JP2008026078A - Method of manufacturing recessed chip - Google Patents

Method of manufacturing recessed chip Download PDF

Info

Publication number
JP2008026078A
JP2008026078A JP2006197189A JP2006197189A JP2008026078A JP 2008026078 A JP2008026078 A JP 2008026078A JP 2006197189 A JP2006197189 A JP 2006197189A JP 2006197189 A JP2006197189 A JP 2006197189A JP 2008026078 A JP2008026078 A JP 2008026078A
Authority
JP
Japan
Prior art keywords
photosensitive material
material layer
cover glass
substrate
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006197189A
Other languages
Japanese (ja)
Inventor
Norifumi Ikeda
憲文 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2006197189A priority Critical patent/JP2008026078A/en
Publication of JP2008026078A publication Critical patent/JP2008026078A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a recessed chip having a cover member closely bonded and fixed thereto and capable of effectively preventing the leak of a sample liquid. <P>SOLUTION: A photosensitive material layer 12 is formed to a substrate 11 by coating the substrate 11 with a photosensitive material and cover glass 13 is laminated to the photosensitive material layer 12 to be closely bonded thereto. Thereafter, the photosensitive material layer 12 is exposed to light through the cover glass 13 and developed to form a sample charging tank 21, a waste liquid tank 22, a flow channel 23 and a silica tank 25. If the flow channel 23 or the like is formed to the photosensitive material layer 12 as is conventional and covered with the cover glass 13 after cured, a gap is formed between the cover glass 13 and the photosensitive material layer 12 by the irregularity of the thickness of the photosensitive material layer 12 and a sample solution is leaked from the flow channel 23 to be penetrated in the gap. The photosensitive material layer 12 is cured by this manufacturing method after the cover glass 13 is placed, the cover glass 13 and the photosensitive material layer 12 can be closely bonded. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、チップ上に微細な流路、反応液槽等の凹部を形成した凹部形成チップの製造方法に関するものである。   The present invention relates to a method for manufacturing a recess-formed chip in which recesses such as fine flow paths and reaction liquid tanks are formed on a chip.

近年、細胞、DNA(deoxyribonucleic acid)やRNA(ribonucleic acid)などの生化学的な分析において、数百μm以下の幅の微細な流路を形成したチップが用いられることがある(特許文献1参照)。この流路の延在方向両端部に電極を形成し、両電極に電圧を印加することで、流路に導入した試料溶液中のDNAや細胞などを電気浸透流又は電気泳動によって移動させ、これにより当該DNAや細胞などの混合や分離などの操作を行うことができる。また、その流路を覆うようにしてカバー部材を積層することで、試料溶液の乾燥や試料溶液の流路からの漏出を防止できる。このような流路を形成する方法としては、機械加工(射出成形や切削加工等)によるほか、特許文献1に示すようにリソグラフィ技術を用いる方法が挙げられる。リソグラフィ技術を用いれば、極微細な流路も高精度にでき、かつ、量産が可能である。   In recent years, in biochemical analysis of cells, DNA (deoxyribonucleic acid), RNA (ribonucleic acid), and the like, a chip formed with a fine channel having a width of several hundred μm or less may be used (see Patent Document 1). ). Electrodes are formed at both ends of the flow channel in the extending direction, and a voltage is applied to both electrodes to move DNA or cells in the sample solution introduced into the flow channel by electroosmotic flow or electrophoresis. Thus, operations such as mixing and separation of the DNA and cells can be performed. Further, by laminating the cover member so as to cover the flow path, it is possible to prevent the sample solution from drying and the sample solution from leaking out from the flow path. As a method for forming such a flow path, there is a method using a lithography technique as shown in Patent Document 1 in addition to machining (injection molding, cutting, etc.). If lithography technology is used, extremely fine channels can be made with high accuracy and mass production is possible.

リソグラフィ技術を用いて製造する場合、まず、ガラスなどの基板上に感光性材料をスピンコータなどで塗布し、所定温度で加熱して有機成分を揮発させ(ソフトベーク)、感光性材料層を基板に定着させる。そして、流路パターンをプリントしたパターンマスクを感光性材料層に露光することで、感光性材料層に流路パターンを転写する。その後、現像により流路形成領域の感光性材料層を除去することで、流路が完成する。   When manufacturing using a lithography technique, first, a photosensitive material is applied onto a substrate such as glass with a spin coater, etc., and heated at a predetermined temperature to volatilize organic components (soft bake), and the photosensitive material layer is applied to the substrate. Let it settle. Then, the flow pattern is transferred to the photosensitive material layer by exposing the photosensitive material layer with a pattern mask on which the flow pattern is printed. Thereafter, the photosensitive material layer in the flow path forming region is removed by development to complete the flow path.

