JP2008026302A - Fluorescence detection type chemical biosensor and method for detecting specific substance in specimen using the same - Google Patents

Fluorescence detection type chemical biosensor and method for detecting specific substance in specimen using the same Download PDF

Info

Publication number
JP2008026302A
JP2008026302A JP2007006253A JP2007006253A JP2008026302A JP 2008026302 A JP2008026302 A JP 2008026302A JP 2007006253 A JP2007006253 A JP 2007006253A JP 2007006253 A JP2007006253 A JP 2007006253A JP 2008026302 A JP2008026302 A JP 2008026302A
Authority
JP
Japan
Prior art keywords
substance
fluorescence
solid substrate
specimen
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007006253A
Other languages
Japanese (ja)
Other versions
JP5004076B2 (en
Inventor
Nobuko Fukuda
伸子 福田
Kazuma Tsuboi
一真 坪井
Yoji Ushijima
洋史 牛島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007006253A priority Critical patent/JP5004076B2/en
Publication of JP2008026302A publication Critical patent/JP2008026302A/en
Application granted granted Critical
Publication of JP5004076B2 publication Critical patent/JP5004076B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluorescence detection type chemical biosensor and a detecting method that uses the same, capable of precisely detecting a specific substance in a specimen in a short time. <P>SOLUTION: The chemical biosensor is made up by immobilizing or applying a fluorescent derivatization material which does not emit fluorescence, having a detection wavelength but produces a material emitting the fluorescence, having the detection wavelength by a condensation reaction with the specific substance in the specimen, to the surface of a solid substrate. The fluorescence emitted from the material which is produced from the condensation reaction of the fluorescent derivatization material and the specific substance is detected, thereby enabling the specific substance in the specimen to be detected rapidly and with high accuracy. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、蛍光検出型ケミカルバイオセンサー及びそれを用いた検体中の特定物質の検出方法に関するものであり、特に、高速かつ高精度に測定することを可能とした蛍光検出ケミカルバイオセンサーに関する。   The present invention relates to a fluorescence detection type chemical biosensor and a method for detecting a specific substance in a specimen using the same, and more particularly to a fluorescence detection chemical biosensor capable of measuring at high speed and with high accuracy.

生体内で分泌される物質のうち、カテコールアミン類やインドールアミン類などの、その構造中に芳香環又は環状炭化水素と1級又は2級アミンを有する化学物質(生理活性アミン)の検出は、検体を蛍光誘導体化物質などで蛍光誘導化した後に液体クロマトグラフィーや電気泳動などで分離し、蛍光によって物質を特定することにより行われている(非特許文献1〜3,特許文献1〜4等参照)。
しかしながら、従来のこれらの方法は、蛍光誘導体化物質と検体中の特定物質との反応を行った後、液体クロマトグラフィーや電気泳動を用いるため、検出に時間が掛かるばかりでなく、一度に測定できる数に限りがあるという課題がある。
Among substances secreted in vivo, detection of chemical substances (biologically active amines) such as catecholamines and indoleamines that have aromatic or cyclic hydrocarbons and primary or secondary amines in their structures This is performed by derivatizing the product with a fluorescent derivatized substance, etc., and then separating the substance by liquid chromatography, electrophoresis, etc., and specifying the substance by fluorescence (see Non-Patent Documents 1-3, Patent Documents 1-4, etc.) ).
However, these conventional methods use liquid chromatography or electrophoresis after the reaction between the fluorescent derivatized substance and a specific substance in the sample, so that detection is not only time consuming but also can be measured at once. There is a problem that the number is limited.

一方、蛍光によって蛋白質等を検出するバイオセンサとしては、検出すべき検体と特異的に結合する物質、例えば抗原、抗体等を、平板状の基板に直接又は間接に固定化したものを用い、蛍光物質で標識した検体をその基板上に流し、前記物質に特異的に結合した検体を、標識に用いた蛍光物質の蛍光により検出することがおこなわれている(特許文献5、6参照)。
しかしながら、これらの方法では、検体を蛍光物質で標識するという工程を必要とするものであり、センサーを用いて検体を直ちに検出することはできないという問題がある。
“Analysis ofSingle Cells by Capillary Electrophoresis with On-Column Derivatization andLaser-Induced Fluorescence Detection”, S. Douglass Gilman et al., Anal. Chem.1995, 67, 58-64. “Determinationof Femtomole Concentrations of Catecholamines by High-performance LiquidChromatography with Peroxyoxalate”, S. Higashidate et al., Analyst 1992, 117,1863-1868.“An Invitation toBio-Analytical Chemistry”, K. Imai, Anal. Sci., 1998, 14, 257-264. “CatecholaminesDerivatized with 4-fluoro-7-nitro-2,1,3-benzoxadiazole: characterization ofchemical structure and fluorescence properties”, X. Zhu et al., Anal. Chim.Acta 2003, 478, 259-269. 特開平5−93690号公報 特開平5−149938号公報 特開平5−232026号公報 特開2002−286642号公報 特開2001−4630号公報 特開平10−311831号公報
On the other hand, as a biosensor for detecting a protein or the like by fluorescence, a substance that specifically binds to a specimen to be detected, for example, an antigen, an antibody, or the like immobilized directly or indirectly on a flat substrate is used. A specimen labeled with a substance is flowed on the substrate, and a specimen specifically bound to the substance is detected by fluorescence of a fluorescent substance used for labeling (see Patent Documents 5 and 6).
However, these methods require a step of labeling the specimen with a fluorescent substance, and there is a problem that the specimen cannot be detected immediately using a sensor.
“Analysis of Single Cells by Capillary Electrophoresis with On-Column Derivatization and Laser-Induced Fluorescence Detection”, S. Douglass Gilman et al., Anal. Chem. 1995, 67, 58-64. “Determinationof Femtomole Concentrations of Catecholamines by High-performance LiquidChromatography with Peroxyoxalate”, S. Higashidate et al., Analyst 1992, 117, 1863-1868. “An Invitation toBio-Analytical Chemistry”, K. Imai, Anal. Sci., 1998 , 14, 257-264. “CatecholaminesDerivatized with 4-fluoro-7-nitro-2,1,3-benzoxadiazole: characterization of chemical structure and fluorescence properties”, X. Zhu et al., Anal. Chim. Acta 2003, 478, 259-269. JP-A-5-93690 Japanese Patent Laid-Open No. 5-149938 Japanese Patent Laid-Open No. 5-232020 JP 2002-286642 A JP 2001-4630 A Japanese Patent Laid-Open No. 10-311831

本発明は、以上のような事情に鑑みてなされたものであって、検体中の特定物質を、蛍光物質による標識処理を必要とせずに高速度で、高精度に検出できる蛍光検出型ケミカルバイオセンサー、及びそれを利用した、短時間かつ高精度で分析する検出方法を提供することを目的とするものである。   The present invention has been made in view of the above circumstances, and is a fluorescence detection type chemical biotechnology that can detect a specific substance in a specimen at high speed and with high accuracy without requiring labeling treatment with a fluorescent substance. It is an object of the present invention to provide a sensor and a detection method using the sensor and analyzing it with high accuracy in a short time.

