JP2008026018A - Piezoelectric single crystal vibrator and piezoelectric vibration gyroscope - Google Patents

Piezoelectric single crystal vibrator and piezoelectric vibration gyroscope Download PDF

Info

Publication number
JP2008026018A
JP2008026018A JP2006195548A JP2006195548A JP2008026018A JP 2008026018 A JP2008026018 A JP 2008026018A JP 2006195548 A JP2006195548 A JP 2006195548A JP 2006195548 A JP2006195548 A JP 2006195548A JP 2008026018 A JP2008026018 A JP 2008026018A
Authority
JP
Japan
Prior art keywords
single crystal
piezoelectric single
piezoelectric
electrode
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006195548A
Other languages
Japanese (ja)
Other versions
JP5030135B2 (en
Inventor
Koichi Okamoto
幸一 岡本
Koichi Shuda
浩一 習田
Akiko Oshima
亜希子 大島
Takeshi Mizuno
豪 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2006195548A priority Critical patent/JP5030135B2/en
Publication of JP2008026018A publication Critical patent/JP2008026018A/en
Application granted granted Critical
Publication of JP5030135B2 publication Critical patent/JP5030135B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gyroscopes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small sized and a low cost piezoelectric single crystal vibrator and a piezoelectric vibration gyroscope constituted by using the piezoelectric single crystal vibrator while maintaining the mounting reliability of the piezoelectric single crystal vibrator. <P>SOLUTION: Four arms 12a, 12b, 12c and 12d are connected at the center of the piezoelectric vibrator 1, an insulation membrane 20 is formed on detection electrodes 15, 16, 17, 18, and a reference electrode 19 so as to mask them and insulate each electrode electrically, thus prevent the generation of short circuit with the other electrode is prevented. The yield is increased while improving the reliability. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、圧電単結晶材料を用いた圧電単結晶振動子およびそれを用いて構成された圧電振動ジャイロに関するもので、特に圧電単結晶振動子の構造および実装方法に関するものである。   The present invention relates to a piezoelectric single crystal vibrator using a piezoelectric single crystal material and a piezoelectric vibration gyro configured using the piezoelectric single crystal vibrator, and more particularly to a structure and mounting method of a piezoelectric single crystal vibrator.

圧電振動子は、センサ、発振器、表面弾性波フィルタ、超音波モータ、音響素子、トランスなど、幅広い分野に用いられている。圧電振動子に用いられる圧電材料の中でも、特に圧電単結晶材料は、一般に機械的品質係数(以下、Qmと表す)が高く、温度変化に対する特性変化が小さく、材料が均一で信頼性が高く、材料の量産性が優れている等の特徴があり、特にセンサ、発振器、表面弾性波フィルタなど、電子部品向けの振動子としてよく用いられている。   Piezoelectric vibrators are used in a wide range of fields such as sensors, oscillators, surface acoustic wave filters, ultrasonic motors, acoustic elements, transformers, and the like. Among piezoelectric materials used for piezoelectric vibrators, in particular, piezoelectric single crystal materials generally have a high mechanical quality factor (hereinafter referred to as Qm), a small characteristic change with respect to a temperature change, a uniform material and high reliability, It is characterized by excellent mass productivity of materials and is often used as a vibrator for electronic parts such as sensors, oscillators, surface acoustic wave filters, and the like.

これらの圧電単結晶材料を用いた圧電振動子を大量生産する場合の一例として、以下のような製法が用いられる。まず、圧電単結晶のウエハーに電極となる金属薄膜をスパッタや真空蒸着等で成膜し、いわゆるフォトリソグラフでレジストをパターニングした後、金属薄膜をエッチングして電極パターンを形成する。その後、再びフォトリソグラフでレジストをパターニングして、圧電単結晶をエッチング処理したり、またはサンドブラストで研削したりして所望の振動子形状に加工し、最後にダイシングソーで振動子を個片に切り分けることで、1枚のウエハーから多数の圧電単結晶振動子を得ている。   As an example of mass production of piezoelectric vibrators using these piezoelectric single crystal materials, the following manufacturing method is used. First, a metal thin film serving as an electrode is formed on a piezoelectric single crystal wafer by sputtering, vacuum deposition, or the like, a resist is patterned by so-called photolithography, and then the metal thin film is etched to form an electrode pattern. After that, the resist is patterned again by photolithography, and the piezoelectric single crystal is etched or sandblasted to be processed into a desired vibrator shape. Finally, the vibrator is cut into individual pieces by a dicing saw. Thus, a large number of piezoelectric single crystal vibrators are obtained from one wafer.

携帯電話、携帯オーディオ、デジタルカメラなどの携帯機器の市場が益々大きくなっていく中で、それに使用される電子部品の小型化、高機能化、低コスト化が強く要求されている。圧電単結晶振動子を用いた電子部品の場合、圧電単結晶振動子の振動を阻害することなく圧電単結晶振動子を回路基板上に固定し、かつ所望の機能を働かせるために圧電単結晶振動子と回路基板を電気的に接続する実装手段が必要となる。これらの圧電単結晶振動子を信号処理回路が配線された回路基板に実装する方法として、ワイヤーボンディング法、GGI法(Gold to Gold Interconnection)、あるいは導電接着剤を用いた方法があり、これらの方法で実装配線し、最後に封止して製品としている。   As the market for portable devices such as mobile phones, portable audios, and digital cameras grows larger, there is a strong demand for downsizing, higher functionality, and lower costs of electronic components used in the market. In the case of electronic parts using a piezoelectric single crystal vibrator, the piezoelectric single crystal vibration is used to fix the piezoelectric single crystal vibrator on the circuit board without hindering the vibration of the piezoelectric single crystal vibrator and to perform a desired function. A mounting means for electrically connecting the child and the circuit board is required. As a method of mounting these piezoelectric single crystal vibrators on a circuit board on which a signal processing circuit is wired, there are a wire bonding method, a GGI method (Gold to Gold Interconnection), or a method using a conductive adhesive. After mounting and wiring, the product is sealed at the end.

特許文献1には、ワイヤーボンディング法により接続された圧電デバイスの例が開示されている。   Patent Document 1 discloses an example of a piezoelectric device connected by a wire bonding method.

また、特許文献2には、電極とICチップとをGGI法により電気的に接続した磁気センサの例が開示されている。   Patent Document 2 discloses an example of a magnetic sensor in which an electrode and an IC chip are electrically connected by a GGI method.