ここで、カバー部材を設ける場合には、流路が完成した後に感光性樹脂材料層にカバー部材を固定する。この場合、試料溶液の漏出等を防ぐべく、カバー部材と感光性材料層とを密着させる必要があり、このためには感光性材料層の表面を平坦にする必要がある。しかし、スピンコータで感光性材料を塗布した場合には、表面に凹凸が生じたり、感光性材料層の端部に盛り上がりが生じたりして、必要な平坦度を確保するのは難しい。   Here, when the cover member is provided, the cover member is fixed to the photosensitive resin material layer after the flow path is completed. In this case, in order to prevent leakage of the sample solution and the like, it is necessary to bring the cover member and the photosensitive material layer into close contact. For this purpose, the surface of the photosensitive material layer needs to be flattened. However, when the photosensitive material is applied by a spin coater, unevenness is generated on the surface, and the end of the photosensitive material layer is raised, so that it is difficult to ensure the required flatness.

これに対し、特許文献1では、感光性樹脂フィルムを基板に貼り付けることで感光性材料層を形成することで、平坦な表面を得ている。また、特許文献2では、スピンコート法により感光性材料を塗布する場合に、回転数を段階的に制御することで表面を均一にする技術が開示されている。
特開2004−286449号公報 特開2000−082647号公報
On the other hand, in patent document 1, the flat surface is obtained by forming the photosensitive material layer by affixing the photosensitive resin film on a board | substrate. Patent Document 2 discloses a technique for making the surface uniform by controlling the number of rotations stepwise when a photosensitive material is applied by a spin coating method.
JP 2004-286449 A JP 2000-082647 A

しかしながら、特許文献1のように感光性樹脂フィルムを用いる場合には、表面を平坦にできるものの、感光性樹脂材料の組成に制限がある他、感光性樹脂フィルムと基板との密着性が劣ると言う問題がある。
また、特許文献2の方法は、感光性材料層が薄い用途ではある程度の効果を得られる。しかし、流路を形成する用途では、感光性材料層を比較的厚くする必要があり、この場合には粘度の高い感光性材料を用いることが多いため、回転数を制御するのみでは均一な感光性材料層を形成することは難しい。これに対し、感光性材料層の硬化後に盛り上がった端部を切削除去したり、有機溶剤で溶解して除去したりすることも考えられるが、基板サイズが小さいと硬化後に端部だけを除去することは難しい。また、例えば、密着のために、カバー部材を感光性材料層に圧着すると、流路が潰れ、形状を維持できなくなる。
However, when a photosensitive resin film is used as in Patent Document 1, the surface can be flattened, but the composition of the photosensitive resin material is limited and the adhesion between the photosensitive resin film and the substrate is poor. There is a problem to say.
In addition, the method of Patent Document 2 can achieve a certain degree of effect in applications where the photosensitive material layer is thin. However, in applications where flow paths are formed, it is necessary to make the photosensitive material layer relatively thick. In this case, a photosensitive material having a high viscosity is often used. It is difficult to form a conductive material layer. On the other hand, it is possible to cut and remove the raised edge after curing of the photosensitive material layer or to dissolve and remove it with an organic solvent. However, if the substrate size is small, only the edge is removed after curing. It ’s difficult. For example, when the cover member is pressure-bonded to the photosensitive material layer for close contact, the flow path is crushed and the shape cannot be maintained.

本発明は上述の問題点に鑑みてなされたものであり、カバー部材が密着、固定され、試料溶液の漏出等を有効に防止できる凹部形成チップを提供することを目的とする。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a recess-forming chip in which a cover member is closely attached and fixed to effectively prevent leakage of a sample solution.

上記課題を解決するために、本発明の請求項1による凹部形成チップの製造方法は、基板に感光性材料層を積層し、当該感光性材料層を部分的に未形成とすることで表面に凹部を形成すると共に、前記感光性材料層に前記凹部の少なくとも一部を塞ぐようにしてカバー部材を積層してなる凹部形成チップの製造方法であって、前記基板に感光性材料を塗布し、前記感光性材料層を形成する工程と、透光性材料からなる前記カバー部材を前記感光性材料層に積層し、密着させる工程と、前記カバー部材を介して前記感光性樹脂層を露光し、露光後の感光性樹脂層を現像することで、前記凹部を形成する工程と、を備えることを特徴とする。   In order to solve the above-described problem, a method for manufacturing a recess-forming chip according to claim 1 of the present invention includes stacking a photosensitive material layer on a substrate and partially forming the photosensitive material layer on the surface. A method for producing a recess-forming chip formed by forming a recess and laminating a cover member so as to block at least a part of the recess in the photosensitive material layer, and applying a photosensitive material to the substrate, A step of forming the photosensitive material layer, a step of laminating the cover member made of a translucent material on the photosensitive material layer, and attaching the cover member; and exposing the photosensitive resin layer through the cover member; And developing the photosensitive resin layer after the exposure to form the concave portion.