発明者らは、上記目的を達成すべく、鋭意研究を重ねた結果、検出波長では蛍光を発しないが、検体中の特定物質との縮合反応により検出波長の蛍光を有する物質を形成する蛍光誘導体化物質を、固体基板表面に固定化又は塗布してセンサーとなし、該基板上での蛍光誘導体化物質と特定物質の縮合反応により形成された物質から発せられる蛍光を検出することにより、検体中の特定物質を高速かつ高精度で検出することが可能となることを見出した。   As a result of intensive research to achieve the above-mentioned object, the inventors have made a fluorescent derivative that does not emit fluorescence at the detection wavelength but forms a substance having fluorescence at the detection wavelength by a condensation reaction with a specific substance in the specimen. By immobilizing or applying a fluorinated substance on the surface of a solid substrate to form a sensor and detecting fluorescence emitted from the substance formed by the condensation reaction of the fluorescent derivatized substance and the specific substance on the substrate, It has been found that it is possible to detect a specific substance at high speed and with high accuracy.

本発明は、これらの知見に基づいて完成に至ったものであり、以下のとおりのものである。
1)固体基板の表面に、検出波長では蛍光を発しない蛍光誘導体化物質を固定化又は塗布したセンサーであって、前記蛍光誘導体化物質は、検体中の特定物質と前記固体基板表面上で縮合反応して検出波長の蛍光を有する物質を形成するものであることを特徴とする蛍光検出型ケミカルバイオセンサー。
2)前記蛍光誘導体化物質は、前記固体基板表面に直接吸着又は共有結合されているか、又は高分子とともに前記固体基板上に塗布されているか、あるいは前記固体基板上に吸着又は化学結合された物質上に吸着又は化学結合されていることを特徴とする前記1)の蛍光検出型ケミカルバイオセンサー。
3)前記化学結合が、シランカップリング剤による結合を含むことを特徴とする前記2)の蛍光検出型ケミカルバイオセンサー。
4)前記固体基板は、ガラス、プラスチック、金属、金属酸化物、又は珪素を主成分として形成されていることを特徴とする前記1)〜3)のいずれかの蛍光検出型ケミカルバイオセンサー。
5)前記特定物質は、体内で分泌される物質であり、その構造中に芳香環又は環状炭化水素又は複素環と1級又は2級アミンを有することを特徴とする前記1)〜4)のいずれかの蛍光検出型ケミカルバイオセンサー。
6)検体中の特定物質を検出する方法であって、検出波長では蛍光を発しない蛍光誘導体化物質を固定化又は塗布した固体基板上に検体液を流し、該検体中の特定物質と前記蛍光誘導体化物質との縮合反応により検出波長の蛍光を有する物質を形成させ、その蛍光を検出することを特徴とする検出方法。
7)前記蛍光誘導体化物質は、前記固体基板表面に直接吸着又は共有結合されているか、又は高分子とともに前記固体基板上に塗布されているか、あるいは前記固体基板上に吸着又は化学結合された物質上に吸着又は化学結合されていることを特徴とする前記6)の検出方法。
8)前記特定物質は、体内で分泌される物質であり、その構造中に芳香環又は環状炭化水素又は複素環と1級又は2級アミンを有することを特徴とする前記6)又は7)の検出方法。
9)蛍光検出を行うために用いられる入射光は、前記固体基板上の前記蛍光誘導体化物質が固定化又は塗布された面、あるいはその反対側の面、あるいは前記固体基板の側面から照射されることを特徴とする前記6)〜8)のいずれかの検出方法。
10)検体中の前記特定物質と前記蛍光誘導体化物質との縮合反応により形成される物質の蛍光強度から、前記特定物質の質量あるいは表面濃度を測定することを特徴とする前記6)〜9)のいずれかの検出方法。
11)検体中の前記特定物質と前記蛍光誘導体化物質との縮合反応により形成される物質の蛍光スペクトルから、前記特定物質の種類を特定することを特徴とする前記6)〜9)のいずれかの検出方法。
The present invention has been completed based on these findings, and is as follows.
1) A sensor in which a fluorescent derivatized substance that does not emit fluorescence at a detection wavelength is immobilized on or applied to the surface of a solid substrate, and the fluorescent derivatized substance is condensed on a specific substance in the specimen on the surface of the solid substrate. A fluorescence detection type chemical biosensor characterized by reacting to form a substance having fluorescence of a detection wavelength.
2) The fluorescent derivatized substance is directly adsorbed or covalently bonded to the surface of the solid substrate, or is applied on the solid substrate together with a polymer, or is adsorbed or chemically bonded to the solid substrate. 1) The fluorescence detection type chemical biosensor according to 1) above, wherein the fluorescence detection type chemical biosensor is adsorbed or chemically bonded.
3) The fluorescence detection type chemical biosensor according to 2), wherein the chemical bond includes a bond by a silane coupling agent.
4) The fluorescence detection type chemical biosensor according to any one of 1) to 3), wherein the solid substrate is formed mainly of glass, plastic, metal, metal oxide, or silicon.
5) The specific substance is a substance secreted in the body, and has an aromatic ring, a cyclic hydrocarbon or a heterocyclic ring and a primary or secondary amine in the structure thereof. One of the fluorescence detection type chemical biosensors.
6) A method for detecting a specific substance in a specimen, in which a specimen liquid is flowed on a solid substrate on which a fluorescent derivatized substance that does not emit fluorescence at a detection wavelength is fixed or coated, and the specific substance in the specimen and the fluorescence A detection method comprising: forming a substance having fluorescence with a detection wavelength by a condensation reaction with a derivatized substance, and detecting the fluorescence.
7) The fluorescent derivatized substance is directly adsorbed or covalently bonded to the surface of the solid substrate, or is coated on the solid substrate together with a polymer, or is adsorbed or chemically bonded to the solid substrate. 6. The detection method according to 6) above, wherein the detection method is adsorbed or chemically bonded.
8) The specific substance is a substance secreted in the body, and has an aromatic ring, a cyclic hydrocarbon or a heterocyclic ring and a primary or secondary amine in the structure thereof. Detection method.
9) Incident light used for fluorescence detection is irradiated from the surface on which the fluorescent derivatization material is immobilized or applied on the solid substrate, the opposite surface, or the side surface of the solid substrate. The detection method according to any one of 6) to 8) above.
10) The mass or surface concentration of the specific substance is measured from the fluorescence intensity of the substance formed by the condensation reaction between the specific substance and the fluorescent derivatized substance in the specimen. Either detection method.
11) Any one of the above 6) to 9), wherein the type of the specific substance is specified from the fluorescence spectrum of the substance formed by the condensation reaction between the specific substance and the fluorescent derivatized substance in the specimen. Detection method.