また、特許文献3には、電極と圧電基板とを導電接着剤を用いて接着した表面弾性波フィルタの例が開示されている。   Patent Document 3 discloses an example of a surface acoustic wave filter in which an electrode and a piezoelectric substrate are bonded using a conductive adhesive.

特開2005−094461号公報JP 2005-094461 A 特開2005−003477号公報JP 2005-003477 A 特開平11−251867号公報Japanese Patent Laid-Open No. 11-251867

特許文献1に開示されているワイヤーボンディング法を使用する場合、圧電単結晶振動子を回路基板に接着剤で固定し、圧電単結晶振動子の電極と回路基板の電極とにワイヤーを引き回して電気的な接続を取る際、ワイヤーを引き回すための空間が必要となり、また圧電単結晶振動子の電極と回路基板の電極との距離がある程度必要といった問題があり、小型化に不利であった。また、実装が接着固定、配線と2段階の工程となるので製造コストが高くなってしまうという問題もあった。   When the wire bonding method disclosed in Patent Document 1 is used, the piezoelectric single crystal vibrator is fixed to the circuit board with an adhesive, and the wire is routed between the electrode of the piezoelectric single crystal vibrator and the electrode of the circuit board. In order to make a simple connection, there is a problem that a space for routing the wire is required, and there is a problem that a certain distance is required between the electrode of the piezoelectric single crystal vibrator and the electrode of the circuit board. In addition, since the mounting is a two-step process including adhesive fixing and wiring, there is also a problem that the manufacturing cost increases.

特許文献2に開示しているGGI法を使用する場合、固定と電気的接続を同時にできるが、金(Au)を使用するために材料コストの高騰、さらにGGI法だけでは接続強度が不足するため、一般的に補強のためのシリコーン等によるアンダーフィル材が必要となり、そのために材料コスト、製造コストが高くなってしまうという問題もあった。   When the GGI method disclosed in Patent Document 2 is used, fixing and electrical connection can be performed at the same time. However, since gold (Au) is used, the material cost increases, and the connection strength is insufficient only by the GGI method. In general, an underfill material made of silicone or the like for reinforcement is required, which causes a problem that the material cost and the manufacturing cost increase.

また、特許文献3に開示している導電接着剤を用いた場合、固定と電気的接続が同時にできるので製造コストを抑えることができ、また金(Au)よりも価格的に安い銀(Ag)を一般的に用いるので、材料コストも抑えることができ、接着強度を確保しながら接着剤塗布面積を小さくすれば製品の小型化にも対応が可能となる。このように、ワイヤボンディング法やGGI法と比較して、導電接着剤を使用する方法は、あらゆる面で有利な実装方法といえる。   In addition, when the conductive adhesive disclosed in Patent Document 3 is used, fixing and electrical connection can be performed at the same time, so that the manufacturing cost can be reduced, and silver (Ag), which is cheaper than gold (Au). Is generally used, the material cost can be reduced, and if the adhesive application area is reduced while ensuring the adhesive strength, the product can be made smaller. Thus, compared to the wire bonding method and the GGI method, the method using the conductive adhesive can be said to be an advantageous mounting method in all aspects.

圧電単結晶振動子の場合、前述の通りエッチングやサンドブラストにより、複雑な形状の振動子を製造することができるので、より高機能な振動子を得ることが可能となる。しかしながら、小型で、かつ複雑な形状の圧電単結晶振動子に電極を形成する場合、配線上の制約が生じてしまい、駆動効率の良い電極配置や圧電効果を検出する為の電極配置が、必ずしもできないという問題があった。また、複雑な構造がゆえに、電極端子の数が増えてしまい、そのために組立工数が増え、製造コストがかかるといった問題もあった。   In the case of a piezoelectric single crystal vibrator, a vibrator having a complicated shape can be manufactured by etching or sandblasting as described above, so that a vibrator having a higher function can be obtained. However, when an electrode is formed on a piezoelectric single crystal resonator having a small size and a complicated shape, there are restrictions on wiring, and an electrode arrangement with good driving efficiency and an electrode arrangement for detecting the piezoelectric effect are not necessarily provided. There was a problem that I could not. In addition, due to the complicated structure, the number of electrode terminals is increased, which increases the number of assembly steps and increases the manufacturing cost.

本発明は、従来の課題を解決すべくなされたもので、圧電単結晶振動子の実装信頼性を確保しつつ、小型、低コストな圧電単結晶振動子およびこの圧電単結晶振動子を用いて構成された圧電振動ジャイロを提供することにある。   The present invention has been made in order to solve the conventional problems. A small-sized and low-cost piezoelectric single crystal vibrator and the piezoelectric single crystal vibrator are used while ensuring mounting reliability of the piezoelectric single crystal vibrator. An object of the present invention is to provide a configured piezoelectric vibration gyro.

本発明は、前記課題の解決のため、圧電単結晶材料から成る圧電単結晶板の表面または裏面の少なくとも一面の主面上に電極が形成されており、導電接着剤によって、回路基板と電気的に導通し、かつ機械的に固定されてなる圧電単結晶振動子であって、少なくとも2本の同電位の電極を含む複数本の電極が配線されている部分に、絶縁膜を形成し、前記絶縁膜を介して、前記少なくとも2本の同電位の電極を絶縁状態にて直接接続し、1本の電極配線と成したことを特徴とする圧電単結晶振動子である。   In order to solve the above problems, the present invention has an electrode formed on at least one main surface of the front surface or the back surface of a piezoelectric single crystal plate made of a piezoelectric single crystal material, and is electrically connected to a circuit board by a conductive adhesive. A piezoelectric single crystal vibrator that is electrically connected to and mechanically fixed, and an insulating film is formed on a portion where a plurality of electrodes including at least two electrodes having the same potential are wired; The piezoelectric single crystal vibrator is characterized in that the at least two electrodes having the same potential are directly connected in an insulated state through an insulating film to form one electrode wiring.

また、絶縁膜は、SiO2、Si34、ポリイミド、フォトレジストから選ばれる少なくとも1種からなることを特徴とする圧電単結晶振動子である。 The insulating film is a piezoelectric single crystal vibrator characterized by comprising at least one selected from SiO 2 , Si 3 N 4 , polyimide, and photoresist.

さらに、圧電単結晶振動子を用いて構成されたことを特徴とする圧電振動ジャイロである。   Further, the piezoelectric vibration gyro is configured by using a piezoelectric single crystal vibrator.