本発明の請求項2による凹部形成チップの製造方法は、請求項1において、前記感光性材料層のベーク処理前に、前記カバー部材を積層することを特徴とする。
ここで、ベーク処理は、露光処理前に行なうプリベーク処理を含む意味である。
本発明の請求項3による凹部形成チップの製造方法は、請求項1又は2において、前記凹部形成チップを板面に沿う方向に揺動させながら、前記現像処理を施すことを特徴とする。
The manufacturing method of the recessed part formation chip | tip by Claim 2 of this invention is characterized by laminating | stacking the said cover member before baking processing of the said photosensitive material layer in Claim 1.
Here, the baking process includes a pre-bake process performed before the exposure process.
According to a third aspect of the present invention, there is provided a method for manufacturing a recess forming chip according to the first or second aspect, wherein the developing process is performed while the recess forming chip is swung in a direction along the plate surface.

本発明の製造方法によれば、カバー部材と感光性材料層とが密着し、試料溶液の漏出等を有効に防止可能な凹部形成チップを製造できる。   According to the manufacturing method of the present invention, it is possible to manufacture a recessed portion-forming chip that allows the cover member and the photosensitive material layer to be in close contact to effectively prevent leakage of the sample solution.

次に、図面を参照して本発明の実施の形態について説明する。
(凹部形成チップの構成)
図1は本実施形態に係る凹部形成チップ1の平面図、図2は図1のI−I線断面図、図3はII−II線断面図を示す。
凹部形成チップ1は、ガラス製の基板11と、基板11に部分的に積層する膜状電極14,14と、基板11又は膜状電極14,14に積層する感光性材料層12と、感光性材料層12に部分的に積層するカバーガラス13と、を備えて構成される。
Next, embodiments of the present invention will be described with reference to the drawings.
(Configuration of recessed portion forming chip)
1 is a plan view of a recess forming chip 1 according to the present embodiment, FIG. 2 is a cross-sectional view taken along the line II of FIG. 1, and FIG. 3 is a cross-sectional view taken along the line II-II.
The recess forming chip 1 includes a glass substrate 11, film electrodes 14 and 14 partially laminated on the substrate 11, a photosensitive material layer 12 laminated on the substrate 11 or film electrodes 14 and 14, and a photosensitive property. And a cover glass 13 partially laminated on the material layer 12.

そして、感光性材料層12を部分的に除去することで、試料投入槽21、廃液槽22、流路23及びシリカ槽25が形成されている。これら試料投入槽21、廃液槽22、流路23及びシリカ槽25は、本発明の凹部に相当する。図1では、試料投入槽21及び廃液槽22は略同一の形状であり、平面視で左右両側に矩形状にそれぞれ形成され、これらを連通する流路23が直線的に延在形成されている。また、その流路23の延在方向中央に流路23よりも幅の広いシリカ槽25が配されている。   Then, by partially removing the photosensitive material layer 12, a sample charging tank 21, a waste liquid tank 22, a flow path 23, and a silica tank 25 are formed. The sample charging tank 21, the waste liquid tank 22, the flow path 23, and the silica tank 25 correspond to the recesses of the present invention. In FIG. 1, the sample introduction tank 21 and the waste liquid tank 22 have substantially the same shape, and are formed in a rectangular shape on both the left and right sides in plan view, and a flow path 23 that communicates these is formed to extend linearly. . A silica tank 25 having a width wider than that of the flow path 23 is disposed in the center of the flow path 23 in the extending direction.

