JP2008027735A - Power-supply unit for induction heating device, induction heating device, and hot metal holding furnace - Google Patents

Power-supply unit for induction heating device, induction heating device, and hot metal holding furnace Download PDF

Info

Publication number
JP2008027735A
JP2008027735A JP2006199057A JP2006199057A JP2008027735A JP 2008027735 A JP2008027735 A JP 2008027735A JP 2006199057 A JP2006199057 A JP 2006199057A JP 2006199057 A JP2006199057 A JP 2006199057A JP 2008027735 A JP2008027735 A JP 2008027735A
Authority
JP
Japan
Prior art keywords
induction heating
heating device
capacitor
capacitance
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006199057A
Other languages
Japanese (ja)
Inventor
Masahiro Yamada
正弘 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006199057A priority Critical patent/JP2008027735A/en
Publication of JP2008027735A publication Critical patent/JP2008027735A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • General Induction Heating (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To avoid high-voltage overcurrent trip, even with respect to temporary sudden change in the inductance of the system as a whole, including an induction heating device and a heating object by expanding the variable range of capacitor capacitance, using a simple and low-cost constitution. <P>SOLUTION: In this power-supply unit 100 of an induction heating device, equipped with a capacitance-fixed capacitor group 130F and a capacitance-variable capacitor group 130V, a part of the capacitance-fixed capacitor group 130F can be separated collectively from a circuit by a manual switch (for instance, a high-voltage disconnector 142). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は誘導加熱装置の電源装置、誘導加熱装置ならびに溶銑保持炉に係り、特に、容量固定コンデンサ群と容量可変コンデンサ群を備えた誘導加熱装置の電源装置、この電源装置を備えた誘導加熱装置、ならびに、この誘導加熱装置を備えた溶銑保持炉に関する。   The present invention relates to an induction heating apparatus power supply apparatus, induction heating apparatus, and hot metal holding furnace, and more particularly to an induction heating apparatus power supply apparatus including a fixed capacity capacitor group and a variable capacity capacitor group, and an induction heating apparatus including the power supply apparatus. The present invention also relates to a hot metal holding furnace provided with this induction heating device.

図5に、従来の誘導加熱装置の電源装置100を、回路図として示す。商用電源で運転を行う大規模(2000kVA以上)な誘導加熱装置の電源装置では、例えば、高圧遮断器110を介して三相交流の商用電源から受電し、三相平衡回路120を経て単相に調整した後、単相負荷からなる誘導加熱装置200に対して、電力を供給するようにしているが、この場合の単相負荷は、力率が1になるように運転する必要がある。   FIG. 5 is a circuit diagram showing a power supply device 100 of a conventional induction heating device. In a large-scale (2000 kVA or more) induction heating apparatus power supply apparatus that is operated by a commercial power supply, for example, it receives power from a three-phase AC commercial power supply via the high-voltage circuit breaker 110 and passes through the three-phase balanced circuit 120 to become a single phase. After the adjustment, electric power is supplied to the induction heating device 200 composed of a single-phase load, but the single-phase load in this case needs to be operated so that the power factor becomes 1.

誘導加熱装置200は、供給される交流電圧に対して流れる交流電流の位相が遅れる、いわゆる遅れ負荷となるため、通常、力率を改善するため、コンデンサ130を、誘導加熱装置200と並列に、誘導加熱装置ならびに被加熱物を含めた系全体のキャパシタンスと同等の容量分以上(誘導加熱装置の1.5〜2倍)接続する。   Since the induction heating device 200 is a so-called delayed load in which the phase of the alternating current flowing with respect to the supplied alternating voltage is delayed, the capacitor 130 is usually connected in parallel with the induction heating device 200 in order to improve the power factor. Connect at least the capacity equivalent to the capacitance of the entire system including the induction heating device and the object to be heated (1.5 to 2 times that of the induction heating device).