従って、本発明によれば、圧電単結晶振動子の実装信頼性を確保しつつ、小型、低コストな圧電単結晶振動子およびこの圧電単結晶振動子を用いて構成された圧電振動ジャイロを得ることができる。   Therefore, according to the present invention, a compact and low-cost piezoelectric single crystal vibrator and a piezoelectric vibration gyro configured using the piezoelectric single crystal vibrator are obtained while ensuring mounting reliability of the piezoelectric single crystal vibrator. be able to.

図1は本発明の実施の形態に係わる圧電単結晶振動子の絶縁膜が形成されている中央部近傍の拡大図である。図1(a)は絶縁膜形成前の電極の配線図、図1(b)は絶縁膜および絶縁膜形成後に新たに形成した電極の配線図を示し、また図10は、従来の絶縁膜がない場合の電極の配線図である。本発明の実施の形態を、図面を参照しながら説明する。4つのアーム部12a、12b、12c、12dがつながっている中央部に、検出電極15、16、17、18および基準電位電極19を覆い隠すように絶縁膜20が形成されている。その絶縁膜20上に駆動電極13a、13b、14a、14bが形成されており、各々の電極は電気的に絶縁されている。   FIG. 1 is an enlarged view of the vicinity of a central portion where an insulating film of a piezoelectric single crystal vibrator according to an embodiment of the present invention is formed. FIG. 1A shows a wiring diagram of an electrode before forming an insulating film, FIG. 1B shows a wiring diagram of an insulating film and a newly formed electrode after forming the insulating film, and FIG. 10 shows a conventional insulating film. It is a wiring diagram of the electrode when there is not. Embodiments of the present invention will be described with reference to the drawings. An insulating film 20 is formed in a central portion where the four arm portions 12a, 12b, 12c, and 12d are connected so as to cover the detection electrodes 15, 16, 17, and 18 and the reference potential electrode 19. Drive electrodes 13a, 13b, 14a, and 14b are formed on the insulating film 20, and each electrode is electrically insulated.

また、絶縁膜20の材質は、SiO2、Si34、ポリイミド、フォトレジストのいずれかであることが好適であるが、これらに限らず、絶縁性のある材質であれば使用可能である。 The material of the insulating film 20 is preferably any of SiO 2 , Si 3 N 4 , polyimide, and photoresist, but is not limited thereto, and any insulating material can be used. .

図2は、本発明の実施の形態に係わる圧電単結晶振動子の外形を示した上面図である。図3は、本発明の実施の形態に係わる圧電単結晶振動子の上面の電極配置図および絶縁膜の配置を示した図である。この圧電単結晶振動子は、2軸の角速度が検出可能な圧電振動ジャイロとなっている。以下、説明の便宜上、図2、図3に示したように、圧電単結晶振動子の厚み方向をX軸、図面上の縦方向をY軸、図面上の横方向をZ軸とする。   FIG. 2 is a top view showing the outer shape of the piezoelectric single crystal resonator according to the embodiment of the present invention. FIG. 3 is a diagram showing an electrode arrangement on the upper surface of the piezoelectric single crystal vibrator and an arrangement of the insulating film according to the embodiment of the present invention. This piezoelectric single crystal vibrator is a piezoelectric vibration gyro capable of detecting a biaxial angular velocity. Hereinafter, for convenience of explanation, as shown in FIGS. 2 and 3, the thickness direction of the piezoelectric single crystal vibrator is defined as the X axis, the vertical direction in the drawing is defined as the Y axis, and the horizontal direction in the drawing is defined as the Z axis.

圧電単結晶振動子1は、矩形状板に貫通加工をして、矩形状板の一部を打ち抜くことにより、内部に振動部である4つの付加質量部11a、11b、11c、11dを保持する構造体が一体物として形成されている。また、圧電単結晶振動子1は、圧電振動ジャイロとして機能させるための電極、および振動効率および検出効率を向上させるための電極が形成されている。図3の上面の電極配置図より、駆動電極13a、13b、14a、14b、検出電極15、16、17、18、基準電位電極19が形成されている。さらに、図2に示した4つのアーム部12a、12b、12c、12dがつながっている中央部に、検出電極15、16、17、18および基準電位電極19を覆い隠すように絶縁膜20が形成されている。その絶縁膜20上に駆動電極13a、13b、14a、14bが形成されており、各々の電極は電気的に絶縁されている。   The piezoelectric single crystal vibrator 1 holds four additional mass portions 11a, 11b, 11c, and 11d as vibration portions inside by penetrating a rectangular plate and punching out a part of the rectangular plate. The structure is formed as a single body. In addition, the piezoelectric single crystal vibrator 1 is formed with an electrode for functioning as a piezoelectric vibration gyro, and an electrode for improving vibration efficiency and detection efficiency. Drive electrodes 13a, 13b, 14a, 14b, detection electrodes 15, 16, 17, 18, and a reference potential electrode 19 are formed from the electrode arrangement diagram on the upper surface of FIG. Further, an insulating film 20 is formed in a central portion where the four arm portions 12a, 12b, 12c, and 12d shown in FIG. 2 are connected so as to cover the detection electrodes 15, 16, 17, and 18 and the reference potential electrode 19. Has been. Drive electrodes 13a, 13b, 14a, and 14b are formed on the insulating film 20, and each electrode is electrically insulated.

この圧電単結晶振動子の製造プロセスの一例を説明する。圧電単結晶材料としては、水晶、ニオブ酸リチウム、タンタル酸リチウム、ランガサイト、酸化亜鉛のいずれかが用いられる。これらのウエハーに電極としてCrを下地としてAuをスパッタもしくは真空蒸着で成膜する。次に、フォトリソグラフによりレジストを所望のパターンに形成し、エッチングによりAuおよびCrを除去し、さらにレジストを除去して、検出電極15、16、17、18、基準電位電極19を形成する。   An example of the manufacturing process of this piezoelectric single crystal vibrator will be described. As the piezoelectric single crystal material, quartz, lithium niobate, lithium tantalate, langasite, or zinc oxide is used. A film is formed on these wafers by sputtering or vacuum deposition with Au as an electrode and Cr as a base. Next, a resist is formed into a desired pattern by photolithography, Au and Cr are removed by etching, and the resist is further removed to form the detection electrodes 15, 16, 17, 18 and the reference potential electrode 19.