試料投入槽21及び廃液槽22は、試料溶液を投入又は回収するために用いられ、外部から試料溶液を投入又は廃棄できるように外部に露出している。また、試料投入槽21及び廃液槽22の形成領域には、膜状電極14,14がそれぞれ積層しており、試料投入槽21及び廃液槽22の底面を構成している。膜状電極14,14は、試料溶液を駆動するための電界を試料投入槽21及び廃液槽22間に形成する。本実施形態では、試料投入槽21側の膜状電極14を正極とし、廃液槽22側の膜状電極14を負極として直流電圧を印加させることで、試料溶液に電気浸透流を発生させ、試料投入槽21から廃液槽22に向かって流路23を介し移動させる。流路23は、試料溶液に含まれる検出対象物質が通過できるように、流路幅を検出対象物質の径よりも大きく設定する。例えば、試料溶液に含まれる直径20μm程度の細胞を検出するような場合には流路幅は少なくともこれよりも大きく設定する必要があるが、細胞破砕液からDNAや生体分子を検出するような場合にはこれよりも小さく設定できる。   The sample loading tank 21 and the waste liquid tank 22 are used for loading or collecting the sample solution, and are exposed to the outside so that the sample solution can be loaded or discarded from the outside. In addition, film electrodes 14 and 14 are laminated in the formation region of the sample charging tank 21 and the waste liquid tank 22, respectively, and constitute the bottom surfaces of the sample charging tank 21 and the waste liquid tank 22. The film electrodes 14 and 14 form an electric field for driving the sample solution between the sample introduction tank 21 and the waste liquid tank 22. In the present embodiment, a DC voltage is applied with the membrane electrode 14 on the sample loading tank 21 side as the positive electrode and the membrane electrode 14 on the waste liquid tank 22 side as the negative electrode, thereby generating an electroosmotic flow in the sample solution. It moves through the flow path 23 from the charging tank 21 toward the waste liquid tank 22. The channel 23 has a channel width larger than the diameter of the detection target substance so that the detection target substance contained in the sample solution can pass through. For example, when detecting cells having a diameter of about 20 μm contained in a sample solution, the flow path width needs to be set to be at least larger than this, but when detecting DNA or biomolecules from a cell disruption solution. Can be set smaller than this.

シリカ槽25は、内部に検出対象物質吸着用のシリカ粒子(図示せず)が配置されており、流路23を通って移動する試料溶液に含まれる検出対象物質(細胞、DNA、RNA、タンパク分子等)をトラップする。例えば、シリカ粒子表面に固相法によって検出対象DNAの一部に相補的な塩基配列のオリゴヌクレオチドを合成すれば、試料溶液から目的のDNAをトラップすることができる。この際、例えば、試料溶液中の全DNAを蛍光標識しておけば、流路に試料溶液を流し終わった後にシリカ粒子の蛍光強度を測定することで、試料溶液中における目的のDNA濃度を測定することができる。シリカ槽25形成領域及びその周辺の領域には、感光性材料層12にカバーガラス13が積層している。このように、カバーガラス13によってシリカ槽25とその周辺に形成された流路23を覆うことで、シリカ槽25内の試料溶液の蒸発、不純物の混入、槽外への試料溶液の漏出等を防止できる。   In the silica tank 25, silica particles (not shown) for adsorbing the detection target substance are arranged, and the detection target substances (cells, DNA, RNA, protein) contained in the sample solution that moves through the flow path 23. Trap molecules). For example, if an oligonucleotide having a base sequence complementary to a part of DNA to be detected is synthesized on the silica particle surface by a solid phase method, the target DNA can be trapped from the sample solution. In this case, for example, if all the DNA in the sample solution is fluorescently labeled, the target DNA concentration in the sample solution can be measured by measuring the fluorescence intensity of the silica particles after the sample solution has flowed through the flow path. can do. A cover glass 13 is laminated on the photosensitive material layer 12 in the area where the silica tank 25 is formed and the area around it. Thus, by covering the silica tank 25 and the flow path 23 formed in the periphery thereof with the cover glass 13, evaporation of the sample solution in the silica tank 25, mixing of impurities, leakage of the sample solution to the outside of the tank, etc. Can be prevented.

なお、本発明は、流路23等が図1のように配置される凹部形成チップ1への適用に限定されず、感光性材料に凹部を形成し、カバー部材を積層するものであれば適用可能である。例えば、2以上の流路が交差するように形成されたもの、シリカ槽を形成していないもの、ポンプ等で試料溶液を流動させるもの、電気泳動により試料溶液中の物質のみを流動させる構成のものなどであっても本発明を適用できる。   Note that the present invention is not limited to the application to the recess forming chip 1 in which the flow path 23 and the like are arranged as shown in FIG. Is possible. For example, a configuration in which two or more flow paths intersect, a configuration in which a silica tank is not formed, a configuration in which a sample solution is flowed with a pump, or a configuration in which only substances in the sample solution are flowed by electrophoresis The present invention can be applied even if it is a thing.