このコンデンサ130は、経時的に変化することのある回路抵抗(誘導加熱装置200ならびに被加熱物を含めた系全体のインダクタンス)に応じて、ある程度容量が可変に構成されているのが普通である。   Capacitor 130 is generally configured to have a variable capacity to some extent according to circuit resistance (inductance of induction heating apparatus 200 and the entire system including an object to be heated) that may change over time. .

図6に、そのようなコンデンサ130を収納した、コンデンサ盤132を模式的に示す。コンデンサ130は、各一個一個のコンデンサ134の2つの端子が、それぞれ、R相、T相を構成している2つのブスバー136と接続されているが、コンデンサ134の群のうち、スイッチ138を付けた分が、先述の図5中の可変分130Vに相当し、各一個一個のコンデンサ134の2つの端子が、それぞれ、R相、T相を構成している2つのブスバー136と接続/切り離しが可能に構成されており、ブスバー136に接続するコンデンサ134の数を増やしていくことで、電源装置100全体としてのコンデンサ容量(キャパシタンス)を段階的に増加させ、逆に、ブスバー136から切り離すコンデンサ134の数を増やしていくことで、電源装置100全体としてのキャパシタンスを段階的に減少させていくことができる仕組になっている。   FIG. 6 schematically shows a capacitor panel 132 in which such a capacitor 130 is accommodated. The capacitor 130 has two terminals of each capacitor 134 connected to the two bus bars 136 constituting the R phase and the T phase, respectively. 5 corresponds to the variable portion 130V in FIG. 5 described above, and the two terminals of each capacitor 134 are connected / disconnected with the two bus bars 136 constituting the R phase and the T phase, respectively. By increasing the number of capacitors 134 connected to the bus bar 136, the capacitor capacity (capacitance) of the power supply apparatus 100 as a whole is increased in stages, and conversely, the capacitor 134 separated from the bus bar 136. By increasing the number of power supplies, the capacitance of the power supply device 100 as a whole can be reduced step by step. It has become.

このように、電源装置100全体としてのキャパシタンスは、段階的に変化させられるように構成してあるのが通常であるが、そのときの電源装置100全体としてのキャパシタンスをC(F)、誘導加熱装置200ならびに被加熱物を含めた系全体のインダクタンスをL(H)とした場合、誘導加熱装置200は、
共振周波数f=(2π)-1(LC)-1/2
にて、結果的に発振する。
As described above, the capacitance of the power supply device 100 as a whole is normally configured to be changed in stages. However, the capacitance of the power supply device 100 as a whole is represented by C (F), induction heating. When the inductance of the entire system including the apparatus 200 and the object to be heated is L (H), the induction heating apparatus 200 is
Resonance frequency f = (2π) −1 (LC) −1/2
As a result, it oscillates.

ここに、誘導加熱装置とは、図7に示すように、被加熱物400は除く一方で、多くの場合、銅製のコイルで構成される誘導加熱装置本体200、ケーブル300、コンデンサ盤132を含む電源装置100は含み、誘導加熱装置として全体が構成される。   Here, as shown in FIG. 7, the induction heating device includes an induction heating device main body 200 composed of a copper coil, a cable 300, and a capacitor panel 132, while excluding the object to be heated 400. The power supply device 100 is included and configured as an induction heating device as a whole.

特許文献1、特許文献2には、三相交流の商用電源から受電し、三相平衡回路を経て単相に調整した後、単相負荷からなる誘導加熱装置に対して電力を供給する例が記載されている。   Patent Document 1 and Patent Document 2 include an example in which power is received from a three-phase AC commercial power supply, adjusted to a single phase via a three-phase balanced circuit, and then supplied to an induction heating device composed of a single-phase load. Are listed.

なお、誘導加熱装置は、特許文献3、特許文献4、特許文献5のように、金属の精錬、加工、溶接等の分野で良く用いられているが、勿論、本発明は、それらの分野のものに限るものではない。   In addition, although the induction heating apparatus is often used in the fields of metal refining, processing, welding and the like as in Patent Document 3, Patent Document 4, and Patent Document 5, of course, the present invention is applicable to those fields. It is not limited to things.