次に、絶縁膜形成においては、直接印刷するか、もしくはスパッタ、真空蒸着、CVD(化学的気相成長法)によって成膜後、フォトリソグラフとエッチングによって形成される。その後再びCrを下地としてAuをスパッタもしくは真空蒸着で成膜し、フォトリソグラフによりレジストパターンを形成して、エッチングによりAuおよびCrを除去し、さらにレジストを除去して駆動電極13a、13b、14a、14bを形成する。その次に、フォトリソグラフによりレジストを所望のパターンに形成し、エッチンドもしくはサンドブラストによって貫通加工を行い、レジストを除去して圧電単結晶振動子1が得られる。こうして得られた圧電単結晶振動子1は、回路基板(図示せず)に導電接着剤で固定かつ電気的接続をとって実装される。   Next, in the formation of the insulating film, it is directly printed or formed by photolithography and etching after film formation by sputtering, vacuum evaporation, or CVD (chemical vapor deposition). Thereafter, Au is formed again by sputtering or vacuum deposition with Cr as a base, a resist pattern is formed by photolithography, Au and Cr are removed by etching, and the resist is further removed to drive electrodes 13a, 13b, 14a, 14b is formed. Next, a resist is formed into a desired pattern by photolithography, through-penetration is performed by etching or sandblasting, and the resist is removed to obtain the piezoelectric single crystal vibrator 1. The piezoelectric single crystal vibrator 1 obtained in this way is mounted on a circuit board (not shown) by fixing and electrically connecting with a conductive adhesive.

この状態で、駆動電極13aと14aとの間に交流電圧を印加すると、付加質量部11aおよび11cがX軸方向に振動し、それとは逆位相に付加質量部11bおよび11dがX軸方向に振動する。この振動状態でZ軸まわりに回転角速度が印加されるとコリオリ力により、Y軸方向の振動が励振されるので、検出電極15、16から電気的に検出することができる。Y軸まわりに回転角速度が印加されるとZ軸方向の振動が励振されるので、検出電極17、18から電気的に検出することができる。これらの検出信号を信号処理して出力することで、2軸の角速度が検出できる圧電振動ジャイロを得ることができる。   In this state, when an AC voltage is applied between the drive electrodes 13a and 14a, the additional mass parts 11a and 11c vibrate in the X axis direction, and the additional mass parts 11b and 11d vibrate in the X axis direction in the opposite phase. To do. When a rotational angular velocity is applied around the Z axis in this vibration state, the vibration in the Y axis direction is excited by the Coriolis force, so that it can be electrically detected from the detection electrodes 15 and 16. When a rotational angular velocity is applied around the Y axis, vibration in the Z-axis direction is excited, and can be detected electrically from the detection electrodes 17 and 18. By processing these detection signals and outputting them, a piezoelectric vibration gyro capable of detecting a biaxial angular velocity can be obtained.

図3より、駆動電極13aと13bは絶縁膜20を介して1本に導通しているので、外部電気回路との接続は1カ所で済ませることができる。同様に駆動電極14aと14bも絶縁膜20を介して1本に導通しているので、外部電気回路との接続は1カ所で済ませることができる。もし絶縁膜20がない場合、駆動電極13a、13bと電位の異なる検出電極15、18および基準電位電極19が間に配線されているために、図10に示すように、駆動電極13aと13bは各々独立に配線および外部電気回路との接続しなければならなくなり、組立コストが増えることになる。   As shown in FIG. 3, since the drive electrodes 13a and 13b are connected to one through the insulating film 20, the connection with the external electric circuit can be completed at one place. Similarly, since the drive electrodes 14a and 14b are connected to one through the insulating film 20, the connection with the external electric circuit can be completed at one place. If the insulating film 20 is not provided, since the detection electrodes 15 and 18 and the reference potential electrode 19 having different potentials from the drive electrodes 13a and 13b are wired between the drive electrodes 13a and 13b, as shown in FIG. Each of them must be independently connected to wiring and an external electric circuit, resulting in an increase in assembly cost.

同様の理由で、駆動電極14aと14bについても外部電気回路との接続は1ヶ所で済ませることができるが、絶縁膜20がない場合、電位の異なる検出電極16、17および基準電位電極19が間に配線されているために、図10に示すように、駆動電極14aと14bは各々独立に配線および外部電気回路との接続しなければならなく、組立コストが増えることになる。   For the same reason, the drive electrodes 14a and 14b can be connected to the external electric circuit in one place. However, when the insulating film 20 is not provided, the detection electrodes 16 and 17 and the reference potential electrode 19 having different potentials are not connected. As shown in FIG. 10, the drive electrodes 14a and 14b must be independently connected to the wiring and the external electric circuit, resulting in an increase in assembly cost.

本発明の場合、絶縁膜20を形成するコストが新たに発生するが、絶縁膜20はウエハー単位で形成することができるので、圧電単結晶振動子1個あたりのコストは低く抑えることができる。一方、接続のための組立は、圧電単結晶振動子1個ずつしか処理できない為、接続数分だけコストが増えることになる。本発明の場合、絶縁膜を形成するコスト増加分より接続数を減らすことによるコスト削減分の方が大きいので、トータルコストを下げつつ、2軸の角速度が検出できる圧電振動ジャイロを得ることができる。   In the case of the present invention, the cost for forming the insulating film 20 is newly generated. However, since the insulating film 20 can be formed in units of wafers, the cost per piezoelectric single crystal vibrator can be kept low. On the other hand, since the assembly for connection can be processed only one piezoelectric single crystal vibrator one by one, the cost increases by the number of connections. In the case of the present invention, since the cost reduction by reducing the number of connections is larger than the cost increase for forming the insulating film, a piezoelectric vibration gyro capable of detecting the biaxial angular velocity can be obtained while reducing the total cost. .

次に、実施例を挙げ、本発明の圧電単結晶振動子および圧電振動ジャイロについて、さらに詳しく説明する。   Next, with reference to examples, the piezoelectric single crystal vibrator and the piezoelectric vibration gyro of the present invention will be described in more detail.