次に、上記各構成部材の材料等について説明する。
基板11は、感光性材料層12を支持する支持体であり、支持体として必要な強度を有する材料を用いることができ、ガラス(硼珪酸ガラス、石英ガラス等)の他、例えば、プラスチック(ポリスチレン、ポリメチルメタクリレート、ポリスルホン、ポリエステル等)やガラス繊維とプラスチックの複合材も用いることができる。これらのうち、ガラスや透光性プラスチックを用いると、露光時の反射を抑えることができる他、凹部形成チップ1を顕微鏡で観察しながら実験操作を行ったり、上記蛍光強度の測定等の光学的解析を行ったりする場合にも好適である。
Next, materials for the above-described constituent members will be described.
The substrate 11 is a support that supports the photosensitive material layer 12, and a material having a necessary strength as the support can be used. For example, plastic (polystyrene) is used in addition to glass (borosilicate glass, quartz glass, etc.). , Polymethyl methacrylate, polysulfone, polyester, etc.) and glass fiber and plastic composites can also be used. Among these, when glass or translucent plastic is used, reflection at the time of exposure can be suppressed, and an experimental operation can be performed while observing the recessed portion-forming chip 1 with a microscope, or optical measurement such as measurement of the fluorescence intensity can be performed. It is also suitable for analysis.

また、膜状電極14には、一般的に膜状電極の形成に用いられる電極材料を用いることができるが、本実施形態の用途では試料溶液にさらすため電解腐食等を防止する観点から、Pt、Au、Ag等の比較的標準電極電位の高い(正の値を持つような)材料を選択することが好ましい。また、ITO(Indium Tin Oxide)等の透明電極を用いると、凹部形成チップ1の透明性が維持できるので、上述のように凹部形成チップ1の光学的解析等を行う場合に好適である。また、必ずしも膜状電極として凹部形成チップ1に一体形成する必要はなく、別体形成された電極棒を試料溶液に浸すことで、駆動用の電極を形成してもよい。   In addition, an electrode material generally used for forming a film electrode can be used for the film electrode 14, but in the application of the present embodiment, since it is exposed to a sample solution, Pt is used from the viewpoint of preventing electrolytic corrosion and the like. It is preferable to select a material having a relatively high standard electrode potential (such as a positive value) such as Au, Ag, or the like. Further, when a transparent electrode such as ITO (Indium Tin Oxide) is used, the transparency of the recessed portion forming chip 1 can be maintained, which is preferable when performing optical analysis of the recessed portion forming chip 1 as described above. Further, it is not always necessary to integrally form the recess-forming chip 1 as a film-like electrode, and a driving electrode may be formed by immersing a separately formed electrode bar in the sample solution.

感光性材料は、主成分として感光性樹脂と、感光性樹脂に感光反応(架橋反応、主鎖切断、脱保護反応等)を行わせるための副成分(感光剤や酸発生剤等)と、を含有する。感光性材料としては、一般に用いられているものを用いることができ、ポジ型及びネガ型のいずれも用いることができる。
カバーガラス13は、本発明のカバー部材に相当するものである。本発明においては、後述するようにカバー部材を介して下部に積層する感光性材料層12の露光を行うので、カバー部材は、露光処理の際の照射光を透過する透光性を有するものである必要がある。このような性質を持つものでれば、ガラスの他、上記基板11に用いる材料として列挙したプラスチック等も用いることができる。また、透光性の材料を用いることで、上述のように、凹部形成チップ1の光学的解析が可能になる。
The photosensitive material includes a photosensitive resin as a main component, and subcomponents (photosensitive agent, acid generator, etc.) for causing the photosensitive resin to undergo a photosensitive reaction (crosslinking reaction, main chain cleavage, deprotection reaction, etc.) Containing. As the photosensitive material, a commonly used material can be used, and either a positive type or a negative type can be used.
The cover glass 13 corresponds to the cover member of the present invention. In the present invention, as will be described later, since the photosensitive material layer 12 laminated on the lower portion is exposed through the cover member, the cover member has translucency that transmits the irradiation light during the exposure process. There must be. If it has such a property, the plastics etc. which were enumerated as a material used for the said board | substrate 11 other than glass can also be used. Moreover, by using a translucent material, the optical analysis of the recessed portion forming chip 1 becomes possible as described above.