従来法では検出前処理と液体クロマトグラフィーや電気泳動などの検出時間を合わせて、20〜60分を要するが、本発明では検体をセンサー上に流すだけで5分以内に蛍光検出が可能である。   In the conventional method, the detection pretreatment and the detection time such as liquid chromatography or electrophoresis require 20 to 60 minutes, but in the present invention, fluorescence can be detected within 5 minutes simply by flowing the sample over the sensor. .

以下、本発明の好ましい実施態様について、添付の図面に基づいて詳細に説明を加える。図1は、本発明の蛍光検出型ケミカルバイオセンサーの基板構造の概略図であり、図中、1は、固体基板を表し、2は、検出波長では蛍光を発しない蛍光誘導体化物質、又は該蛍光体物質と高分子からなる層を表している。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a schematic view of a substrate structure of a fluorescence detection type chemical biosensor of the present invention, wherein 1 represents a solid substrate, 2 represents a fluorescent derivatized substance that does not emit fluorescence at a detection wavelength, or It represents a layer composed of a phosphor material and a polymer.

本発明における固体基板1は、ケミカルバイオセンサーに求められる機械的強度を確保するための支持体としての役割を果たす。
基板の形状は、とくに限定されるものではないが、カード状又はディスク状に形成されているのが好ましい。
固体基板1を形成するための材料は、蛍光検出型ケミカルバイオセンサーの支持体として機能することができれば、とくに限定されるものではなく、例えば、ガラス、石英、セラミックス、プラスチックス、金属、金属酸化物又は珪素を主成分とするものなどによって形成することができる。このような樹脂としては、ポリカーボネート樹脂、オレフィン樹脂、アクリル樹脂、エポキシ樹脂、ポリスチレン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、シリコン樹脂、フッ素系樹脂、ABS樹脂、ウレタン樹脂、フェノール樹脂、ポリメチルメタクリレート樹脂、ポリイソブチルメタクリレート樹脂、ポリイミド樹脂などが挙げられる。
The solid substrate 1 in the present invention serves as a support for ensuring the mechanical strength required for a chemical biosensor.
The shape of the substrate is not particularly limited, but is preferably formed in a card shape or a disk shape.
The material for forming the solid substrate 1 is not particularly limited as long as it can function as a support for a fluorescence detection type chemical biosensor. For example, glass, quartz, ceramics, plastics, metal, metal oxidation It can be formed of a material or a material containing silicon as a main component. Such resins include polycarbonate resin, olefin resin, acrylic resin, epoxy resin, polystyrene resin, polyethylene resin, polypropylene resin, silicon resin, fluorine resin, ABS resin, urethane resin, phenol resin, polymethyl methacrylate resin, poly Examples thereof include isobutyl methacrylate resin and polyimide resin.

本発明において用いられる蛍光誘導体化物質とは、それ自体は検出波長で蛍光を発しないが、検体中の特定物質と縮合反応して、検出波長で蛍光を有する物質を形成するものである。このような蛍光誘導体化物質は、前述の従来の液体クロマトグラフィーや電気泳動を用いたカテコールアミン等の検出において既によく知られているものであって、例えば、以下のようなものが挙げられる。   The fluorescent derivatized substance used in the present invention itself does not emit fluorescence at the detection wavelength, but forms a substance having fluorescence at the detection wavelength by condensation reaction with a specific substance in the specimen. Such fluorescent derivatized substances are already well known in the detection of catecholamines and the like using the above-described conventional liquid chromatography and electrophoresis, and examples thereof include the following.

Figure 2008026302
Figure 2008026302
Figure 2008026302
Figure 2008026302
Figure 2008026302
Figure 2008026302
Figure 2008026302
Figure 2008026302
Figure 2008026302
Figure 2008026302
Figure 2008026302
Figure 2008026302
Figure 2008026302
Figure 2008026302

前記蛍光誘導体化物質は、固体基板表面に直接吸着又は共有結合等の化学結合により固定化するか、又は高分子とともに固体基板上に塗布して用いられる。あるいは、固体基板上に間接的に固定化させることもできる。すなわち、前述と同様にして固体基板表面に蛍光誘導化物質と親和性の高い物質を吸着又は化学結合させ、その物質上に、蛍光誘導体化物質を吸着又は化学結合させることもできる。
前記吸着により固定化する方法としては、前記固体基板表面のうち疎水性表面を有するものの表面に、疎水性の前記蛍光誘導体化物質を疎水性相互作用により物理吸着させるか、あるいは、前記蛍光誘導体化物質にイオン性官能基を導入し、帯電させた前記固体基板表面に静電吸着させることもできる。
また、前記共有結合等の化学結合により固定化する方法としては、例えば、前記固体基板上に、シランカップリング剤を介して、又は、さらに別の接続分子を介して化学結合させることができる。または、前記固体基板上に金・銀などの金属薄膜を蒸着し、チオール基を導入した前記蛍光誘導体化物質を金属薄膜上に化学結合させることができる。さらに、プラズマ処理やオゾン処理により、前記固体基板表面にヒドロキシル基を暴露させ、末端がアミノ基やカルボキシル基のポリアルキル鎖やポリエチレングリコール鎖などの高分子鎖を縮合することにより、前記固体基板表面に高分子を固定化し、その高分子中に前記蛍光誘導体化物質を染み込ませることもできる。
The fluorescent derivatizing substance is used by being immobilized on the surface of the solid substrate by chemical bonding such as direct adsorption or covalent bonding, or by being coated on a solid substrate together with a polymer. Alternatively, it can be indirectly immobilized on a solid substrate. That is, in the same manner as described above, a substance having high affinity with the fluorescence derivatizing substance can be adsorbed or chemically bonded to the surface of the solid substrate, and the fluorescent derivatized substance can be adsorbed or chemically bonded onto the substance.
As the method of immobilization by adsorption, the solid substrate surface having a hydrophobic surface is physically adsorbed by hydrophobic interaction with the hydrophobic fluorescent derivatized substance, or the fluorescent derivatization is performed. An ionic functional group may be introduced into the substance and electrostatically adsorbed on the charged solid substrate surface.
In addition, as a method of immobilizing by chemical bond such as covalent bond, for example, it can be chemically bonded to the solid substrate via a silane coupling agent or via another connecting molecule. Alternatively, a metal thin film such as gold or silver can be deposited on the solid substrate, and the fluorescent derivatized material into which the thiol group is introduced can be chemically bonded onto the metal thin film. Further, the surface of the solid substrate is exposed by exposing the hydroxyl group to the surface of the solid substrate by plasma treatment or ozone treatment, and condensing a polymer chain such as a polyalkyl chain or polyethylene glycol chain having an amino group or a carboxyl group at the end. It is also possible to immobilize the polymer and soak the fluorescent derivatized substance in the polymer.

