形に曲げると共に積層して一体化する。
第3段階:一体化した鞍形コイルをコイル支持枠に取付けると共に、口出しリードを接続する。
そこで、次に上記の製作手順に沿って説明する。
Since the invention of the present embodiment is characterized by the configuration of the superconducting coil 1 of the superconducting electromagnet configured as described above, the superconducting coil 1 will be described in more detail below.
The superconducting electromagnet has the bowl-shaped superconducting coil 1 as described above, and the superconducting coil 1 is manufactured in the following three steps.
1st stage: A coil is wound in the shape of a flat pancake.
Second stage: A pancake-shaped coil is bent into a bowl shape and laminated and integrated.
Third stage: The integrated saddle coil is attached to the coil support frame and the lead is connected.
Then, it demonstrates along said manufacture procedure next.

先ず、第1段階では、巻線機(図示せず)に取付けた巻線治具を利用し、超電導線を所定のターン数だけ巻線する。図2はその巻線治具の一例を示す図である。巻線治具13は巻芯部13aとそれを挟むように設けられた巻枠フランジ部13bとが取り外し可能に組み合わされて構成されている。巻線治具13の巻芯部13aに断面がほぼ矩形状の超電導線14をセットし、巻線治具13を回転させて内側から外側へ巻回していく。巻き上がったコイルを図3に示す。図のように、平面から見て長円状(レーストラック状)に巻回された平たいパンケーキ状のコイルとなっている。以下、この状態のものを「単位コイル」と称する。単位コイル15は、巻始め部分を所定の長さだけ引き出して巻き始めリード線15aとしておき、同じように巻き終わり部分を所定の長さだけ引き出して巻き終わりリード線15bとする。
このような単位コイル15を、右巻きに巻回したものと、左巻きに巻回したものを同数個だけ用意する。
First, in the first stage, a superconducting wire is wound by a predetermined number of turns using a winding jig attached to a winding machine (not shown). FIG. 2 is a view showing an example of the winding jig. The winding jig 13 includes a winding core portion 13a and a winding frame flange portion 13b provided so as to sandwich the winding core portion 13a so as to be detachable. A superconducting wire 14 having a substantially rectangular cross section is set on the winding core portion 13a of the winding jig 13, and the winding jig 13 is rotated and wound from the inside to the outside. FIG. 3 shows the coil wound up. As shown in the figure, it is a flat pancake coil wound in an oval shape (race track shape) as viewed from above. Hereinafter, this state is referred to as a “unit coil”. In the unit coil 15, a winding start portion is drawn out by a predetermined length to be set as a winding start lead wire 15a, and similarly, a winding end portion is drawn out by a predetermined length to be a winding end lead wire 15b.
Only the same number of such unit coils 15 wound right-handed and those wound left-handed are prepared.

単位コイル15の素材である超電導線14には、予め加熱すると軟らかくなり、冷えると接着する樹脂を塗布しておき、巻線治具13に巻回した状態で加熱融着させ、硬化させた後、巻枠フランジ部13bを巻芯部13aから外し、単位コイル15を取り出す。こうすることで、樹脂が接着剤となって超電導線14がばらばらになるのを防止している。   The superconducting wire 14 that is a material of the unit coil 15 is softened when heated in advance, and after being cooled, it is applied with a resin that is bonded, and is heated and fused in a state wound around the winding jig 13 and cured. The reel flange portion 13b is removed from the core portion 13a, and the unit coil 15 is taken out. This prevents the resin from becoming an adhesive and the superconducting wire 14 from falling apart.

樹脂は超電導線14に予め塗布しておく以外に、例えば、図4に示すような塗布具16を用いて塗布しても良い。すなわち、図のように、巻線機(図示せず)の前段に、樹脂を貯蔵した樹脂容器17を設置し、樹脂容器17の前後の壁面に設けた貫通穴17aに超電導線14を貫通させて走行させる。樹脂容器17内を走行中に樹脂が付着し、出口側の貫通穴17aでしごかれて超電導線14の表面に均一に塗布される。貫通穴17a部から漏れる樹脂は、下部に設置した受け皿18で回収するようになっている。なお、このときの樹脂は、加熱硬化形型の樹脂を使用し、巻線完了後に加熱硬化さる。   In addition to applying the resin to the superconducting wire 14 in advance, for example, the resin may be applied using an applicator 16 as shown in FIG. That is, as shown in the figure, a resin container 17 storing resin is installed in the front stage of a winding machine (not shown), and the superconducting wire 14 is passed through the through holes 17a provided on the front and rear walls of the resin container 17. And run. The resin adheres while traveling in the resin container 17 and is applied to the surface of the superconducting wire 14 by squeezing through the through hole 17a on the outlet side. The resin leaking from the through hole 17a is collected by a tray 18 installed in the lower part. In addition, the resin at this time uses a heat-curing type resin, and is heat-cured after the completion of winding.

次に、第2段階について説明する。第2段階ではコイル積層治具を使用してコイルを積層していくが、これに先立ち、単位コイル15を予め鞍形に成形しておく。図5は単位コイル15の成形を示す概念図である。図5に示すように、平板状に巻回された単位コイル15を成形機19の型枠20とローラ21間に挿入し、ローラ21を型枠20に沿って回転させることにより所定の曲率に単位コイル15を成形する。
なお、図5の成形機は一例を示すものであり、これに限定するものではない。
Next, the second stage will be described. In the second stage, coils are stacked using a coil stacking jig. Prior to this, the unit coil 15 is formed into a bowl shape in advance. FIG. 5 is a conceptual diagram showing the formation of the unit coil 15. As shown in FIG. 5, the unit coil 15 wound in a flat plate shape is inserted between the mold 20 and the roller 21 of the molding machine 19, and the roller 21 is rotated along the mold 20 to obtain a predetermined curvature. The unit coil 15 is formed.
In addition, the molding machine of FIG. 5 shows an example, and is not limited to this.

湾曲させた単位コイル15を、コイル積層治具を用いて成形する。図6はコイル積層治具の斜視図で、一部を断面で示している。コイル積層治具22は、円筒型をしたコイル受け部23と、積層する単位コイル15の幅側を規制する側板部24と、外周方向から押圧する押え板部25とで構成されている。
このコイル積層治具22に所定の枚数の単位コイル15を、右巻きのものと左巻きのものを交互にはめ込み積層していく。このとき、積層した単位コイル15が上層になるほど曲げ半径が大きくなるため、曲げ方向の両端がずれてくるので、発生する隙間に合わせた大きさの、ガラスエポキシ等でできたスペーサ26を、幅方向の片側又は両側に詰めていく。
なお、単位コイル15の曲げ方向は、超電導コイル1の形状によっては、短軸方向の場合もある。
The curved unit coil 15 is formed using a coil stacking jig. FIG. 6 is a perspective view of the coil stacking jig, and a part thereof is shown in cross section. The coil stacking jig 22 includes a cylindrical coil receiving portion 23, a side plate portion 24 that regulates the width side of the unit coils 15 to be stacked, and a pressing plate portion 25 that presses from the outer peripheral direction.
A predetermined number of unit coils 15 are alternately inserted into the coil stacking jig 22 in a right-handed and left-handed manner and stacked. At this time, since the bending radius becomes larger as the stacked unit coils 15 become the upper layer, both ends in the bending direction are shifted. Therefore, the spacer 26 made of glass epoxy or the like having a size corresponding to the generated gap is changed to a width. Stuff on one or both sides of the direction.
The bending direction of the unit coil 15 may be a minor axis direction depending on the shape of the superconducting coil 1.

積層した単位コイル15がばらばらにならないように、積層する単位コイル15間に樹脂を介在させて、単位コイル15同士をその樹脂により接着して一体化する。
この方法としては、例えば、積層する段階で1層ごとに単位コイル15の表面に樹脂を塗布すればよい。別の方法として、樹脂を塗布又は含浸した絶縁シート27を単位コイル間に挿入しながら積層する。更に別の方法として、コイル積層治具22の側板部24に貫通孔24aを設け、単位コイル15を積層した後、単位コイル15が積層されている内部空間を真空引きして樹脂を注入し、加熱炉に入れて加熱硬化させてもよい。この場合は、真空引きができるよう側板部24と押え板部25間にシール28を挟んでボルト等により締め付けてシール構造とする。
これらの作業において、コイル受け部23のコイル当接部、側板部24の内側、及び、押え板部25の内側には、コイル接着に用いた樹脂が接着しないように、例えば、シリコン系樹脂を塗布して離形処理を施しておく。
In order to prevent the laminated unit coils 15 from being separated, a resin is interposed between the laminated unit coils 15, and the unit coils 15 are bonded together by the resin to be integrated.
As this method, for example, a resin may be applied to the surface of the unit coil 15 for each layer at the stage of lamination. As another method, the insulating sheet 27 coated or impregnated with resin is laminated while being inserted between unit coils. As another method, the through hole 24a is provided in the side plate portion 24 of the coil stacking jig 22, and after stacking the unit coil 15, the internal space where the unit coil 15 is stacked is evacuated and resin is injected, You may make it heat-harden in a heating furnace. In this case, a seal structure is formed by sandwiching a seal 28 between the side plate portion 24 and the holding plate portion 25 and tightening with a bolt or the like so that vacuuming can be performed.
In these operations, for example, silicon resin is used to prevent the resin used for coil bonding from adhering to the coil contact portion of the coil receiving portion 23, the inner side of the side plate portion 24, and the inner side of the holding plate portion 25. Apply and release.

樹脂を加熱硬化させた後、コイル積層治具22を解体し、積層され単位コイル15を取り出すと、図7に示すように鞍形に成形された超電導コイル1が完成する。超電導コイル1は、図に示すように巻き始めリード線15aと巻き終わりリード線15bが導出した形状となっている。   After the resin is cured by heating, the coil stacking jig 22 is disassembled, and the stacked unit coil 15 is taken out. As a result, the superconducting coil 1 formed into a bowl shape as shown in FIG. 7 is completed. As shown in the figure, the superconducting coil 1 has a shape in which a winding start lead wire 15a and a winding end lead wire 15b are led out.

次に、第3段階では、図8に示すように単位コイル15を一体化した鞍形の超電導コイル1を超電導電磁石のコイル支持枠6に取付ける。コイル支持枠6には、超電導コイル1の形状に合わせたコイル押え部材8の側枠部8aが溶接等によって固着されているので、側枠部8aの内側に鞍形の超電導コイル1を挿入し、外周側からコイル押え部材8の押え板部8bをボルト等で締め付けて固定する。この、コイル支持枠6や側枠部8a,押え板部8bの材料としては、強度的に優れ且つ非磁性である、例えばステンレス鋼が用いられている。
なお、コイル支持枠6,側枠部8a,押え板部8bの内側には、超電導コイル1と接着しないように、例えば、シリコン系樹脂をコーティングして離型処理をしておく。
Next, in the third stage, as shown in FIG. 8, the bowl-shaped superconducting coil 1 in which the unit coils 15 are integrated is attached to the coil support frame 6 of the superconducting electromagnet. Since the side frame portion 8a of the coil holding member 8 matched to the shape of the superconducting coil 1 is fixed to the coil support frame 6 by welding or the like, the bowl-shaped superconducting coil 1 is inserted inside the side frame portion 8a. Then, the presser plate portion 8b of the coil presser member 8 is fastened and fixed from the outer peripheral side with a bolt or the like. As the material of the coil support frame 6, the side frame portion 8a, and the pressing plate portion 8b, for example, stainless steel is used which is excellent in strength and nonmagnetic.
In addition, for example, a silicone resin is coated on the inner side of the coil support frame 6, the side frame portion 8a, and the holding plate portion 8b so as to be bonded to the superconducting coil 1 to perform a mold release process.

超電導コイル1をコイル支持枠6に取り付け後、隣接する単位コイル15の、巻き始めリード線15a同士、及び、巻き終わりリード線15b同士を、例えば半田付け等で順に接続して一対の超電導コイル1を完成させる。
これ以降は、コイル支持枠6に外筒7を組み合わせてヘリウム容器3を形成させ、図1に示すように、熱シールド5で包囲して真空容器4に収納し、冷凍機9、及びその他の部品を組み立てて超電導電磁石を完成させる。
After the superconducting coil 1 is attached to the coil support frame 6, the winding start lead wires 15 a and the winding end lead wires 15 b of the adjacent unit coils 15 are connected in order, for example, by soldering or the like, and a pair of superconducting coils 1. To complete.
Thereafter, the helium vessel 3 is formed by combining the outer cylinder 7 with the coil support frame 6, surrounded by the heat shield 5 and accommodated in the vacuum vessel 4, as shown in FIG. Assemble the parts to complete the superconducting electromagnet.

以上のように、本実施の形態の発明によれば、超電導線を長円状に巻回して形成した平板状の単位コイルを、長軸又は短軸方向に曲げて複数個積層し、樹脂で一体に固着して全体を鞍形の超電導コイルに形成したので、大きな電磁力に対しても変形しない強固な鞍形超電導コイルを得ることができ、安定して強い水平磁場を供給する超電導電磁石を提供することができる。   As described above, according to the invention of the present embodiment, a plurality of flat unit coils formed by winding a superconducting wire in an oval shape are bent in the major axis or minor axis direction, and are laminated with resin. Since the whole is formed into a bowl-shaped superconducting coil that is fixed integrally, a strong bowl-shaped superconducting coil that does not deform even with large electromagnetic force can be obtained, and a superconducting electromagnet that stably supplies a strong horizontal magnetic field Can be provided.

また、超電導線に、加熱融着性の樹脂が塗布されたものを使用し、巻線後に加熱することにより樹脂を硬化させて単位コイルを形成したので、一体的に強固に固着した単位コイルを得ることができ、強固な超電導コイルを形成することができる。   In addition, since a unit coil was formed by using a superconducting wire coated with a heat-fusible resin, and curing the resin by heating after winding, the unit coil firmly fixed integrally was formed. And a strong superconducting coil can be formed.

また、積層する複数個の単位コイル間に加熱融着性の樹脂を介在させ、積層後に加熱させて一体化させるようにしたので、簡単な構成で強固な超電導コイルを容易に得ることができる。   In addition, since a heat-fusible resin is interposed between a plurality of unit coils to be laminated and heated and integrated after lamination, a strong superconducting coil can be easily obtained with a simple configuration.

更にまた、超電導コイルは、離形処理をしたコイル積層治具によって、積層された複数の単位コイルを鞍形に一体的に形成した後、コイル支持枠に組み込むようにしたので、専用の治具を用いて効率よく強固な超電導コイルを製作でき、また、超電導電磁石の他の部分と並行して組立作業ができるため作業性が向上する。   Furthermore, since the superconducting coil is formed by integrally forming a plurality of unit coils in a bowl shape with a coil stacking jig that has been subjected to release processing, it is incorporated into the coil support frame. Can be used to efficiently manufacture a strong superconducting coil, and the assembly work can be performed in parallel with other parts of the superconducting electromagnet, improving workability.

実施の形態2.
以下、この発明の実施の形態2による超電導電磁石を図に基づいて説明する。超電導電磁石の全体構成については、実施の形態1の図1と同等なので、装置全体の説明は省略し、実施の形態1との相違点を中心に説明する。相違点は、単位コイルを積層して超電導コイルとする構成部分である。
Embodiment 2. FIG.
A superconducting electromagnet according to Embodiment 2 of the present invention will be described below with reference to the drawings. Since the entire configuration of the superconducting electromagnet is the same as that of FIG. 1 of the first embodiment, description of the entire apparatus will be omitted, and the description will focus on differences from the first embodiment. The difference is a component part in which unit coils are stacked to form a superconducting coil.

単位コイルを複数段積み重ね、超電導線が連続して巻回された1個の超電導コイルに形成するが、実施の形態1では、右巻きコイルと左巻きコイルを交互に積み重ね、隣り合う上下の単位コイルの、内側の口出しリード同士、及び外側の口出しリード同士を接続した。本実施の形態の超電導コイルでは、この右巻きと左巻きの2個(2層)の単位コイルを一体に形成したものである。すなわち、2個の単位コイルをその中間点を巻はじめとし、それぞれ終端方向に逆方向に巻回して、連続する2層の単位コイルとして形成したものである。以下、図に基づいて説明する。   A plurality of unit coils are stacked and formed into one superconducting coil in which superconducting wires are continuously wound. In the first embodiment, right-handed coils and left-handed coils are alternately stacked, and adjacent upper and lower unit coils. The inner lead-out leads and the outer lead-out leads were connected to each other. In the superconducting coil of the present embodiment, the right-handed and left-handed two (two layers) unit coils are integrally formed. That is, two unit coils are formed as a continuous two-layer unit coil, starting from the middle point thereof, and wound in opposite directions in the terminal direction. Hereinafter, description will be given based on the drawings.

図9は、本実施の形態の単位コイルの巻線治具29を示す図である。巻線治具29は中仕切り部30を挟んで2つの巻芯部31a,31bがあり、その外側には巻枠フランジ部32a,32bが着脱できるように設けられている。上側の巻枠フランジ部32bと中仕切り部30にはスリットが形成されており、中仕切り部30のスリットの部分が2個の単位コイルの内渡りリード部となる。また、巻枠フランジ部32bの上部に、仮巻ドラム33が着脱自在に固定されている。   FIG. 9 is a diagram showing a winding jig 29 for a unit coil according to the present embodiment. The winding jig 29 has two winding core portions 31a and 31b with the inner partition portion 30 in between, and outer winding flange portions 32a and 32b are provided so as to be detachable. A slit is formed in the upper winding flange portion 32b and the partition portion 30, and the slit portion of the partition portion 30 serves as an internal lead portion for two unit coils. Moreover, the temporary winding drum 33 is detachably fixed to the upper part of the winding frame flange portion 32b.

次に、この巻線治具29を使用した巻線作業について説明する。
先ず、巻線治具29を巻線機(図示せず)に取付け、超電導線14を単位コイルの1個分の長さだけ、予め仮巻ドラム33に巻き取っておく。この超電導線14を切らずに繋げたまま、仮巻ドラム33の巻き終わり部分を巻線治具29の中仕切り部30のスリットに通し、下側の巻芯部31aの中心側から巻始めて外側に巻き上げていく。こうして下側の単位コイルが巻き終われば口出しリード線を残し超電導線14を切断し、ばらばらにならないように固定する。
次に仮巻ドラム33を外して図示しない巻線機のドラム側にセットし、巻線治具29の上側の巻芯部31bの内側から外側へ、上側の単位コイルを巻上げて、巻き終わりの口出しリードを固定する。
Next, the winding work using this winding jig 29 will be described.
First, the winding jig 29 is attached to a winding machine (not shown), and the superconducting wire 14 is wound around the temporary winding drum 33 in advance by the length of one unit coil. While the superconducting wire 14 is connected without being cut, the winding end portion of the temporary winding drum 33 is passed through the slit of the partition part 30 of the winding jig 29 to start winding from the center side of the lower core part 31a and to the outside. I will roll it up. When the lower unit coil is thus wound, the lead wire is left and the superconducting wire 14 is cut and fixed so as not to be separated.
Next, the temporary winding drum 33 is removed and set on the drum side of a winding machine (not shown), and the upper unit coil is wound up from the inner side to the outer side of the upper winding core portion 31b of the winding jig 29 to complete the winding end. Fix the lead.

図10は、巻き上がって2層が1組となったペアコイル34の平面図である。また、図11は図10のXI−XIから見た断面図である。図に示すように、下側の単位コイル34aと上側の単位コイル34bは内周側の渡りリード線で繋がって、この部分が内渡り部34cとなっている。従って、2層の単位コイル34a,34bの各外周側のみに、口出しリード線34d,34eが引き出された状態となる。
なお、巻線したペアコイル34を鞍形の超電導コイル1の形状に一体的に成形し、コイル支持枠6に組み込んで超電導電磁石とする、これ以降の作業については、実施の形態1と同等なので、説明は省略する。
FIG. 10 is a plan view of the pair coil 34 that has been rolled up to form a pair of two layers. FIG. 11 is a cross-sectional view taken along the line XI-XI in FIG. As shown in the drawing, the lower unit coil 34a and the upper unit coil 34b are connected by an inner connecting lead wire, and this portion serves as an inner connecting portion 34c. Accordingly, the lead wires 34d and 34e are drawn out only to the outer peripheral sides of the two layers of the unit coils 34a and 34b.
Since the wound pair coil 34 is integrally formed into the shape of the bowl-shaped superconducting coil 1 and incorporated into the coil support frame 6 to form a superconducting electromagnet, the subsequent operations are the same as in the first embodiment. Description is omitted.

以上のように、本実施の形態の発明によれば、2層分の単位コイルの下側と上側の中間点を超電導線の巻始めとし、各単位コイルを終端方向に逆方向に巻回して、2層を連続して形成したので、実施の形態1の効果に加え、2層分の単位コイルを一度に巻くことができるため、巻線作業時間が短縮でき、また、口出しリードの本数が少なくなるので、接続作業時間を短縮することができると共に、接続部が減り信頼性が向上する。   As described above, according to the present embodiment, the lower and upper intermediate points of the unit coils for two layers are used as the winding start of the superconducting wire, and each unit coil is wound in the reverse direction in the terminal direction. Since two layers are formed continuously, in addition to the effects of the first embodiment, unit coils for two layers can be wound at one time, so that the winding work time can be shortened and the number of lead leads is reduced. Therefore, the connection work time can be shortened, and the number of connection parts is reduced to improve the reliability.

実施の形態3.
図12はこの発明の実施の形態3による超電導電磁石の超電導コイルの要部を示す断面図である。超電導電磁石の全体構成、及び超電導コイルの外形形状については、実施の形態1の図1と同等なので、それらの説明は省略し、実施の形態1との相違点を中心に説明する。実施の形態1においては、単位コイルを積層する際に、コイル積層治具を使用して積層し、一体化して超電導コイルに成形したのち装置本体に組み込んだが、本実施の形態では、超電導電磁石のヘリウム容器3を構成するコイル支持枠6に単位コイルを直接積層して組み立てるものである。
Embodiment 3 FIG.
12 is a cross-sectional view showing a main part of a superconducting coil of a superconducting electromagnet according to Embodiment 3 of the present invention. Since the overall configuration of the superconducting electromagnet and the outer shape of the superconducting coil are the same as those in FIG. 1 of the first embodiment, the description thereof will be omitted, and differences from the first embodiment will be mainly described. In the first embodiment, when the unit coils are stacked, the unit coils are stacked using a coil stacking jig, integrated and formed into a superconducting coil, and then incorporated into the main body of the device. A unit coil is directly laminated on the coil support frame 6 constituting the helium vessel 3 and assembled.

コイル支持枠6に積層するとき、単位コイル15がコイル支持枠6の曲面に沿うように、例えば、実施の形態1の図5で説明した成形機を用いて、予め単位コイル15を鞍形に成形しておく。成形した単位コイル15を、図12のコイル断面図に示すように、コイル支持枠6に所定の個数だけ積層する。このとき、単位コイル間には樹脂を含浸させた絶縁シート35を挿入する。なお、絶縁シート35に替えて、予め単位コイル15の表面に樹脂を塗布しておいても良い。
積層した単位コイル15の外周とコイル支持枠6及びコイル押え部材8の側枠部8a,押え板部8bとの間にも絶縁材36を挿入している。
When laminating the coil support frame 6, the unit coil 15 is previously formed into a bowl shape using, for example, the molding machine described in FIG. 5 of the first embodiment so that the unit coil 15 follows the curved surface of the coil support frame 6. Mold it. A predetermined number of unit coils 15 formed are laminated on the coil support frame 6 as shown in the coil cross-sectional view of FIG. At this time, an insulating sheet 35 impregnated with resin is inserted between the unit coils. Instead of the insulating sheet 35, a resin may be applied to the surface of the unit coil 15 in advance.
An insulating material 36 is also inserted between the outer periphery of the laminated unit coils 15 and the coil support frame 6 and the side frame portion 8a and the holding plate portion 8b of the coil holding member 8.

更に、超電導コイルの全体を包むように、樹脂の浸透しないシールフィルム37で覆っている。
このシールフィルムの作用について説明する。上記のように積層後、全体を加熱融着させることにより、強固な超電導コイル1に仕上げるが、このとき、シールフィルム37が無い場合は、超電導コイル1が樹脂によってコイル支持枠6及び側枠部8a,押え板部8bに接着する。接着した状態に放置すると、低温に冷却された際の熱応力と超電導コイル1を励磁した際に発生する電磁力により樹脂が割れる虞があり、これが超電導破壊の原因に繋がる。シールフィルム37はこれを回避するためのものである。
Further, the entire superconducting coil is covered with a sealing film 37 that does not allow resin to penetrate.
The operation of this seal film will be described. After the lamination as described above, the whole is heated and fused to finish the strong superconducting coil 1. At this time, when there is no seal film 37, the superconducting coil 1 is made of resin with the coil support frame 6 and the side frame portion. 8a is bonded to the holding plate 8b. If left in the bonded state, the resin may break due to the thermal stress when cooled to a low temperature and the electromagnetic force generated when the superconducting coil 1 is excited, leading to the cause of superconducting breakdown. The seal film 37 is for avoiding this.

なお、接着剤の役目をする樹脂を、上記では単位コイル15の層間に絶縁シートを挟み込み、更に、外周に絶縁材を挿入したが、シールフィルム37を袋状にし、内部を真空引きして樹脂を真空含浸させても良い。
また、超電導コイル1とコイル支持枠6及び側枠部8a,押え板部8bとが接着するのを防止する方法として、シールフィルム37に替えて、コイル支持枠6,側枠部8a,押え板部8bにシリコン系樹脂を塗布するなどにより離形処理を施しても良い。
また、単位コイルは、実施の形態2で説明したようなペアコイルであっても良い。
In the above, the resin serving as an adhesive is an insulating sheet sandwiched between the layers of the unit coil 15, and further an insulating material is inserted on the outer periphery. The sealing film 37 is made into a bag shape, and the inside is evacuated to form a resin. May be vacuum impregnated.
Further, as a method for preventing the superconducting coil 1 from being bonded to the coil support frame 6 and the side frame portion 8a and the press plate portion 8b, the coil support frame 6, the side frame portion 8a, and the press plate are replaced with the seal film 37. You may perform a mold release process by apply | coating a silicon-type resin to the part 8b.
Further, the unit coil may be a pair coil as described in the second embodiment.

以上のように、本実施の形態の発明によれば、超電導コイルは、コイル支持枠に予め湾曲させた単位コイルを積層し、コイル押え部材で固定し、樹脂を硬化させて一体化したので、コイル形状が変わった際にも新たな治具を製作する必要が無く、また、コイル支持枠に添った形状で超電導コイルの樹脂部が含浸されるので、超電導コイルをコイル支持枠に取付ける際にも製作誤差等による変形が少なく、超電導状態の安定性を向上させることができる。   As described above, according to the invention of the present embodiment, the superconducting coil is formed by laminating unit coils previously curved on the coil support frame, fixing with the coil pressing member, and curing and integrating the resin. There is no need to make a new jig when the coil shape changes, and the resin part of the superconducting coil is impregnated in a shape that conforms to the coil support frame, so when attaching the superconducting coil to the coil support frame However, there is little deformation due to manufacturing errors, and the stability of the superconducting state can be improved.

また、積層した単位コイルの外周面とコイル支持枠及びコイル押え部材との間にシールフィルムを挿入したので、単位コイル側に施した樹脂がコイル支持枠及びコイル押え部材に付着することがないため、低温に冷却された際の熱応力と超電導コイルを励磁した際に発生する電磁力により樹脂が割れるのを防止でき、信頼性の高い超電導電磁石を得ることができる。   Further, since the seal film is inserted between the outer peripheral surface of the laminated unit coils and the coil support frame and the coil pressing member, the resin applied to the unit coil side does not adhere to the coil support frame and the coil pressing member. The resin can be prevented from cracking due to the thermal stress when cooled to a low temperature and the electromagnetic force generated when the superconducting coil is excited, and a highly reliable superconducting magnet can be obtained.

更にまた、コイル支持枠及びコイル押え部材の単位コイルが接する面に、シリコン系樹脂をコーティングしたので、簡単な構成で上記と同様の効果を得ることができる。   Furthermore, since the silicon-based resin is coated on the surface of the coil support frame and the coil pressing member that are in contact with the unit coil, the same effect as described above can be obtained with a simple configuration.

なお、実施の形態1〜3では、超電導コイル1をコイル支持枠6の外周側に取り付けた場合を説明したが、ヘリウム容器3の外筒7の内周側に取り付けても良い。そうすれば、超電導コイルに発生する電磁力を外筒で受け止めることができるので、コイル押え部材が薄いもので良く、締結も簡単となるため、作業時間が短縮でき、コスト低減できる。   In the first to third embodiments, the case where the superconducting coil 1 is attached to the outer peripheral side of the coil support frame 6 has been described, but it may be attached to the inner peripheral side of the outer cylinder 7 of the helium container 3. Then, since the electromagnetic force generated in the superconducting coil can be received by the outer cylinder, the coil pressing member may be thin, and the fastening can be simplified, so that the working time can be shortened and the cost can be reduced.

この発明の実施の形態1による超電導電磁石を示す断面図である。It is sectional drawing which shows the superconducting electromagnet by Embodiment 1 of this invention. この発明の実施の形態1による超電導電磁石の巻線治具を示す図である。It is a figure which shows the winding jig | tool of the superconducting electromagnet by Embodiment 1 of this invention. この発明の実施の形態1による超電導電磁石の単位コイルの平面図である。It is a top view of the unit coil of the superconducting electromagnet by Embodiment 1 of this invention. この発明の実施の形態1による超電導電磁石の超電導線に樹脂を塗布する塗布具の概念図である。It is a conceptual diagram of the applicator which apply | coats resin to the superconducting wire of the superconducting electromagnet by Embodiment 1 of this invention. この発明の実施の形態1による超電導電磁石の単位コイルの成形を示す概念図である。It is a conceptual diagram which shows shaping | molding of the unit coil of the superconducting electromagnet by Embodiment 1 of this invention. この発明の実施の形態1による超電導電磁石の単位コイルのコイル積層治具を示す斜視図である。It is a perspective view which shows the coil lamination | stacking jig | tool of the unit coil of the superconducting electromagnet by Embodiment 1 of this invention. この発明の実施の形態1による超電導電磁石の超電導コイルを示す斜視図である。It is a perspective view which shows the superconducting coil of the superconducting electromagnet by Embodiment 1 of this invention. この発明の実施の形態1による超電導電磁石の超電導コイルの取り付け状態を示す斜視図である。It is a perspective view which shows the attachment state of the superconducting coil of the superconducting electromagnet by Embodiment 1 of this invention. この発明の実施の形態2による超電導電磁石の巻線治具である。It is a winding jig of a superconducting electromagnet according to Embodiment 2 of the present invention. この発明の実施の形態2による超電導電磁石の単位コイルの斜視図である。It is a perspective view of the unit coil of the superconducting electromagnet according to Embodiment 2 of the present invention. 図10のXI−XIから見た部分断面図である。It is the fragmentary sectional view seen from XI-XI of FIG. この発明の実施の形態3による超電導電磁石の超電導コイルの要部断面図である。It is principal part sectional drawing of the superconducting coil of the superconducting electromagnet by Embodiment 3 of this invention.

符号の説明Explanation of symbols

1 超電導コイル 2 液体ヘリウム
3 ヘリウム容器 4 真空容器
5 熱シールド 6 コイル支持枠
7 外筒 8 コイル押え部材
8a 側枠部 8b 押え板部
9 冷凍機 10 冷凍機取付ジャケット
11 60Kステージ 12 4Kステージ
13 巻線治具 13a 巻芯部
13b 巻枠フランジ部 14 超電導線
15 単位コイル 15a 巻き始めリード線
15b 巻き終わりリード線 16 塗布具
17 樹脂容器 17a 貫通穴
18 受け皿 19 成形機
20 型枠 21 ローラ
22 コイル積層治具 23 コイル受け部
24 側板部 24a 貫通穴
25 押え板部 26 スペーサ
27 絶縁シート 28 シール
29 巻線治具 30 中仕切り部
31a,31b 巻芯部 32a,32b 巻枠フランジ部
33 仮巻ドラム 34 ペアコイル
34a,34b 単位コイル 34c 内渡り部
34d,34e 口出しリード線 35 絶縁シート
36 絶縁材 37 シールフィルム。
DESCRIPTION OF SYMBOLS 1 Superconducting coil 2 Liquid helium 3 Helium container 4 Vacuum container 5 Heat shield 6 Coil support frame 7 Outer cylinder 8 Coil pressing member 8a Side frame part 8b Holding plate part 9 Refrigerator 10 Refrigerator installation jacket 11 60K stage 124 4K stage 13 volumes Wire jig 13a Winding core portion 13b Winding flange portion 14 Superconducting wire 15 Unit coil 15a Winding start lead wire 15b Winding end lead wire 16 Applicator 17 Resin container 17a Through hole 18 Receptacle 19 Molding machine 20 Mold frame 21 Roller 22 Coil lamination Jig 23 Coil receiving part 24 Side plate part 24a Through hole 25 Presser plate part 26 Spacer 27 Insulating sheet 28 Seal 29 Winding jig 30 Partition part 31a, 31b Core part 32a, 32b Winding flange part 33 Temporary winding drum 34 Pair coil 34a, 34b Unit coil 3 c the connecting portions 34d, 34e lead-out lead wire 35 insulating sheet 36 insulating material 37 seals the film.

Claims (8)

一対の超電導コイルと、上記超電導コイルをその冷媒と共に内部に収納するヘリウム容器と、上記ヘリウム容器を収納する円筒状の真空容器と、上記真空容器内に配設されて上記ヘリウム容器を包囲する熱シールドとを有し、上記真空容器の軸線に直交する方向に磁場を発生させる超電導電磁石において、
上記超電導コイルは、超電導線が長円状に巻回されて形成された平板状のコイルを単位コイルとし、複数個の上記単位コイルが長軸又は短軸方向に曲げられて積層され、樹脂で一体に固着されて鞍形に形成されていることを特徴とする超電導電磁石。
A pair of superconducting coils, a helium container that houses the superconducting coil together with its refrigerant, a cylindrical vacuum container that houses the helium container, and heat that is disposed in the vacuum container and surrounds the helium container A superconducting magnet having a shield and generating a magnetic field in a direction perpendicular to the axis of the vacuum vessel,
The superconducting coil is a flat coil formed by winding a superconducting wire in an oval shape as a unit coil, and a plurality of the unit coils are bent in the major axis or minor axis direction and laminated. A superconducting electromagnet characterized by being integrally fixed and formed into a bowl shape.
請求項1記載の超電導電磁石において、上記単位コイルは、加熱融着性の樹脂が塗布された超電導線によって巻回され、巻線後の加熱によって一体化されていることを特徴とする超電導電磁石。   2. The superconducting electromagnet according to claim 1, wherein the unit coil is wound by a superconducting wire coated with heat-fusible resin and integrated by heating after winding. 請求項1又は請求項2記載の超電導電磁石において、複数個の上記単位コイルは、上記単位コイル間に加熱融着性の樹脂を介在させ、積層後の加熱によって一体化されていることを特徴とする超電導電磁石。   The superconducting electromagnet according to claim 1 or 2, wherein the plurality of unit coils are integrated by heating after lamination by interposing a heat-fusible resin between the unit coils. Superconducting magnet. 請求項1〜請求項3のいずれか1項に記載の超電導電磁石において、上記単位コイルは、2個の単位コイルがその中間点を巻始めとし、それぞれ終端方向に逆方向に巻回されて、連続する2層の単位コイルとして形成されていることを特徴とする超電導電磁石。   The superconducting electromagnet according to any one of claims 1 to 3, wherein the unit coil includes two unit coils, each of which is wound in the reverse direction in the terminal direction, starting from the middle point thereof. A superconducting electromagnet characterized by being formed as two continuous layers of unit coils. 請求項1〜請求項4のいずれか1項に記載の超電導電磁石において、上記超電導コイルは、離形処理をしたコイル積層治具によって上記複数の単位コイルが積層されて鞍形に一体的に加熱成形された後、上記ヘリウム容器のコイル支持枠に組み込まれていることを特徴とする超電導電磁石。   The superconducting electromagnet according to any one of claims 1 to 4, wherein the superconducting coil is integrally heated in a bowl shape by laminating the plurality of unit coils by a coil laminating jig subjected to a release treatment. After being molded, the superconducting electromagnet is incorporated in the coil support frame of the helium container. 請求項1〜請求項4のいずれか1項に記載の超電導電磁石において、上記超電導コイルは、予め湾曲させた複数の上記単位コイルが上記ヘリウム容器のコイル支持枠に積層され、コイル押え部材で固定された後、加熱融着されて一体的に形成されていることを特徴とする超電導電磁石。   The superconducting electromagnet according to any one of claims 1 to 4, wherein the superconducting coil includes a plurality of unit coils that are curved in advance and are stacked on a coil support frame of the helium vessel and fixed by a coil holding member. Then, the superconducting electromagnet is integrally formed by heat fusion. 請求項6記載の超電導電磁石において、積層された上記単位コイルの外周面と上記コイル支持枠及び上記コイル押え部材との間にシールフィルムが挿入されていることを特徴とする超電導電磁石。   The superconducting electromagnet according to claim 6, wherein a seal film is inserted between the outer peripheral surface of the laminated unit coils, the coil support frame, and the coil pressing member. 請求項6記載の超電導電磁石において、積層された上記単位コイルに面する上記コイル支持枠及び上記コイル押え部材の面に、シリコン系樹脂がコーティングされていることを特徴とする超電導電磁石。   7. The superconducting electromagnet according to claim 6, wherein a surface of the coil supporting frame and the coil pressing member facing the laminated unit coils is coated with a silicon-based resin.
JP2006198222A 2006-07-20 2006-07-20 Superconducting magnet Active JP4757129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006198222A JP4757129B2 (en) 2006-07-20 2006-07-20 Superconducting magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006198222A JP4757129B2 (en) 2006-07-20 2006-07-20 Superconducting magnet

Publications (2)

Publication Number Publication Date
JP2008028097A true JP2008028097A (en) 2008-02-07
JP4757129B2 JP4757129B2 (en) 2011-08-24

Family

ID=39118433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006198222A Active JP4757129B2 (en) 2006-07-20 2006-07-20 Superconducting magnet

Country Status (1)

Country Link
JP (1) JP4757129B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009231442A (en) * 2008-03-21 2009-10-08 Kobe Steel Ltd Method for winding superconducting coil, winding machine for superconducting coil, and superconducting coil
CN104124055A (en) * 2014-07-17 2014-10-29 中国科学院近代物理研究所 Winding device and method of window type irregular saddle-shaped coil
CN113593902A (en) * 2021-07-09 2021-11-02 合肥聚能电物理高技术开发有限公司 Manufacturing process and forming die suitable for multilayer multi-turn saddle-type superconducting coil
CN114068133A (en) * 2020-08-10 2022-02-18 河海大学 Novel superconducting magnet coil structure and design method
CN116031040A (en) * 2023-02-24 2023-04-28 安徽联效科技有限公司 Superconducting magnet for magnetic control Czochralski single crystal and refrigerating method
JP7439900B2 (en) 2020-03-17 2024-02-28 信越半導体株式会社 Single crystal pulling equipment and single crystal pulling method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5257904A (en) * 1975-11-07 1977-05-12 Hitachi Ltd Stator coil of superconductive rotary electric machine
JPS52139955A (en) * 1976-05-17 1977-11-22 Hitachi Ltd Saddleeshaped coil and method of manufacturing it
JPS61272903A (en) * 1985-05-29 1986-12-03 Hitachi Ltd Saddle type superconductive field winding
JPS63136504A (en) * 1986-11-27 1988-06-08 Toshiba Corp Superconducting coil
JPS6469003A (en) * 1987-09-10 1989-03-15 Toshiba Corp Superconducting magnet
JPH02246305A (en) * 1989-03-20 1990-10-02 Res Dev Corp Of Japan Method for winding saddle type coil
JPH04206506A (en) * 1990-11-30 1992-07-28 Hitachi Ltd Superconducting magnet coil and hardening resin composition used for the coil
JPH05144654A (en) * 1991-11-21 1993-06-11 Toshiba Corp Manufacture of coil for electromagnet
JPH09260132A (en) * 1996-03-21 1997-10-03 Toshiba Corp Die-releasing method and superconductor magnet manufacturing method using it
JP2003505877A (en) * 1999-07-23 2003-02-12 アメリカン スーパーコンダクター コーポレイション Superconducting magnetic coil
JP2004091240A (en) * 2002-08-30 2004-03-25 Sumitomo Mitsubishi Silicon Corp Method for pulling silicon single crystal under magnetic field application

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5257904A (en) * 1975-11-07 1977-05-12 Hitachi Ltd Stator coil of superconductive rotary electric machine
JPS52139955A (en) * 1976-05-17 1977-11-22 Hitachi Ltd Saddleeshaped coil and method of manufacturing it
JPS61272903A (en) * 1985-05-29 1986-12-03 Hitachi Ltd Saddle type superconductive field winding
JPS63136504A (en) * 1986-11-27 1988-06-08 Toshiba Corp Superconducting coil
JPS6469003A (en) * 1987-09-10 1989-03-15 Toshiba Corp Superconducting magnet
JPH02246305A (en) * 1989-03-20 1990-10-02 Res Dev Corp Of Japan Method for winding saddle type coil
JPH04206506A (en) * 1990-11-30 1992-07-28 Hitachi Ltd Superconducting magnet coil and hardening resin composition used for the coil
JPH05144654A (en) * 1991-11-21 1993-06-11 Toshiba Corp Manufacture of coil for electromagnet
JPH09260132A (en) * 1996-03-21 1997-10-03 Toshiba Corp Die-releasing method and superconductor magnet manufacturing method using it
JP2003505877A (en) * 1999-07-23 2003-02-12 アメリカン スーパーコンダクター コーポレイション Superconducting magnetic coil
JP2004091240A (en) * 2002-08-30 2004-03-25 Sumitomo Mitsubishi Silicon Corp Method for pulling silicon single crystal under magnetic field application

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009231442A (en) * 2008-03-21 2009-10-08 Kobe Steel Ltd Method for winding superconducting coil, winding machine for superconducting coil, and superconducting coil
CN104124055A (en) * 2014-07-17 2014-10-29 中国科学院近代物理研究所 Winding device and method of window type irregular saddle-shaped coil
JP7439900B2 (en) 2020-03-17 2024-02-28 信越半導体株式会社 Single crystal pulling equipment and single crystal pulling method
CN114068133A (en) * 2020-08-10 2022-02-18 河海大学 Novel superconducting magnet coil structure and design method
CN113593902A (en) * 2021-07-09 2021-11-02 合肥聚能电物理高技术开发有限公司 Manufacturing process and forming die suitable for multilayer multi-turn saddle-type superconducting coil
CN113593902B (en) * 2021-07-09 2024-03-12 合肥聚能电物理高技术开发有限公司 Manufacturing process and forming die suitable for multilayer multiturn saddle-type superconducting coil
CN116031040A (en) * 2023-02-24 2023-04-28 安徽联效科技有限公司 Superconducting magnet for magnetic control Czochralski single crystal and refrigerating method

Also Published As

Publication number Publication date
JP4757129B2 (en) 2011-08-24

Similar Documents

Publication Publication Date Title
JP4757129B2 (en) Superconducting magnet
JP6603737B2 (en) Method for manufacturing electric drive machine, electric drive machine, and motor vehicle
JP5364288B2 (en) Gradient coil assembly, magnet assembly including gradient coil assembly, and method of manufacturing gradient coil assembly
JP2008522353A (en) Inductively coupled plasma processing equipment
US7728473B2 (en) Electric rotating machine and manufacturing method of the same
US20140274722A1 (en) Superconducting magnets with thermal radiation shields
EP0921537B1 (en) Magnet coil assembly
WO2014034467A1 (en) Magnetic resonance imaging device, gradient magnetic field coil unit for magnetic resonance imaging device, and method for producing gradient magnetic field coil unit for magnetic resonance imaging device
JP2008028290A (en) Reactor device and assembly method thereof
US20070216411A1 (en) Gradient Coil System And Method for The Production Thereof
US20080024134A1 (en) Gradient coil cooling device and method for the manufacture thereof
WO2011136144A1 (en) Bobbin for electrical equipment and method for producing same
JP2010004646A (en) Superconducting rotating machine
CN110402474B (en) Coil molded body and reactor
JP2020141552A (en) Method of manufacturing rotary electric machine rotor
GB2490189A (en) Superconducting magnet with thermally conductive cooling and methods for its manufacture
CN103688185B (en) Helium vapor magnetic resonance magnet
CN109917312B (en) Gradient coil for magnetic resonance imaging and processing method thereof
CN108601128A (en) Electromagnetic heating mold
CN105097233B (en) Transformer with anticracking bobbin, low-voltage direct-current converter and its assemble method
JP2004289966A (en) Structure of laminated can for ammonia canned motor and processing method therefor
JP6452599B2 (en) Superconducting electromagnet apparatus and manufacturing method thereof
JP2009050466A (en) Manufacturing method of gradient magnetic field coil, gradient magnetic field coil, and magnetic resonance imaging apparatus
JP3417468B2 (en) Indirectly cooled multipole electromagnet
WO2016199700A1 (en) Reactor and method for manufacturing reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110531

R151 Written notification of patent or utility model registration

Ref document number: 4757129

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250