以上の観点から、本実施形態では、基板11に市販の硼珪酸ガラス(商品名:パイレックス(登録商標))を用いる。耐熱性に優れた硬質の硼珪酸ガラスを用いることで、凹部形成チップ1の作製工程における破損等を防止できる。また、感光性材料に化薬マイクロケム社製のネガ型フォトレジスト(商品名:SU−8)を用いる。また、膜状電極14は、Tiを下地として表面をPtの反応保護膜で覆った二層構造としている。Tiを下地とすることで基板11との密着性を向上させることができ、Ptを覆うことで電極反応を抑制できる。また、カバーガラス13は市販のものを用いる。なお、図1の例では、凹部形成チップ1のサイズは、長さ20mm、幅10mmであり、基板11の厚さは1mmである。カバーガラス13は、サイズが長さ10mm、幅5mm、厚さ0.15mmであり、その長手方向を基板11の短手方向に合わせてシリカ槽25上に配置されている。   From the above viewpoint, in this embodiment, a commercially available borosilicate glass (trade name: Pyrex (registered trademark)) is used for the substrate 11. By using a hard borosilicate glass excellent in heat resistance, damage or the like in the manufacturing process of the recess forming chip 1 can be prevented. Further, a negative photoresist (trade name: SU-8) manufactured by Kayaku Microchem Corporation is used as the photosensitive material. The film electrode 14 has a two-layer structure in which Ti is a base and the surface is covered with a Pt reaction protective film. Adhesion with the substrate 11 can be improved by using Ti as a base, and electrode reaction can be suppressed by covering Pt. A commercially available cover glass 13 is used. In the example of FIG. 1, the size of the recess forming chip 1 is 20 mm in length and 10 mm in width, and the thickness of the substrate 11 is 1 mm. The cover glass 13 has a length of 10 mm, a width of 5 mm, and a thickness of 0.15 mm. The cover glass 13 is arranged on the silica tank 25 with its longitudinal direction aligned with the short direction of the substrate 11.

(凹部形成チップの製造方法)
次に、上記本実施形態に係る構成の凹部形成チップ1の製造方法について図4を用いて説明する。図4は、図1のIII−III線断面図である。
まず、アセトンで基板11表面を洗浄する(図4(a))。
次に、上記基板11に膜状電極14,14を所定位置に形成する(図4(b))。膜状電極14は、物理蒸着(電子ビーム蒸着、イオンプレーティング、スパッタリングなど)や化学蒸着により形成することができる。
(Manufacturing method of recessed part forming chip)
Next, a manufacturing method of the recess forming chip 1 having the configuration according to the present embodiment will be described with reference to FIG. 4 is a cross-sectional view taken along line III-III in FIG.
First, the surface of the substrate 11 is cleaned with acetone (FIG. 4A).
Next, the film electrodes 14 are formed on the substrate 11 at predetermined positions (FIG. 4B). The film electrode 14 can be formed by physical vapor deposition (electron beam vapor deposition, ion plating, sputtering, etc.) or chemical vapor deposition.

次に、基板11表面全体に感光性材料を塗布し、感光性材料層12を形成する(図4(c))。具体的には、本実施形態では、基板11をスピンコータに取り付け、所定回転数で回転させることで、所定厚さの感光性材料層12を形成する。なお、スピンコートによらずスプレーコートにより塗布してもよいが、本発明の用途では層厚を比較的厚くするので、スピンコートによることが好ましい。   Next, a photosensitive material is applied to the entire surface of the substrate 11 to form a photosensitive material layer 12 (FIG. 4C). Specifically, in the present embodiment, the substrate 11 is attached to a spin coater and rotated at a predetermined rotational speed, thereby forming the photosensitive material layer 12 having a predetermined thickness. The coating may be performed by spray coating instead of spin coating. However, in the application of the present invention, it is preferable to use spin coating because the layer thickness is relatively thick.

次に、未硬化状態の感光性材料層12にカバーガラス13を載せ、互いの表面を密着させる(図4(d))。その後、所定温度でソフトベークを行ない、感光性材料層12中の溶剤を揮発させる。これにより、感光性材料層12は、カバーガラス13が密着した状態のまま硬化し、カバーガラス13は、感光性材料層12に固着する。   Next, the cover glass 13 is placed on the uncured photosensitive material layer 12 and the surfaces thereof are brought into close contact with each other (FIG. 4D). Thereafter, soft baking is performed at a predetermined temperature to volatilize the solvent in the photosensitive material layer 12. Thereby, the photosensitive material layer 12 is cured while the cover glass 13 is in close contact, and the cover glass 13 is fixed to the photosensitive material layer 12.