さらに、前記蛍光誘導化物質を高分子とともに固体基板上に塗布する場合、用いる高分子としては、基板との親和性が高く、かつ固体基板上に薄く塗布できるものであって、蛍光誘導体化剤及び検体中の特定物質能のいずれとも反応しないものであれば、特に限定されないが、蛍光検出に影響しないように、光学的特性に優れた透明性の高いものが好ましく、例えば、ポリメチルメタクリレート、ポリスチレン、ポリイソブチルアクリレート等が挙げられ、中でもポリメチルメタクリレートは好ましい高分子の1例である。
また塗布方法も特に限定されないが、蛍光誘導体化物質を含んだ高分子溶液を薄膜状に均一に塗布できる点で、スピンコート法が好ましい。
Furthermore, when the fluorescence derivatizing substance is applied onto a solid substrate together with a polymer, the polymer used is one that has a high affinity with the substrate and can be applied thinly on the solid substrate. As long as it does not react with any of the specific substance capacities in the specimen, it is not particularly limited, but a highly transparent material excellent in optical properties is preferable so as not to affect fluorescence detection, for example, polymethyl methacrylate, Polystyrene, polyisobutyl acrylate and the like can be mentioned, among which polymethyl methacrylate is an example of a preferred polymer.
Also, the coating method is not particularly limited, but the spin coating method is preferable in that a polymer solution containing a fluorescent derivatizing substance can be uniformly coated in a thin film shape.

本発明の蛍光検出型ケミカルバイオセンサーにより検出しうる特定物質としては、上記蛍光誘導化物質との縮合反応により、検出波長で蛍光を有する物質を形成するものであればいずれのものでも用いることができ、具体的には、体内で分泌される物質であり、その構造中に芳香環又は環状炭化水素と1級又は2級アミンを有するものである。前述のとおり、こうした特徴を有する特定物質は既に知られているところであるが、具体的には以下のようなものが挙げられる。   As the specific substance that can be detected by the fluorescence detection type chemical biosensor of the present invention, any substance can be used as long as it forms a substance having fluorescence at the detection wavelength by the condensation reaction with the fluorescence derivatizing substance. Specifically, it is a substance secreted in the body, and has an aromatic ring or cyclic hydrocarbon and a primary or secondary amine in its structure. As described above, specific substances having such characteristics are already known, and specific examples include the following.

Figure 2008026302
Figure 2008026302
Figure 2008026302
Figure 2008026302
Figure 2008026302
Figure 2008026302
Figure 2008026302
Figure 2008026302
Figure 2008026302
Figure 2008026302

次に、本発明のセンサーを用いた検出方法について説明する。
本発明においては、前述の検出波長では蛍光を発しない蛍光誘導体化物質を固定化又は塗布した固体基板上に、検体液を流し、該検体中の特定物質と前記蛍光誘導体化物質との縮合反応により検出波長の蛍光を有する物質を形成させ、その蛍光を検出することにより、検体中の特定物質の有無を検出することができる。
Next, a detection method using the sensor of the present invention will be described.
In the present invention, a specimen liquid is flowed on a solid substrate on which a fluorescent derivatized substance that does not emit fluorescence at the aforementioned detection wavelength is immobilized or coated, and a condensation reaction between the specific substance in the specimen and the fluorescent derivatized substance By forming a substance having fluorescence with a detection wavelength by detecting the fluorescence, the presence or absence of the specific substance in the sample can be detected.

前記検体液は、検出すべき特定物質を充分に溶解しうる溶媒を用いて溶液とするとともに、緩衝液を用いてpHが8前後となるようにして調製される。ここで、蛍光誘導体化物質として前記(化1)又は(化2)を用いる場合、該検体との縮合反応時にフルオロ基がヒドロキシル基に置き換えられて、縮合反応が抑制されるのを防ぐため、アセトニトリルを等量比で混合し、これを検出に用いる。また、蛍光誘導体化物質として前記(化3)又は(化4)を用いる場合、シアン化ナトリウム水溶液を混合して用いる。さらに、前記(化5)又は(化6)を用いる場合、フェリシアンカリウムイオンを含む水溶液を混合して用いる。
こうして調製された検体液を前記固体基板上に流した後、しばらく静置して該検体中の特定物質と前記蛍光誘導体化物質との縮合反応を充分に行わせ、その後蒸留水でセンサー表面をリンスし、乾燥させる。
The sample solution is prepared using a solvent that can sufficiently dissolve the specific substance to be detected, and is prepared so that the pH is about 8 using a buffer solution. Here, when using the above (Chemical Formula 1) or (Chemical Formula 2) as the fluorescent derivatization substance, in order to prevent the condensation reaction from being suppressed by replacing the fluoro group with a hydroxyl group during the condensation reaction with the specimen, Acetonitrile is mixed in an equal ratio and used for detection. Further, when the above (Chemical Formula 3) or (Chemical Formula 4) is used as the fluorescent derivatizing substance, a sodium cyanide aqueous solution is mixed and used. Furthermore, when using the above (Chemical Formula 5) or (Chemical Formula 6), an aqueous solution containing ferricyanic potassium ions is mixed and used.
After flowing the specimen liquid thus prepared on the solid substrate, the specimen liquid is allowed to stand for a while to sufficiently perform a condensation reaction between the specific substance in the specimen and the fluorescent derivatized substance. Rinse and dry.

本発明の方法においては、このようにして作成されたセンサーに励起光を照射して、該検体中の特定物質と前記蛍光誘導体化物質との縮合反応により形成された物質から発生される蛍光を検出する。
例えば、蛍光誘導体化物質として前記(化1)で表される4−フルオロ−7−ニトロベンゾフラザン(NBD−F))を用いてドーパミンを検出する場合には、励起光として442nmの青色光を照射し、500〜520nmにピークを有する蛍光の有無を検出する。
In the method of the present invention, the fluorescence generated from the substance formed by the condensation reaction between the specific substance in the specimen and the fluorescent derivatized substance is irradiated by irradiating the sensor thus prepared with excitation light. To detect.
For example, when detecting dopamine using 4-fluoro-7-nitrobenzofurazan (NBD-F) represented by the above (Chemical Formula 1) as a fluorescent derivatizing substance, blue light of 442 nm is used as excitation light. , And the presence or absence of fluorescence having a peak at 500 to 520 nm is detected.

本発明の検出方法において、蛍光検出を行うために用いられる励起光は、前記固体基板上の前記蛍光誘導体化物質が固定化又は塗布された面に照射されても、あるいはその側面に照射されてもよく、また、前記固体基板が励起光を透過する材質である場合には、その反対側の面に照射されても良い。
また、本発明における蛍光の検出は、透過光、反射光、迷光などの影響がもっとも少ないことから、該入射光に対して直角方向から行われることが好ましい。
In the detection method of the present invention, the excitation light used for fluorescence detection is irradiated on the surface of the solid substrate on which the fluorescent derivatization substance is immobilized or applied, or on the side surface. In addition, when the solid substrate is made of a material that transmits excitation light, the opposite surface may be irradiated.
In addition, the detection of fluorescence in the present invention is preferably performed from a direction perpendicular to the incident light because it has the least influence of transmitted light, reflected light, stray light, and the like.