図4は、本発明の実施例に係わる圧電単結晶振動子の外形を示した上面図であり、図5は、本発明の実施例に係わる表面の電極および絶縁膜の配置完成図であり、図6、図7、図8は、順に電極および絶縁膜を形成していく過程を示した図である。図6は、下層の電極および絶縁膜の分解図であり、図6(a)は下層の電極の配置図、図6(b)は絶縁膜の配置図である。図7は下層の電極および絶縁膜の配置図、図8は上層の電極の配置図である。図9は、本発明の実施例に係わる裏面の電極の配置図である。この圧電単結晶振動子は、2軸の角速度が検出可能な圧電振動ジャイロとなっている。以下、説明の便宜上、図示したように圧電単結晶振動子の厚み方向をX軸、図面上の縦方向をY軸、図面上の横方向をZ軸とする。   FIG. 4 is a top view showing the outer shape of the piezoelectric single crystal resonator according to the embodiment of the present invention, and FIG. 5 is a completed arrangement of the surface electrode and the insulating film according to the embodiment of the present invention. 6, FIG. 7, and FIG. 8 are diagrams showing a process of sequentially forming electrodes and an insulating film. FIG. 6 is an exploded view of the lower layer electrode and the insulating film, FIG. 6A is a layout diagram of the lower layer electrode, and FIG. 6B is a layout diagram of the insulating film. FIG. 7 is a layout diagram of the lower layer electrode and the insulating film, and FIG. 8 is a layout diagram of the upper layer electrode. FIG. 9 is a layout diagram of electrodes on the back surface according to the embodiment of the present invention. This piezoelectric single crystal vibrator is a piezoelectric vibration gyro capable of detecting a biaxial angular velocity. Hereinafter, for convenience of explanation, as illustrated, the thickness direction of the piezoelectric single crystal vibrator is defined as an X axis, the vertical direction in the drawing is defined as the Y axis, and the horizontal direction in the drawing is defined as the Z axis.

この圧電単結晶振動子の製造プロセスを簡単に説明する。圧電単結晶材料としてニオブ酸リチウムを用い、外形寸法が2.7mm×4.7mm×厚み0.25mm、各付加質量部大きさが0.8mm×0.8mmとなる図4の形状の圧電単結晶振動子2を作製した。圧電単結晶振動子2は、矩形状板に貫通加工をして、矩形状板の一部を打ち抜くことにより、内部に振動部である4つの付加質量部31a、31b、31c、31dを保持する構造体が一体物として形成されている。   The manufacturing process of this piezoelectric single crystal vibrator will be briefly described. A piezoelectric single crystal having the shape shown in FIG. 4 is used, in which lithium niobate is used as the piezoelectric single crystal material, the outer dimensions are 2.7 mm × 4.7 mm × thickness 0.25 mm, and each additional mass part size is 0.8 mm × 0.8 mm. Crystal oscillator 2 was produced. The piezoelectric single crystal vibrator 2 holds the four additional mass portions 31a, 31b, 31c, and 31d, which are vibrating portions, by penetrating a rectangular plate and punching a part of the rectangular plate. The structure is formed as a single body.

これらのウエハーに、電極としてCrを、下地としてAuをスパッタにより成膜した。次に、フォトリソグラフによりレジストを所望のパターンに形成し、エッチングによりAuおよびCrを除去し、さらにレジストを除去して、図6(a)に示した検出電極36および検出電極37aを形成した。次に、4つのアーム部32a、32b、32c、32d上には絶縁膜38をスパッタによって成膜後、フォトリソグラフとエッチングによって、図6(b)に示した絶縁膜パターンを形成した。このパターンには、絶縁膜の開口部39a、39bが設けてある。この結果、図7に示したように、絶縁膜の開口部39a、39bから検出電極37aが露出し、その露出部は接続部40a、40bとなる。検出電極36および検出電極37aと同様のプロセスで、図8に示した検出電極35a、35b、検出電極37b、37cを含む上層の電極パターンを絶縁膜38上に形成して、最終的に図5のような電極および絶縁膜が完成した。絶縁膜には厚み4μmのポリイミド膜を用いた。   On these wafers, Cr was deposited as an electrode and Au was deposited as a base by sputtering. Next, a resist was formed into a desired pattern by photolithography, Au and Cr were removed by etching, and the resist was further removed to form the detection electrode 36 and the detection electrode 37a shown in FIG. Next, an insulating film 38 was formed on the four arm portions 32a, 32b, 32c, and 32d by sputtering, and the insulating film pattern shown in FIG. 6B was formed by photolithography and etching. In this pattern, openings 39a and 39b of an insulating film are provided. As a result, as shown in FIG. 7, the detection electrode 37a is exposed from the openings 39a and 39b of the insulating film, and the exposed portions become connection portions 40a and 40b. The upper electrode pattern including the detection electrodes 35a and 35b and the detection electrodes 37b and 37c shown in FIG. 8 is formed on the insulating film 38 in the same process as the detection electrode 36 and the detection electrode 37a. The electrode and the insulating film were completed. As the insulating film, a polyimide film having a thickness of 4 μm was used.

この時、検出電極37b上の接続部40cと検出電極37a上の接続部40aとが、また検出電極37c上の接続部40dと検出電極37a上の接続部40bとが各々電気的に接続され、その結果、検出電極35a、35bと検出電極37aは同電位となる。   At this time, the connection part 40c on the detection electrode 37b and the connection part 40a on the detection electrode 37a are electrically connected, and the connection part 40d on the detection electrode 37c and the connection part 40b on the detection electrode 37a are electrically connected, As a result, the detection electrodes 35a and 35b and the detection electrode 37a have the same potential.

次に、裏面に表面の電極形成と同様のプロセスで図9に示した駆動電極33、34を形成する。こうして表裏両面の電極および絶縁層が形成された後、フォトリソグラフによりレジストを所望のパターンに形成し、エッチングもしくはサンドブラストによって貫通加工を行い、レジストを除去して圧電単結晶振動子2が得られた。   Next, the drive electrodes 33 and 34 shown in FIG. 9 are formed on the back surface by the same process as the formation of the front surface electrodes. After the electrodes on both sides and the insulating layer were formed in this way, a resist was formed into a desired pattern by photolithography, through-etching was performed by etching or sandblasting, and the resist was removed to obtain the piezoelectric single crystal vibrator 2 .