特開昭61−042892号公報Japanese Patent Laid-Open No. 61-042992 特開昭59−224092号公報JP 59-224092 A 特開2004−218038号公報JP 2004-218038 A 特許3781456号公報Japanese Patent No. 3781456 特許3492408号公報Japanese Patent No. 3492408

特許文献1、特許文献2のような誘導加熱装置では、図5および図6に示すように、全てのコンデンサ134が、個々にスイッチ138を介して接続、切り離しが可能すなわち容量可変分として構成されているわけではなく、誘導加熱装置の電源装置100内で、コンデンサは、通常、固定分130Fと可変分130Vとに分けられて構成されている。   In the induction heating apparatus such as Patent Document 1 and Patent Document 2, as shown in FIGS. 5 and 6, all the capacitors 134 can be individually connected and disconnected via the switch 138, that is, configured as a variable capacity component. However, in the power supply apparatus 100 of the induction heating apparatus, the capacitor is usually divided into a fixed part 130F and a variable part 130V.

その理由は、全てのコンデンサに接続/切り離しが可能な機構を設けようとすると、その全てに回路からの切り離し装置(スイッチ138)が必要となり、非常に高価な装置となってしまうためである。   The reason is that if all the capacitors are provided with a mechanism that can be connected / disconnected, all of them require a disconnecting device (switch 138) from the circuit, resulting in a very expensive device.

そこで、通常、全体コンデンサ容量の1/4程度を可変分とし、可変切替は10段階程度とする。例えば、1000kW(2000kVA)の誘導加熱装置200があった場合、力率改善コンデンサ130は3600kVA必要となり、そのうち2600kVAが容量固定のコンデンサ130Fとされ、1000kVAが容量可変のコンデンサ130Vとされる。1000kVAの容量可変のコンデンサ130Vは、例えば100kVA毎に高圧真空スイッチ138によって回路に接続、切り離しが可能に構成される。   Therefore, normally, about 1/4 of the total capacitor capacity is made variable, and variable switching is made about 10 steps. For example, when there is an induction heating device 200 of 1000 kW (2000 kVA), the power factor improving capacitor 130 requires 3600 kVA, of which 2600 kVA is a fixed capacitor 130F and 1000 kVA is a variable capacity capacitor 130V. The capacitor 130V having a variable capacity of 1000 kVA can be connected to and disconnected from the circuit by a high-pressure vacuum switch 138 every 100 kVA, for example.

上記誘導加熱装置の電源装置100は、誘導加熱装置本体200ならびに被加熱物400を含めた系全体のインダクタンスの変化が25%(1/4)までであれば大丈夫なように設計されていることになる。経験的に、誘導加熱装置では、誘導加熱装置本体200ならびに被加熱物400を含めた系全体のインダクタンスが20%以上変化した場合、誘導加熱装置本体200自体を交換することが推奨されているため、コンデンサの可変分は25%で十分ということになる。   The power supply apparatus 100 for the induction heating apparatus is designed to be fine as long as the change in inductance of the entire system including the induction heating apparatus main body 200 and the object to be heated 400 is up to 25% (1/4). become. Empirically, in the induction heating apparatus, when the inductance of the entire system including the induction heating apparatus main body 200 and the object to be heated 400 changes by 20% or more, it is recommended to replace the induction heating apparatus main body 200 itself. Therefore, 25% of the variable amount of the capacitor is sufficient.

ところが、用途によっては、誘導加熱装置本体200ならびに被加熱物400を含めた系全体のインダクタンスは、安定的に変化しない場合が多々あり、インダクタンスの変化が30%以上に及ぶ場合がある。この場合、上記のような誘導加熱装置の電源装置100では、回路に過電流が発生し、高電圧過電流トリップに至る。   However, depending on the application, the inductance of the entire system including the induction heating apparatus main body 200 and the object to be heated 400 often does not change stably, and the change in inductance may reach 30% or more. In this case, in the power supply apparatus 100 of the induction heating apparatus as described above, an overcurrent is generated in the circuit, resulting in a high voltage overcurrent trip.