次に、上記基板11を露光し、感光性材料層12に流路パターンを焼き付ける(図4(e))。ここで、本実施形態における流路パターンは、流路23形成領域のみならず除去部分全体(試料投入槽21及び廃液槽22、流路23及びシリカ槽25の形成領域)と、それ以外の部分と、を表すパターンである。図4(e)ではパターンマスク4を用いて近接露光を行っており、上記のようにネガ型の感光性材料を用いているため、パターンマスク4は、感光性材料層12の除去部分に対応する領域が遮光領域となり、それ以外の部分が透光領域となっている。透光領域を透過した照射光によって、感光性材料層12は部分的に不溶化される。このとき、シリカ槽25形成領域にカバーガラス13が積層しているが、上述のように透光性のカバーガラス13を用いているので、照射光はこのカバーガラス13を透過し、当該積層部分の感光性材料にも流路パターンが焼き付けられる。
なお、カバーガラス13を積層する領域とその他の領域の段差を考慮し、より精度が要求される場合には、例えば、カバーガラス13が積層する部分とそれ以外の部分とを2ステップに分けて露光してもよい。また、上記のようにパターンマスク4を用いて光露光する場合に限定されず、電子ビームなどによって直描してもよい。
Next, the substrate 11 is exposed, and a flow path pattern is baked on the photosensitive material layer 12 (FIG. 4E). Here, the flow path pattern in this embodiment includes not only the flow path 23 formation area but also the entire removal part (formation area of the sample introduction tank 21 and the waste liquid tank 22, the flow path 23 and the silica tank 25), and other parts. It is a pattern that represents. In FIG. 4E, the proximity exposure is performed using the pattern mask 4 and the negative photosensitive material is used as described above. Therefore, the pattern mask 4 corresponds to the removed portion of the photosensitive material layer 12. The area to be used is a light shielding area, and the other part is a light transmitting area. The photosensitive material layer 12 is partially insolubilized by the irradiation light transmitted through the light transmitting region. At this time, the cover glass 13 is laminated in the area where the silica tank 25 is formed. Since the translucent cover glass 13 is used as described above, the irradiated light passes through the cover glass 13 and the laminated portion. The flow path pattern is also baked on the photosensitive material.
In addition, in consideration of the level difference between the region where the cover glass 13 is laminated and other regions, if more accuracy is required, for example, the portion where the cover glass 13 is laminated and the other portion are divided into two steps. You may expose. Moreover, it is not limited to the case where it exposes using the pattern mask 4 as mentioned above, You may draw directly with an electron beam.

次に、上記基板11を現像する(図4(f))。これにより、感光性材料層12のうち、露光過程で照射光を受けた領域は溶解することなくそのまま残り、遮光された領域は溶解、除去され、凹状の試料投入槽21及び廃液槽22、流路23及びシリカ槽25が形成される。このとき、基板11を流路23の延在方向に揺動させながら現像を行うと、現像液や溶解物が流路23を流れ、カバーガラス13が積層している領域の現像を促進できるので好ましい。   Next, the substrate 11 is developed (FIG. 4F). As a result, the region of the photosensitive material layer 12 that has received the irradiation light in the exposure process remains without being dissolved, and the light-shielded region is dissolved and removed, so that the concave sample feeding tank 21 and the waste liquid tank 22 are flown. A passage 23 and a silica tank 25 are formed. At this time, if development is performed while the substrate 11 is swung in the extending direction of the flow path 23, the developer or dissolved material flows through the flow path 23, and development of the area where the cover glass 13 is laminated can be promoted. preferable.

なお、図示しないが、現像後、流路23にシリカ粒子を流し込むことで、シリカ槽25内部にシリカ粒子を配置する。
以上のように、透光性のカバーガラス13を硬化前の感光性材料層12に密着させ、その状態で感光性材料層12の露光、現像を行うことで、カバーガラス13の積層領域にも流路23を形成する。これにより、感光性材料層12を平坦にするためにカバーガラス13を圧着することで流路23を押し潰したりすることなく、カバーガラス13を密着、固定することができ、試料溶液の流路23からの漏出等を防止できる。
Although not shown, the silica particles are arranged inside the silica tank 25 by flowing the silica particles into the flow path 23 after development.
As described above, the translucent cover glass 13 is brought into close contact with the photosensitive material layer 12 before curing, and the photosensitive material layer 12 is exposed and developed in this state, so that the cover glass 13 is also laminated. A flow path 23 is formed. Accordingly, the cover glass 13 can be adhered and fixed without crushing the flow path 23 by pressing the cover glass 13 in order to flatten the photosensitive material layer 12, and the flow path of the sample solution Leakage from 23 can be prevented.

本実施形態に係る凹部形成チップの平面図である。It is a top view of the recessed part formation chip | tip which concerns on this embodiment. 図1のI−I線断面図である。It is the II sectional view taken on the line of FIG. 図1のII−II線断面図である。It is the II-II sectional view taken on the line of FIG. 本実施形態の製造方法を説明するための図である(図1のIII−III線断面図)。It is a figure for demonstrating the manufacturing method of this embodiment (III-III sectional view taken on the line of FIG. 1).