この圧電単結晶振動子2の圧電振動ジャイロとして機能させるための電極として、駆動電極33、34、検出電極35a、35b、36、37aが形成されている。4つのアーム部32a、32b、32c、32d上には、絶縁膜38が形成されており、アーム部上の検出電極35a、35bと検出電極36および検出電極37aは絶縁膜38によって絶縁されている。   Drive electrodes 33 and 34 and detection electrodes 35a, 35b, 36, and 37a are formed as electrodes for functioning as a piezoelectric vibration gyro of the piezoelectric single crystal vibrator 2. An insulating film 38 is formed on the four arm portions 32a, 32b, 32c, and 32d, and the detection electrodes 35a and 35b, the detection electrode 36, and the detection electrode 37a on the arm portions are insulated by the insulating film 38. .

こうして得られた圧電単結晶振動子2は、パッケージに導電接着剤で固定かつ電気的接続をとって実装される。この状態で、図9の駆動電極33と34に交流電圧を印加すると、付加質量部31aおよび31cがX軸方向に振動し、それとは逆位相に、31bおよび31dがX軸方向に振動する。この振動状態でZ軸まわりに回転角速度が印加されるとコリオリ力により、Y軸方向の振動が励振されるので、アーム部32e、32f、32g、32hに電荷が発生し検出電極35a、35bと検出電極37b、37cに電位差が生じるので、電気的に検出することができる。また、Y軸まわりに回転角速度が印加されるとZ軸方向の振動が励振されるので、アーム部32bおよび32dに電荷が発生し検出電極36と検出電極37aに電位差が生じるので、電気的に検出することができる。これらの検出信号を信号処理して出力することで、2軸の角速度が検出できる圧電振動ジャイロを得ることができる。   The piezoelectric single crystal resonator 2 obtained in this way is mounted on the package with a conductive adhesive fixed and electrically connected. In this state, when an AC voltage is applied to the drive electrodes 33 and 34 in FIG. 9, the additional mass portions 31a and 31c vibrate in the X-axis direction, and 31b and 31d vibrate in the X-axis direction in the opposite phase. When a rotational angular velocity is applied around the Z axis in this vibration state, the vibration in the Y axis direction is excited by the Coriolis force, so that charges are generated in the arm portions 32e, 32f, 32g, and 32h, and the detection electrodes 35a, 35b and Since a potential difference is generated between the detection electrodes 37b and 37c, it can be electrically detected. Further, when a rotational angular velocity is applied around the Y axis, vibration in the Z axis direction is excited, so that charges are generated in the arm portions 32b and 32d and a potential difference is generated between the detection electrode 36 and the detection electrode 37a. Can be detected. By processing these detection signals and outputting them, a piezoelectric vibration gyro capable of detecting a biaxial angular velocity can be obtained.

この圧電単結晶振動子に1.5Vpp(ピークトゥーピーク)で駆動した場合、X軸方向の振動の共振周波数はおよそ20kHzとなり、圧電振動ジャイロとしての感度は、信号処理回路の増幅率が200倍の時でY軸回りの回転角速度およびZ軸回りの回転角速度共におよそ0.5mV/゜/秒が得られ、1つの圧電単結晶振動子で、2軸の角速度が検出可能となった。   When this piezoelectric single crystal vibrator is driven at 1.5 Vpp (peak to peak), the resonance frequency of vibration in the X-axis direction is about 20 kHz, and the sensitivity as a piezoelectric vibration gyro is 200 times the amplification factor of the signal processing circuit. At this time, both the rotational angular velocity around the Y axis and the rotational angular velocity around the Z axis were approximately 0.5 mV / ° / second, and the biaxial angular velocity could be detected with one piezoelectric single crystal vibrator.

本発明の場合、絶縁膜38を介して、同電位である検出電極37aと検出電極37bが接続部40c(40a)と接続され、また同電位である検出電極37aと検出電極37cが接続部40d(40b)と接続され、各々1本に導通されている。このように、絶縁膜38があるために、検出電極35a、35b、36、37aがアーム部32a、32b、32c、32d上を電気的に独立に配線することができ、かつ角速度を検出ための必要な電極を形成することができた。もし絶縁膜38がない場合、図5に示すような配線構造は不可能であり、もし2軸の角速度を検出したい場合は、左側半分をY軸検出用の電極、右側半分をZ軸検出用の電極と分けて形成するしかない。その結果、検出効率が悪く、ジャイロの感度は前述と同じ回路条件で、Y軸回りの回転角速度およびZ軸回りの回転角速度共におよそ0.25mV/゜/秒となり、前述の半分と低くなってしまう。本発明の場合は、Y軸検出用電極、Z軸検出用電極各々全てのアーム部上に配線しているので、前述の絶縁膜38がない場合と比較して2倍の効率で検出することができ、ジャイロの感度も2倍の0.5mV/゜/秒の感度となり、高感度なジャイロを得ることができた。   In the present invention, the detection electrode 37a and the detection electrode 37b having the same potential are connected to the connection portion 40c (40a) through the insulating film 38, and the detection electrode 37a and the detection electrode 37c having the same potential are connected to the connection portion 40d. (40b) and each is electrically connected to one. As described above, since the insulating film 38 is provided, the detection electrodes 35a, 35b, 36, and 37a can be electrically wired on the arm portions 32a, 32b, 32c, and 32d, and the angular velocity can be detected. Necessary electrodes could be formed. If the insulating film 38 is not provided, the wiring structure as shown in FIG. 5 is impossible. If two-axis angular velocities are to be detected, the left half is used for Y-axis detection and the right half is used for Z-axis detection. It must be formed separately from the electrodes. As a result, the detection efficiency is poor, and the gyro sensitivity is approximately 0.25 mV / ° / second for both the rotational angular velocity about the Y axis and the rotational angular velocity about the Z axis under the same circuit conditions as described above, which is as low as the aforementioned half. End up. In the case of the present invention, wiring is performed on all the arm portions of the Y-axis detection electrode and the Z-axis detection electrode, so that detection is performed at twice the efficiency as compared with the case without the insulating film 38 described above. The sensitivity of the gyro was doubled to a sensitivity of 0.5 mV / ° / second, and a highly sensitive gyro was obtained.

外部電気回路との接続数は、検出電極が35aと35bと分かれて増えているが、検出電極37aはY軸角速度検出用とZ軸角速度検出用と兼用しており、またこの電極形成の場合は基準電位電極を設ける必要がないので、トータルの接続数は減らすことができた。絶縁膜38を新たに形成するコストが発生するが、接続数を減らしたことによるコスト削減の方が大きいので、トータルコストも下げることができた。   The number of connections with the external electric circuit is increased by separating the detection electrodes 35a and 35b, but the detection electrode 37a is used for both the Y-axis angular velocity detection and the Z-axis angular velocity detection. Since it is not necessary to provide a reference potential electrode, the total number of connections could be reduced. Although the cost of newly forming the insulating film 38 is generated, the total cost can be reduced because the cost reduction by reducing the number of connections is greater.

本発明の実施の形態に係わる圧電単結晶振動子の絶縁膜が形成されている中央部近傍の拡大図。図1(a)は絶縁膜形成前の電極の配線図。図1(b)は絶縁膜および絶縁膜形成後に新たに形成した電極の配線図。The enlarged view of the central part vicinity in which the insulating film of the piezoelectric single crystal vibrator concerning embodiment of this invention is formed. FIG. 1A is a wiring diagram of electrodes before forming an insulating film. FIG. 1B is a wiring diagram of an insulating film and an electrode newly formed after the insulating film is formed. 本発明の実施の形態に係わる圧電単結晶振動子の外形を示した上面図。The top view which showed the external shape of the piezoelectric single crystal vibrator concerning embodiment of this invention. 本発明の実施の形態に係わる圧電単結晶振動子の上面の電極配置図および絶縁膜の配置を示した図。The electrode arrangement | positioning figure of the upper surface of the piezoelectric single crystal vibrator concerning embodiment of this invention, and the figure which showed arrangement | positioning of an insulating film. 本発明の実施例に係わる圧電単結晶振動子の外形を示した上面図。The top view which showed the external shape of the piezoelectric single crystal vibrator concerning the Example of this invention. 本発明の実施例に係わる表面の電極および絶縁膜の配置完成図。The arrangement completion drawing of the surface electrode and insulating film concerning the Example of this invention. 下層の電極および絶縁膜の分解図。図6(a)は下層の電極の配置図、図6(b)は絶縁膜の配置図。The exploded view of a lower layer electrode and an insulating film. FIG. 6A is a layout diagram of lower-layer electrodes, and FIG. 6B is a layout diagram of insulating films. 下層の電極および絶縁膜の配置図。FIG. 6 is a layout diagram of lower electrodes and insulating films. 上層の電極の配置図。FIG. 6 is a layout diagram of upper layer electrodes. 本発明の実施例に係わる裏面の電極の配置図。FIG. 3 is a layout diagram of electrodes on the back surface according to the embodiment of the present invention. 従来の絶縁膜がない場合の電極の配線図Wiring diagram of electrodes when there is no conventional insulating film

符号の説明Explanation of symbols

1、2 圧電単結晶振動子
11a〜11d 付加質量部
12a〜12d アーム部
13a、13b、14a、14b 駆動電極
15、16、17、18 検出電極
19 基準電位電極
20、38 絶縁膜
31a〜31d 付加質量部
32a〜32h アーム部
33、34 駆動電極
35a、35b、36、37a〜37c 検出電極
39a、39b 絶縁膜の開口部
40a〜40d 接続部
1, 2 Piezoelectric single crystal vibrators 11a to 11d Additional mass portions 12a to 12d Arm portions 13a, 13b, 14a, 14b Drive electrodes 15, 16, 17, 18 Detection electrodes 19 Reference potential electrodes 20, 38 Insulating films 31a to 31d Mass part 32a-32h Arm part 33, 34 Drive electrode 35a, 35b, 36, 37a-37c Detection electrode 39a, 39b Opening part 40a-40d of insulating film Connection part

Claims (3)

圧電単結晶材料から成る圧電単結晶板の表面または裏面の少なくとも一面の主面上に電極が形成されており、導電接着剤によって、回路基板と電気的に導通し、かつ機械的に固定されてなる圧電単結晶振動子であって、少なくとも2本の同電位の電極を含む複数本の電極が配線されている部分に、絶縁膜を形成し、前記絶縁膜を介して、前記少なくとも2本の同電位の電極を絶縁状態にて直接接続し、1本の電極配線と成したことを特徴とする圧電単結晶振動子。   An electrode is formed on at least one main surface of the front or back surface of a piezoelectric single crystal plate made of a piezoelectric single crystal material, electrically connected to a circuit board by a conductive adhesive, and mechanically fixed. In the piezoelectric single crystal vibrator, an insulating film is formed on a portion where a plurality of electrodes including at least two electrodes having the same potential are wired, and the at least two electrodes are interposed through the insulating film. A piezoelectric single crystal vibrator characterized in that electrodes having the same potential are directly connected in an insulated state to form one electrode wiring. 前記絶縁膜は、SiO2、Si34、ポリイミド、フォトレジストから選ばれる少なくとも1種からなることを特徴とする請求項1に記載の圧電単結晶振動子。 2. The piezoelectric single crystal resonator according to claim 1, wherein the insulating film is made of at least one selected from SiO 2 , Si 3 N 4 , polyimide, and a photoresist. 前記請求項1または2に記載の圧電単結晶振動子を用いて構成されたことを特徴とする圧電振動ジャイロ。   A piezoelectric vibration gyro comprising the piezoelectric single crystal resonator according to claim 1 or 2.
JP2006195548A 2006-07-18 2006-07-18 Piezoelectric single crystal vibrator and piezoelectric vibration gyro Expired - Fee Related JP5030135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006195548A JP5030135B2 (en) 2006-07-18 2006-07-18 Piezoelectric single crystal vibrator and piezoelectric vibration gyro

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006195548A JP5030135B2 (en) 2006-07-18 2006-07-18 Piezoelectric single crystal vibrator and piezoelectric vibration gyro

Publications (2)

Publication Number Publication Date
JP2008026018A true JP2008026018A (en) 2008-02-07
JP5030135B2 JP5030135B2 (en) 2012-09-19

Family

ID=39116810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006195548A Expired - Fee Related JP5030135B2 (en) 2006-07-18 2006-07-18 Piezoelectric single crystal vibrator and piezoelectric vibration gyro

Country Status (1)

Country Link
JP (1) JP5030135B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2088101A2 (en) 2008-02-06 2009-08-12 Seiko Epson Corporation Medium delivery apparatus and medium processing apparatus
US8516887B2 (en) 2010-04-30 2013-08-27 Qualcomm Mems Technologies, Inc. Micromachined piezoelectric z-axis gyroscope
WO2013132830A1 (en) * 2012-03-09 2013-09-12 パナソニック株式会社 Inertial force sensor
KR101378601B1 (en) * 2012-06-13 2014-03-24 (주) 태양기전 Touch Window And Method Manufacturing Electrode Wiring Structure Of Touch Window

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10371521B2 (en) 2016-05-26 2019-08-06 Honeywell International Inc. Systems and methods for a four-mass vibrating MEMS structure
US10696541B2 (en) 2016-05-26 2020-06-30 Honeywell International Inc. Systems and methods for bias suppression in a non-degenerate MEMS sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004364019A (en) * 2003-06-05 2004-12-24 Seiko Epson Corp Piezoelectric vibration chip, piezoelectric vibrator, piezoelectric oscillator, gyroscope sensor, electronic apparatus, and manufacturing method
JP2005210475A (en) * 2004-01-23 2005-08-04 Murata Mfg Co Ltd Electronic component and manufacturing method therefor
JP2005291858A (en) * 2004-03-31 2005-10-20 Sony Corp Oscillation gyroscopic sensor element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004364019A (en) * 2003-06-05 2004-12-24 Seiko Epson Corp Piezoelectric vibration chip, piezoelectric vibrator, piezoelectric oscillator, gyroscope sensor, electronic apparatus, and manufacturing method
JP2005210475A (en) * 2004-01-23 2005-08-04 Murata Mfg Co Ltd Electronic component and manufacturing method therefor
JP2005291858A (en) * 2004-03-31 2005-10-20 Sony Corp Oscillation gyroscopic sensor element

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2088101A2 (en) 2008-02-06 2009-08-12 Seiko Epson Corporation Medium delivery apparatus and medium processing apparatus
EP2319785A1 (en) 2008-02-06 2011-05-11 Seiko Epson Corporation Medium delivery apparatus and medium processing apparatus
US9032796B2 (en) 2010-04-30 2015-05-19 Qualcomm Mems Technologies, Inc. Stacked lateral overlap transducer (SLOT) based three-axis accelerometer
US8516886B2 (en) 2010-04-30 2013-08-27 Qualcomm Mems Technologies, Inc. Micromachined piezoelectric X-Axis gyroscope
US8584522B2 (en) 2010-04-30 2013-11-19 Qualcomm Mems Technologies, Inc. Micromachined piezoelectric x-axis gyroscope
US9021880B2 (en) 2010-04-30 2015-05-05 Qualcomm Mems Technologies, Inc. Micromachined piezoelectric three-axis gyroscope and stacked lateral overlap transducer (slot) based three-axis accelerometer
US8516887B2 (en) 2010-04-30 2013-08-27 Qualcomm Mems Technologies, Inc. Micromachined piezoelectric z-axis gyroscope
US9410805B2 (en) 2010-04-30 2016-08-09 Qualcomm Mems Technologies, Inc. Micromachined piezoelectric z-axis gyroscope
US9459099B2 (en) 2010-04-30 2016-10-04 Qualcomm Mems Technologies, Inc. Micromachined piezoelectric x-axis gyroscope
US9605965B2 (en) 2010-04-30 2017-03-28 Snaptrack, Inc. Micromachined piezoelectric x-axis gyroscope
US10209072B2 (en) 2010-04-30 2019-02-19 Snaptrack Inc. Stacked lateral overlap transducer (SLOT) based three-axis accelerometer
WO2013132830A1 (en) * 2012-03-09 2013-09-12 パナソニック株式会社 Inertial force sensor
CN104185773A (en) * 2012-03-09 2014-12-03 松下电器产业株式会社 Inertial force sensor
JPWO2013132830A1 (en) * 2012-03-09 2015-07-30 パナソニックIpマネジメント株式会社 Inertial force sensor
KR101378601B1 (en) * 2012-06-13 2014-03-24 (주) 태양기전 Touch Window And Method Manufacturing Electrode Wiring Structure Of Touch Window

Also Published As

Publication number Publication date
JP5030135B2 (en) 2012-09-19

Similar Documents

Publication Publication Date Title
JP5678727B2 (en) Vibration device, method for manufacturing vibration device, electronic apparatus
US9362483B2 (en) Vibrator element having a suppressed vibration signal of leakage vibration
JP5030135B2 (en) Piezoelectric single crystal vibrator and piezoelectric vibration gyro
TW201213765A (en) Sensor device, motion sensor and electronic device
JP2013050321A (en) Physical quantity detector and electronic apparatus
JP6572892B2 (en) Gyro sensor and electronic equipment
JP5970690B2 (en) SENSOR ELEMENT, SENSOR UNIT, ELECTRONIC DEVICE, AND SENSOR UNIT MANUFACTURING METHOD
JP5987426B2 (en) Vibrating piece, manufacturing method of vibrating piece, sensor unit, electronic device
JP4075833B2 (en) Piezoelectric vibration gyro element, manufacturing method thereof, and piezoelectric vibration gyro sensor
JP5682361B2 (en) Vibration device, method for manufacturing vibration device, motion sensor, and electronic apparatus
KR100832185B1 (en) Piezoelectric device and electronic apparatus
JP2007327758A (en) Piezoelectric single-crystal oscillator and piezoelectric vibration gyroscope
JP4726133B2 (en) Piezoelectric vibrator and piezoelectric vibration gyro
JP6210345B2 (en) Gyro sensor element, gyro sensor unit, electronic device, and manufacturing method of gyro sensor unit
JP2008003017A (en) Piezo-electric single crystal vibrator and piezoelectric vibrating gyroscope
JP5434712B2 (en) Piezoelectric vibrating piece and piezoelectric device
JP2013234873A (en) Vibrating piece and manufacturing method for the vibrating piece, gyro sensor, and electronic apparatus and mobile body
JP2013046168A (en) Manufacturing method of vibration device
JP5533349B2 (en) Bending vibrator, bending vibrator, oscillator, and electronic device
JP2009128020A (en) Piezoelectric vibration gyroscope using tuning fork type piezoelectric single crystal vibrator
JP2010078391A (en) Angular velocity sensor element, method for manufacturing angular velocity sensor element, angular velocity sensor, and electronic device
JP2007333546A (en) Piezoelectric single crystal vibrator and piezoelectric vibration gyroscope
JP2011182306A (en) Piezoelectric device and method of manufacturing the same
JP5040196B2 (en) Angular velocity sensor element and angular velocity sensor using the same
JP2010239329A (en) Piezoelectric vibrator and piezoelectric oscillator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120620

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120621

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees