JP2008027902A - Inspection method and device of fuel cell - Google Patents

Inspection method and device of fuel cell Download PDF

Info

Publication number
JP2008027902A
JP2008027902A JP2007159954A JP2007159954A JP2008027902A JP 2008027902 A JP2008027902 A JP 2008027902A JP 2007159954 A JP2007159954 A JP 2007159954A JP 2007159954 A JP2007159954 A JP 2007159954A JP 2008027902 A JP2008027902 A JP 2008027902A
Authority
JP
Japan
Prior art keywords
layer structure
fuel cell
measurement
temperature modulation
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007159954A
Other languages
Japanese (ja)
Inventor
Takumi Taniguchi
拓未 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007159954A priority Critical patent/JP2008027902A/en
Publication of JP2008027902A publication Critical patent/JP2008027902A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inspection method and device of a fuel cell in which a renewed attention is paid to a corresponding relation between cell characteristics and thermal conductivity of the fuel cell and characteristic evaluation of the fuel cell is simplified. <P>SOLUTION: Thermal diffusion factors of composing members of a fuel cell such as unit cells 20, an MEA 21 composing the above unit cells, gas diffusion member 33 or the like are measured during a manufacturing process of a fuel cell. In the measuring method, a transmission of heat raised from a periodic heat generation by angular frequency ω in an exothermic body 212 is detected by an infrared detecting unit housed in a temperature detecting unit 214, and a phase differential of a temperature modulation and a detected temperature at a time of heating is obtained, and based on the above, thermal diffusion factors are measured for a plurality of measuring positions. A judgement of bonding of composing members is made based on the obtained thermal diffusion factors and cell characteristics of the unit cell is evaluated based on a differential of thermal diffusion factors. For the above, a map memorized by a momory part 224 is used. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電解質を一対の電極で挟持した層構成体を有する燃料電池の検査方法と装置に関する。   The present invention relates to a fuel cell inspection method and apparatus having a layer structure in which an electrolyte is sandwiched between a pair of electrodes.

燃料電池は、電解質を一対の電極で挟持した層構成体を備え、この層構成体を含む電池構成を一単位として複数積層させている。従って、燃料電池の発電能力等の特性は、個々の電池構成単位が有する特性に依存するので、この電池構成単位での特性評価が望まれている。   The fuel cell includes a layer structure in which an electrolyte is sandwiched between a pair of electrodes, and a plurality of battery structures including the layer structure are stacked as a unit. Therefore, characteristics such as the power generation capability of the fuel cell depend on the characteristics of the individual battery constituent units, and thus it is desired to evaluate the characteristics of the battery constituent units.

個々の電池は、電解質をその両側で電極に接合させ、更には、電極へのガスの拡散・供給のためのガス供給層をも電極に接合させている。そして、個々の電池の特性はこうした部材同士の接合状況(例えば、接合性の良否、接合性を規定する剥離強度等)に依存することから、何らかの物理現象を測定することで部材同士の接合状況を判定できれば、電池特性についても評価を下すことが可能となり得る。   In each battery, an electrolyte is bonded to the electrode on both sides, and a gas supply layer for gas diffusion / supply to the electrode is also bonded to the electrode. And since the characteristics of each battery depend on the joining situation between these members (for example, the quality of joining, the peel strength that defines the joining property, etc.), the joining situation between members by measuring some physical phenomenon If it can be determined, it may be possible to evaluate the battery characteristics.

こうした部材同士の接合状況の判定を行う技術としては、下記の特許文献がある。この特許文献によれば、シリンダヘッドとバルブシートの接合性の良否を非破壊で判定するに当たり、所定温度で接合対象部材の一方を加熱して他方の接合対象部材に伝わる透過熱を測定する。そして、その測定温度の値や昇温推移の様子から接合対象部材であるシリンダヘッドとバルブシートの接合状況(接合性の良否)を判定している。   As a technique for determining the joining state between such members, there are the following patent documents. According to this patent document, in determining non-destructiveness of the bondability between the cylinder head and the valve seat, one of the members to be joined is heated at a predetermined temperature, and the transmitted heat transmitted to the other member to be joined is measured. And the joining condition (goodness of joining property) of the cylinder head which is a member to be joined, and a valve seat is judged from the value of the measured temperature and the state of temperature rise.

特開平9−96204号公報JP-A-9-96204

上記した特許文献による接合状況の判定手法は、電池構成への応用が期待されていたが、次のような問題点が指摘されるに至り、実用の域に達していないのが現状である。電池の接合対象部材である電解質や電極、或いはガス供給層は、その組成や構造においてシリンダヘッドやバルブシートの材料である金属や合金と相違するため、熱伝導特性が悪く均一性にも欠けており、周囲への放熱の影響が大きいので、熱量絶対値での評価が困難である。よって、特許文献1の手法に習って燃料電池における接合対象部材の接合状況を判定したとしても、同一の電池でありながら測定温度値が測定箇所で相違する現象が起きるため、電池における上記接合対象部材の接合状況の判定には信頼性に欠けていた。このため、電解質や電極、或いはガス供給層といった部材の接合を経て形成される電池構成単位、延いてはその積層体である燃料電池全体の特性評価の信頼性も低かった。また、電極面積に亘って電解質と電極とが接合し、電極とガス供給層とが接合することから、接合箇所ごとの接合状況も不均一となる可能性がある。特に、高出力電池では広い電極面積が必要となるので、電解質、電極、ガス供給層の接合範囲も広くなる。よって、接合対象部材における熱伝導特性の不均一性と接合状況の不均一性とが相俟って、測定箇所ごとの測定温度値も大きな相違が起き得るので、測定温度値に基づく接合状況の判定の信頼性や、この判定に基づく燃料電池の特性評価の信頼性において改善の余地が残されていた。   The method for determining the joining state according to the above-mentioned patent document has been expected to be applied to a battery configuration. However, the following problems have been pointed out, and the practical situation has not been reached. The electrolyte, electrode, or gas supply layer, which is a battery bonding target member, differs from the metal or alloy, which is the material of the cylinder head or valve seat, in its composition and structure. In addition, since the influence of heat radiation to the surroundings is large, it is difficult to evaluate the absolute value of heat. Therefore, even if the joining state of the joining target members in the fuel cell is determined according to the method of Patent Document 1, a phenomenon occurs in which the measured temperature value is different at the measurement location even though it is the same battery. The determination of the joining state of the members lacked reliability. For this reason, the reliability of the characteristic evaluation of the battery constituent unit formed by joining the members such as the electrolyte, the electrode, or the gas supply layer, and the fuel cell as a whole, is low. In addition, since the electrolyte and the electrode are joined over the electrode area, and the electrode and the gas supply layer are joined, there is a possibility that the joining state at each joint location may be non-uniform. In particular, since a high output battery requires a wide electrode area, the joining range of the electrolyte, the electrode, and the gas supply layer is also widened. Therefore, the non-uniformity of the thermal conductivity characteristics of the members to be joined and the non-uniformity of the joining situation can cause a large difference in the measured temperature value at each measurement location. There remains room for improvement in the reliability of the determination and the reliability of the characteristics evaluation of the fuel cell based on this determination.

本発明は、上記問題点を解決するためになされ、燃料電池の構成部材の接合状況の判定の信頼性、延いては特性評価の信頼性を高め得る新たな手法を提供することをその目的とする。   The present invention has been made to solve the above-mentioned problems, and its object is to provide a new technique capable of improving the reliability of the determination of the joining state of the constituent members of the fuel cell, and hence the reliability of the characteristic evaluation. To do.

上記した目的の少なくとも一部を達成するために、本発明では、以下の構成を採用した。   In order to achieve at least a part of the above object, the present invention adopts the following configuration.

[適用1:燃料電池の検査方法]
電解質を一対の電極で挟持した層構成体を有する燃料電池の検査方法であって、
前記層構成体の表裏の一方の面の側から前記層構成体を加熱するに際し、所定周波数の温度変調を起こしつつ前記層構成体を加熱して、前記一方の面における加熱領域に亘って前記層構成体の前記一方の面の側において温度変調を誘起し、
前記層構成体をその厚み方向に伝わった熱の温度変調を、前記加熱領域と対向する前記層構成体の他方の面の側の測定領域に含まれる複数の測定箇所で測定し、
該測定した温度変調と前記層構成体を前記一方の面の側から加熱する際の前記温度変調との位相差を前記複数の測定箇所ごとに求め、
前記測定箇所ごとに求めた前記位相差に基づいて、前記層構成体の前記測定箇所ごとの層方向における前記燃料電池の熱伝導特性を求め、
前記測定箇所ごとに求めた前記熱伝導特性に基づいて、前記層構成体の構成材の接合状況を判定する
ことを要旨とする。
[Application 1: Inspection method of fuel cell]
A method for inspecting a fuel cell having a layer structure in which an electrolyte is sandwiched between a pair of electrodes,
When heating the layer structure from one side of the front and back surfaces of the layer structure, the layer structure is heated while performing temperature modulation at a predetermined frequency, and the heating is performed over the heating region on the one surface. Inducing a temperature modulation on the one side of the layer structure,
The temperature modulation of heat transmitted in the thickness direction of the layer structure is measured at a plurality of measurement points included in the measurement area on the other surface side of the layer structure facing the heating area,
Obtaining a phase difference between the measured temperature modulation and the temperature modulation when the layer structure is heated from the one surface side for each of the plurality of measurement points;
Based on the phase difference obtained for each measurement location, obtain the thermal conductivity characteristics of the fuel cell in the layer direction for each measurement location of the layer structure,
The gist is to determine the joining state of the constituent materials of the layer structure based on the heat conduction characteristics obtained for each measurement location.

上記した燃料電池の検査方法では、電解質を一対の電極で挟持した層構成体を有する燃料電池を検査するに当たり、前記層構成体の表裏の一方の面の側から前記層構成体を加熱するに際し、所定周波数の温度変調を起こしつつ前記層構成体を加熱して、前記一方の面における加熱領域に亘って前記層構成体の前記一方の面の側において温度変調を誘起する。層構成体に一方の面の側で与えられた熱は、層構成体厚み方向の熱伝搬の過程でその熱量が減衰するものの、層構成体の一方の面の側において誘起した温度変調に対して位相の遅れを持って層構成体の他方の面側に伝搬する。この位相の遅れは、測定対象である層構成体の熱伝搬箇所の熱伝導特性に依存して定まり、この熱伝導特性は、層構成体の個々の材料の特性、材料同士の接合の状況、延いては燃料電池の電池特性と高い相関がある。   In the fuel cell inspection method described above, when inspecting a fuel cell having a layer structure in which an electrolyte is sandwiched between a pair of electrodes, the layer structure is heated from one side of the front and back surfaces of the layer structure. The layer structure is heated while causing temperature modulation at a predetermined frequency, and temperature modulation is induced on the one surface side of the layer structure over the heating region on the one surface. The heat applied to one side of the layer structure is attenuated in the process of heat propagation in the thickness direction of the layer structure, but the temperature modulation induced on the one side of the layer structure And propagates to the other surface side of the layer structure with a phase delay. This phase delay is determined depending on the heat conduction characteristics of the heat propagation point of the layer structure to be measured, and this heat conduction characteristic is determined by the characteristics of the individual materials of the layer structure, the state of bonding between the materials, As a result, there is a high correlation with the battery characteristics of the fuel cell.

こうした知見に立ち、層構成体の一方の面の側において温度変調を誘起させつつ加熱し、前記層構成体をその厚み方向に伝わった熱の温度変調を、前記加熱領域と対向する前記層構成体の他方の面の側の測定領域に含まれる複数の測定箇所で測定し、該測定した温度変調と前記層構成体を前記一方の面の側から加熱する際の前記温度変調との位相差を前記複数の測定箇所ごとに求める。こうした温度変調の位相差は、既述したように、その位相差をもたらす箇所(それぞれの測定箇所)たる熱伝搬箇所の熱伝導特性に依存することから、この位相差に基づいて、それぞれの測定箇所についての熱伝導特性を求める。そして、前記測定箇所ごとに求めた前記熱伝導特性に基づいて、前記層構成体の構成材の接合状況を判定する。   Based on such knowledge, the layer structure is heated while inducing temperature modulation on one side of the layer structure, and the temperature structure of the heat transmitted through the layer structure in the thickness direction is opposed to the heating region. The phase difference between the temperature modulation measured at a plurality of measurement points included in the measurement region on the other surface side of the body and the temperature modulation when the layer structure is heated from the one surface side. For each of the plurality of measurement points. As described above, the phase difference of such temperature modulation depends on the heat conduction characteristics of the heat propagation point that causes the phase difference (each measurement point). Obtain the heat conduction characteristics of the part. And based on the said heat conduction characteristic calculated | required for every said measurement location, the joining condition of the structural material of the said layer structure is determined.

上記構成を有する燃料電池の検査方法では、燃料電池が有する層構成体を構成する構成材の接合状況を判定するに当たって、測定箇所ごとの測定温度値を用いるのではなく、測定箇所ごとの温度変調の位相差に基づく熱伝導特性を用いる。この場合、温度変調の位相差は測定箇所の熱伝導特性に依存して定まり、この熱伝導特性は、層構成体の個々の構成材料同士の接合の状況、延いては燃料電池の電池特性と高い相関があることから、上記の燃料電池の検査方法によれば、燃料電池の構成部材の接合状況の判定の信頼性を高めることができる。しかも、接合状況判定の際に燃料電池を運転状態とする必要がないので、簡便である。また、こうした接合状況判定を燃料電池の製造の過程で行うことができるので、この評価に基づいた層構成体や燃料電池(セル)の良否判定も可能となり、品質向上に寄与できる。   In the method for inspecting a fuel cell having the above-described configuration, when determining the joining state of the constituent materials constituting the layer structure of the fuel cell, the temperature modulation for each measurement location is used instead of the measurement temperature value for each measurement location. The heat conduction characteristic based on the phase difference of is used. In this case, the phase difference of the temperature modulation is determined depending on the heat conduction characteristic of the measurement location, and this heat conduction characteristic is related to the state of bonding between the individual constituent materials of the layer structure, and further to the battery characteristics of the fuel cell. Since there is a high correlation, according to the fuel cell inspection method described above, it is possible to improve the reliability of the determination of the joining state of the constituent members of the fuel cell. Moreover, since it is not necessary to put the fuel cell in the operating state when determining the joining state, it is simple. In addition, since the determination of the joining state can be performed in the process of manufacturing the fuel cell, the quality of the layer structure and the fuel cell (cell) can be determined based on this evaluation, which can contribute to quality improvement.

更に、熱伝導特性は、既述したように、層構成体の構成材同士の接合の状況のみならず燃料電池の電池特性と高い相関があることから、前記測定箇所ごとに求めた前記熱伝導特性の偏差と、該偏差を前記燃料電池の電池特性に対応付けた特性対応とに基づいて、前記燃料電池の電池特性を評価することもできる。また、前記判定した前記接合状況と、該判定状況を前記燃料電池の電池特性に対応付けた特性対応とに基づいて、前記燃料電池の電池特性を評価することもできる。こうすれば、燃料電池の特性評価についての信頼性も高めることができる他、特性評価に際しては燃料電池を運転状態とする必要がないので簡便である。   Furthermore, as described above, the heat conduction characteristics are highly correlated not only with the state of joining of the constituent members of the layer structure but also with the battery characteristics of the fuel cell. The battery characteristics of the fuel cell can also be evaluated based on the characteristic deviation and the characteristic correspondence in which the deviation is associated with the battery characteristic of the fuel cell. Further, the battery characteristics of the fuel cell can be evaluated based on the determined joining state and a characteristic correspondence in which the determined state is associated with the battery characteristic of the fuel cell. In this way, the reliability of the fuel cell characteristic evaluation can be improved, and the characteristic evaluation is simple because it is not necessary to put the fuel cell in an operating state.

[適用2:燃料電池の他の検査方法]
電解質を一対の電極で挟持した層構成体を有する燃料電池の検査方法であって、
前記層構成体の表裏の一方の面の側から前記層構成体を加熱するに際し、所定周波数の温度変調を起こしつつ前記層構成体を加熱して、該加熱箇所において前記層構成体の前記一方の面の側に温度変調を誘起し、
前記層構成体をその厚み方向に伝わった熱の温度変調を、前記加熱箇所と対向する前記層構成体の他方の面の側の測定箇所で測定し、
該測定した温度変調と前記層構成体を前記一方の面の前記加熱箇所で加熱する際の前記温度変調との位相差を求め、
該求めた位相差に基づいて、前記層構成体の前記測定箇所での層方向における前記燃料電池の熱伝導特性を求め、
前記加熱箇所と前記測定箇所を前記層構成体において変更して、前記位相差を前記層構成体の複数箇所で求めつつ、前記位相差に基づいた前記熱伝導特性を複数箇所で求め、
該複数箇所で求めた前記熱伝導特性に基づいて、前記層構成体の構成材の接合状況を判定する
ことを要旨とする。
[Application 2: Other inspection methods for fuel cells]
A method for inspecting a fuel cell having a layer structure in which an electrolyte is sandwiched between a pair of electrodes,
When heating the layer structure from one side of the front and back surfaces of the layer structure, the layer structure is heated while causing temperature modulation at a predetermined frequency, and the one of the layer structures is heated at the heating location. Induces temperature modulation on the side of the surface,
The temperature modulation of the heat transmitted in the thickness direction of the layer structure is measured at a measurement location on the other surface side of the layer configuration facing the heating location,
Obtaining a phase difference between the measured temperature modulation and the temperature modulation when the layer structure is heated at the heating portion on the one surface;
Based on the obtained phase difference, obtain the heat conduction characteristics of the fuel cell in the layer direction at the measurement location of the layer structure,
While changing the heating location and the measurement location in the layer structure, and determining the phase difference at a plurality of locations of the layer structure, the heat conduction characteristics based on the phase difference is determined at a plurality of locations,
The gist is to determine the joining state of the constituent materials of the layer structure based on the heat conduction characteristics obtained at the plurality of locations.

上記した燃料電池の他の検査方法では、電解質を一対の電極で挟持した層構成体を有する燃料電池を検査するに当たり、前記層構成体の表裏の一方の面の側から前記層構成体を加熱するに際し、所定周波数の温度変調を起こしつつ前記層構成体を加熱して、該加熱箇所において前記層構成体の前記一方の面の側に温度変調を誘起し、前記層構成体をその厚み方向に伝わった熱の温度変調を、前記加熱箇所と対向する前記層構成体の他方の面の側の測定箇所で測定し、該測定した温度変調と前記層構成体を前記一方の面の前記加熱箇所で加熱する際の前記温度変調との位相差を求め、この位相差に基づいて、前記層構成体の前記測定箇所での層方向における前記燃料電池の熱伝導特性を求める。その上で、前記加熱箇所と前記測定箇所を前記層構成体において変更して、前記位相差を前記層構成体の複数箇所で求めつつ、前記位相差に基づいた前記熱伝導特性を複数箇所で求める。そして、前記測定箇所ごとに求めた前記熱伝導特性に基づいて、前記層構成体の構成材の接合状況を判定する。この検査方法によっても、燃料電池の構成部材の接合状況の判定の信頼性向上等、既述した効果を奏することができる。そして、複数箇所で求めた前記熱伝導特性の偏差と、該偏差を前記燃料電池の電池特性に対応付けた特性対応とに基づいて、或いは、前記判定した前記接合状況と、該判定状況を前記燃料電池の電池特性に対応付けた特性対応とに基づいて、前記燃料電池の電池特性を評価すれば、その特性評価の信頼性の向上等も図ることができる。   In the other inspection method for a fuel cell described above, in inspecting a fuel cell having a layer structure in which an electrolyte is sandwiched between a pair of electrodes, the layer structure is heated from one side of the front and back surfaces of the layer structure. In doing so, the layer structure is heated while causing temperature modulation at a predetermined frequency, and temperature modulation is induced on the one surface side of the layer structure at the heating location, and the layer structure is moved in the thickness direction. The temperature modulation of the heat transmitted to is measured at a measurement location on the other side of the layer structure opposite to the heating location, and the measured temperature modulation and the layer configuration are heated on the one surface. A phase difference from the temperature modulation at the time of heating at a location is obtained, and based on this phase difference, a heat conduction characteristic of the fuel cell in the layer direction at the measurement location of the layer structure is obtained. Then, the heating location and the measurement location are changed in the layer structure, and the thermal conductivity characteristics based on the phase difference are obtained at a plurality of locations while the phase difference is obtained at a plurality of locations in the layer configuration. Ask. And based on the said heat conduction characteristic calculated | required for every said measurement location, the joining condition of the structural material of the said layer structure is determined. Also by this inspection method, the above-described effects such as improvement in reliability of determination of the joining state of the constituent members of the fuel cell can be achieved. Then, based on the deviation of the heat conduction characteristic obtained at a plurality of locations and the characteristic correspondence in which the deviation is associated with the battery characteristic of the fuel cell, or the determined joining situation and the judging situation If the cell characteristic of the fuel cell is evaluated based on the characteristic correspondence associated with the cell characteristic of the fuel cell, the reliability of the characteristic evaluation can be improved.

以上説明した燃料電池の接合検査において、前記温度変調を誘起するに際しては、前記層構成体における前記電解質の伝導種の燃料ガスの供給を受け該ガスを一方の前記電極に送る燃料ガス供給層と、前記伝導種の酸化に寄与する物質を含有する酸化ガスの供給を受け該ガスを他方の前記電極に送る酸化ガス供給層とで前記層構成体を接合・挟持したガス供給層含有構造体について、該ガス供給層含有構造体の表裏の一方の面の側から前記温度変調を起こしつつ前記ガス供給層含有構造体を加熱して前記温度変調を誘起することとし、前記温度変調を測定するに際しては、前記ガス供給層含有構造体をその厚み方向に伝わった熱の温度変調を前記ガス供給層含有構造体の他方の面の側で測定するようにもできる。こうすれば、電解質を一対の電極で挟持した層構成体に燃料ガス供給層と酸化ガス供給層を接合・挟持した構成を単位に、その熱伝導特性を容易に測定でき、延いては、ガス供給層を有する構成単位での構成材の接合状況判定、燃料電池の電池特性評価を高い信頼性で行うことができる。   In the fuel cell bonding inspection described above, when inducing the temperature modulation, a fuel gas supply layer that receives a supply of the fuel gas of the conductive type of the electrolyte in the layer structure and sends the gas to one of the electrodes; A gas supply layer-containing structure in which the layer structure is joined and sandwiched by an oxidizing gas supply layer that receives supply of an oxidizing gas containing a substance that contributes to oxidation of the conductive species and sends the gas to the other electrode When measuring the temperature modulation, the gas supply layer-containing structure is heated to induce the temperature modulation while causing the temperature modulation from the front and back surfaces of the gas supply layer-containing structure. Can measure the temperature modulation of the heat transmitted through the gas supply layer-containing structure in the thickness direction on the other surface side of the gas supply layer-containing structure. In this way, it is possible to easily measure the thermal conductivity characteristics of the unit structure in which the fuel gas supply layer and the oxidizing gas supply layer are joined and sandwiched between the layer structure in which the electrolyte is sandwiched between the pair of electrodes. It is possible to perform the determination of the joining state of the constituent materials in the constituent unit having the supply layer and the evaluation of the cell characteristics of the fuel cell with high reliability.

また、前記温度変調を測定するに際しては、測定対象物の温度を非接触に計測する温度計測機器を用いることができる。この温度計測機器は、赤外線を受光する赤外線カメラを備え、該カメラの焦点位置における測定対象物が放射する赤外線を前記赤外線カメラで受光して、前記焦点位置における前記測定対象物の温度を非接触に計測する。そして、この温度計測機器を用いて温度変調を測定するに当たって、温度計測機器の前記赤外線カメラの焦点位置を、前記測定対象物である前記層構成体または前記ガス供給層含有構造体の厚み方向で変えつつ、前記焦点位置に合致した位置での温度変調を測定するようにもできる。   Moreover, when measuring the said temperature modulation, the temperature measurement apparatus which measures the temperature of a measurement object non-contactingly can be used. The temperature measuring device includes an infrared camera that receives infrared rays, and receives infrared rays emitted from a measurement object at the focal position of the camera by the infrared camera, and non-contacts the temperature of the measurement object at the focal position. To measure. And in measuring temperature modulation using this temperature measuring device, the focal position of the infrared camera of the temperature measuring device is in the thickness direction of the layer structure or the gas supply layer containing structure that is the measurement object. While changing, it is also possible to measure the temperature modulation at a position matching the focal position.

こうすれば、電解質を一対の電極で挟持した層構成体、もしくは、この層構成体に燃料ガス供給層と酸化ガス供給層を接合・挟持したガス供給層含有構造体について、その厚み方向における異なる位置での熱伝導特性を容易に測定できる。この場合、電解質を一対の電極で挟持した層構成体とガス供給層含有構造体は、それぞれその構成部材の接合体であることから、焦点位置をそれぞれの構成部材の厚み方向で変えることで、当該構成部材の厚み方向に亘る熱電動特性を得ることができる。また、焦点位置を構成部材の接合位置にすれば、接合箇所での熱伝導特性を得ることができる。つまり、構成部材の接合体である層構成体やガス供給層含有構造体について、その構成部材の厚み方向の熱伝導特性の推移のみならず、構成部材の接合箇所での熱伝導特性をも含めて把握できるので、これら熱伝導特性に基づいた上記した接合状況判定や燃料電池の電池特性評価の信頼性をより高めることができる。   In this way, the layer structure in which the electrolyte is sandwiched between the pair of electrodes, or the gas supply layer-containing structure in which the fuel gas supply layer and the oxidizing gas supply layer are joined and sandwiched between the layer structures are different in the thickness direction. It is possible to easily measure the heat conduction characteristics at the position. In this case, the layer structure in which the electrolyte is sandwiched between the pair of electrodes and the gas supply layer-containing structure are each a joined body of the constituent members, so by changing the focal position in the thickness direction of the respective constituent members, Thermoelectric characteristics over the thickness direction of the constituent member can be obtained. Further, if the focal position is set to the joining position of the constituent members, the heat conduction characteristics at the joining location can be obtained. In other words, for layered structures and gas supply layer-containing structures that are joined members of structural members, not only the transition of the heat conduction characteristics in the thickness direction of the structural members but also the heat conduction characteristics at the joints of the structural members are included. Therefore, it is possible to further improve the reliability of the above-described determination of the joining state based on the heat conduction characteristics and the evaluation of the battery characteristics of the fuel cell.

本発明は、上記した燃料電池の検査方法の他、燃料電池の検査装置としても適用できる。また、本発明における燃料電池には、その電解質が有する性質により種々に区分され、水素イオンを伝導種とする固体高分子型燃料電池、リン酸形燃料電池、アルカリ形燃料電池や、炭酸イオンを伝導種とする溶融炭酸塩形燃料電池、酸素イオンを伝導種とする固体酸化物形燃料電池等が含まれる。   The present invention can be applied to a fuel cell inspection apparatus in addition to the above-described fuel cell inspection method. The fuel cell according to the present invention is classified into various types according to the properties of the electrolyte, and includes a polymer electrolyte fuel cell, a phosphoric acid fuel cell, an alkaline fuel cell, and a carbonate ion that use hydrogen ions as the conductive species. A molten carbonate fuel cell having a conductive species, a solid oxide fuel cell having a conductive species of oxygen ions, and the like are included.

以下、本発明の実施の形態について、その実施例を図面に基づき説明する。図1は実施例での評価対象となる燃料電池の概略構成を説明する説明図である。本実施例における燃料電池は、固体高分子型燃料電池であり、その一つのセル(単セル20)を複数積層したスタック構造を有している。単セル20は、電解質を含むMEA(膜−電極接合体、Membrane Electrode Assembly)21と、MEA21を両側から挟持してサンドイッチ構造を形成するガス供給層22、23とを備え、このサンドイッチ構造をさらに両側からセパレータ24、25にて挟持されている。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory diagram for explaining a schematic configuration of a fuel cell to be evaluated in an example. The fuel cell in this example is a polymer electrolyte fuel cell, and has a stack structure in which a plurality of cells (single cell 20) are stacked. The unit cell 20 includes an MEA (Membrane Electrode Assembly) 21 containing an electrolyte, and gas supply layers 22 and 23 that sandwich the MEA 21 from both sides to form a sandwich structure. It is clamped by separators 24 and 25 from both sides.

MEA21は、電解質層30と、電解質層30を間に挟んでその両面に形成された一対の電極31、32とを備えている。電解質層30は、固体高分子材料、例えばフッ素系樹脂により形成されたプロトン伝導性のイオン交換膜であり、湿潤状態で良好な電気伝導性を示す。本実施例では、ナフィオン膜(デュポン社製)を使用した。電極31、32は、電気化学反応を促進する触媒、例えば、白金、或いは白金と他の金属から成る合金を備えた多孔質体であり、ガス透過性を備えている。MEA21は、こうした構成を取ることから、電解質層30を一対の電極31、32で挟持した本願における層構成体に相当する構成となる。   The MEA 21 includes an electrolyte layer 30 and a pair of electrodes 31 and 32 formed on both surfaces of the electrolyte layer 30 with the electrolyte layer 30 interposed therebetween. The electrolyte layer 30 is a proton conductive ion exchange membrane formed of a solid polymer material such as a fluorine resin, and exhibits good electrical conductivity in a wet state. In this example, a Nafion membrane (manufactured by DuPont) was used. The electrodes 31 and 32 are porous bodies including a catalyst that promotes an electrochemical reaction, for example, platinum or an alloy made of platinum and another metal, and has gas permeability. Since the MEA 21 has such a configuration, the MEA 21 corresponds to the layer structure in the present application in which the electrolyte layer 30 is sandwiched between the pair of electrodes 31 and 32.

ガス供給層22、23は、ガス透過性および電子伝導性を有する部材によって構成されており、例えば、カーボンペーパーなどの炭素材料や、発泡金属、金属メッシュなどの金属部材によって形成することができる。このようなガス供給層22、23は、電気化学反応に供されるガスの流路となってガスを供給すると共に、集電を行なう。ここで、ガス供給層22は、セパレータ24に接するガス拡散部材33と、MEA21に接する電極側ガス拡散部材34とを備えている。このようなガス供給層22は、MEA21とセパレータ24との間で、水素を含有する燃料ガスが通過する単セル内燃料ガス流路を形成してガスを供給する。ガス供給層23は、セパレータ25に接するガス拡散部材35と、MEA21に接する電極側ガス拡散部材36とを備えている。このようなガス供給層23は、MEA21とセパレータ25との間で、酸素を含有する酸化ガスが通過する単セル内酸化ガス流路を形成してガスを供給する。   The gas supply layers 22 and 23 are made of a member having gas permeability and electronic conductivity, and can be formed of, for example, a carbon material such as carbon paper, or a metal member such as foam metal or metal mesh. Such gas supply layers 22 and 23 serve as a flow path for a gas to be subjected to an electrochemical reaction, and supply gas and collect current. Here, the gas supply layer 22 includes a gas diffusion member 33 in contact with the separator 24 and an electrode-side gas diffusion member 34 in contact with the MEA 21. Such a gas supply layer 22 forms a fuel gas flow path in a single cell through which a fuel gas containing hydrogen passes between the MEA 21 and the separator 24 and supplies the gas. The gas supply layer 23 includes a gas diffusion member 35 that contacts the separator 25 and an electrode-side gas diffusion member 36 that contacts the MEA 21. Such a gas supply layer 23 forms a single-cell oxidizing gas flow path through which an oxidizing gas containing oxygen passes between the MEA 21 and the separator 25 and supplies the gas.

単セル20は、こうしたガス供給層の構成を有することから、MEA21(層構成体)をガス供給層22、23で挟持・接合した本発明におけるガス供給層含有構造体に相当する構成となる。この場合、本実施例では、ガス供給層22、23をセパレータ側のガス拡散部材と電極側ガス拡散部材の接合構成としたが、単一のガス供給層とすることもできる。   Since the single cell 20 has such a structure of the gas supply layer, the single cell 20 corresponds to the gas supply layer-containing structure in the present invention in which the MEA 21 (layer structure) is sandwiched and joined by the gas supply layers 22 and 23. In this case, in the present embodiment, the gas supply layers 22 and 23 are formed by joining the separator-side gas diffusion member and the electrode-side gas diffusion member, but may be a single gas supply layer.

上記した各部材(電解質層30、電極31、32、ガス拡散部材33、35、電極側ガス拡散部材34、36)は、図中上段に示すようにそれぞれ個別に用意され、後述する製造工程における接合処理にて、図中下段に示すように接合され、単セル20を構成する。   Each member described above (electrolyte layer 30, electrodes 31, 32, gas diffusion members 33, 35, electrode side gas diffusion members 34, 36) is individually prepared as shown in the upper part of the figure, and in the manufacturing process described later. In the joining process, joining is performed as shown in the lower part of the figure to form a single cell 20.

上記のガス供給層22、23において、セパレータ側のガス拡散部材33、35を電極側ガス拡散部材34、36に比べて、より硬い多孔質体によって形成することができる。ここでいう硬さとは、ガス拡散部材を構成する材料の硬さではなく、部材全体としての硬さであり、例えば圧縮弾性率によって表わすことができる。こうすることで、単セル20としての形状維持にとって望ましい。   In the gas supply layers 22 and 23, the separator-side gas diffusion members 33 and 35 can be formed of a harder porous body than the electrode-side gas diffusion members 34 and 36. Here, the hardness is not the hardness of the material constituting the gas diffusion member, but the hardness of the entire member, and can be represented by, for example, a compression elastic modulus. This is desirable for maintaining the shape of the single cell 20.

セパレータ24、25は、電子伝導性を有する材料で形成されたガス不透過な部材であり、例えば、ステンレス鋼等の金属部材や炭素材料によって形成することができる。本実施例のセパレータ24、25は、薄板状に形成されており、ガス供給層22、23と接する面は、凹凸のない平坦面となっているが、燃料ガス流路や酸化ガス流路を有するセパレータとすることもできる。この場合は、ガス供給層は、単セル内燃料ガス流路や単セル内酸化ガス流路の役割は有さず、拡散の役割を少なくとも有するだけでよい。   The separators 24 and 25 are gas-impermeable members formed of a material having electron conductivity, and can be formed of a metal member such as stainless steel or a carbon material, for example. The separators 24 and 25 of the present embodiment are formed in a thin plate shape, and the surfaces in contact with the gas supply layers 22 and 23 are flat surfaces without unevenness. However, the fuel gas channel and the oxidizing gas channel are not provided. It can also be set as the separator which has. In this case, the gas supply layer does not have the role of the single-cell fuel gas flow path or the single-cell oxidizing gas flow path, but only needs to have at least a diffusion role.

なお、単セル20の外周部には、単セル内燃料ガス流路および単セル内酸化ガス流路におけるガスシール性を確保するために、ガスケット等のシール部材が配設されている。また、単セル20の外周部には、単セル20の積層方向と平行であって燃料ガス或いは酸化ガスが流通する複数のガスマニホールドが設けられている(図示せず)。これら複数のガスマニホールドのうちの燃料ガス供給マニホールドを流れる燃料ガスは、各単セル20に分配され、電気化学反応に供されつつ各単セル内燃料ガス流路(ガス供給層22)内を通過し、その後、燃料ガス排出マニホールドに集合する。同様に、酸化ガス供給マニホールドを流れる酸化ガスは、各単セル20に分配され、電気化学反応に供されつつ各単セル内酸化ガス流路(ガス供給層23)内を通過し、その後、酸化ガス排出マニホールドに集合する。図1では、単セル内燃料ガス流路における燃料ガス(H2)と単セル内酸化ガス流路における酸化ガス(O2)とは並行に流れるように記載しているが、これらのガスの流れは、ガスマニホールドの配置によって、上記した並行の他、対向、直交など異なる向きに流れることとしても良い。 In addition, a sealing member such as a gasket is disposed on the outer peripheral portion of the single cell 20 in order to ensure gas sealing performance in the single-cell fuel gas flow path and the single-cell oxidizing gas flow path. A plurality of gas manifolds (not shown) through which fuel gas or oxidizing gas flows are provided on the outer peripheral portion of the single cell 20 in parallel with the stacking direction of the single cells 20. The fuel gas flowing through the fuel gas supply manifold among the plurality of gas manifolds is distributed to each single cell 20 and passes through the fuel gas flow path (gas supply layer 22) in each single cell while being subjected to an electrochemical reaction. Then, the fuel gas discharge manifold collects. Similarly, the oxidizing gas flowing through the oxidizing gas supply manifold is distributed to each single cell 20 and passes through each single cell oxidizing gas flow path (gas supply layer 23) while being subjected to an electrochemical reaction. Collect in the gas exhaust manifold. In FIG. 1, the fuel gas (H 2 ) in the single-cell fuel gas flow path and the oxidizing gas (O 2 ) in the single-cell oxidizing gas flow path are shown to flow in parallel. Depending on the arrangement of the gas manifold, the flow may flow in different directions such as facing and orthogonal, in addition to the above-described parallel.

燃料電池に供給される燃料ガスとしては、炭化水素系燃料を改質して得られる水素リッチガスを用いても良いし、純度の高い水素ガスを用いても良い。また、燃料電池に供給される酸化ガスとしては、例えば空気を用いることができる。   As the fuel gas supplied to the fuel cell, a hydrogen-rich gas obtained by reforming a hydrocarbon-based fuel may be used, or a high-purity hydrogen gas may be used. For example, air can be used as the oxidizing gas supplied to the fuel cell.

なお、図示は省略しているが、スタック構造の内部温度を調節するために、各単セル間に、或いは所定数の単セルを積層する毎に、冷媒の通過する冷媒流路を設けても良い。冷媒流路は、隣り合う単セル間において、一方の単セルが備えるセパレータ24と、他方の単セルが備えるセパレータ25との間に設ければよい。   Although illustration is omitted, in order to adjust the internal temperature of the stack structure, a refrigerant flow path through which the refrigerant passes may be provided between each single cell or every time a predetermined number of single cells are stacked. good. The refrigerant flow path may be provided between the separators 24 provided in one single cell and the separator 25 provided in the other single cell between adjacent single cells.

単セル20は、図1に示した層構成に限られるものではなく、MEA21をその両側のセパレータで挟持し、このセパレータにおけるMEA21の側の面に、水素ガス或いは空気の供給流路を設けた構成とすることもできる。   The single cell 20 is not limited to the layer configuration shown in FIG. 1, and the MEA 21 is sandwiched between the separators on both sides thereof, and a hydrogen gas or air supply passage is provided on the surface of the MEA 21 in the separator. It can also be configured.

次に、上記した構成を有する燃料電池、詳しくは単セル20の製造工程について説明する。図2は、本実施例の燃料電池の製造方法を表わす工程図、図3は電池製造の際に各構成部材の熱伝導特性に基づいて特性評価を行う検査装置の概略図である。   Next, the manufacturing process of the fuel cell having the above-described configuration, specifically the single cell 20 will be described. FIG. 2 is a process diagram showing a method of manufacturing a fuel cell according to the present embodiment, and FIG. 3 is a schematic diagram of an inspection apparatus that performs characteristic evaluation based on the heat conduction characteristics of each component during battery manufacture.

図2に示すように、燃料電池を製造する際には、まず、単セル20を構成する既述した各部材、即ち、電解質層30、ガス拡散部材33〜36、セパレータ24、25を準備する(ステップS100)。その後、電解質層30上に電極31、32を形成して、MEA21を作製する(ステップS110)。電極31、32を形成するには、例えば、白金または白金と他の金属からなる合金を担持したカーボン粉を作製し、この触媒を担持したカーボン粉を適当な有機溶剤に分散させ、電解質溶液(例えば、Aldrich Chemical社、Nafion Solution)を適量添加することで、ペーストを作製すればよい。このペーストを、電解質層30上にスクリーン印刷等の方法により塗布することで、電極31、32を形成することができる。或いは、上記触媒を担持したカーボン粉を含有するペーストを膜成形してシートを作製し、このシートを電解質層30上にプレスすることによって電極31、32を電解質層30に接合して形成しても良い。また、上記のペーストを剥離性を有するシート(例えば、テフロンシート:テフロンは登録商標)に塗布して乾燥させ、ペーストから電極転写シートを作製する。そして、この2枚のテフロンシートで、電極転写シートが電解質層30の両側に接合するよう、電解質層30を挟み、所定温度・圧力で熱プレスした後にテフロンシートを剥離させ、電極転写シートを電解質層30の両側に転写して接合するようにすることもできる。   As shown in FIG. 2, when manufacturing a fuel cell, first, the members constituting the single cell 20, that is, the electrolyte layer 30, the gas diffusion members 33 to 36, and the separators 24 and 25 are prepared. (Step S100). Thereafter, the electrodes 31 and 32 are formed on the electrolyte layer 30 to produce the MEA 21 (step S110). In order to form the electrodes 31 and 32, for example, carbon powder carrying platinum or an alloy made of platinum and another metal is prepared, and the carbon powder carrying the catalyst is dispersed in a suitable organic solvent, and an electrolyte solution ( For example, a paste may be prepared by adding an appropriate amount of Aldrich Chemical, Nafion Solution). By applying this paste on the electrolyte layer 30 by a method such as screen printing, the electrodes 31 and 32 can be formed. Alternatively, a sheet containing a carbon powder carrying the catalyst is formed into a sheet, and the sheet is pressed onto the electrolyte layer 30 to join the electrodes 31 and 32 to the electrolyte layer 30. Also good. Further, the above paste is applied to a peelable sheet (for example, a Teflon sheet: Teflon is a registered trademark) and dried to prepare an electrode transfer sheet from the paste. Then, the two Teflon sheets are sandwiched between the electrolyte layer 30 so that the electrode transfer sheet is bonded to both sides of the electrolyte layer 30, and after the heat pressing at a predetermined temperature and pressure, the Teflon sheet is peeled off, and the electrode transfer sheet is made into the electrolyte. It can also be transferred and bonded to both sides of the layer 30.

本実施例では、こうして作製したMEA21と、ガス拡散部材33〜36について、これらが有する熱伝導特性を測定する(ステップS120)。このMEA21等の熱伝導特性は、後述するように、MEA21や単セル20における構成材の接合状況(電解質層30と電極31、32の接合状況、MEA21とガス拡散部材33〜36の接合状況)の判定、或いは、単セル20、延いては燃料電池の電池特性評価に用いる。熱伝導測定は、図3に示す電池性能検査装置200にて行う。電池性能検査装置200は、熱伝導特性の測定サンプルがセットされる測定ブース210と、制御装置220と、表示部230と、入力部240とを備える。   In the present embodiment, the thermal conductivity characteristics of the MEA 21 thus manufactured and the gas diffusion members 33 to 36 are measured (step S120). As will be described later, the heat conduction characteristics of the MEA 21 and the like are as follows. The bonding state of the constituent materials in the MEA 21 and the single cell 20 (the bonding state of the electrolyte layer 30 and the electrodes 31, 32, the bonding state of the MEA 21 and the gas diffusion members 33 to 36). Or the cell characteristics evaluation of the single cell 20 and thus the fuel cell. The heat conduction measurement is performed by the battery performance inspection apparatus 200 shown in FIG. The battery performance inspection device 200 includes a measurement booth 210 in which a measurement sample of heat conduction characteristics is set, a control device 220, a display unit 230, and an input unit 240.

測定ブース210は、MEA21等の測定サンプルを挟んで発熱体212と温度検出器214とを備える。発熱体212は、薄葉状のMEA21等の測定サンプルのほぼ全面に亘って当該測定サンプルを加熱する面状のヒータを内蔵する。発熱体212による測定サンプル加熱に際しては、発熱体212を測定サンプルの一方の面、本実施例では上面に接触若しくは近接配置し、この状態で測定サンプルを上面の側からサンプル上面全域に亘って加熱する。   The measurement booth 210 includes a heating element 212 and a temperature detector 214 with a measurement sample such as the MEA 21 interposed therebetween. The heating element 212 incorporates a planar heater that heats the measurement sample over almost the entire surface of the measurement sample such as the thin-leaf MEA 21. When heating the measurement sample by the heating element 212, the heating element 212 is placed in contact with or close to one surface of the measurement sample, in this embodiment, the upper surface, and in this state, the measurement sample is heated from the upper surface side to the entire upper surface of the sample. To do.

温度検出器214は、赤外線検出装置としての赤外線カメラを内蔵し、測定サンプルをその厚み方向に伝わった熱を測定サンプルの全面の複数箇所において測定する。赤外線カメラによるこうした測定は、カメラの焦点を測定面に合わせせた後、具体的にはカメラの焦点を測定サンプル下面に合わせた後に実行される。この測定箇所での測定結果は、間接的ではあるものの後述するように接合状況判定や電池特性評価に用いられるので、測定箇所の数やその分布は、接合状況判定や特性評価の精度を考慮して定めればよい。図4はMEA21等の測定サンプルをその厚み方向に伝わった熱の測定の様子の一例を示す説明図である。この図4(a)は、後述の熱伝導特性(熱拡散率)の統計的処理を行うに必要な最低限の測定箇所での測定を行う様子を示しており、図4(b)は、測定箇所をm行×n列(m、nは自然数)のマトリックス状に定めてそれぞれの測定箇所SPm,nで測定を様子を示している。   The temperature detector 214 incorporates an infrared camera as an infrared detection device, and measures the heat transmitted through the measurement sample in the thickness direction at a plurality of locations on the entire surface of the measurement sample. Such measurement by the infrared camera is performed after the camera is focused on the measurement surface, specifically after the camera is focused on the lower surface of the measurement sample. Although the measurement results at these measurement points are indirect, they are used for determining the bonding status and battery characteristics as described later, so the number and distribution of the measurement points take into account the accuracy of the bonding status determination and characteristic evaluation. Can be determined. FIG. 4 is an explanatory diagram showing an example of a state of measurement of heat transmitted through a measurement sample such as the MEA 21 in its thickness direction. FIG. 4 (a) shows a state in which measurement is performed at a minimum measurement location necessary for performing statistical processing of heat conduction characteristics (thermal diffusivity) described later, and FIG. The measurement locations are defined in a matrix of m rows × n columns (m and n are natural numbers), and the measurement is shown at each measurement location SPm, n.

温度検出器214は、内蔵する赤外線検出装置(赤外線カメラ)により、測定サンプルの下面全域における放出赤外線量を検出して、測定サンプル下面全域について検出した赤外線量に対応する検出信号を出力する。上記した測定箇所SP1〜SP3の各箇所(図4(a)参照)についての温度、或いは、マトリックス状の測定箇所SPm,nの各箇所(図4(b)参照)についての温度は、温度検出器214の検出信号を入力する制御装置220の温度変調解析部222にて後述のように算出される。   The temperature detector 214 detects the amount of infrared radiation emitted from the entire lower surface of the measurement sample by using a built-in infrared detection device (infrared camera), and outputs a detection signal corresponding to the amount of infrared detected for the entire lower surface of the measurement sample. The temperature at each of the measurement points SP1 to SP3 (see FIG. 4A) or the temperature at each of the matrix measurement points SPm, n (see FIG. 4B) is detected by temperature. The temperature modulation analysis unit 222 of the control device 220 to which the detection signal of the device 214 is input is calculated as described later.

制御装置220は、測定サンプルの熱伝導特性算出やMEA21、単セル20の接合状況判定や電池特性評価等を行うため、発熱体制御部221、温度変調解析部222、位相差算出部223、記憶部224、熱伝導特性算出部225、偏差算出部226、接合判定部227、特性評価部228を備える。発熱体制御部221は、発熱体212をその加熱温度が周期的に変動(温度変調)するよう、具体的には所定の角周波数ωでの周期発熱を起こすよう発熱体212を温度制御する。この発熱体212により上面の側から加熱される測定サンプルでは、サンプル上面において上記角周波数ωの温度変調が誘起され、その熱は、測定サンプルを厚み方向に伝搬する。この場合、熱は、測定サンプル厚み方向の熱伝搬の過程でその熱量が減衰するものの、測定サンプル上面の側において誘起した温度変調に対して位相の遅れを持って測定サンプルの他方の面、即ち下面に伝搬し、その下面側において伝搬温度として温度検出器214により検出される。   The control device 220 calculates the heat conduction characteristics of the measurement sample, determines the joining status of the MEA 21 and the single cell 20, evaluates the battery characteristics, and the like, so that the heating element control unit 221, the temperature modulation analysis unit 222, the phase difference calculation unit 223, and the storage A unit 224, a heat conduction characteristic calculation unit 225, a deviation calculation unit 226, a bonding determination unit 227, and a characteristic evaluation unit 228. The heating element control unit 221 controls the temperature of the heating element 212 so that the heating temperature of the heating element 212 fluctuates periodically (temperature modulation), specifically, periodically generates heat at a predetermined angular frequency ω. In the measurement sample heated from the upper surface side by the heating element 212, temperature modulation of the angular frequency ω is induced on the upper surface of the sample, and the heat propagates through the measurement sample in the thickness direction. In this case, although the amount of heat attenuates in the process of heat propagation in the thickness direction of the measurement sample, the other surface of the measurement sample has a phase lag with respect to the temperature modulation induced on the upper side of the measurement sample, that is, It propagates to the lower surface and is detected by the temperature detector 214 as the propagation temperature on the lower surface side.

温度変調解析部222は、温度検出器214からの赤外線量の検出信号を受け取り、その赤外線量検出信号からの温度換算を、図4で示した測定箇所SP1〜SP3或いはマトリックス状の測定箇所SPm,nについてそれぞれ行う。そして、温度変調解析部222は、各測定箇所で起きる温度を経過時間推移と共に求め、その温度推移によりサンプル下面における温度変調を測定箇所SP1〜SP3ごとに、或いはマトリックス状の測定箇所SPm,nごとに解析する。図5は発熱体212を加熱制御した際の温度変調の様子と測定温度から解析した検出温度の温度変調の様子とを示す説明図である。   The temperature modulation analysis unit 222 receives the infrared amount detection signal from the temperature detector 214, and converts the temperature conversion from the infrared amount detection signal to the measurement points SP1 to SP3 shown in FIG. Repeat for n. And the temperature modulation analysis part 222 calculates | requires the temperature which arises in each measurement location with elapsed time transition, and performs temperature modulation in the sample lower surface for every measurement location SP1-SP3 or every matrix measurement location SPm, n by the temperature transition. To analyze. FIG. 5 is an explanatory diagram showing the state of temperature modulation when the heating element 212 is heated and the state of temperature modulation of the detected temperature analyzed from the measured temperature.

位相差算出部223は、温度変調解析部222から得られた測定箇所のそれぞれについてのサンプル下面における温度変調と、発熱体212を発熱制御する際の温度変調との位相差を算出する(図5参照)。記憶部224は、特性評価に用いる種々のマップを記憶する。例えば、後述するように、算出熱伝導特性からMEA21としての接合状況判定やMEA21をガス供給層で挟持した状態の単セル20での接合状況判定を行う際に用いる熱伝導特性・接合マップや、算出位相差から熱伝導特性を算出する際に用いる位相差・熱伝導特性マップ、単セル20のMEA21等の各構成部材を上記測定サンプルとした場合の熱伝導特性と単セル20の熱伝導特性とを対応付けた構成部材ごとの熱伝導・熱伝導対応マップ、単セル20の各構成部材を上記測定サンプルとした場合の熱伝導特性の偏差と単セル20の電池特性とを対応付けた構成部材ごとの偏差・電池特性対応マップ、MEA21をその両側でガス供給層で挟持した状態の単セル20を上記測定サンプルとした場合の熱伝導特性の偏差と単セル20の電池特性とを対応付けた偏差・電池特性対応マップ、各構成部材ごとの熱伝導特性の偏差とMEA21をその両側でガス供給層で挟持した状態の単セル20の熱伝導特性の偏差とを対応付けた偏差・偏差対応マップ、MEA21としての接合状況判定結果と単セル20の電池特性とを対応付けた接合状況・電池特性対応マップ、MEA21をガス供給層で挟持した状態の単セル20での接合状況判定結果と単セル20の電池特性とを対応付けたセル接合状況・電池特性対応マップ等を記憶する。   The phase difference calculation unit 223 calculates the phase difference between the temperature modulation on the lower surface of the sample and the temperature modulation when the heating element 212 is controlled to generate heat for each of the measurement points obtained from the temperature modulation analysis unit 222 (FIG. 5). reference). The storage unit 224 stores various maps used for characteristic evaluation. For example, as will be described later, from the calculated thermal conductivity characteristics, the bonding state determination as the MEA 21 and the bonding state determination in the single cell 20 in a state where the MEA 21 is sandwiched between the gas supply layers, The phase difference / heat conduction characteristic map used when calculating the heat conduction characteristic from the calculated phase difference, the heat conduction characteristic when each constituent member such as the MEA 21 of the single cell 20 is the measurement sample, and the heat conduction characteristic of the single cell 20 And the heat conduction / heat conduction correspondence map for each constituent member, and the constitution in which the deviation of the heat conduction characteristic when the constituent members of the single cell 20 are used as the measurement sample is associated with the battery characteristics of the single cell 20. Deviation / battery characteristic correspondence map for each member, deviation of heat conduction characteristics when single cell 20 in a state in which MEA 21 is sandwiched between gas supply layers on both sides is used as the measurement sample, and single cell 20 Corresponding deviation / battery characteristic correspondence map that correlates pond characteristics, deviation of thermal conductivity characteristics for each component, and deviation of thermal conductivity characteristics of single cell 20 with MEA 21 sandwiched between gas supply layers on both sides thereof The attached deviation / deviation correspondence map, the joining situation / battery characteristic correspondence map in which the joining situation determination result as the MEA 21 and the battery characteristics of the single cell 20 are associated, and the single cell 20 in a state where the MEA 21 is sandwiched between the gas supply layers. A cell joining state / battery characteristic correspondence map or the like in which the joining state determination result and the battery characteristics of the single cell 20 are associated with each other is stored.

熱伝導特性算出部225は、複数の測定箇所SPのそれぞれについて算出した位相差に基づいて、測定箇所SPごとの熱伝導特性を算出する。偏差算出部226は、測定箇所SPごとに求めた熱伝導特性の偏差を算出する。この偏差は、測定箇所SPごとに求めた熱伝導特性のバラツキに相当するので、その算出に当たっては、単純な数値計算を用いて熱伝導特性の差分の最大値や差分の平均値を求めこれらを偏差とできるほか、統計的手法を用いて算出した分散を偏差とすることもできる。接合判定部227は、測定箇所SPごとに算出した熱伝導特性に基づいて、MEA21での接合状況を判定したり、MEA21をガス供給層で挟持した状態の単セル20での接合状況を判定する。   The heat conduction characteristic calculation unit 225 calculates the heat conduction characteristic for each measurement point SP based on the phase difference calculated for each of the plurality of measurement points SP. The deviation calculation unit 226 calculates the deviation of the heat conduction characteristic obtained for each measurement point SP. Since this deviation corresponds to the variation in the heat conduction characteristic obtained for each measurement point SP, the maximum value of the difference in the heat conduction characteristic and the average value of the difference are obtained by simple numerical calculation. In addition to being a deviation, the variance calculated using a statistical method can also be used as the deviation. The joining determination unit 227 determines the joining state in the MEA 21 based on the heat conduction characteristics calculated for each measurement point SP, or judges the joining state in the single cell 20 in a state where the MEA 21 is sandwiched between the gas supply layers. .

特性評価部228は、測定サンプルとしてのMEA21やガス拡散部材33等の部材について実際に求めた熱伝導特性の偏差や、MEA21をその両側でガス供給層で挟持した状態の単セル20について実際に求めた熱伝導特性の偏差を、記憶部224が記憶した上記マップと対比して、その部材を用いた単セル20、延いては単セル積層後の燃料電池の電池特性を評価する。また、特性評価部228は、測定サンプルとしてのMEA21について得た構成材の接合状況の判定結果やMEA21をその両側でガス供給層で挟持した状態の単セル20について得た構成材の接合状況の判定結果を、記憶部224が記憶した上記マップと対比して、MEA21を用いた単セル20、延いては単セル積層後の燃料電池の電池特性を評価する。   The characteristic evaluation unit 228 actually calculates the deviation of the heat conduction characteristics actually obtained for the members such as the MEA 21 and the gas diffusion member 33 as the measurement sample, and the single cell 20 in a state where the MEA 21 is sandwiched between the gas supply layers on both sides. The obtained deviation of the heat conduction characteristic is compared with the map stored in the storage unit 224, and the battery characteristics of the single cell 20 using the member, and then the fuel cell after stacking the single cells are evaluated. Moreover, the characteristic evaluation part 228 is a result of the determination of the joining state of the constituent material obtained for the MEA 21 as the measurement sample, and the joining state of the constituent material obtained for the single cell 20 in a state where the MEA 21 is sandwiched between the gas supply layers on both sides. The determination result is compared with the map stored in the storage unit 224, and the battery characteristics of the single cell 20 using the MEA 21 and the fuel cell after stacking the single cells are evaluated.

この制御装置220は、論理演算回路として構成されたCPUやROM、RAM、メモリと入出力インターフェイス(I/O)を用いて構成され、CPUがROMに書き込まれたプログラムを実行することで、既述した発熱体制御部221等を構成する。   The control device 220 is configured using a CPU, ROM, RAM, memory and an input / output interface (I / O) configured as a logical operation circuit, and the CPU executes an existing program by executing a program written in the ROM. The heating element control unit 221 and the like described above are configured.

表示部230は、偏差算出部226で求めた測定領域ごとの熱伝導特性やその偏差、接合判定部227で得た接合状況の判定結果、特性評価部228での評価結果等を表示する。入力部240は、測定サンプルとしてのMEA21やガス拡散部材33等の熱伝導特性算出のためのサンプル厚みデータや、これら部材を用いて作製した燃料電池の電池特性等のデータを制御装置220に入力する。   The display unit 230 displays the heat conduction characteristics for each measurement region obtained by the deviation calculation unit 226 and the deviation thereof, the determination result of the bonding state obtained by the bonding determination unit 227, the evaluation result of the characteristic evaluation unit 228, and the like. The input unit 240 inputs sample thickness data for calculating heat conduction characteristics of the MEA 21 and the gas diffusion member 33 as a measurement sample, and data such as battery characteristics of a fuel cell manufactured using these members to the control device 220. To do.

ステップS120における電池性能検査装置200を用いた熱伝導特性測定の原理について、説明する。発熱体212が上面に当接或いは近接配置された測定サンプル、例えば、MEA21では、発熱体212側のMEA上面のほぼ全域において角周波数ωの周期発熱が起き、この周期発熱を起こした熱は、MEA21を下面に向けて伝搬し、その伝搬熱は既述したように温度検出器214と温度変調解析部222により温度として検出される。今、MEA21の厚みをdとすると、この厚みdのMEA21における熱伝搬の過程で、熱は、その熱量が減衰するものの温度変調を起こしてMEA下面まで伝わり、その際に位相に遅れを起こす。そして、この熱(伝搬熱)は、温度検出器214と温度変調解析部222により測定箇所SPごとの温度変調として求められる。上記した温度変調の位相の遅れは、位相差算出部223にて測定箇所SPのそれぞれについて位相差として算出され、この位相差に基づいて、測定箇所SPごとの熱伝導特性が熱伝導特性算出部225により算出される。   The principle of measuring the heat conduction characteristics using the battery performance inspection apparatus 200 in step S120 will be described. In the measurement sample in which the heating element 212 is in contact with or close to the upper surface, for example, the MEA 21, the periodic heat generation of the angular frequency ω occurs in almost the entire area of the upper surface of the MEA on the heating element 212 side. The MEA 21 propagates toward the lower surface, and the propagation heat is detected as a temperature by the temperature detector 214 and the temperature modulation analysis unit 222 as described above. Assuming that the thickness of the MEA 21 is d, in the process of heat propagation in the MEA 21 having this thickness d, heat is transmitted to the lower surface of the MEA with temperature modulation although the amount of heat is attenuated, causing a phase delay. The heat (propagating heat) is obtained as temperature modulation for each measurement point SP by the temperature detector 214 and the temperature modulation analysis unit 222. The phase delay of the temperature modulation described above is calculated as a phase difference for each measurement point SP by the phase difference calculation unit 223, and based on this phase difference, the heat conduction characteristic for each measurement point SP is calculated as a heat conduction characteristic calculation unit. 225.

ここで、MEA21の熱拡散率をαMEA、上記した位相差をΔθとすると、位相差Δθと熱拡散率αMEAには次の関係が成り立つ。   Here, when the thermal diffusivity of the MEA 21 is αMEA and the above phase difference is Δθ, the following relationship holds between the phase difference Δθ and the thermal diffusivity αMEA.

Δθ=(√(ω/2αMEA))・d−(π/4) …(1)   Δθ = (√ (ω / 2αMEA)) · d− (π / 4) (1)

この式(1)において、ωは発熱体212で起こした角周波数であって定数であり、厚みdは測定に際して与えられる数値であり、位相差Δθは位相差算出部223により求めたものである。よって、式(1)から、MEA21の熱拡散率αMEAが算出される。この熱拡散率αMEAの算出には、記憶部224が位相差と熱伝導特性(熱拡散率)を対応付けて記憶した既述した位相差・熱伝導特性マップを用いることが簡便である。ガス拡散部材33〜36についても同様であり、これら各拡散部材の厚みdを、その測定の際に与えることで、ガス拡散部材33〜36のそれぞれについての熱拡散率が求まる。こうして求めた各部材についての熱拡散率αは、記憶部224に記憶され、後述の電池特性評価の他、記憶部224が記憶した上記の対応マップの補充データとしても用いられる。つまり、記憶部224は上記した対応マップデータを予め記憶するが、電池製造過程の上で得られたデータをマップに補充することで、データ数を増やしてマップの信頼性を高めるようにすることができる。記憶部224が予め記憶したマップのデータが十分であれば、こうしたデータ補充は省略できる。   In this equation (1), ω is an angular frequency generated by the heating element 212 and is a constant, thickness d is a numerical value given at the time of measurement, and phase difference Δθ is obtained by the phase difference calculation unit 223. . Therefore, the thermal diffusivity αMEA of the MEA 21 is calculated from the equation (1). For the calculation of the thermal diffusivity αMEA, it is easy to use the phase difference / heat conduction characteristic map described above stored in the storage unit 224 in association with the phase difference and the heat conduction characteristic (thermal diffusivity). The same applies to the gas diffusion members 33 to 36, and the thermal diffusivity of each of the gas diffusion members 33 to 36 can be obtained by giving the thickness d of each diffusion member at the time of the measurement. The thermal diffusivity α for each member obtained in this way is stored in the storage unit 224, and is used as supplementary data for the above correspondence map stored in the storage unit 224 in addition to battery characteristic evaluation described later. That is, the storage unit 224 stores the corresponding map data in advance, but supplements the map with data obtained in the battery manufacturing process, thereby increasing the number of data and improving the reliability of the map. Can do. If the map data stored in advance in the storage unit 224 is sufficient, such data supplementation can be omitted.

この熱拡散率は、測定箇所SPごとに求められ、各測定箇所でのMEA21、或いはガス拡散部材33〜36の熱伝導特性に他ならず、熱拡散率はその測定対象物であるMEA21等での各構成材の接合状況や、このMEA21等がもたらす電池性能と高い相関関係にある。よって、以下の説明に際しては、熱拡散率を接合状況判定や電池性能評価の評価指標と称することとする。   This thermal diffusivity is obtained for each measurement location SP, and is nothing but the thermal conductivity characteristics of the MEA 21 or the gas diffusion members 33 to 36 at each measurement location, and the thermal diffusivity is determined by the MEA 21 that is the measurement object. There is a high correlation with the joining state of each of the constituent materials and the battery performance brought about by the MEA 21 and the like. Therefore, in the following description, the thermal diffusivity is referred to as an evaluation index for determining the joining state or evaluating the battery performance.

こうした熱拡散率測定(即ち、温度変調の位相差解析・熱拡散率算出)に続いては、MEA21について測定箇所SPごとに求めた算出熱拡散率に基づいて、MEA21におけるその構成材、即ち電解質層30とその両側の電極31、32同士の接合状況を判定する(ステップS125)。この判定に際しては、熱拡散率とMEA21における上記構成材同士の接合状況(例えば、接合性の良否)とを対応付けて記憶部224が記憶した熱伝導特性・接合マップが参照される。この接合状況判定において、接合不良とされたMEA21は、再度の接合処理等を行って接合状況の改善が図られ、接合良好とされたMEA21は、続く工程に運ばれる。この場合、評価指標たる算出熱拡散率は、接合状況判定の結果と対応付けて記憶部226に記憶され、次回以降の接合状況判定の際の対応マップの補充データとしても用いられる。この場合、記憶部226が予め記憶したマップのデータが十分であれば、こうしたデータ補充は省略できる。   Following such thermal diffusivity measurement (that is, temperature modulation phase difference analysis / thermal diffusivity calculation), based on the calculated thermal diffusivity obtained for each measurement location SP for the MEA 21, its constituent material in the MEA 21, that is, the electrolyte A bonding state between the layer 30 and the electrodes 31 and 32 on both sides thereof is determined (step S125). In this determination, the thermal conductivity characteristics / joining map stored in the storage unit 224 is referred to in association with the thermal diffusivity and the joining state of the constituent members in the MEA 21 (for example, joint quality). In this joining status determination, the MEA 21 determined to be defective in bonding is subjected to a re-joining process or the like to improve the joining status, and the MEA 21 determined to be in good bonding is carried to the subsequent process. In this case, the calculated thermal diffusivity as an evaluation index is stored in the storage unit 226 in association with the result of the joining state determination, and is also used as supplementary data for the correspondence map in the subsequent joining state determination. In this case, if the map data stored in advance by the storage unit 226 is sufficient, such data supplementation can be omitted.

MEA21の接合判定に続いては、ガス拡散部材33と電極側ガス拡散部材34とを接合させ、ガス拡散部材35と電極側ガス拡散部材36とを接合させて、ガス供給層22およびガス供給層23を作製する(ステップS130)。ガス拡散部材同士の接合は、適宜な接合手法、例えばプレス手法により、ガスの拡散機能を損なわないように行えばよい。   Following the joining determination of the MEA 21, the gas diffusion member 33 and the electrode side gas diffusion member 34 are joined, the gas diffusion member 35 and the electrode side gas diffusion member 36 are joined, and the gas supply layer 22 and the gas supply layer are joined. 23 is produced (step S130). The gas diffusion members may be bonded to each other by an appropriate bonding method, for example, a pressing method so as not to impair the gas diffusion function.

こうして作製されたガス供給層22、23にあっても、MEA21や単セル20の構成部材である。よって、この構成部材についても、ステップS120で説明した電池性能検査装置200を用いてそれぞれのガス供給層22、23の既述した電池性能の評価指標(熱拡散率)の算出とその評価指標のバラツキ(偏差)を求める(ステップS140)。ところで、ガス供給層22、23は、上記したガス拡散部材の接合体であることから、ガス拡散部材33〜36個々について求めた評価指標のバラツキ(熱拡散率の偏差)と、これら部材から作製したガス供給層22、23について求めた評価指標のバラツキ(熱拡散率の偏差)を対比することで、接合による評価指標のバラツキ(熱拡散率の偏差)の推移を得ることができる。よって、ガス拡散部材の接合状況を変えつつ、上記した各ガス拡散部材とその接合体であるガス供給層22、23の評価指標のバラツキ(熱拡散率の偏差)の算出・対比を行うことで、ガス拡散部材を接合してガス供給層22、23を作製する上での最適な接合状況を求めることができる。また、MEA21の接合判定と同様に、ガス供給層22、23について求めた評価指標(熱拡散率)に基づいて、ガス供給層22、23の構成材同士の接合状況(ガス拡散部材33と電極側ガス拡散部材34の接合状況、ガス拡散部材35と電極側ガス拡散部材36の接合状況)の判定を行うようにすることもできる。   Even in the gas supply layers 22 and 23 thus manufactured, they are constituent members of the MEA 21 and the single cell 20. Therefore, also for this component member, calculation of the above-described battery performance evaluation index (thermal diffusivity) of each gas supply layer 22 and 23 using the battery performance inspection apparatus 200 described in step S120 and the evaluation index A variation (deviation) is obtained (step S140). By the way, since the gas supply layers 22 and 23 are the joined bodies of the gas diffusion members described above, the evaluation index obtained for each of the gas diffusion members 33 to 36 varies (deviation of thermal diffusivity) and is produced from these members. By comparing the variation of the evaluation index obtained for the gas supply layers 22 and 23 (deviation of the thermal diffusivity), the transition of the variation of the evaluation index (thermal diffusivity deviation) due to bonding can be obtained. Therefore, while changing the joining state of the gas diffusion member, calculation / contrast of the variation of the evaluation index (deviation of the thermal diffusivity) of each of the gas diffusion members and the gas supply layers 22 and 23 which are the joined members is performed. In addition, it is possible to obtain an optimum joining state for producing the gas supply layers 22 and 23 by joining the gas diffusion members. Further, similarly to the joining determination of the MEA 21, based on the evaluation index (thermal diffusivity) obtained for the gas supply layers 22 and 23, the joining state of the constituent members of the gas supply layers 22 and 23 (the gas diffusion member 33 and the electrode) It is also possible to determine the joining state of the side gas diffusion member 34 and the joining state of the gas diffusion member 35 and the electrode side gas diffusion member 36).

こうして求めたガス供給層22、23の評価指標のバラツキ(熱拡散率の偏差)は、記憶部226に記憶され、後述の電池特性評価の他、記憶部226が記憶した上記の対応マップの補充データとしても用いられる。この場合、記憶部226が予め記憶したマップのデータが十分であれば、こうしたデータ補充は省略できる。   Variations in the evaluation indices (thermal diffusivity deviation) of the gas supply layers 22 and 23 thus obtained are stored in the storage unit 226. In addition to the battery characteristic evaluation described later, the above correspondence map stored in the storage unit 226 is supplemented. Also used as data. In this case, if the map data stored in advance by the storage unit 226 is sufficient, such data supplementation can be omitted.

なお、ガス供給層22、23を単一のガス拡散部材から形成する場合には、その単一のガス拡散部材の評価指標のバラツキ(熱拡散率の偏差)の算出はステップS120で実施済みとなるので、ステップS130、140は不要となる。   When the gas supply layers 22 and 23 are formed from a single gas diffusion member, the calculation of the variation in the evaluation index of the single gas diffusion member (the deviation of the thermal diffusivity) has been performed in step S120. Therefore, steps S130 and 140 are not necessary.

次に、単セル20を作製する(ステップS150)。ここで、接合とは、単に2つの部材を積層する場合よりも接触面積が増加するように、2つの部材を積極的に固着させることをいう。MEA21とその両側のガス供給層22、23における電極側ガス拡散部材34、36との接合は、例えばホットプレスにより行なうことができる。このように、熱および圧力を加えることで、電極31、32を構成する既述したペーストが熱により軟化し、軟化したペーストが電極側ガス拡散部材34、36の多孔質な表面全体に馴染んで接触面積が増加しつつ、両者が圧着される。   Next, the single cell 20 is produced (step S150). Here, the joining means that the two members are positively fixed so that the contact area increases as compared with the case where the two members are simply laminated. The joining of the MEA 21 and the electrode-side gas diffusion members 34 and 36 in the gas supply layers 22 and 23 on both sides thereof can be performed by, for example, hot pressing. As described above, by applying heat and pressure, the paste described above that constitutes the electrodes 31 and 32 is softened by heat, and the softened paste is adapted to the entire porous surfaces of the electrode-side gas diffusion members 34 and 36. Both are crimped while increasing the contact area.

次に、単セル20について、ステップS120で説明したように測定箇所SPごとの評価指標(熱拡散率)の算出、並びにそのバラツキ(熱拡散率の偏差)を、電池性能検査装置200を用いて算出する(ステップS160)。単セル20は、既述した各構成部材の接合体であることから、その評価指標のバラツキ(熱拡散率の偏差)には、各構成部材が備えた評価指標のバラツキ(熱拡散率の偏差)に接合による影響が加わる。このステップS160で求めた単セル20の評価指標のバラツキ(熱拡散率の偏差)と既述したステップで求めた各構成部材の評価指標のバラツキ(熱拡散率の偏差)を対比することで、接合による評価指標のバラツキ(熱拡散率の偏差)の推移を得ることができる。よって、単セル20作製の際のホットプレスによる接合状況(例えば、温度や押圧力)を変えつつ、単セル20とその各構成部材の評価指標のバラツキ(熱拡散率の偏差)の算出・対比を行うことで、MEA21にガス供給層22、23を接合して単セル20を作製する上での最適な接合状況を求めることができる。   Next, for the single cell 20, as described in step S <b> 120, the evaluation index (thermal diffusivity) for each measurement point SP is calculated, and the variation (deviation of the thermal diffusivity) is measured using the battery performance inspection apparatus 200. Calculate (step S160). Since the unit cell 20 is a joined body of the respective constituent members described above, the variation of the evaluation index (deviation of the thermal diffusivity) is the variation of the evaluation index included in the respective constituent members (deviation of the thermal diffusivity). ) Is affected by bonding. By comparing the variation of the evaluation index (thermal diffusivity deviation) of the single cell 20 obtained in step S160 with the variation of the evaluation index (thermal diffusivity deviation) of each constituent member obtained in the steps described above, It is possible to obtain a change in evaluation index variation (thermal diffusivity deviation) due to bonding. Therefore, calculation / contrast of variation (deviation in thermal diffusivity) of the evaluation index of the single cell 20 and each of its constituent members while changing the joining state (for example, temperature and pressing force) by hot pressing when the single cell 20 is manufactured. By performing the above, it is possible to obtain an optimum bonding state in manufacturing the single cell 20 by bonding the gas supply layers 22 and 23 to the MEA 21.

なお、単セル20について求めた評価指標のバラツキ(熱拡散率の偏差)は、記憶部226に記憶された後述の電池特性評価に用いられる他、単セル20の評価指標のバラツキ(熱拡散率の偏差)を単セル20の電池特性に対応付けた偏差・電池特性対応マップや、単セル20の各構成部材の評価指標のバラツキ(熱拡散率の偏差)と単セル20の評価指標のバラツキ(熱拡散率の偏差)とを対応付けた偏差・偏差対応マップの補充データとしても用いられる。この単セル20の評価指標のバラツキ(熱拡散率の偏差)にあっても、記憶部226が予め記憶したマップのデータが十分であれば、こうしたデータ補充は省略できる。   The variation of the evaluation index obtained for the single cell 20 (deviation of the thermal diffusivity) is used for the later-described battery characteristic evaluation stored in the storage unit 226, and the variation of the evaluation index of the single cell 20 (thermal diffusivity). Deviation) in correspondence with the battery characteristics of the single cell 20, variation in evaluation index of each component of the single cell 20 (deviation of thermal diffusivity), and variation in evaluation index of the single cell 20. It is also used as supplementary data for a deviation / deviation correspondence map that associates (deviation of thermal diffusivity). Even if there are variations in the evaluation index of the single cell 20 (deviation of thermal diffusivity), such data supplementation can be omitted if the map data stored in advance by the storage unit 226 is sufficient.

ステップS160での単セル20についての熱拡散率測定(温度変調の位相差解析・熱拡散率および偏差算出)に続いては、単セル20について測定箇所SPごとに求めた算出熱拡散率に基づいて、単セル20におけるその構成材、即ちMEA21とその両側のガス供給層22、23同士の接合状況を判定する(ステップS165)。この判定に際しても、MEA21の場合と同様、熱拡散率と単セル20における上記構成材同士の接合状況(例えば、接合性の良否)とを対応付けて記憶部224が記憶した熱伝導特性・接合マップが参照される。この接合状況判定において、接合不良とされた単セル20は、再度の接合処理等を行って接合状況の改善が図られ、接合良好とされた単セル20は、続く工程に運ばれる。この場合、評価指標たる算出熱拡散率は、接合状況判定の結果と対応付けて記憶部226に記憶され、次回以降の接合状況判定の際の対応マップの補充データとしても用いられる。この場合、記憶部226が予め記憶したマップのデータが十分であれば、こうしたデータ補充は省略できる。   Following the thermal diffusivity measurement (temperature modulation phase difference analysis / thermal diffusivity and deviation calculation) for the single cell 20 in step S160, based on the calculated thermal diffusivity obtained for each measurement point SP for the single cell 20. Then, the joining state of the constituent material in the single cell 20, that is, the MEA 21 and the gas supply layers 22 and 23 on both sides thereof is determined (step S 165). Also in this determination, as in the case of MEA 21, the thermal diffusivity and the heat conduction characteristics / joint stored in the storage unit 224 in association with the joining state of the constituent members in the single cell 20 (for example, good or bad jointability). A map is referenced. In this bonding status determination, the unit cell 20 determined to be defective in bonding is subjected to a bonding process or the like again to improve the bonding status, and the unit cell 20 determined to be in good bonding is carried to the subsequent process. In this case, the calculated thermal diffusivity as an evaluation index is stored in the storage unit 226 in association with the result of the joining state determination, and is also used as supplementary data for the correspondence map in the subsequent joining state determination. In this case, if the map data stored in advance by the storage unit 226 is sufficient, such data supplementation can be omitted.

MEA21の接合判定に続いては、単セル20の各構成部材個々の評価指標のバラツキ(熱拡散率の偏差)と単セル20としての評価指標のバラツキ(熱拡散率の偏差)に基づいて、この単セル20が呈する電池特性の評価を行う(ステップS170)。評価指標のバラツキ(熱拡散率の偏差)を介した電池特性評価は、評価指標である熱拡散率が電池特性と高い相関にあることに基づく。こうした電池特性評価は次の手法で行うことができる。本実施例では、評価指標である熱拡散率を温度変調の位相差に基づいて求め、その偏差を電池特性評価に用いる。   Following the joining determination of the MEA 21, based on the variation of individual evaluation indexes (deviation of the thermal diffusivity) of each component of the single cell 20 and the variation of the evaluation index as the single cell 20 (deviation of the thermal diffusivity), The battery characteristics exhibited by the single cell 20 are evaluated (step S170). Battery characteristic evaluation through variation in evaluation index (deviation of thermal diffusivity) is based on the fact that the thermal diffusivity, which is an evaluation index, is highly correlated with battery characteristics. Such battery characteristic evaluation can be performed by the following method. In this embodiment, the thermal diffusivity as an evaluation index is obtained based on the phase difference of temperature modulation, and the deviation is used for battery characteristic evaluation.

第1の評価手法では、ステップS160で測定した単セル20の評価指標のバラツキ(熱拡散率の偏差)を、記憶部226が記憶した単セル20の評価指標のバラツキ(熱拡散率の偏差)と単セル20の電池特性の偏差・電池特性対応マップに対比させて、単セル20の電池特性を評価する。第2の評価手法では、ステップS120、140で測定した単セル20の各構成部材の評価指標のバラツキ(熱拡散率の偏差)を、記憶部226が記憶した各構成部材の評価指標のバラツキ(熱拡散率の偏差)と単セル20の評価指標のバラツキ(熱拡散率の偏差)の偏差・偏差対応マップに対比させて、単セル20の熱拡散率を算出する。そして、算出した単セル20の評価指標のバラツキ(熱拡散率の偏差)を、記憶部226が記憶した単セル20の評価指標のバラツキ(熱拡散率の偏差)と単セル20の電池特性との偏差・電池特性対応マップに対比させて、単セル20の電池特性を評価する。   In the first evaluation method, the variation in the evaluation index of the single cell 20 (deviation in thermal diffusivity) measured in step S160 is the variation in the evaluation index in the single cell 20 stored in the storage unit 226 (deviation in thermal diffusivity). The battery characteristics of the single cell 20 are evaluated in comparison with the deviation / battery characteristic correspondence map of the battery characteristics of the single cell 20. In the second evaluation method, the variation in the evaluation index of each component of the single cell 20 measured in Steps S120 and 140 (the deviation of the thermal diffusivity) is the variation in the evaluation index of each component stored in the storage unit 226 ( The thermal diffusivity of the single cell 20 is calculated by comparing with a deviation / deviation correspondence map of the variation of the thermal diffusivity) and the variation of the evaluation index of the single cell 20 (deviation of the thermal diffusivity). Then, the variation of the evaluation index of the single cell 20 (deviation of the thermal diffusivity), the variation of the evaluation index of the single cell 20 (deviation of the thermal diffusivity) stored in the storage unit 226, and the battery characteristics of the single cell 20 The battery characteristics of the single cell 20 are evaluated in comparison with the deviation / battery characteristics correspondence map.

本実施例では、単セル20の評価指標のバラツキ(熱拡散率の偏差)を実際に測定・算出しているので、上記の第1の評価手法が簡便である。この手法では、ステップS120、140の構成部材の評価指標のバラツキ(熱拡散率の偏差)を省略することもできる。しかし、構成部材個々の評価指標のバラツキ(熱拡散率の偏差)とこの構成部材の接合を経て作製した単セル20の評価指標のバラツキ(熱拡散率の偏差)との対比を通して、部材の接合による評価指標のバラツキ(熱拡散率の偏差)への影響を推考できるので、製造管理や品質管理の点から有益である。その一方、第2の評価手法では、ステップS160の単セル20の評価指標のバラツキ(熱拡散率の偏差)を省略することもできるが、第1の手法と同様、単セル20の評価指標のバラツキ(熱拡散率の偏差)を行うことは、製造管理や品質管理の点から有益である。   In this embodiment, since the variation (evaluation of thermal diffusivity) of the evaluation index of the single cell 20 is actually measured and calculated, the first evaluation method is simple. In this method, the variation (deviation in thermal diffusivity) of the evaluation indexes of the constituent members in steps S120 and S140 can be omitted. However, the joining of the members is made through a comparison between the variation of the evaluation index of each constituent member (deviation of the thermal diffusivity) and the variation of the evaluation index of the single cell 20 produced through the joining of the constituent members (deviation of the thermal diffusivity). This is useful from the viewpoint of manufacturing control and quality control because it can infer the effect on the variation of evaluation index (deviation of thermal diffusivity). On the other hand, in the second evaluation method, the variation of the evaluation index (thermal diffusivity deviation) of the single cell 20 in step S160 can be omitted, but as in the first method, the evaluation index of the single cell 20 It is beneficial from the viewpoint of manufacturing control and quality control to perform variation (deviation of thermal diffusivity).

こうした電池特性評価に用いる偏差・電池特性対応マップと、偏差・偏差特性対応マップは、次のようにして構築できる。まず、本実施例のようにして単セル20の評価指標のバラツキ(熱拡散率の偏差)を取得し、その取得した単セル20を有する燃料電池をシステムに搭載して運転させ、その電池特性(例えば、出力電流・電圧特性、内部抵抗等)を求める。こうしたことを繰り返し、単セル20の評価指標のバラツキ(熱拡散率の偏差)と単セル20の電池特性を対応付けた偏差・電池特性対応マップを構築し、記憶部226に格納する。偏差・偏差対応マップについては、本実施例のステップS120、140での構成部材の評価指標のバラツキ(熱拡散率の偏差)算出とステップS160での単セル20の評価指標のバラツキ(熱拡散率の偏差)算出とを、燃料電池製造の度に行って、両熱拡散率を対応付けた偏差・偏差対応マップを構築し、記憶部226に格納する。   The deviation / battery characteristic correspondence map and the deviation / deviation characteristic correspondence map used for such battery characteristic evaluation can be constructed as follows. First, as in the present embodiment, the variation of the evaluation index (thermal diffusivity deviation) of the single cell 20 is acquired, the fuel cell having the acquired single cell 20 is mounted on the system and operated, and the battery characteristics are obtained. (For example, output current / voltage characteristics, internal resistance, etc.) are obtained. This is repeated, and a deviation / battery characteristic correspondence map in which the variation in evaluation index of the single cell 20 (thermal diffusivity deviation) is associated with the battery characteristics of the single cell 20 is constructed and stored in the storage unit 226. With respect to the deviation / deviation correspondence map, calculation of variation in evaluation index of components (thermal diffusivity deviation) in steps S120 and 140 of the present embodiment and variation in evaluation index of single cell 20 in step S160 (thermal diffusivity) Deviation) is calculated every time the fuel cell is manufactured, and a deviation / deviation correspondence map in which both thermal diffusivities are associated is constructed and stored in the storage unit 226.

こうして単セル20の電池特性評価が済むと、その評価により適切とされた単セル20の両側にセパレータ24、25を接合する(ステップS180)。セパレータ24、25の接合対象は、ガス供給層22、23におけるガス拡散部材33、35であることから、こうしたガス拡散部材との接合は、例えば溶接等の適宜な手法で行なえばよい。溶接は、ガス拡散部材33、35とセパレータ24、25のうちの少なくとも一方の溶融した母材により、および/または溶融した溶加材により、接触面積を増加させつつ両者を接合することを可能にする。   When the battery characteristics evaluation of the single cell 20 is completed in this way, the separators 24 and 25 are joined to both sides of the single cell 20 determined as appropriate by the evaluation (step S180). Since the separators 24 and 25 are joined to the gas diffusion members 33 and 35 in the gas supply layers 22 and 23, the joining with the gas diffusion members may be performed by an appropriate technique such as welding. Welding enables joining of the gas diffusion members 33 and 35 and the separators 24 and 25 with a molten base material and / or with a molten filler material while increasing the contact area. To do.

続いて、セパレータ24、25で挟持した単セル20を単位に、これらを所定の順序で(図1の単セル20が繰り返し形成されるように)所定数積層してスタック構造を組み立て、積層方向に所定の押圧力を加えて全体構造を保持することによって、燃料電池を完成させる(ステップS190)。なお、ステップS190の組み立ての工程は、既述したガスケットなどのシール部材を積層体の外周部に配設したり、隣り合う単セル間に冷媒流路を形成するなどの工程を含む。   Subsequently, in units of single cells 20 sandwiched between separators 24 and 25, a predetermined number of these are stacked in a predetermined order (so that the single cells 20 in FIG. 1 are repeatedly formed) to assemble a stack structure, and the stacking direction A predetermined pressing force is applied to hold the entire structure to complete the fuel cell (step S190). In addition, the assembly process of step S190 includes processes such as disposing a sealing member such as the gasket described above on the outer peripheral portion of the laminate, or forming a refrigerant flow path between adjacent single cells.

ここで、隣り合う単セル間に冷媒流路等を形成しない場合には、セパレータの両面にガス供給層22、23のガス拡散部材33、34を接合するようにすることもできる。つまり、一つのセパレータをその両側の単セル20で共有するよう積層・接合すればよい。   Here, when a refrigerant flow path or the like is not formed between adjacent single cells, the gas diffusion members 33 and 34 of the gas supply layers 22 and 23 may be bonded to both surfaces of the separator. That is, a single separator may be stacked and bonded so as to be shared by the single cells 20 on both sides.

以上説明したように、電池性能検査装置200を用いた接合状況判定(ステップS125、165)を行う本実施例によれば、燃料電池製造の過程で測定した単セル20やその構成部材個々の評価指標(熱拡散率)と予め記憶した上記の熱伝導特性・接合マップに基づいて、燃料電池が有する層構成体としてのMEA21や単セル20での上記各構成材同士の接合状況の判定、例えば良否判定を下すことができる。つまり、本実施例の接合状況検査では、燃料電池が有する層構成体としてのMEA21や単セル20の構成材同士接合状況の判定を行うに当たって、測定箇所ごとの温度を測定するものの、測定した温度の値を用いるのではなく、測定箇所ごとの温度変調の位相差に基づいた熱拡散率を既述したように評価指標として求め、この評価指標を接合状況の判定に用いる。測定・算出した温度変調の位相差に基づいた熱拡散率は測定箇所SPの熱伝導特性に他ならず、この熱伝導特性は、層構成体である単セル20の個々の材料の特性、材料同士の接合の状況と高い相関がある。この結果、本実施例の電池性能検査装置200を用いた構成材同士の接合状況の検査手法によれば、燃料電池の構成材同士の接合状況判定の信頼性を高めることができる。しかも、燃料電池の接合状況判定に際して燃料電池を運転状態とする必要がないので、簡便である。また、燃料電池の一つの電池構成単位である単セル20としてのみならず、その構成材であるMEA21としても、構成材同士の接合状況判定を製造過程において行うことができるので、この判定に基づいた単セル20としての接合良否判定並びにMEA21としての接合良否判定も可能となり、品質向上に寄与できる。   As described above, according to the present embodiment in which the joining state determination (steps S125 and 165) using the battery performance inspection apparatus 200 is performed, the evaluation of the single cell 20 and its constituent members measured in the process of manufacturing the fuel cell is performed. Based on the index (thermal diffusivity) and the previously stored thermal conductivity characteristics / bonding map, determination of the bonding state of the respective constituent materials in the MEA 21 or the single cell 20 as the layer structure of the fuel cell, for example, A pass / fail judgment can be made. That is, in the joining state inspection of the present embodiment, the temperature at each measurement location is measured when determining the joining state of the constituent members of the MEA 21 and the single cell 20 as the layer structure of the fuel cell. Instead of using this value, the thermal diffusivity based on the phase difference of the temperature modulation for each measurement point is obtained as an evaluation index as described above, and this evaluation index is used for the determination of the joining state. The thermal diffusivity based on the measured and calculated phase difference of the temperature modulation is nothing but the thermal conductivity characteristics of the measurement point SP, and this thermal conductivity characteristics are the characteristics of the individual materials of the single cell 20 that is the layer structure, the material There is a high correlation with the state of bonding between each other. As a result, according to the inspection method of the joining state between the constituent materials using the battery performance inspection apparatus 200 of the present embodiment, the reliability of the judgment of the joining state between the constituent materials of the fuel cell can be improved. Moreover, since it is not necessary to put the fuel cell in an operating state when determining the joining state of the fuel cell, it is simple. Further, not only as a single cell 20 that is one battery constituent unit of a fuel cell, but also as an MEA 21 that is a constituent material thereof, a joining state judgment between constituent materials can be performed in the manufacturing process. In addition, it is possible to make a joint quality determination as the single cell 20 and a joint quality judgment as the MEA 21, which can contribute to quality improvement.

また、本実施例では、電池性能検査装置200を用いて燃料電池製造の過程で単セル20やその構成部材個々の評価指標のバラツキ(熱拡散率の偏差)を求め、これらと予め記憶した上記の偏差・偏差対応マップや、偏差・電池特性対応マップとに基づいて、製造後の燃料電池の電池特性を評価できる。つまり、本実施例の性能評価では、燃料電池(詳しくは単セル20)の電池特性を評価するに当たって、測定箇所ごとの温度を測定するものの、測定した温度の値を用いるのではなく、測定箇所ごとの温度変調の位相差に基づいた熱拡散率を既述したように評価指標として求め、この評価指標のバラツキである熱拡散率の偏差を用いる。測定・算出した温度変調の位相差に基づいた熱拡散率は測定箇所SPの熱伝導特性に他ならず、この熱伝導特性は、層構成体である単セル20の個々の材料の特性、材料同士の接合の状況、延いては燃料電池の電池特性と高い相関がある。この結果、本実施例の電池性能検査装置200を用いた電池特性の評価手法によれば、燃料電池の特性評価の信頼性を高めることができる。しかも、燃料電池の電池特性評価に際して燃料電池を運転状態とする必要がないので、簡便である。また、燃料電池の一つの電池構成単位である単セル20としての電池性能評価も製造過程において行うことができるので、この評価に基づいた単セル20の良否判定も可能となり、品質向上に寄与できる。   Further, in the present embodiment, the battery performance inspection apparatus 200 is used to determine the variation (deviation in thermal diffusivity) of the single cell 20 and its constituent members in the course of manufacturing the fuel cell and to store them in advance. The battery characteristics of the fuel cell after manufacture can be evaluated based on the deviation / deviation correspondence map of FIG. That is, in the performance evaluation of the present embodiment, the temperature of each measurement location is measured when evaluating the battery characteristics of the fuel cell (specifically, the single cell 20), but the measured temperature value is not used. As described above, the thermal diffusivity based on the phase difference of each temperature modulation is obtained as an evaluation index, and the deviation of the thermal diffusivity, which is a variation of the evaluation index, is used. The thermal diffusivity based on the measured and calculated phase difference of the temperature modulation is nothing but the thermal conductivity characteristics of the measurement point SP, and this thermal conductivity characteristics are the characteristics of the individual materials of the single cell 20 that is the layer structure, the material There is a high correlation with the state of bonding between them, and thus with the cell characteristics of the fuel cell. As a result, according to the battery characteristic evaluation method using the battery performance inspection apparatus 200 of the present embodiment, the reliability of the fuel cell characteristic evaluation can be improved. Moreover, since it is not necessary to put the fuel cell in an operating state when evaluating the cell characteristics of the fuel cell, it is simple. Moreover, since the battery performance evaluation as the single cell 20 that is one battery constituent unit of the fuel cell can also be performed in the manufacturing process, it is possible to judge the quality of the single cell 20 based on this evaluation, which can contribute to quality improvement. .

しかも、本実施例では、単セル20自体の評価指標のバラツキ(熱拡散率の偏差)の算出と、単セル20を作製する上で接合されるセル構成部材個々の評価指標のバラツキ(熱拡散率の偏差)の算出とを行うので、両バラツキの対比から、部材接合に基づく評価指標のバラツキ(熱拡散率の偏差)の変化に基づいて、部材接合の接合条件の最適化を図ることができる。このため、製造管理や品質向上の上からも好ましい。   In addition, in this embodiment, the variation of the evaluation index (thermal diffusivity deviation) of the unit cell 20 itself and the variation of the evaluation index of the individual cell constituent members joined when the unit cell 20 is manufactured (thermal diffusion). Since the difference between the two variations is calculated, it is possible to optimize the joining condition of the member joining based on the change in the evaluation index variation (thermal diffusivity deviation) based on the member joining. it can. For this reason, it is preferable also from manufacture control and quality improvement.

また、本実施例では、単セル20およびその構成部材個々の評価指標である熱拡散率を、図4に示す測定箇所SP1〜SP3、或いは測定箇所SPm,nにおける分布としても把握することができる。この評価指標(熱拡散率)の分布は電池特性の分布と相関することから、ガス供給層22、23によるガス供給を、評価指標(熱拡散率)の分布に応じて供給量が変わるようにすることもできる。こうすれば、MEA21で進行する電気化学反応は、MEA膜面で均一となるので、電池特性の向上を図ることも可能となる。   Moreover, in a present Example, the thermal diffusivity which is the evaluation index of the single cell 20 and its component members can be grasped | ascertained also as distribution in measurement location SP1-SP3 shown in FIG. 4, or measurement location SPm, n. . Since the distribution of the evaluation index (thermal diffusivity) correlates with the distribution of the battery characteristics, the gas supply by the gas supply layers 22 and 23 is changed in accordance with the distribution of the evaluation index (thermal diffusivity). You can also By doing so, the electrochemical reaction that proceeds in the MEA 21 becomes uniform on the surface of the MEA film, so that the battery characteristics can be improved.

次に、図3に示した電池性能検査装置200による測定例について説明する。その測定サンプルは、電解質層30をその両側の電極31、32で挟持したMEA21とした。このMEA21の作製に当たっては、既述した手法のうち、電極転写シートによる転写手法を採用した。即ち、白金等の触媒担持カーボン粉のペーストをテフロンシートに塗布して乾燥させた2枚の電極転写シートで電解質層30を挟み、所定温度・圧力で熱プレスした後にテフロンシートを剥離させ、電極転写シートを電解質層30の両側に転写してMEA21とした。そして、このMEA21について、電池性能検査装置200により、図4(a)に示す測定箇所SP1〜SP3について求めた熱拡散率の平均値をMEA21の熱拡散率とし、その偏差も求めた。この場合、測定箇所SP1〜SP3ごとの熱拡散率の分散を偏差とした。つまり、測定箇所SP1〜SP3の熱拡散率をαSP1〜αSP3とし、熱拡散率サンプル数をnとした場合、分散(偏差)を次の式により求めた。   Next, an example of measurement by the battery performance inspection apparatus 200 shown in FIG. 3 will be described. The measurement sample was an MEA 21 in which the electrolyte layer 30 was sandwiched between electrodes 31 and 32 on both sides thereof. In producing the MEA 21, a transfer method using an electrode transfer sheet among the methods described above was employed. That is, the electrode layer 30 is sandwiched between two electrode transfer sheets obtained by applying a catalyst-supported carbon powder paste such as platinum to a Teflon sheet and dried, and then the Teflon sheet is peeled off after being hot-pressed at a predetermined temperature and pressure. The transfer sheet was transferred to both sides of the electrolyte layer 30 to obtain MEA 21. And about this MEA21, the average value of the thermal diffusivity calculated | required about measurement location SP1-SP3 shown to Fig.4 (a) by the battery performance inspection apparatus 200 was made into the thermal diffusivity of MEA21, and the deviation was also calculated | required. In this case, the variance of the thermal diffusivity for each of the measurement points SP1 to SP3 was taken as the deviation. That is, when the thermal diffusivities of the measurement locations SP1 to SP3 are αSP1 to αSP3 and the number of samples of the thermal diffusivity is n, the dispersion (deviation) is obtained by the following equation.

分散=((αSP12+αSP22+αSP32)−(αSP1+αSP2+αSP3)2/n)/(n−1) Dispersion = ((αSP1 2 + αSP2 2 + αSP3 2 ) − (αSP1 + αSP2 + αSP3) 2 / n) / (n−1)

上記の式で求めた分散は、測定箇所SP1〜SP3の熱拡散率αSP1〜αSP3の平方和を、熱拡散率サンプル数より1少ない数(n−1)で除算した値であり、その値が小さいほど測定箇所SP1〜SP3の熱拡散率αSP1〜αSP3のバラツキが小さいことを意味する。図6は比較例および実施例品の熱拡散率の測定結果と評価項目とを対比して説明する説明図である。   The variance obtained by the above equation is a value obtained by dividing the sum of squares of the thermal diffusivities αSP1 to αSP3 of the measurement points SP1 to SP3 by a number (n−1) that is one less than the number of thermal diffusivity samples. The smaller the value, the smaller the variation in the thermal diffusivities αSP1 to αSP3 of the measurement points SP1 to SP3. FIG. 6 is an explanatory diagram illustrating the comparison between the measurement results of thermal diffusivity of the comparative example and the example product and the evaluation items.

図6に示すように、比較例と実施例1、実施例2について評価した。比較例と実施例とは、MEA21作製の際の接合手法が相違し、比較例は標準的な接合手法、例えば、MEA21を構成するナフィオン膜の性状から制約されるホットプレス時の通常の温度(標準温度)の熱環境下で、ナフィオン膜の性状から制約されるホットプレス時の通常の圧力(標準圧力)でホットプレスしたMEA21である。実施例1は、この標準温度・標準圧力でのMEA21作製時の電極ホットプレスの際に、可塑剤を膜表面にスプレー塗布し、当該可塑剤溶液にて10wt%程度で電極が含浸した状態でホットプレスした。実施例2は、この標準温度・標準圧力でのMEA21作製時の電極ホットプレスの際に、電極転写シートにて転写した済みの電極の電極面に圧力が集中するようにしてホットプレスした。   As shown in FIG. 6, the comparative example, Example 1, and Example 2 were evaluated. The comparative example and the example are different from each other in the joining method at the time of manufacturing the MEA 21. The comparative example is a standard joining method, for example, a normal temperature at the time of hot pressing restricted by the properties of the Nafion film constituting the MEA 21 ( The MEA 21 was hot-pressed at a normal pressure (standard pressure) at the time of hot pressing, which is restricted by the properties of the Nafion film, in a thermal environment of (standard temperature). In Example 1, in the electrode hot press at the time of manufacturing the MEA 21 at the standard temperature and the standard pressure, a plasticizer was spray-coated on the film surface, and the electrode was impregnated at about 10 wt% with the plasticizer solution. Hot pressed. In Example 2, hot pressing was performed so that the pressure was concentrated on the electrode surface of the electrode that had been transferred by the electrode transfer sheet during the hot pressing of the MEA 21 at the standard temperature and the standard pressure.

こうした比較例・実施例1〜2について、既述したように電池性能検査装置200により熱拡散率を測定すると共に、電気的特性試験を行った。   About such comparative example and Examples 1-2, while having measured the thermal diffusivity with the battery performance inspection apparatus 200 as stated above, the electrical property test was done.

電池的特性試験は、MEA21が約80℃となるようにして、両電極を1.5bar程度に加圧し、両電極(供給層)に低加湿のガス(水素ガス・空気)を通常運転時の150%のガス流量で供給し、1.0A/cm2の電流密度で10分間の連続運転を行い、その際の出力電圧を測定して相対比較した(比較例を基準)。この結果は、図の通りである。図示するように、MEA21の構成材料が同じであっても、接合条件が異なると、熱拡散率・電気的特性が相違することが判った。このことは、熱拡散率によりMEA21における構成材同士の接合状態を判定できることを意味する。 In the battery characteristic test, the MEA 21 was heated to about 80 ° C., both electrodes were pressurized to about 1.5 bar, and low humidified gas (hydrogen gas / air) was applied to both electrodes (supply layer) during normal operation. The gas was supplied at a gas flow rate of 150%, continuously operated for 10 minutes at a current density of 1.0 A / cm 2 , and the output voltage at that time was measured for relative comparison (reference example). The result is as shown in the figure. As shown in the figure, it was found that even if the constituent materials of the MEA 21 are the same, the thermal diffusivity / electrical characteristics are different if the joining conditions are different. This means that the joining state of the constituent materials in the MEA 21 can be determined by the thermal diffusivity.

特に、熱拡散率と電気的特性とは、高い相関があり、熱拡散率が大きくその偏差(分散)が小さいほど電池特性が向上することが確認できた。つまり、実施例1と実施例2は、ほぼ同じような熱伝導率を有するが、その偏差が小さい実施例2の方が、高い電池特性を有することが判った。よって、既述したように、熱伝導特性(熱拡散率)測定を介して、MEA21の電気的特性を正確に評価できる。また、接合条件と熱拡散率・電気的特性についても相関を得ることができたので、熱拡散率測定を介して、接合の良否判定を下すこともできる。こうした判定は、簡便な熱拡散率測定で済み、実機での運転試験を必要としないので、簡便となる。換言すれば、接合条件を設定することで、所望する熱拡散率とそのバラツキ範囲、延いては電気的特性を備えたMEA21を容易に製造できることになる。具体的には、可塑剤添加、加圧時の電極面への圧力集中と言った簡便な手法で、熱拡散率の向上、延いては電池特性の向上を図ることができる。   In particular, there was a high correlation between the thermal diffusivity and the electrical characteristics, and it was confirmed that the battery characteristics improved as the thermal diffusivity increased and the deviation (dispersion) decreased. That is, Example 1 and Example 2 have substantially the same thermal conductivity, but Example 2 with a smaller deviation has been found to have higher battery characteristics. Therefore, as described above, the electrical characteristics of the MEA 21 can be accurately evaluated through the measurement of thermal conductivity characteristics (thermal diffusivity). In addition, since a correlation can be obtained with respect to the bonding conditions, the thermal diffusivity, and the electrical characteristics, it is possible to determine whether or not the bonding is good via the thermal diffusivity measurement. Such a determination is simple because it requires only a simple thermal diffusivity measurement and does not require an operation test with an actual machine. In other words, by setting the joining conditions, it is possible to easily manufacture the MEA 21 having a desired thermal diffusivity and its variation range, and thus electrical characteristics. Specifically, it is possible to improve the thermal diffusivity and, consequently, the battery characteristics by a simple method such as adding a plasticizer and concentration of pressure on the electrode surface during pressurization.

また、実施例1の電気的特性であれば、そのMEA21(実施例1)は実用上何の支障もないので、熱拡散率の分散が0.2以下のMEA21であれば、高い電気的特性を備えた燃料電池を得ることができると言える   Further, since the MEA 21 (Example 1) has no practical problem with the electrical characteristics of Example 1, the MEA 21 having a thermal diffusivity distribution of 0.2 or less has high electrical characteristics. It can be said that a fuel cell equipped with

このように、接合条件を変えると熱拡散率・電気的特性が向上するのは、MEA21における各材料の接合性が改善したために、接合境界面での抵抗増大の回避や、フラッディングが解消したことによると予想される。上記した接合状況判定・特性評は、測定サンプルをMEA21とした場合に限られるものではなく、MEA21をその両側のガス供給層22、23で挟持したMEGAについても行うことができる。   As described above, the thermal diffusivity and electrical characteristics are improved when the joining conditions are changed because the joining property of each material in the MEA 21 is improved, so that the increase in resistance at the joining interface and the flooding are eliminated. Is expected. The above-described joining state determination / characteristic evaluation is not limited to the case where the measurement sample is the MEA 21, but can also be performed for MEGAs in which the MEA 21 is sandwiched between the gas supply layers 22 and 23 on both sides thereof.

次に、電池性能検査装置200の変形例について説明する。図7は第1変形例の電池性能検査装置200の概略図である。この変形例は、MEA21等の測定サンプルの上面における加熱箇所を、温度検出器214による測定箇所SPm,nに対応して複数設けた点に特徴がある。   Next, a modified example of the battery performance inspection apparatus 200 will be described. FIG. 7 is a schematic diagram of a battery performance inspection apparatus 200 according to a first modification. This modification is characterized in that a plurality of heating locations on the upper surface of the measurement sample such as the MEA 21 are provided corresponding to the measurement locations SPm, n by the temperature detector 214.

図示するように、この変形例の電池性能検査装置200は、測定サンプルの上面に接触するよう凸状に形成された加熱突起Htをマトリックス状に備える発熱体212を有する。この加熱突起Htは、図4に示す測定箇所SPm,nに対応して形成されており、加熱突起それぞれが温度変調を起こしつつ測定サンプルを測定箇所SPm,nごとにサンプル上面から加熱する。この変形例にあっても、上記した実施例と同様の効果を奏することができる。   As shown in the figure, the battery performance inspection apparatus 200 of this modification has a heating element 212 provided with heating protrusions Ht formed in a convex shape so as to come into contact with the upper surface of the measurement sample. The heating protrusions Ht are formed corresponding to the measurement points SPm, n shown in FIG. 4, and each measurement point SPm, n heats the measurement sample from the upper surface of the sample while causing temperature modulation. Even in this modification, the same effects as those of the above-described embodiment can be obtained.

図8はまた別の変形例の電池性能検査装置200の概略図である。この変形例は、MEA21等の測定サンプルの上面における加熱箇所とこれに対向する測定箇所とを変更しつつ、図4に示すようなマトリックス状の複数の測定箇所で位相差・偏差を求める点に特徴がある。   FIG. 8 is a schematic diagram of a battery performance inspection apparatus 200 according to another modification. This modification is to obtain the phase difference / deviation at a plurality of matrix-like measurement locations as shown in FIG. 4 while changing the heating location on the upper surface of the measurement sample such as the MEA 21 and the measurement location opposite thereto. There are features.

図示するように、この変形例の電池性能検査装置200は、薄葉状の測定サンプルに熱を加えるための加熱プローブ213と、測定サンプルをその厚み方向に伝わった熱を検出する検出プローブ215とを対向させて備え、両プローブをxy駆動部217によりxy平面において駆動する。加熱プローブ213は、測定サンプルの上面に接触し、その接触箇所において測定サンプル(MEA21や単セル20、ガス拡散部材33等)を温度変調を起こしつつ加熱する。検出プローブ215は、その接触箇所(即ち、測定箇所)での検出温度を制御装置220に出力する。これにより、制御装置220は、検出プローブ215による測定箇所における温度変調の位相差演算、これに基づく熱拡散率算出を行う。そして、この変形例では、制御装置220の側からxy駆動部217を制御して、加熱プローブ213と検出プローブ215を移動させ、加熱箇所および測定箇所を変更し、変更後の箇所においても温度変調の位相差演算、これに基づく熱拡散率算出を行う。こうして、複数箇所、具体的には図4に示すマトリックス状の測定箇所に対応して熱拡散率を求め、その偏差を電池特性評価に用いる。この変形例にあっても、上記した実施例と同様の効果を奏することができる。   As shown in the figure, a battery performance inspection device 200 of this modification includes a heating probe 213 for applying heat to a thin-leaf measurement sample, and a detection probe 215 for detecting heat transmitted through the measurement sample in its thickness direction. The two probes are driven in the xy plane by the xy drive unit 217. The heating probe 213 contacts the upper surface of the measurement sample, and heats the measurement sample (MEA 21, single cell 20, gas diffusion member 33, etc.) while causing temperature modulation at the contact location. The detection probe 215 outputs the detected temperature at the contact location (ie, measurement location) to the control device 220. Thereby, the control device 220 performs the phase difference calculation of the temperature modulation at the measurement location by the detection probe 215 and calculates the thermal diffusivity based on this. In this modification, the xy drive unit 217 is controlled from the control device 220 side to move the heating probe 213 and the detection probe 215, change the heating location and the measurement location, and also perform temperature modulation in the changed location. Phase difference calculation and thermal diffusivity calculation based on this. Thus, the thermal diffusivity is obtained corresponding to a plurality of locations, specifically, the matrix-like measurement locations shown in FIG. 4, and the deviation is used for battery characteristic evaluation. Even in this modification, the same effects as those of the above-described embodiment can be obtained.

図9は測定サンプルの厚み方向においても測定を行う変形例の電池性能検査装置200の概略図、図10はサンプル厚み方向における測定の様子を模式的に示す説明図である。この変形例は、MEA21或いは単セル20といった多層構造体を測定サンプルとし、図4に示すようなマトリックス状の複数の測定箇所での位相差・偏差算出を多層構造体の厚み方向の数カ所で実施することで、多層構造体の熱伝導特性(熱拡散率)を縦横と厚み方向の3次元的に求める点に特徴がある。   FIG. 9 is a schematic diagram of a battery performance inspection apparatus 200 according to a modification that performs measurement also in the thickness direction of the measurement sample, and FIG. 10 is an explanatory diagram that schematically shows a state of measurement in the sample thickness direction. In this modification, a multilayer structure such as MEA 21 or single cell 20 is used as a measurement sample, and phase difference / deviation calculation at a plurality of measurement points in a matrix form as shown in FIG. 4 is performed at several positions in the thickness direction of the multilayer structure. This is characterized in that the heat conduction characteristics (thermal diffusivity) of the multilayer structure are obtained three-dimensionally in the vertical and horizontal directions and in the thickness direction.

図9に示すように、この変形例の電池性能検査装置200は、赤外線カメラを赤外線検出装置として内蔵する温度検出器214を、z駆動部218によりz方向に沿って駆動する。この場合、z方向は測定サンプル(例えば、単セル20)における厚み方向であることから、温度検出器214は、z駆動部218により測定サンプル(例えば、単セル20)の厚み方向に沿って駆動する。この変形例における温度検出器214では、その有する赤外線カメラの焦点距離Ssを一定としているので、図10に示すように、z駆動部218により温度検出器214を駆動することで、測定サンプルとしての単セル20の厚み方向の各箇所において、測定箇所SPm、nでの温度変調測定、およびこれに基づいた上記の位相差・偏差を求めることができる。なお、z駆動部218により温度検出器214を駆動する際には、入力部240からの駆動量入力が行われるので、当該入力の様子を変えることで、厚み方向の測定箇所を種々設定できる。   As shown in FIG. 9, the battery performance inspection device 200 of this modification example drives a temperature detector 214 incorporating an infrared camera as an infrared detection device along the z direction by a z drive unit 218. In this case, since the z direction is the thickness direction in the measurement sample (for example, the single cell 20), the temperature detector 214 is driven along the thickness direction of the measurement sample (for example, the single cell 20) by the z driving unit 218. To do. In the temperature detector 214 in this modification, since the focal length Ss of the infrared camera is constant, the temperature detector 214 is driven by the z drive unit 218 as shown in FIG. At each location in the thickness direction of the single cell 20, the temperature modulation measurement at the measurement locations SPm, n and the above-described phase difference / deviation based on this can be obtained. Note that when the temperature detector 214 is driven by the z driving unit 218, a driving amount is input from the input unit 240. Therefore, various measurement locations in the thickness direction can be set by changing the state of the input.

この場合、温度検出器214での測定側となるガス拡散部材33、35は、既述したようにカーボンペーパーなどの炭素材料や、発泡金属、金属メッシュなどの金属部材によって形成されていることから、図10に示すように焦点距離Ssに合致する測定箇所(測定面)がガス拡散部材33、35の中であっても、当該測定箇所からの赤外線放出を温度検出器214により検出できる。   In this case, the gas diffusion members 33 and 35 on the measurement side of the temperature detector 214 are formed of a carbon material such as carbon paper, or a metal member such as foam metal or metal mesh as described above. As shown in FIG. 10, even if the measurement location (measurement surface) that matches the focal length Ss is in the gas diffusion members 33 and 35, infrared radiation from the measurement location can be detected by the temperature detector 214.

図10で明らかなように、この変形例では、それぞれの部材の接合を経た半製品としての単セル20の状態で、非破壊および非接触で、温度変調計測、その結果からの位相差算出・偏差算出と、既述したような特性評価を行うことができる。しかも、この変形例では、単体としてのガス拡散部材33、35を、半製品としての単セル20の状態で厚み方向を含めて3次元的に温度変調測定並びに特性評価が可能であることから、半製品たる単セル20での再加圧・接合によるガス拡散部材33、35の熱伝導特性調整等が可能となる。また、ガス拡散部材33、35とその下層の電極側ガス拡散部材34、36との接合面に温度検出器214の焦点距離Ssを合致させることで、両部材の接合状態を、その接合面での温度変調測定並びに特性評価から良否判定することができ好ましい。   As apparent from FIG. 10, in this modification, in the state of the single cell 20 as a semi-finished product after joining the respective members, temperature modulation measurement is performed in a non-destructive and non-contact manner, and a phase difference is calculated from the result. Deviation calculation and characteristic evaluation as described above can be performed. In addition, in this modification, the gas diffusion members 33 and 35 as a single unit can be measured in three dimensions including the thickness direction in the state of the single cell 20 as a semi-finished product, and the characteristics can be evaluated. It becomes possible to adjust the heat conduction characteristics of the gas diffusion members 33 and 35 by re-pressurizing and joining in the single cell 20 which is a semi-finished product. Further, by matching the focal length Ss of the temperature detector 214 with the joint surface between the gas diffusion members 33 and 35 and the electrode-side gas diffusion members 34 and 36 in the lower layer, the joint state of both members can be changed at the joint surface. It is preferable that the quality can be judged from the temperature modulation measurement and the characteristic evaluation.

ところで、測定した温度変調から既述したように熱伝導特性が得られ、この熱伝導特性は、部材の接合状態や部材自体の性状(例えば、材料の不均一性、均一性等)に依存する。よって、この変形例の電池性能検査装置200による計測を行えば、厚み方向を含めた3次元的な熱伝導特性分布により、ガス拡散部材33、35の材料バラツキの状況についても把握することができる。   By the way, as described above, the heat conduction characteristic is obtained from the measured temperature modulation, and this heat conduction characteristic depends on the joining state of the member and the property of the member itself (for example, material non-uniformity, uniformity, etc.). . Therefore, if measurement is performed by the battery performance inspection apparatus 200 of this modification, it is possible to grasp the material variation status of the gas diffusion members 33 and 35 from the three-dimensional heat conduction characteristic distribution including the thickness direction. .

なお、測定サンプルとして単セル20を例に説明したが、MEA21を測定サンプルとしたり、ガス拡散部材33と電極側ガス拡散部材34とを接合したガス供給層22を測定サンプルとすることもできる。   In addition, although the single cell 20 was demonstrated to the example as a measurement sample, MEA21 can be used as a measurement sample, or the gas supply layer 22 which joined the gas diffusion member 33 and the electrode side gas diffusion member 34 can also be used as a measurement sample.

以上本発明の実施例について説明したが、本発明は上記の実施例や実施形態になんら限定されるものではなく、本発明の要旨を逸脱しない範囲において種々なる態様で実施し得ることは勿論である。例えば、上記の実施例では、温度検出器214の内蔵する赤外線検出装置により、マトリックス状の測定領域(測定箇所)SPm,nで温度を検出するようにしたが、図8で示したような温度検出のための検出プローブをマトリックス状に設けても良い。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments and embodiments, and can of course be implemented in various modes without departing from the gist of the present invention. is there. For example, in the above embodiment, the temperature is detected in the matrix measurement region (measurement location) SPm, n by the infrared detector incorporated in the temperature detector 214, but the temperature as shown in FIG. Detection probes for detection may be provided in a matrix.

また、評価指標として熱拡散率を用いたが、既述した式(1)から明らかなように、熱拡散率は位相差Δθと対応関係にある。よって、電池性能検査装置200で求めたこの位相差自体を、電池性能を評価する際の評価指標とし、この位相差の偏差を熱拡散率の偏差に代わって用いるようにすることもできる。   Further, although the thermal diffusivity is used as an evaluation index, as is clear from the above-described equation (1), the thermal diffusivity has a corresponding relationship with the phase difference Δθ. Therefore, the phase difference itself obtained by the battery performance inspection apparatus 200 can be used as an evaluation index when evaluating the battery performance, and the deviation of the phase difference can be used instead of the deviation of the thermal diffusivity.

また、図9に示した電池性能検査装置200では、温度検出器214を駆動するようにしたが、測定サンプルについてこれを温度検出器214に対して駆動するようにもできる。或いは、温度検出器214の内蔵する赤外線カメラを焦点位置可変タイプの構成とし、焦点位置を変えることで厚み方向の測定値を変えるようにすることもできる。   In the battery performance inspection apparatus 200 shown in FIG. 9, the temperature detector 214 is driven. However, the measurement sample may be driven with respect to the temperature detector 214. Alternatively, the infrared camera incorporated in the temperature detector 214 can be of a variable focal position type, and the measurement value in the thickness direction can be changed by changing the focal position.

実施例での評価対象となる燃料電池の概略構成を説明する説明図である。It is explanatory drawing explaining schematic structure of the fuel cell used as the evaluation object in an Example. 本実施例の燃料電池の製造方法を表わす工程図である。It is process drawing showing the manufacturing method of the fuel cell of a present Example. 電池製造の際に各構成部材の熱伝導特性に基づいて特性評価を行う検査装置の概略図である。It is the schematic of the test | inspection apparatus which performs characteristic evaluation based on the heat conduction characteristic of each structural member in the case of battery manufacture. MEA21等の測定サンプルをその厚み方向に伝わった熱の測定の様子を示す説明図である。It is explanatory drawing which shows the mode of the measurement of the heat which transmitted measurement samples, such as MEA21, to the thickness direction. 発熱体212を加熱制御した際の温度変調の様子と測定温度から解析した検出温度の温度変調の様子とを示す説明図である。It is explanatory drawing which shows the mode of the temperature modulation at the time of heating-controlling the heat generating body 212, and the mode of the temperature modulation of the detected temperature analyzed from the measured temperature. 比較例および実施例品の熱拡散率の測定結果と評価項目とを対比して説明する説明図である。It is explanatory drawing which compares and demonstrates the measurement result and evaluation item of the thermal diffusivity of a comparative example and an Example goods. 第1変形例の電池性能検査装置200の概略図である。It is the schematic of the battery performance inspection apparatus 200 of a 1st modification. また別の変形例の電池性能検査装置200の概略図である。It is the schematic of the battery performance inspection apparatus 200 of another modification. 測定サンプルの厚み方向においても測定を行う変形例の電池性能検査装置200の概略図である。It is the schematic of the battery performance inspection apparatus 200 of the modification which performs a measurement also in the thickness direction of a measurement sample. サンプル厚み方向における測定の様子を模式的に示す説明図である。It is explanatory drawing which shows typically the mode of the measurement in a sample thickness direction.

符号の説明Explanation of symbols

20…単セル
21…MEA(膜−電極接合体、Membrane Electrode Assembly)
22、23…ガス供給層
24、25…セパレータ
30…電解質層
31、32…電極
33、35…ガス拡散部材
34、36…電極側ガス拡散部材
200…電池性能検査装置
210…測定ブース
212…発熱体
213…加熱プローブ
214…温度検出器
215…検出プローブ
217…xy駆動部
218…z駆動部
220…制御装置
221…発熱体制御部
222…温度変調解析部
223…位相差算出部
224…記憶部
225…熱伝導特性算出部
226…記憶部
226…偏差算出部
227…接合判定部
228…特性評価部
230…表示部
240…入力部
SP1〜SP3、SPm,n…測定箇所
20 ... Single cell 21 ... MEA (Membrane Electrode Assembly)
22, 23 ... Gas supply layer 24, 25 ... Separator 30 ... Electrolyte layer 31, 32 ... Electrode 33, 35 ... Gas diffusion member 34, 36 ... Electrode side gas diffusion member 200 ... Battery performance inspection device 210 ... Measurement booth 212 ... Heat generation Body 213 ... Heating probe 214 ... Temperature detector 215 ... Detection probe 217 ... xy drive unit 218 ... z drive unit 220 ... Control device 221 ... Heating element control unit 222 ... Temperature modulation analysis unit 223 ... Phase difference calculation unit 224 ... Storage unit 225 ... Heat conduction characteristic calculation unit 226 ... Storage unit 226 ... Deviation calculation unit 227 ... Junction determination unit 228 ... Characteristic evaluation unit 230 ... Display unit 240 ... Input unit SP1-SP3, SPm, n ... Measurement location

Claims (10)

電解質を一対の電極で挟持した層構成体を有する燃料電池の検査方法であって、
前記層構成体の表裏の一方の面の側から前記層構成体を加熱するに際し、所定周波数の温度変調を起こしつつ前記層構成体を加熱して、前記一方の面における加熱領域に亘って前記層構成体の前記一方の面の側において温度変調を誘起し、
前記層構成体をその厚み方向に伝わった熱の温度変調を、前記加熱領域と対向する前記層構成体の他方の面の側の測定領域に含まれる複数の測定箇所で測定し、
該測定した温度変調と前記層構成体を前記一方の面の側から加熱する際の前記温度変調との位相差を前記複数の測定箇所ごとに求め、
前記測定箇所ごとに求めた前記位相差に基づいて、前記層構成体の前記測定箇所ごとの層方向における前記燃料電池の熱伝導特性を求め、
前記測定箇所ごとに求めた前記熱伝導特性に基づいて、前記層構成体の構成材の接合状況を判定する
燃料電池の検査方法。
A method for inspecting a fuel cell having a layer structure in which an electrolyte is sandwiched between a pair of electrodes,
When heating the layer structure from one side of the front and back surfaces of the layer structure, the layer structure is heated while performing temperature modulation at a predetermined frequency, and the heating is performed over the heating region on the one surface. Inducing a temperature modulation on the one side of the layer structure,
The temperature modulation of heat transmitted in the thickness direction of the layer structure is measured at a plurality of measurement points included in the measurement area on the other surface side of the layer structure facing the heating area,
Obtaining a phase difference between the measured temperature modulation and the temperature modulation when the layer structure is heated from the one surface side for each of the plurality of measurement points;
Based on the phase difference obtained for each measurement location, obtain the thermal conductivity characteristics of the fuel cell in the layer direction for each measurement location of the layer structure,
A method for inspecting a fuel cell, wherein the joining state of the constituent members of the layer structure is determined based on the heat conduction characteristics obtained for each measurement location.
電解質を一対の電極で挟持した層構成体を有する燃料電池の検査方法であって、
前記層構成体の表裏の一方の面の側から前記層構成体を加熱するに際し、所定周波数の温度変調を起こしつつ前記層構成体を加熱して、該加熱箇所において前記層構成体の前記一方の面の側に温度変調を誘起し、
前記層構成体をその厚み方向に伝わった熱の温度変調を、前記加熱箇所と対向する前記層構成体の他方の面の側の測定箇所で測定し、
該測定した温度変調と前記層構成体を前記一方の面の前記加熱箇所で加熱する際の前記温度変調との位相差を求め、
該求めた位相差に基づいて、前記層構成体の前記測定箇所での層方向における前記燃料電池の熱伝導特性を求め、
前記加熱箇所と前記測定箇所を前記層構成体において変更して、前記位相差を前記層構成体の複数箇所で求めつつ、前記位相差に基づいた前記熱伝導特性を複数箇所で求め、
該複数箇所で求めた前記熱伝導特性に基づいて、前記層構成体の構成材の接合状況を判定する
燃料電池の検査方法。
A method for inspecting a fuel cell having a layer structure in which an electrolyte is sandwiched between a pair of electrodes,
When heating the layer structure from one side of the front and back surfaces of the layer structure, the layer structure is heated while causing temperature modulation at a predetermined frequency, and the one of the layer structures is heated at the heating location. Induces temperature modulation on the side of the surface,
The temperature modulation of the heat transmitted in the thickness direction of the layer structure is measured at a measurement location on the other surface side of the layer configuration facing the heating location,
Obtaining a phase difference between the measured temperature modulation and the temperature modulation when the layer structure is heated at the heating portion on the one surface;
Based on the obtained phase difference, obtain the heat conduction characteristics of the fuel cell in the layer direction at the measurement location of the layer structure,
While changing the heating location and the measurement location in the layer structure, and determining the phase difference at a plurality of locations of the layer structure, the heat conduction characteristics based on the phase difference is determined at a plurality of locations,
A method for inspecting a fuel cell, wherein a joining state of constituent members of the layer structure is determined based on the heat conduction characteristics obtained at the plurality of locations.
請求項1または請求項2に記載の燃料電池の検査方法であって、
前記温度変調を誘起するに際しては、
前記層構成体における前記電解質の伝導種の燃料ガスの供給を受け該ガスを一方の前記電極に送る燃料ガス供給層と、前記伝導種の酸化に寄与する物質を含有する酸化ガスの供給を受け該ガスを他方の前記電極に送る酸化ガス供給層とで前記層構成体を接合・挟持したガス供給層含有構造体について、該ガス供給層含有構造体の表裏の一方の面の側から前記温度変調を起こしつつ前記ガス供給層含有構造体を加熱して前記温度変調を誘起し、
前記温度変調を測定するに際しては、
前記ガス供給層含有構造体をその厚み方向に伝わった熱の温度変調を前記ガス供給層含有構造体の他方の面の側で測定する
燃料電池の検査方法。
An inspection method for a fuel cell according to claim 1 or 2, wherein
In inducing the temperature modulation,
A fuel gas supply layer that receives a supply of fuel gas of the electrolyte in the layer structure and sends the gas to one of the electrodes, and a supply of an oxidizing gas containing a substance that contributes to the oxidation of the conduction species. With respect to the gas supply layer-containing structure in which the layer structure is joined and sandwiched by the oxidizing gas supply layer that sends the gas to the other electrode, the temperature is measured from one side of the front and back surfaces of the gas supply layer-containing structure. Inducing the temperature modulation by heating the gas supply layer containing structure while causing the modulation,
In measuring the temperature modulation,
A method for inspecting a fuel cell, wherein temperature modulation of heat transmitted in the thickness direction of the gas supply layer-containing structure is measured on the other surface side of the gas supply layer-containing structure.
請求項1ないし請求項3いずれかに記載の燃料電池の検査方法であって、
前記求めた前記熱伝導特性の偏差と該偏差を前記燃料電池の電池特性に対応付けた特性対応とに基づいて、または、前記判定した前記接合状況と該判定状況を前記燃料電池の電池特性に対応付けた特性対応とに基づいて、前記燃料電池の電池特性を評価する
燃料電池の検査方法。
A method for inspecting a fuel cell according to any one of claims 1 to 3,
Based on the obtained deviation of the heat conduction characteristic and the characteristic correspondence in which the deviation is associated with the battery characteristic of the fuel cell, or the determined joining state and the judged state are the battery characteristics of the fuel cell. A fuel cell inspection method for evaluating cell characteristics of the fuel cell based on the associated characteristic correspondence.
請求項1ないし請求項4いずれかに記載の燃料電池の検査方法であって、
前記温度変調を測定するに際しては、
赤外線を受光する赤外線カメラを備え、該カメラの焦点位置における測定対象物が放射する赤外線を前記赤外線カメラで受光して、前記焦点位置における前記測定対象物の温度を非接触に計測する温度計測機器を用い、
該温度計測機器の前記赤外線カメラの焦点位置を、前記測定対象物である前記層構成体または前記ガス供給層含有構造体の厚み方向で変えつつ、前記焦点位置に合致した位置での温度変調を測定する
燃料電池の検査方法。
A method for inspecting a fuel cell according to any one of claims 1 to 4,
In measuring the temperature modulation,
A temperature measuring device that includes an infrared camera that receives infrared rays, and that receives infrared rays emitted from a measurement object at the focal position of the camera with the infrared camera and measures the temperature of the measurement object at the focal position in a non-contact manner. Use
While changing the focal position of the infrared camera of the temperature measuring device in the thickness direction of the layer structure or the gas supply layer-containing structure that is the measurement object, temperature modulation at a position that matches the focal position is performed. Measuring method of fuel cell.
電解質を一対の電極で挟持した層構成体を有する燃料電池の検査装置であって、
発熱部を有し、該発熱部を所定周波数の温度変調を起こしつつ発熱させ、前記発熱部により前記層構成体をその表裏の一方の面の側から加熱して、前記層構成体の前記一方の面の側において温度変調を誘起する加熱手段と、
前記層構成体をその厚み方向に伝わった熱の温度変調を、前記層構成体の他方の面の側の複数の測定箇所で測定する測定手段と、
前記測定した温度変調と前記層構成体を前記一方の面の側から加熱する際の前記温度変調との位相差を前記測定箇所ごとに求めて、前記測定箇所ごとの前記位相差に基づいて、前記層構成体の前記測定箇所ごとの層方向における前記燃料電池の熱伝導特性を求める熱伝導特性算出手段と、
前記測定箇所ごとに求めた前記熱伝導特性に基づいて、前記層構成体の構成材の接合状況を判定する接合判定手段とを備え、
前記加熱手段は、前記複数の測定箇所のそれぞれに対向する複数の加熱箇所において前記温度変調を誘起するよう、前記発熱部により前記層構成体を前記一方の面の側で加熱する
燃料電池の検査装置。
A fuel cell inspection apparatus having a layer structure in which an electrolyte is sandwiched between a pair of electrodes,
A heat generating portion that heats the heat generating portion while causing temperature modulation at a predetermined frequency, and heats the layer structure from one side of the front and back surfaces by the heat generating portion, Heating means for inducing temperature modulation on the side of the surface,
Measuring means for measuring temperature modulation of heat transmitted in the thickness direction of the layer structure at a plurality of measurement points on the other surface side of the layer structure;
Obtaining the phase difference between the measured temperature modulation and the temperature modulation when heating the layer structure from the one surface side for each measurement location, based on the phase difference for each measurement location, A heat conduction characteristic calculating means for obtaining a heat conduction characteristic of the fuel cell in a layer direction for each measurement location of the layer structure;
Based on the heat conduction characteristics obtained for each measurement location, it comprises a joining determination means for judging the joining status of the constituent members of the layer structure,
The heating means heats the layer structure on the one surface side by the heat generating portion so as to induce the temperature modulation at a plurality of heating points facing each of the plurality of measurement points. Inspection of a fuel cell apparatus.
請求項6に記載の燃料電池の検査装置であって、
前記加熱手段は、
前記発熱部として、前記複数の加熱箇所を含む加熱領域に亘って前記層構成体を加熱する面状の発熱部と、前記複数の加熱箇所において前記層構成体を加熱する複数の発熱源を有する発熱部のいずれかを有する
燃料電池の検査装置。
The fuel cell inspection device according to claim 6,
The heating means includes
The heating unit includes a planar heating unit that heats the layer structure over a heating region including the plurality of heating points, and a plurality of heat sources that heat the layer structure at the plurality of heating points. A fuel cell inspection device having any one of heat generating portions.
電解質を一対の電極で挟持した層構成体を有する燃料電池の検査装置であって、
発熱部を有し、該発熱部を所定周波数の温度変調を起こしつつ発熱させ、前記発熱部により前記層構成体をその表裏の一方の面の側から加熱して、前記層構成体の前記一方の面の側において温度変調を誘起する加熱手段と、
前記層構成体をその厚み方向に伝わった熱の温度変調を、前記発熱部による前記層構成体の加熱箇所に対向する前記層構成体の他方の面の側の測定箇所で測定する測定手段と、
前記測定した温度変調と前記層構成体を前記一方の面の側から加熱する際の前記温度変調との位相差を算出しつつ、前記加熱手段の前記発熱部による前記層構成体の前記加熱箇所と前記測定手段の前記測定箇所とを前記層構成体において変更して、前記位相差を前記層構成体の複数箇所で算出する位相差算出手段と、
前記複数箇所で算出した前記位相差に基づいて、前記層構成体の前記複数箇所ごとの層方向における前記燃料電池の熱伝導特性を求める熱伝導特性算出手段と、
前記測定箇所ごとに求めた前記熱伝導特性に基づいて、前記層構成体の構成材の接合状況を判定する接合判定手段とを備える
燃料電池の検査装置。
A fuel cell inspection apparatus having a layer structure in which an electrolyte is sandwiched between a pair of electrodes,
A heat generating portion that heats the heat generating portion while causing temperature modulation at a predetermined frequency, and heats the layer structure from one side of the front and back surfaces by the heat generating portion, Heating means for inducing temperature modulation on the side of the surface,
Measuring means for measuring temperature modulation of heat transmitted through the layer structure in the thickness direction at a measurement point on the other surface side of the layer structure opposite to a heating point of the layer structure by the heating unit; ,
While calculating the phase difference between the measured temperature modulation and the temperature modulation when the layer structure is heated from the one surface side, the heating location of the layer structure by the heating unit of the heating means And the phase difference calculating means for calculating the phase difference at a plurality of locations of the layer structure by changing the measurement location of the measuring means in the layer structure.
Based on the phase difference calculated at the plurality of places, a heat conduction characteristic calculating means for obtaining a heat conduction characteristic of the fuel cell in the layer direction for each of the plurality of places of the layer structure,
An inspection apparatus for a fuel cell, comprising: a joining determination unit that judges a joining state of the constituent members of the layer structure based on the heat conduction characteristics obtained for each measurement location.
請求項6ないし請求項8いずれかに記載の燃料電池の検査装置であって、
前記求めた前記熱伝導特性の偏差を算出する偏差算出手段と、
前記熱伝導特性の偏差と前記燃料電池の電池特性とを対応付けた特性対応を記憶する偏差対応特性記憶手段と、
前記層構成体の構成材の接合状況と前記燃料電池の電池特性とを対応付けた特性対応を記憶する接合対応特性記憶手段と、
前記算出した前記偏差と前記偏差対応特性記憶手段が記憶した特性対応とに基づいた燃料電池の電池特性評価と、前記判定した判定状況と前記接合対応特性記憶手段が記憶した特性対応とに基づいた燃料電池の電池特性評価の少なくともいずれかの電池特性評価を行う評価手段とを有する
燃料電池の検査装置。
A fuel cell inspection apparatus according to any one of claims 6 to 8,
Deviation calculating means for calculating a deviation of the obtained heat conduction characteristic;
Deviation correspondence characteristic storage means for storing characteristic correspondence in which the deviation of the heat conduction characteristic and the battery characteristic of the fuel cell are associated;
A joining correspondence characteristic storage means for storing a characteristic correspondence in which the joining state of the constituent members of the layer structure is associated with the cell characteristics of the fuel cell;
Based on the battery characteristic evaluation of the fuel cell based on the calculated deviation and the characteristic correspondence stored by the deviation correspondence characteristic storage unit, and based on the determined determination situation and the characteristic correspondence stored by the joint correspondence characteristic storage unit. An inspection device for a fuel cell, comprising: evaluation means for performing at least one cell characteristic evaluation of the cell characteristics evaluation of the fuel cell.
請求項6ないし請求項9いずれかに記載の燃料電池の検査装置であって、
前記測定手段は、
赤外線を受光する赤外線カメラを備える温度計測機器であって、前記赤外線カメラの焦点位置における測定対象物が放射する赤外線を前記赤外線カメラで受光して、前記焦点位置における前記測定対象物の温度を非接触に計測する温度計測機器を有し、
該温度計測機器の前記赤外線カメラの焦点位置を、前記測定対象物である前記層構成体または前記ガス供給層含有構造体の厚み方向で変えつつ、前記焦点位置に合致した位置での温度変調を測定する
燃料電池の検査装置。
A fuel cell inspection apparatus according to any one of claims 6 to 9,
The measuring means includes
A temperature measuring device including an infrared camera that receives infrared rays, wherein infrared rays emitted from a measurement object at a focal position of the infrared camera are received by the infrared camera, and a temperature of the measurement object at the focal position is determined as non-temperature. It has a temperature measurement device that measures contact,
While changing the focal position of the infrared camera of the temperature measuring device in the thickness direction of the layer structure or the gas supply layer-containing structure that is the measurement object, temperature modulation at a position that matches the focal position is performed. Measure fuel cell inspection equipment.
JP2007159954A 2006-06-19 2007-06-18 Inspection method and device of fuel cell Pending JP2008027902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007159954A JP2008027902A (en) 2006-06-19 2007-06-18 Inspection method and device of fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006168515 2006-06-19
JP2007159954A JP2008027902A (en) 2006-06-19 2007-06-18 Inspection method and device of fuel cell

Publications (1)

Publication Number Publication Date
JP2008027902A true JP2008027902A (en) 2008-02-07

Family

ID=39118291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007159954A Pending JP2008027902A (en) 2006-06-19 2007-06-18 Inspection method and device of fuel cell

Country Status (1)

Country Link
JP (1) JP2008027902A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015125982A (en) * 2013-12-27 2015-07-06 昭和電工株式会社 Quality inspection method of catalyst layer for fuel battery, manufacturing method of membrane electrode assembly, quality inspection device of catalyst layer for fuel battery, and classification system of catalyst layer for fuel battery
CN111628249A (en) * 2020-06-03 2020-09-04 湖北亿纬动力有限公司 Square battery module and heating method and heating reliability testing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0469559A (en) * 1990-07-10 1992-03-04 Agency Of Ind Science & Technol Heat conductivity measuring method
JP2004325141A (en) * 2003-04-22 2004-11-18 Rikogaku Shinkokai Thermal analysis method and thermal analysis device
JP2005071882A (en) * 2003-08-26 2005-03-17 Matsushita Electric Ind Co Ltd Inspection method and device for electrode electrolyte film junction of solid polymer fuel cell, inspection method and device for unit cell of solid polymer fuel cell, and manufacturing method of solid polymer fuel cell
JP2005108801A (en) * 2003-09-11 2005-04-21 Nissan Motor Co Ltd Defect detection device for laminated body and inspecting device for fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0469559A (en) * 1990-07-10 1992-03-04 Agency Of Ind Science & Technol Heat conductivity measuring method
JP2004325141A (en) * 2003-04-22 2004-11-18 Rikogaku Shinkokai Thermal analysis method and thermal analysis device
JP2005071882A (en) * 2003-08-26 2005-03-17 Matsushita Electric Ind Co Ltd Inspection method and device for electrode electrolyte film junction of solid polymer fuel cell, inspection method and device for unit cell of solid polymer fuel cell, and manufacturing method of solid polymer fuel cell
JP2005108801A (en) * 2003-09-11 2005-04-21 Nissan Motor Co Ltd Defect detection device for laminated body and inspecting device for fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015125982A (en) * 2013-12-27 2015-07-06 昭和電工株式会社 Quality inspection method of catalyst layer for fuel battery, manufacturing method of membrane electrode assembly, quality inspection device of catalyst layer for fuel battery, and classification system of catalyst layer for fuel battery
CN111628249A (en) * 2020-06-03 2020-09-04 湖北亿纬动力有限公司 Square battery module and heating method and heating reliability testing method thereof

Similar Documents

Publication Publication Date Title
JP5049064B2 (en) Ion conductive electrolyte membrane inspection method and inspection apparatus
Heinzmann et al. Impedance modelling of porous electrode structures in polymer electrolyte membrane fuel cells
Selamet et al. Effects of bolt torque and contact resistance on the performance of the polymer electrolyte membrane electrolyzers
Li et al. Fatigue and creep to leak tests of proton exchange membranes using pressure-loaded blisters
US10109044B2 (en) Apparatus for measuring micro-cracks in a membrane electrode assembly and method for predicting generation of micro-cracks in the same
CN108886151B (en) Coating film inspection device, coating film inspection method, and device for manufacturing membrane-catalyst layer bonded body
US20170317365A1 (en) Method for operating a fuel cell system
Bender et al. Detecting and localizing failure points in proton exchange membrane fuel cells using IR thermography
KR101320786B1 (en) Apparatus for measuring of contact resistance and method for measuring of contact resistance of bopolar plate for a fuel cell
JP2008027902A (en) Inspection method and device of fuel cell
JP2008108519A (en) Fuel-cell membrane electrode assembly evaluation device
JP6631144B2 (en) Fuel cell manufacturing method
CA2691986C (en) Method and apparatus for examining ion-conductive electrolyte membrane
WO2017159709A1 (en) Inspecting device
JP2016115460A (en) Inspection method for fuel cell
JP2006202735A (en) Battery characteristic evaluation of fuel cell
CN110268244B (en) Porous body quality inspection device and porous body quality inspection method
Beck et al. Ultrasonic bonding of membrane electrode assemblies for low temperature proton exchange membrane fuel cells
Dong et al. A one-dimensional numerical model of carbon corrosion in catalyst layers of proton exchange membrane fuel cells
JP2010262896A (en) Evaluation method of fuel cell, manufacturing method of fuel cell, and evaluation device of fuel cell
Ma et al. XIX. Investigation on a micro-environment concept for MEA production process supported by numerical simulations
Bahrami et al. Improved Decal Transfer Method to Reduce Membrane Damage from Foreign Particles in Membrane Electrode Assembly
JP5150174B2 (en) Ion conductive electrolyte membrane inspection method and inspection apparatus
Leader Electrolyte Loss and Voltage Degradation of HT-PEM Fuel Cells Operated at 200° C
Karvonen Modelling approaches to mass transfer and compression effects in polymer electrolyte fuel cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130108