符号の説明Explanation of symbols

1 凹部形成チップ、11 基板、12 感光性材料層、13 カバーガラス、14 膜状電極、21試料投入槽、22 廃液槽、23 流路、25 シリカ槽、4 パターンマスク DESCRIPTION OF SYMBOLS 1 Recessed chip | tip, 11 Substrate, 12 Photosensitive material layer, 13 Cover glass, 14 Film electrode, 21 Sample input tank, 22 Waste liquid tank, 23 Channel, 25 Silica tank, 4 Pattern mask

Claims (3)

基板に感光性材料層を積層し、当該感光性材料層を部分的に未形成とすることで表面に凹部を形成すると共に、前記感光性材料層に前記凹部の少なくとも一部を塞ぐようにしてカバー部材を積層してなる凹部形成チップの製造方法であって、
前記基板に感光性材料を塗布し、前記感光性材料層を形成する工程と、
透光性材料からなる前記カバー部材を前記感光性材料層に積層し、密着させる工程と、
前記カバー部材を介して前記感光性樹脂層を露光し、露光後の感光性樹脂層を現像することで、前記凹部を形成する工程と、
を備えることを特徴とする凹部形成チップの製造方法。
A photosensitive material layer is laminated on the substrate, and a concave portion is formed on the surface by partially forming the photosensitive material layer, and at least a part of the concave portion is blocked by the photosensitive material layer. A method for manufacturing a recess-forming chip formed by laminating cover members,
Applying a photosensitive material to the substrate to form the photosensitive material layer;
Laminating the cover member made of a light-transmitting material on the photosensitive material layer and bringing it into close contact;
Exposing the photosensitive resin layer through the cover member, and developing the exposed photosensitive resin layer to form the concave portion; and
The manufacturing method of the recessed part formation chip | tip characterized by the above-mentioned.
前記感光性材料層のベーク処理前に、前記カバー部材を積層することを特徴とする請求項1に記載の凹部形成チップの製造方法。   The method for manufacturing a recess-forming chip according to claim 1, wherein the cover member is laminated before baking the photosensitive material layer. 前記凹部形成チップを板面に沿う方向に揺動させながら、前記現像処理を施すことを特徴とする請求項1又は2に記載の凹部形成チップの製造方法。   The method for manufacturing a recess forming chip according to claim 1, wherein the developing process is performed while the recess forming chip is swung in a direction along a plate surface.
JP2006197189A 2006-07-19 2006-07-19 Method of manufacturing recessed chip Pending JP2008026078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006197189A JP2008026078A (en) 2006-07-19 2006-07-19 Method of manufacturing recessed chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006197189A JP2008026078A (en) 2006-07-19 2006-07-19 Method of manufacturing recessed chip

Publications (1)

Publication Number Publication Date
JP2008026078A true JP2008026078A (en) 2008-02-07

Family

ID=39116863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006197189A Pending JP2008026078A (en) 2006-07-19 2006-07-19 Method of manufacturing recessed chip

Country Status (1)

Country Link
JP (1) JP2008026078A (en)

Similar Documents

Publication Publication Date Title
US6440645B1 (en) Production of microstructures for use in assays
Lu et al. Patterned paper as a low-cost, flexible substrate for rapid prototyping of PDMS microdevices via “liquid molding”
WO2018040277A1 (en) Method for manufacturing multilayer microfluidic chip suitable for batch production
CN104743506B (en) It is prepared by the replica Mold Making of micro-fluidic chip and its fluidic chip detecting system
JP2009528513A (en) Method for manufacturing an array of capillaries on a chip
US9885692B2 (en) Method for producing a chromatography-enrichment column
RU2748273C9 (en) Nano-imprinted substrate
JP2002139419A (en) Micropassage element and production method thereof
JP2003285298A (en) Micro-channel device and method of manufacturing the same
CN112543678A (en) Patterned microfluidic devices and methods of making the same
KR100867851B1 (en) A manufacturing process of microfluidics applied devices those are made of plastics
JP2008026078A (en) Method of manufacturing recessed chip
JP4387624B2 (en) Sample preparation device
JP4966694B2 (en) Manufacturing method of microstructured mold
KR100834129B1 (en) Lab-on-a-disk and manufacturing method of lab-on-a-disk and manufacturing apparatus of lab-on-a-disk
CN112816535B (en) Patterned electrode, and preparation method and application thereof
TWI422823B (en) Manufacturing method of a test strip
CN117467529A (en) DPCR chip, preparation method, detection method and detection device
US9835599B2 (en) Method for producing a chromatography analysis column
JP4944640B2 (en) Manufacturing method of microstructured mold
Duarte Label-free cell sorting using carbon-electrode dielectrophoresis and centrifugal microfluidics
US20240076725A1 (en) Microfluidic substrate, microfluidic chip, methods for preparing and using the chip
WO2012075644A1 (en) Method for manufacturing fluid-detecting test piece
JP2004286449A (en) Micro-analysis chip, its manufacturing method and analyzer using the same
KR20050000585A (en) Method for manufacturing microchip