この状態が発生した場合、上記のような従来の誘導加熱装置の電源装置100の場合、速やかに誘導加熱装置本体200自体を交換する必要があるが、装置寿命を全うしたい面からみれば合理的ではない。   When this state occurs, in the case of the power supply device 100 of the conventional induction heating device as described above, the induction heating device main body 200 itself needs to be replaced quickly, but it is reasonable from the viewpoint of achieving the device life. is not.

本発明は、前記従来の問題点を解決するべくなされたもので、簡単で安価な構成により、コンデンサ容量の可変範囲を広げて、誘導加熱装置ならびに被加熱物を含めた系全体のインダクタンスの一時的な急変に対しても、高電圧過電流トリップを回避出来るようにすることを課題とする。   The present invention has been made to solve the above-described conventional problems, and by using a simple and inexpensive configuration, the variable range of the capacitor capacity is expanded, and the inductance of the entire system including the induction heating device and the object to be heated is temporarily increased. It is an object to make it possible to avoid a high-voltage overcurrent trip even for a sudden sudden change.

本発明では、前記課題を解決するために、従来、固定分として扱われていたコンデンサのうちの一部、例えば、その半分を、一括で容易に切り離しできるようにしたものである。即ち、本発明は、以下の通りである。   In the present invention, in order to solve the above-described problem, a part of the capacitors conventionally treated as fixed parts, for example, half of the capacitors, can be easily separated in a lump. That is, the present invention is as follows.

(1)容量固定コンデンサ群と容量可変コンデンサ群を備えた誘導加熱装置の電源装置において、前記容量固定コンデンサ群の一部が、一括して回路から切り離し可能とされていることを特徴とする誘導加熱装置の電源装置。 (1) In an induction heating apparatus power supply device including a fixed-capacitance capacitor group and a variable-capacitance capacitor group, a part of the fixed-capacitance capacitor group can be collectively separated from the circuit. Power supply for heating device.

(2)(1)の電源装置を備えたことを特徴とする誘導加熱装置。 (2) An induction heating device comprising the power supply device of (1).

(3)(2)の誘導加熱装置を備えたことを特徴とする溶銑保持炉。 (3) A hot metal holding furnace comprising the induction heating device of (2).

本発明によれば、従来、固定分として扱われていたコンデンサのうちの一部、例えば、その半分を一括で容易に切り離せるようにしたので、装置寿命中期以降で回路抵抗が10〜20%程度変化してきたところ(可変分コンデンサが全て切り離されている状態)で、固定分コンデンサのうちの一部、例えば、半分を切り離すことで、コンデンサ容量の可変範囲(コンデンサを切り離し、キャパシタンスを減少させる方向の可変範囲)を大きくとることができ、誘導加熱装置本体200ならびに被加熱物400を含めた系全体のインダクタンスの一時的な急変に対してもコンデンサ切替が可能になり、高電圧過電流トリップを回避出来るようになる。   According to the present invention, since a part of the capacitors conventionally treated as fixed parts, for example, half of the capacitors can be easily separated at a time, the circuit resistance is 10 to 20% after the middle of the device life. When it has changed to some extent (with all of the variable capacitors disconnected), a part of the fixed capacitors, for example, half of them are disconnected, so that the variable range of the capacitor capacity (the capacitor is disconnected and the capacitance is reduced. The variable range of direction) can be increased, and the capacitor can be switched even when the inductance of the entire system including the induction heating apparatus main body 200 and the object to be heated 400 is suddenly changed. Can be avoided.

また、通常、誘導加熱装置本体200ならびに被加熱物400を含めた系全体のインダクタンスの変化は、20%程度が、誘導加熱装置本体200自体の使用の限界であったが、本発明によれば、誘導加熱装置本体200ならびに被加熱物400を含めた系全体のインダクタンスが40%以上変化しても、使用可能になり、長寿命化を図れるという効果もある。   In general, the inductance change of the entire system including the induction heating apparatus main body 200 and the object to be heated 400 is about 20%, which is the limit of use of the induction heating apparatus main body 200 itself. Even if the inductance of the entire system including the induction heating apparatus main body 200 and the object 400 to be heated changes by 40% or more, it can be used and the life can be extended.

以下、図面を参照して、本発明の実施形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本実施形態は、図5に示したと同様の電源装置100において、図1に示す如く、力率を改善するためのコンデンサ130の一部、即ち、固定分130F(例えば75%)のうち、その半分(例えば37%)を、安価容易な手動切離装置である高圧ディスコン142により、一括で容易に切り離せるようにしたものである。   In this embodiment, in the power supply apparatus 100 similar to that shown in FIG. 5, as shown in FIG. 1, of a part of the capacitor 130 for improving the power factor, that is, out of the fixed portion 130F (for example, 75%) Half (for example, 37%) can be easily separated at once by a high-pressure discon 142 which is an inexpensive and easy manual separation device.

これにより、コンデンサ容量の可変範囲を従来の25%から60%以上に大きくとることができ、誘導加熱装置本体200ならびに被加熱物400を含めた系全体のインダクタンスの一時的な急変に対してもコンデンサ切替が可能になり、高電圧過電流トリップを回避できるようになる。   As a result, the variable range of the capacitor capacity can be increased from the conventional 25% to 60% or more, and a temporary sudden change in the inductance of the entire system including the induction heating apparatus main body 200 and the object to be heated 400 can be achieved. Capacitor switching becomes possible and high voltage overcurrent trips can be avoided.

また、通常、誘導加熱装置本体ならびに被加熱物を含めた系全体のインダクタンスの変化は、20%程度が、誘導加熱装置本体自体の使用の限界であったが、本実施形態によれば、誘導加熱装置本体ならびに被加熱物を含めた系全体のインダクタンスが40%以上変化しても、使用可能になり、長寿命化を図れるようになる。   In general, the inductance change of the entire system including the induction heating apparatus main body and the object to be heated is about 20%, which is the limit of use of the induction heating apparatus main body itself. Even if the inductance of the entire system including the heating device main body and the object to be heated changes by 40% or more, it can be used and the life can be extended.

図1に示した本発明の実施形態は、誘導加熱装置200が2000kVA、力率改善コンデンサ130が3600kVAの例である。   The embodiment of the present invention shown in FIG. 1 is an example in which the induction heating device 200 is 2000 kVA and the power factor correction capacitor 130 is 3600 kVA.

3600kVAのうち容量可変コンデンサ群130Vは1000kVA分あり、容量固定コンデンサ群130Fは2600kVA分ある。本発明を適用することで、容量固定コンデンサ群130Fのうち1300kVA分は、図2に示すように、高圧ディスコンと呼ばれる、ナイフスイッチ状の、接続/切り離しが可能な機構142で回路より一括切り離し出来る構成となっている。なお、図2(a)正面図中に示すR、Cの記号が、それぞれ、図1のR相、コンデンサ134に接続される。   Of the 3600 kVA, the variable capacitor group 130V is for 1000 kVA, and the fixed capacitor group 130F is 2600 kVA. By applying the present invention, the 1300 kVA portion of the fixed capacitor group 130F can be collectively disconnected from the circuit by a knife switch-like mechanism 142 that can be connected / disconnected as shown in FIG. It has a configuration. Note that the symbols R and C shown in the front view of FIG. 2A are connected to the R-phase and capacitor 134 in FIG.

高圧ディスコン142は、その収納盤140に収められているが、図3に示すように、高圧ディスコン収納盤140は、全体として、コンデンサ盤132の外に別置きされる形で設置される。図6に示した従来のコンデンサ盤132にてR相に接続していたいくつかのコンデンサ134の、そのR相に接続していた端子を、ケーブル144を介して、まとめて高圧ディスコン142の片側の端子に接続している。そして、高圧ディスコン142のもう片側の端子から、これもケーブル144を介してR相に接続するようにしている。コンデンサ134の別の端子がT相側に接続されている点は、図6に示した従来のコンデンサ盤132と同じである。   The high-voltage discon 142 is housed in the storage board 140, but as shown in FIG. 3, the high-voltage discon storage board 140 is installed outside the capacitor board 132 as a whole. The terminals connected to the R phase of several capacitors 134 connected to the R phase in the conventional capacitor panel 132 shown in FIG. 6 are collectively connected to one side of the high voltage discon 142 via the cable 144. Is connected to the terminal. Then, the other terminal of the high-voltage discon 142 is also connected to the R phase via the cable 144. The other terminal of the capacitor 134 is connected to the T-phase side, which is the same as the conventional capacitor panel 132 shown in FIG.

上記した本例は、図4(A)に示すような、溶銑保持炉500に用いる誘導加熱装置用のものであり、図4(B)に詳細に示す如く、スタンプ(粉)状の耐火物を、溶銑(溶湯とも称する)の通路となる心材のまわりに塗り固め、心材を溶解してトンネル状に形成したブロック510に、誘導加熱装置本体200をなす、O字型鉄心およびコイルからなるインダクションヒータ(インダクタとも称する)210を、別にくりぬいた穴に挿入して作成したものである。図4(A)において、520は溶銑装入口、530はスクラップ装入口、540は出湯口である。   The above-described example is for an induction heating apparatus used in a hot metal holding furnace 500 as shown in FIG. 4 (A). As shown in detail in FIG. 4 (B), a stamp (powder) refractory is used. Is coated around a core material that becomes a passage for molten metal (also referred to as molten metal), and the induction heating device main body 200 is formed in a block 510 formed by melting the core material to form a tunnel, and an induction consisting of an O-shaped iron core and a coil. A heater (also referred to as an inductor) 210 is created by inserting it into a separately hollowed hole. In FIG. 4 (A), 520 is a hot metal inlet, 530 is a scrap inlet, and 540 is a tap.

このような例では、数ヶ月操業すると、トンネル状に形成したブロック510の内壁にスラグが付着堆積する結果、誘導加熱装置200ならびに被加熱物を含めた系全体のインダクタンスが、大きく変化する場合が多かったのであるが、本例のように、数ヶ月経過したところで、人力操作により、高圧ディスコン142を操作し、一括して回路から切り離し可能に構成したコンデンサ群を、回路より一括切り離しすると、高電圧過電流トリップするのを回避できるようになった。   In such an example, when operated for several months, the slag adheres and accumulates on the inner wall of the block 510 formed in a tunnel shape, and as a result, the inductance of the entire system including the induction heating device 200 and the object to be heated may change greatly. However, as shown in this example, when several months have passed, if a group of capacitors that can be separated from the circuit by manipulating the high-voltage discon 142 by manpower operation is collectively separated from the circuit, The voltage overcurrent trip can be avoided.

誘導加熱装置ならびに被加熱物を含めた系全体のインダクタンスが20%程度変化している状態(寿命中期以降)では、容量可変コンデンサ群130Vは800kVA程度切り離されている状態となり、全体としては2800kVAのコンデンサが接続されていることになる。   In a state where the inductance of the entire system including the induction heating apparatus and the object to be heated is changed by about 20% (after the middle of the life), the variable capacitor group 130V is separated by about 800 kVA, and as a whole 2800 kVA. A capacitor is connected.

もしこの状態で誘導加熱装置ならびに被加熱物を含めた系全体のインダクタンスを、一時的にでも40%程度変動させる要因が発生すると、誘導加熱装置ならびに被加熱物を含めた系全体の回路全体が進み力率となり、高電圧過電流トリップが発生する。   If a factor that causes the inductance of the entire system including the induction heating device and the object to be heated to fluctuate by about 40% even in this state, the entire circuit of the entire system including the induction heating device and the object to be heated is Leading power factor and high voltage overcurrent trip occurs.

そこで、容量固定コンデンサ群130Fのうち1300kVAを、一括して複数のコンデンサを回路から切り離し可能に構成したコンデンサ群に変えることによって、容量可変のコンデンサ群130Vと合わせ、可変分全体を2300kVAとした場合、その瞬間は若干の遅れ力率となるが、誘導加熱装置ならびに被加熱物を含めた系全体のインダクタンスが40%変動した場合でも、高電圧過電流トリップすることは無くなる。   Therefore, when 1300 kVA of the fixed capacitance capacitor group 130F is changed to a capacitor group configured such that a plurality of capacitors can be separated from the circuit in a lump, and combined with the variable capacitance capacitor group 130V, the entire variable amount is set to 2300 kVA At that moment, there is a slight delay power factor, but even if the inductance of the entire system including the induction heating device and the object to be heated fluctuates by 40%, a high voltage overcurrent trip will not occur.

また、従来のコンデンサ可変方式にて1300kVAを数段階に切離して使用するタイプの設備投資をした場合に比べ、本発明の方式の一括手動切離方式を採用した場合、建設コストは60%にて実施することができた。   Compared to the case where the investment of the type that uses 1300kVA in several steps with the conventional variable capacitor method is used, the construction cost is 60% when the collective manual disconnection method of the present invention is adopted. Could be implemented.

寿命に関しても、従来方式では4ヶ月程度の運転を行うと高電圧過電流トリップが多発し、耐火物としての残寿命があるにも関わらず交換を余儀なくされていたものが、耐火物寿命の6ヶ月まで使用可能となった。   With regard to the life, in the conventional method, when the operation is performed for about 4 months, high voltage overcurrent trips frequently occur, and the remaining life as a refractory has to be replaced. It became usable until a month.

なお、本例の場合、高圧ディスコン142は、図3に示すごとく、コンデンサ盤132とは別の高圧ディスコン収納盤140内に設け、コンデンサ盤132の外に別置きされる形にしてあるが、何もこのように別置きする必要はなく、高圧ディスコン142を、コンデンサ盤132内に設けても良い。   In the case of this example, as shown in FIG. 3, the high-voltage discon 142 is provided in a high-voltage discon storage board 140 that is different from the capacitor board 132 and is placed separately from the capacitor board 132. There is no need to place anything separately in this way, and the high voltage discon 142 may be provided in the capacitor panel 132.

一括して手動切離しするためのスイッチの種類も、高圧ディスコン142に限定されず、適用対象も溶銑保持炉に限定されない。   The type of switch for performing manual disconnection collectively is not limited to the high pressure discon 142, and the application target is not limited to the hot metal holding furnace.

本発明の一つの実施形態の電源装置を示す回路図The circuit diagram which shows the power supply device of one Embodiment of this invention 前記実施形態の高圧ディスコン収納盤を示す(A)正面図及び(B)側面図The (A) front view and (B) side view which show the high voltage | pressure discon storage board of the said embodiment. 前記実施形態のコンデンサ盤を示す斜視図The perspective view which shows the capacitor | condenser board of the said embodiment 本発明の適用対象の一例である溶銑保持炉を示す(A)全体図及び(B)詳細図The (A) whole figure and (B) detailed drawing which show the hot metal holding furnace which is an example of the application object of this invention 従来技術の電源装置を示す回路図Circuit diagram showing a conventional power supply device 従来のコンデンサ盤の一例を示す斜視図A perspective view showing an example of a conventional capacitor panel 誘導加熱装置の全体構成を示す図Diagram showing the overall configuration of the induction heating device

符号の説明Explanation of symbols

100…電源装置
130…コンデンサ
130F…容量固定コンデンサ
130V…容量可変コンデンサ
132…コンデンサ盤
136…ブスバー
138…スイッチ
140…高圧ディスコン収納盤
142…高圧ディスコン
144、300…ケーブル
200…誘導加熱装置本体
400…被加熱物
DESCRIPTION OF SYMBOLS 100 ... Power supply device 130 ... Capacitor 130F ... Capacitance fixed capacitor 130V ... Capacitance variable capacitor 132 ... Capacitor panel 136 ... Busbar 138 ... Switch 140 ... High voltage discon storage panel 142 ... High voltage discon 144, 300 ... Cable 200 ... Induction heating apparatus main body 400 ... Object to be heated

Claims (3)

容量固定コンデンサ群と容量可変コンデンサ群を備えた誘導加熱装置の電源装置において、
前記容量固定コンデンサ群の一部が、一括して回路から切り離し可能とされていることを特徴とする誘導加熱装置の電源装置。
In the power supply device of the induction heating device provided with a fixed capacitance capacitor group and a variable capacitance capacitor group,
A power supply device for an induction heating device, wherein a part of the fixed-capacitance capacitor group can be collectively separated from a circuit.
請求項1に記載の電源装置を備えたことを特徴とする誘導加熱装置。   An induction heating apparatus comprising the power supply device according to claim 1. 請求項2に記載の誘導加熱装置を備えたことを特徴とする溶銑保持炉。   A hot metal holding furnace comprising the induction heating device according to claim 2.
JP2006199057A 2006-07-21 2006-07-21 Power-supply unit for induction heating device, induction heating device, and hot metal holding furnace Pending JP2008027735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006199057A JP2008027735A (en) 2006-07-21 2006-07-21 Power-supply unit for induction heating device, induction heating device, and hot metal holding furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006199057A JP2008027735A (en) 2006-07-21 2006-07-21 Power-supply unit for induction heating device, induction heating device, and hot metal holding furnace

Publications (1)

Publication Number Publication Date
JP2008027735A true JP2008027735A (en) 2008-02-07

Family

ID=39118158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006199057A Pending JP2008027735A (en) 2006-07-21 2006-07-21 Power-supply unit for induction heating device, induction heating device, and hot metal holding furnace

Country Status (1)

Country Link
JP (1) JP2008027735A (en)

Similar Documents

Publication Publication Date Title
US20110156691A1 (en) Power supply arrangement for direct electrical heating of a pipeline system
CN109792811B (en) Converter-fed electric arc furnace with capacitor means in the secondary circuit
WO2009125645A1 (en) Induction heating apparatus and induction heating method
Maia et al. Survey on the electric arc furnace and ladle furnace electric system
RU2622890C1 (en) Method for switching-on, switching-off and regulating voltage of transformer substation
EP3065504B1 (en) Induction heating system
CA2583481C (en) Electronic circuit and method for feeding electric power to a alternating-current electric-arc furnace
JP2013236537A (en) Power supply device
JP2008027735A (en) Power-supply unit for induction heating device, induction heating device, and hot metal holding furnace
CA2817474A1 (en) The power supply arrangement with an inverter for producing a single-phase alternating current
CN108206526B (en) Capacitor switching partition control method and device
CN102573163B (en) High-voltage power supply of electron beam melting furnace
US6794618B2 (en) Method for electrical heating of furnaces for heat treatment of metallic workpieces
CN101228811B (en) Voltage transformer system for electric arc furnace with three electrodes
CN101420125B (en) Zero phase sequence resistance adjusting apparatus and method for zero phase sequence filter
KR101168901B1 (en) SCR power controller for Zinc pot with three inductor and controlling method therefore
WO2001004720A1 (en) Transformer with secondary voltage electronic adjustment
CN210744753U (en) Switching system of reactive power compensation device
Kurundwade et al. Management of power factor and harmonic
JP4685980B2 (en) Electric heating method of furnace for heat treatment of metal workpieces
JP2004220990A (en) Induction heating cooking device
EP1351263A1 (en) Combination of transformer and coil
Pardeshi et al. Overview of condition monitoring system for circuit breaker
KR101783117B1 (en) Electric circuit for electric arc furnace
SK622015A3 (en) Device for switch on and switch off DC circuits