本発明の検出方法においては、その蛍光の強度から、前記特定物質の質量あるいは表面濃度を測定することができる。
この場合には、あらかじめ検出すべき特定物質の標準溶液の蛍光を異なった濃度で測定し、濃度と蛍光強度の関係(検量線)を作成しておくことが必要である。
In the detection method of the present invention, the mass or surface concentration of the specific substance can be measured from the intensity of the fluorescence.
In this case, it is necessary to measure the fluorescence of a standard solution of a specific substance to be detected at different concentrations in advance and create a relationship (calibration curve) between the concentration and the fluorescence intensity.

また本発明の検出方法においては、検体中の前記特定物質と前記蛍光誘導体化物質との縮合反応により形成される物質の蛍光スペクトルから、検体中に存在する特定物質の種類を特定することができる。   In the detection method of the present invention, the type of the specific substance present in the specimen can be identified from the fluorescence spectrum of the substance formed by the condensation reaction between the specific substance in the specimen and the fluorescent derivatized substance. .

次に本発明を実施例に基づき更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
(実施例1)
ポリメチルメタクリレート(PMMA:分子量〜15,000)及び蛍光誘導体化物質である4−フルオロ−7−ニトロベンゾフラザン(NBD−F)を、それぞれが5wt%及び0.5wt%となるように、ジクロロエタン及びトルエン(1:4)の混合溶媒に溶解し、合成石英基板上にスピンコート法によって塗布することにより、センサー表面を作製した。
ドーパミンを10μMの濃度で50mMのほう酸塩バッファー(pH8)200μLに溶解し、これに200μLのアセトニトリルを添加することにより、検体サンプルを調製した。
センサー表面に検体サンプル400μLを垂らし、5分間静置した後、蒸留水でセンサー表面をリンスし、窒素ガスでセンサー表面を乾燥した。
一方、比較例として、ドーパミンを含まないほう酸塩バッファー(pH8)を用いた以外は実施例1と同様にして、センサー表面に垂らし、乾燥した。
センサー表面に442nmの青色光を照射することによって蛍光スペクトル測定(日立蛍光分光光度計F−7000)を行ったところ、ドーパミンを含まないほう酸塩バッファーとアセトニトリルの混合液を垂らした比較例では、蛍光は検出されなかったのに対し、ドーパミンを含む検体サンプルを垂らした場合、520nm付近にピークを有するスペクトルを得ることができた。
EXAMPLES Next, although this invention is demonstrated further in detail based on an Example, this invention is not limited to these Examples.
(Example 1)
Polymethylmethacrylate (PMMA: molecular weight ˜15,000) and 4-fluoro-7-nitrobenzofurazan (NBD-F), which is a fluorescent derivatization substance, are adjusted to 5 wt% and 0.5 wt%, respectively. A sensor surface was prepared by dissolving in a mixed solvent of dichloroethane and toluene (1: 4) and applying the solution on a synthetic quartz substrate by a spin coating method.
A specimen sample was prepared by dissolving dopamine in 200 μL of 50 mM borate buffer (pH 8) at a concentration of 10 μM, and adding 200 μL of acetonitrile thereto.
A sample sample (400 μL) was dropped on the sensor surface, allowed to stand for 5 minutes, rinsed with distilled water, and dried with nitrogen gas.
On the other hand, as a comparative example, it was hung on the sensor surface and dried in the same manner as in Example 1 except that a borate buffer (pH 8) containing no dopamine was used.
Fluorescence spectrum measurement (Hitachi fluorescence spectrophotometer F-7000) was performed by irradiating the sensor surface with blue light of 442 nm. In a comparative example in which a mixed solution of borate buffer not containing dopamine and acetonitrile was dropped, Was not detected, but when a specimen sample containing dopamine was suspended, a spectrum having a peak near 520 nm could be obtained.

(実施例2)
実施例1における検体サンプル中のドーパミンの濃度を、1μM、10μM、100μM、1000μMに変化させ、実施例1と同様にして蛍光スペクトル測定を行った。
その結果を図2に示す。図2において、横軸は波長、縦軸は強度を示している。図2に示す結果から、蛍光スペクトル強度から、ドーパミンの質量あるいは表面濃度を測定することができることがわかる。
(Example 2)
The concentration of dopamine in the specimen sample in Example 1 was changed to 1 μM, 10 μM, 100 μM, and 1000 μM, and fluorescence spectrum measurement was performed in the same manner as in Example 1.
The result is shown in FIG. In FIG. 2, the horizontal axis represents wavelength and the vertical axis represents intensity. From the results shown in FIG. 2, it can be seen that the mass or surface concentration of dopamine can be measured from the fluorescence spectrum intensity.

(実施例3)
メチルメタクリレート−スチレン共重合体(P(MMA−co−St))及び蛍光誘導体化物質であるNBD−Fを、それぞれが10wt%及び0.4wt%となるように、ジクロロエタン及びトルエン(1:4)の混合溶媒に溶解し、合成石英基板上にスピンコート法によって塗布することにより、センサー表面を作製した。
ドーパミン及びヒスタミンを1000μMの濃度で50mMのほう酸塩バッファー(pH8)200μLにそれぞれ溶解し、これらに200μLのアセトニトリルを添加することにより、ドーパミン及びヒスタミンの検体サンプルを調製した。
センサー表面に検体サンプル400μLをそれぞれ垂らし、5分間静置した後、蒸留水でセンサー表面をリンスし、窒素ガスでセンサー表面を乾燥した。
センサー表面に442nmの青色光を照射することによって蛍光スペクトル測定(日立蛍光分光光度計F−7000)を行ったところ、図3に示すように、ドーパミンを含む検体サンプルでは509nmにピークが得られ、一方、ヒスタミンを含む検体サンプルでは、518nm付近にピークを有するスペクトルを得ることができた。
(Example 3)
Methyl methacrylate-styrene copolymer (P (MMA-co-St)) and NBD-F, which is a fluorescent derivatization substance, were mixed with dichloroethane and toluene (1: 4) so that they would be 10 wt% and 0.4 wt%, respectively. The solution was dissolved in a mixed solvent and applied onto a synthetic quartz substrate by a spin coating method to produce a sensor surface.
Dopamine and histamine were dissolved in 200 μL of 50 mM borate buffer (pH 8) at a concentration of 1000 μM, respectively, and 200 μL of acetonitrile was added thereto to prepare specimen samples of dopamine and histamine.
400 μL of each sample sample was hung on the sensor surface and allowed to stand for 5 minutes. The sensor surface was rinsed with distilled water, and the sensor surface was dried with nitrogen gas.
When fluorescence spectrum measurement (Hitachi fluorescence spectrophotometer F-7000) was performed by irradiating the sensor surface with blue light of 442 nm, as shown in FIG. 3, a peak was obtained at 509 nm in the specimen sample containing dopamine, On the other hand, in the specimen sample containing histamine, a spectrum having a peak near 518 nm could be obtained.

(実施例4)
メチルメタクリレート−スチレン共重合体(P(MMA−co−St))及び蛍光誘導体化物質である2,3−ナフタレンジアルデヒド(NDA)を、それぞれが10wt%及び1.0wt%となるように、ジクロロエタン及びトルエン(1:4)の混合溶媒に溶解し、無蛍光ガラス基板上にスピンコート法によって塗布することにより、センサー表面を作製した。
Example 4
Methyl methacrylate-styrene copolymer (P (MMA-co-St)) and 2,3-naphthalenedialdehyde (NDA), which is a fluorescent derivatization substance, are 10 wt% and 1.0 wt%, respectively. A sensor surface was prepared by dissolving in a mixed solvent of dichloroethane and toluene (1: 4) and applying the solution on a non-fluorescent glass substrate by a spin coating method.

ドーパミンを1000μMの濃度で50mMのほう酸塩バッファー(pH9.1)400μLに溶解し、これに100μLの0.01Mシアン化ナトリウム水溶液を添加することにより、検体サンプルを調製した。
センサー表面に検体サンプル500μLを垂らし、10分間静置した後、蒸留水でセンサー表面をリンスし、窒素ガスでセンサー表面を乾燥した。
センサー表面に442nmの青色光を照射することによって蛍光スペクトル測定(日立蛍光分光光度計F−7000)を行ったところ、図4に示すように、470nm付近にピークを有するスペクトルを得ることができた。
A specimen sample was prepared by dissolving dopamine in 400 μL of 50 mM borate buffer (pH 9.1) at a concentration of 1000 μM, and adding 100 μL of 0.01 M aqueous sodium cyanide solution thereto.
A sample sample (500 μL) was dropped on the sensor surface, allowed to stand for 10 minutes, rinsed with distilled water, and dried with nitrogen gas.
When the fluorescence spectrum measurement (Hitachi fluorescence spectrophotometer F-7000) was performed by irradiating the sensor surface with blue light of 442 nm, a spectrum having a peak near 470 nm could be obtained as shown in FIG. .

(実施例5)
以下の手順により、センサ表面を作成した。図5ないし図7は、その手順を模式的に示すものである。
(1)シランカップリング剤である3−アミノプロピルトリエトキシシラン(APS)を親水処理された合成石英ガラス基板表面に結合させることにより、表面をアミノ基で反応活性にする。(図5)
(2)次に表面がアミノ基で活性になった基板を、1,4−フェニレン−ジイソチオシアネート(PDIC)を含むほう酸バッファー(pH8)に浸漬し、チオ尿素結合を介してアミノ基にPDICを結合させる。(図6)
(3)その後、p−キシリレンジアミン(pXDA)を含むほう酸バッファー(pH8)に浸漬し、チオ尿素結合を介してPDICとpXDAを結合させることにより、末端にベンジルアミンが存在するセンサー表面を作製した。(図7)
(Example 5)
The sensor surface was created by the following procedure. 5 to 7 schematically show the procedure.
(1) By binding 3-aminopropyltriethoxysilane (APS), which is a silane coupling agent, to the surface of a synthetic quartz glass substrate that has been subjected to hydrophilic treatment, the surface is rendered reactive with amino groups. (Fig. 5)
(2) Next, the substrate whose surface is activated with amino groups is immersed in a boric acid buffer (pH 8) containing 1,4-phenylene-diisothiocyanate (PDIC), and the amino groups are connected to PDIC via thiourea bonds. Are combined. (Fig. 6)
(3) After that, it is immersed in a borate buffer (pH 8) containing p-xylylenediamine (pXDA), and PDIC and pXDA are bonded via a thiourea bond to produce a sensor surface having benzylamine at the terminal. did. (Fig. 7)

エピネフェリンを500μMの濃度で50mMのほう酸バッファー(pH9)に溶解した溶液中に、前記の作製されたセンサー表面を10分間曝した後、蒸留水でリンスし乾燥した。図8は、合成石英ガラス基板上に生成された蛍光体を模式的に示すものである。
実施例4と同様にして、蛍光スペクトル測定を375nmの励起により行った。図9は、蛍光スペクトルを示す図であり、実線はエピネフェリン反応前を、点線はエピネフェリン反応後を、それぞれ示している。
図9に示すように、470nm付近に、センサー表面のベンジルアミンとエピネフェリンとの反応により生成された蛍光体に起因する蛍光ピークが確認された。
The prepared sensor surface was exposed to a solution of epinephrine dissolved in 50 mM borate buffer (pH 9) at a concentration of 500 μM for 10 minutes, rinsed with distilled water, and dried. FIG. 8 schematically shows a phosphor produced on a synthetic quartz glass substrate.
In the same manner as in Example 4, the fluorescence spectrum was measured by excitation at 375 nm. FIG. 9 is a diagram showing a fluorescence spectrum, where a solid line indicates before the epinephrine reaction and a dotted line indicates after the epinephrine reaction.
As shown in FIG. 9, a fluorescence peak due to the phosphor produced by the reaction of benzylamine and epinephrine on the sensor surface was confirmed around 470 nm.

本発明の蛍光検出型ケミカルバイオセンサー及びそれを用いた検出方法によれば、カテコールアミン類やインドールアミン類などの、生体内で非常に微量に分泌される成分を、短時間かつ高速度で検出することができ、高血圧症や神経系疾患の診断に有用である。   According to the fluorescence detection type chemical biosensor of the present invention and the detection method using the same, components that are secreted in a very small amount in a living body such as catecholamines and indoleamines are detected in a short time and at a high speed. It is useful for diagnosis of hypertension and nervous system diseases.

蛍光検出型ケミカルバイオセンサー基板の構造図。FIG. 3 is a structural diagram of a fluorescence detection type chemical biosensor substrate. 特定物質ドーパミンが固体基板上に塗布されたPMMA膜中の蛍光誘導体化物質NBD−Fと縮合反応した結果得られる蛍光スペクトルを示す図。The figure which shows the fluorescence spectrum obtained as a result of carrying out the condensation reaction with the fluorescence derivatization substance NBD-F in the PMMA film | membrane with which the specific substance dopamine was apply | coated on the solid substrate. 特定物質ドーパミン及びヒスタミンが固体基板上にスピンコートされたP(MMA−co−St)膜中の蛍光誘導体化物質NBD−Fと縮合反応した結果得られる蛍光スペクトルを示す図。The figure which shows the fluorescence spectrum obtained as a result of carrying out the condensation reaction with the fluorescent derivatization substance NBD-F in the P (MMA-co-St) film | membrane spin-coated on the specific substance dopamine and histamine. 特定物質ドーパミンが固体基板上にスピンコートされたP(MMA−co−St)膜中の蛍光誘導体化物質NDAと縮合反応した結果得られる蛍光スペクトルを示す図。The figure which shows the fluorescence spectrum obtained as a result of condensation reaction with the fluorescence derivatization substance NDA in the P (MMA-co-St) film | membrane by which the specific substance dopamine was spin-coated on the solid substrate. シランカップリング剤である3−アミノプロピルトリエトキシシラン(APS)を親水処理された合成石英ガラス基板表面に結合させた様子を模式的に示す図。The figure which shows typically a mode that 3-aminopropyl triethoxysilane (APS) which is a silane coupling agent was combined with the synthetic quartz glass substrate surface by which the hydrophilic process was carried out. 表面がアミノ基で活性になった基板に、チオ尿素結合を介して1,4−フェニレン−ジイソチオシアネート(PDIC)を結合させた様子を模式的に示す図。The figure which shows typically a mode that 1, 4- phenylene diisothiocyanate (PDIC) was couple | bonded through the thiourea bond with the board | substrate which the surface became active by the amino group. チオ尿素結合を介してp−キシリレンジアミン(pXDA)を結合させることにより、末端にベンジルアミンが存在するセンサー表面が作製された様子を模式的に示す図。The figure which shows typically a mode that the sensor surface in which benzylamine exists in the terminal was produced by couple | bonding p-xylylenediamine (pXDA) through a thiourea coupling | bonding. 合成石英ガラス基板上に、ベンジルアミンとエピネフェリンとの反応により生成された蛍光体を模式的に示す図。The figure which shows typically the fluorescent substance produced | generated by reaction of benzylamine and epinephrine on a synthetic quartz glass substrate. センサー表面のベンジルアミンとエピネフェリンとの反応により生成された蛍光体の蛍光スペクトルを示す図。The figure which shows the fluorescence spectrum of the fluorescent substance produced | generated by reaction of the benzylamine on the sensor surface, and epinephrine.

符号の説明Explanation of symbols

1 固体基板
2 蛍光誘導体化物質、又は蛍光誘導体化物質を含む層
DESCRIPTION OF SYMBOLS 1 Solid substrate 2 Fluorescence derivatization substance or layer containing fluorescence derivatization substance

Claims (11)

固体基板の表面に、検出波長では蛍光を発しない蛍光誘導体化物質を固定化又は塗布したセンサーであって、前記蛍光誘導体化物質は、検体中の特定物質と前記固体基板表面上で縮合反応して検出波長の蛍光を有する物質を形成するものであることを特徴とする蛍光検出型ケミカルバイオセンサー。   A sensor in which a fluorescent derivatized substance that does not emit fluorescence at a detection wavelength is immobilized or coated on the surface of a solid substrate, and the fluorescent derivatized substance undergoes a condensation reaction with a specific substance in a specimen on the surface of the solid substrate. Forming a substance having fluorescence of a detection wavelength. 前記蛍光誘導体化物質は、前記固体基板表面に直接吸着又は共有結合されているか、又は高分子とともに前記固体基板上に塗布されているか、あるいは前記固体基板上に吸着又は化学結合された物質上に吸着又は化学結合されていることを特徴とする請求項1に記載の蛍光検出型ケミカルバイオセンサー。   The fluorescent derivatized substance is directly adsorbed or covalently bonded to the surface of the solid substrate, or coated on the solid substrate together with a polymer, or on a substance adsorbed or chemically bonded to the solid substrate. The fluorescence detection type chemical biosensor according to claim 1, wherein the fluorescence detection type chemical biosensor is adsorbed or chemically bonded. 前記化学結合が、シランカップリング剤による結合を含むことを特徴とする請求項2に記載の蛍光検出型ケミカルバイオセンサー。   The fluorescence detection type chemical biosensor according to claim 2, wherein the chemical bond includes a bond by a silane coupling agent. 前記固体基板は、ガラス、プラスチック、金属、金属酸化物、又は珪素を主成分として形成されていることを特徴とする請求項1〜3記載のいずれかに記載の蛍光検出型ケミカルバイオセンサー。   The fluorescence detection type chemical biosensor according to any one of claims 1 to 3, wherein the solid substrate is formed of glass, plastic, metal, metal oxide, or silicon as a main component. 前記特定物質は、体内で分泌される物質であり、その構造中に芳香環又は環状炭化水素又は複素環と1級又は2級アミンを有することを特徴とする請求項1〜4のいずれかに記載の蛍光検出型ケミカルバイオセンサー。   The specific substance is a substance secreted in the body, and has an aromatic ring, a cyclic hydrocarbon or a heterocyclic ring, and a primary or secondary amine in the structure thereof. The fluorescence detection type chemical biosensor described. 検体中の特定物質を検出する方法であって、検出波長では蛍光を発しない蛍光誘導体化物質を固定化又は塗布した固体基板上に検体液を流し、該検体中の特定物質と前記蛍光誘導体化物質との縮合反応により検出波長の蛍光を有する物質を形成させ、その蛍光を検出することを特徴とする検出方法。   A method for detecting a specific substance in a specimen, wherein a specimen liquid is flowed on a solid substrate on which a fluorescent derivatized substance that does not emit fluorescence at a detection wavelength is fixed or coated, and the specific substance in the specimen and the fluorescent derivatization are detected. A detection method comprising: forming a substance having fluorescence of a detection wavelength by a condensation reaction with a substance, and detecting the fluorescence. 前記蛍光誘導体化物質は、前記固体基板表面に直接吸着又は共有結合されているか、又は高分子とともに前記固体基板上に塗布されているか、あるいは前記固体基板上に吸着又は化学結合された物質上に吸着又は化学結合されていることを特徴とする請求項6に記載の検出方法。   The fluorescent derivatized substance is directly adsorbed or covalently bonded to the surface of the solid substrate, or coated on the solid substrate together with a polymer, or on a substance adsorbed or chemically bonded to the solid substrate. The detection method according to claim 6, wherein the detection method is adsorbed or chemically bonded. 前記特定物質は、体内で分泌される物質であり、その構造中に芳香環又は環状炭化水素又は複素環と1級又は2級アミンを有することを特徴とする請求項6又は7に記載の検出方法。   The detection according to claim 6 or 7, wherein the specific substance is a substance secreted in the body, and has an aromatic ring, a cyclic hydrocarbon or a heterocyclic ring, and a primary or secondary amine in its structure. Method. 蛍光検出を行うために用いられる入射光は、前記固体基板上の前記蛍光誘導体化物質が固定化又は塗布された面、あるいはその反対側の面、あるいは前記固体基板の側面から照射されることを特徴とする請求項6〜8のいずれかに記載の検出方法。   Incident light used for fluorescence detection is irradiated from the surface on which the fluorescent derivatization material is fixed or applied on the solid substrate, the opposite surface, or the side surface of the solid substrate. The detection method according to claim 6, wherein the detection method is characterized in that: 検体中の前記特定物質と前記蛍光誘導体化物質との縮合反応により形成される物質の蛍光強度から、前記特定物質の質量あるいは表面濃度を測定することを特徴とする請求項6〜9のいずれかに記載の検出方法。   10. The mass or surface concentration of the specific substance is measured from the fluorescence intensity of the substance formed by the condensation reaction between the specific substance and the fluorescent derivatized substance in the specimen. The detection method according to. 検体中の前記特定物質と前記蛍光誘導体化物質との縮合反応により形成される物質の蛍光スペクトルから、前記特定物質の種類を特定することを特徴とする請求項6〜9のいずれかに記載の検出方法。 The type of the specific substance is specified from a fluorescence spectrum of a substance formed by a condensation reaction between the specific substance and the fluorescent derivatized substance in a specimen. Detection method.
JP2007006253A 2006-06-19 2007-01-15 Fluorescence detection chemical biosensor and method for detecting a specific substance in a sample using the same Expired - Fee Related JP5004076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007006253A JP5004076B2 (en) 2006-06-19 2007-01-15 Fluorescence detection chemical biosensor and method for detecting a specific substance in a sample using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006168832 2006-06-19
JP2006168832 2006-06-19
JP2007006253A JP5004076B2 (en) 2006-06-19 2007-01-15 Fluorescence detection chemical biosensor and method for detecting a specific substance in a sample using the same

Publications (2)

Publication Number Publication Date
JP2008026302A true JP2008026302A (en) 2008-02-07
JP5004076B2 JP5004076B2 (en) 2012-08-22

Family

ID=39117064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007006253A Expired - Fee Related JP5004076B2 (en) 2006-06-19 2007-01-15 Fluorescence detection chemical biosensor and method for detecting a specific substance in a sample using the same

Country Status (1)

Country Link
JP (1) JP5004076B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9793104B2 (en) 2015-01-29 2017-10-17 Aixtron Se Preparing a semiconductor surface for epitaxial deposition

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH095238A (en) * 1995-06-22 1997-01-10 Bunshi Bio Hotonikusu Kenkyusho:Kk Novel chemiluminescence-labelling agent and, method and apparatus for measuring catecholamines
JPH1151934A (en) * 1997-07-31 1999-02-26 Kagakuhin Kensa Kyokai Analytical method and analyzer for biological component
JP2002286642A (en) * 2001-03-27 2002-10-03 Eikomu:Kk Method of analyzing physiologically active amine
JP2004515208A (en) * 2000-03-28 2004-05-27 ナノスフェアー インコーポレイテッド Oligonucleotide-attached nanoparticles and methods of use
JP2005253412A (en) * 2004-03-15 2005-09-22 Masayasu Suzuki Microwell array chip, method for producing the same and method for assaying specimen
JP2005326165A (en) * 2004-05-12 2005-11-24 Hitachi High-Technologies Corp Anti-tag antibody chip for analyzing interaction of protein
JP2006036664A (en) * 2004-07-23 2006-02-09 Terumo Corp Saccharide-measuring fluorescent monomer compound, saccharide-measuring fluorescent sensor substance and implantatble saccharide-measuring sensor
JP2006104140A (en) * 2004-10-07 2006-04-20 Terumo Corp Fluorescent monomer compound for measuring saccharides, fluorescent sensor substance for measuring saccharides, and saccharides-measuring sensor to be embedded in the body
JP2006514680A (en) * 2003-03-28 2006-05-11 テルモ株式会社 Solid-phase saccharide detection compound

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH095238A (en) * 1995-06-22 1997-01-10 Bunshi Bio Hotonikusu Kenkyusho:Kk Novel chemiluminescence-labelling agent and, method and apparatus for measuring catecholamines
JPH1151934A (en) * 1997-07-31 1999-02-26 Kagakuhin Kensa Kyokai Analytical method and analyzer for biological component
JP2004515208A (en) * 2000-03-28 2004-05-27 ナノスフェアー インコーポレイテッド Oligonucleotide-attached nanoparticles and methods of use
JP2002286642A (en) * 2001-03-27 2002-10-03 Eikomu:Kk Method of analyzing physiologically active amine
JP2006514680A (en) * 2003-03-28 2006-05-11 テルモ株式会社 Solid-phase saccharide detection compound
JP2005253412A (en) * 2004-03-15 2005-09-22 Masayasu Suzuki Microwell array chip, method for producing the same and method for assaying specimen
JP2005326165A (en) * 2004-05-12 2005-11-24 Hitachi High-Technologies Corp Anti-tag antibody chip for analyzing interaction of protein
JP2006036664A (en) * 2004-07-23 2006-02-09 Terumo Corp Saccharide-measuring fluorescent monomer compound, saccharide-measuring fluorescent sensor substance and implantatble saccharide-measuring sensor
JP2006104140A (en) * 2004-10-07 2006-04-20 Terumo Corp Fluorescent monomer compound for measuring saccharides, fluorescent sensor substance for measuring saccharides, and saccharides-measuring sensor to be embedded in the body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9793104B2 (en) 2015-01-29 2017-10-17 Aixtron Se Preparing a semiconductor surface for epitaxial deposition

Also Published As

Publication number Publication date
JP5004076B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
Tarannum et al. Molecularly imprinted polymers as receptors for assays of antibiotics
KR101483725B1 (en) Method and Apparatus for Detecting a Specific Molecule Using Surface-Enhanced Raman Spectroscopy
JP4253695B2 (en) Substance determination method and substance determination device
JP2007024498A (en) Immunoassay method and biochip
US7537934B2 (en) Chemiluminescence sensor array
US20140030821A1 (en) Localized plasmon enhancing fluorescence particles, localized plasmon enhanced fluorescence detecting carrier, localized plasmon enhanced fluorescence detecting apparatus, and fluorescence detecting method
JP2006275599A (en) Microsample holder, sensor set for microsample and method of detecting microsample
JP5004076B2 (en) Fluorescence detection chemical biosensor and method for detecting a specific substance in a sample using the same
JP2017166911A (en) Detection or quantification method for biomolecule and test kit for detection or quantification of biomolecule
JP2012502273A (en) Improved wire grid substrate structure and method of manufacturing such a substrate
JP4022816B2 (en) Protein or peptide kinetic analysis method and substrate for analysis
JP2007279027A (en) Method of inspecting biosensor surface
KR20080087317A (en) Protein chip for diagnosing porcine circovirus and method of diagnosing porcine circovirus using the chip
JP2008224327A (en) Biochip
KR100869909B1 (en) Detection method for the reaction between biomolecules and protein using biochip based on the monolayer of gold nanoparticles
CN1278116C (en) Probe of fiber optic chemical sensor
JP4849552B2 (en) Method for immobilizing fluorescent derivative substance on solid substrate surface
JP5344438B2 (en) Substrate for fixing substance, substrate for fixing substance, and analysis method
JP5056494B2 (en) Detection surface and method for forming the same
JP2010101850A (en) Immobilized carrier and producing method thereof
Sloan et al. A fibre‐optic calcium ion sensor using a calcein derivative
JP4099706B2 (en) Biochip for surface plasmon resonance measurement
JP3774460B2 (en) Substance detection method
US20020127732A1 (en) Process for the diagnosis of diseases, pathological states and pathophysiological as well as physiological measurement units
KR20030055483A (en) Biosensor using competitive binding, and kit and method for detecting biochemical analyte using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120514

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees