JP2008025930A - Waste gasification melting facility - Google Patents

Waste gasification melting facility Download PDF

Info

Publication number
JP2008025930A
JP2008025930A JP2006199966A JP2006199966A JP2008025930A JP 2008025930 A JP2008025930 A JP 2008025930A JP 2006199966 A JP2006199966 A JP 2006199966A JP 2006199966 A JP2006199966 A JP 2006199966A JP 2008025930 A JP2008025930 A JP 2008025930A
Authority
JP
Japan
Prior art keywords
boiler
combustion furnace
gas
foundation
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006199966A
Other languages
Japanese (ja)
Other versions
JP4751262B2 (en
Inventor
Mitsumasa Todaka
光正 戸高
Shigeki Ogura
茂樹 小椋
Hidenori Ono
英則 大野
Takeshi Hikino
剛 引野
Atsushi Watanabe
厚 渡辺
Toshiro Kato
敏郎 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Nippon Steel Plant Designing Corp
Original Assignee
Nittetsu Plant Designing Corp
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Plant Designing Corp, Nippon Steel Engineering Co Ltd filed Critical Nittetsu Plant Designing Corp
Priority to JP2006199966A priority Critical patent/JP4751262B2/en
Publication of JP2008025930A publication Critical patent/JP2008025930A/en
Application granted granted Critical
Publication of JP4751262B2 publication Critical patent/JP4751262B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gasification And Melting Of Waste (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a waste gasification melting facility capable of omitting frames for supporting a combustion furnace and a boiler while maintaining earthquake resistance. <P>SOLUTION: The waste gasification melting facility comprises a gasification melting furnace 1 for gasifying and melting waste, the combustion furnace 2 for burning combustible gas generated by the gasification, and the boiler 3 for cooling combustion exhaust gas from the combustion furnace 2 to recover heat. The combustion furnace 2 and the boiler 3 are self-supported and mounted to a common base frame 13 without being supported at side surfaces thereof by frames, and the base frame 13 is supported on the foundation ground by a base isolation device. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、廃棄物をガス化、溶融するガス化溶融設備に関し、とくにガス化により生成した可燃性ガスを燃焼する燃焼炉と、燃焼炉からの燃焼排ガスを冷却し、熱回収するボイラの支持構造に関する。   The present invention relates to a gasification and melting facility for gasifying and melting waste, and in particular, a combustion furnace for burning a combustible gas generated by gasification, and a boiler for cooling and recovering heat from a combustion exhaust gas from the combustion furnace. Concerning structure.

都市ごみや産業廃棄物などの廃棄物をガス化、溶融する廃棄物ガス化溶融設備は、おもに、廃棄物をガス化、溶融するガス化溶融炉と、ガス化により生成した可燃性ガスを燃焼する燃焼炉と、燃焼炉からの燃焼排ガスを冷却し、熱回収するボイラと、熱回収後の燃焼排ガスを無害化する排ガス処理装置とから構成される。   Waste gasification and melting equipment that gasifies and melts waste such as municipal waste and industrial waste mainly consists of a gasification and melting furnace that gasifies and melts waste, and combustible gas generated by gasification. A combustion furnace that cools the combustion exhaust gas from the combustion furnace and recovers heat, and an exhaust gas treatment device that renders the combustion exhaust gas after heat recovery harmless.

図8は、従来の廃棄物ガス化溶融設備におけるガス化溶融炉からボイラまでの一般的な立面図を示す。図8において、ごみピット8に貯留されたごみ9はごみクレーン10によりガス化溶融炉1に炉上部より投入され、可燃分はガス化され、ガス化により生成した可燃性ガスはガス導入管4を経由して燃焼炉2の下部に設けられた燃焼バーナ11部分に導入され、燃焼炉2内で完全燃焼される。燃焼後の高温の燃焼排ガスはガス排出管12を経由してボイラ3に送られ、熱回収が行われる。熱回収後の燃焼排ガスは排ガス処理装置により無害化され煙突より排出される。   FIG. 8 shows a general elevation view from a gasification melting furnace to a boiler in a conventional waste gasification melting facility. In FIG. 8, the garbage 9 stored in the garbage pit 8 is put into the gasification melting furnace 1 from the upper part of the furnace by the garbage crane 10, the combustible component is gasified, and the combustible gas generated by the gasification is the gas introduction pipe 4. Is introduced into the combustion burner 11 provided at the lower part of the combustion furnace 2, and is completely burned in the combustion furnace 2. The high-temperature combustion exhaust gas after combustion is sent to the boiler 3 via the gas discharge pipe 12, and heat recovery is performed. The combustion exhaust gas after heat recovery is rendered harmless by the exhaust gas treatment device and discharged from the chimney.

この廃棄物ガス化溶融設備を構成する各プラント機器の支持方法としては、ガス溶融炉1は強固な鉄筋コンクリート造りのごみビット8と一体的に形成された床梁で支持されている。また、プラント機器の中でとくに重量の大きい燃焼炉2及びボイラ3は架構6により、ごみビット8とは独立して支持されている。具体的には、燃焼炉2においてはa部にて鉛直荷重を支持し、地震時には、a部及びc部にて水平荷重を支持する。   As a method for supporting each plant equipment constituting the waste gasification and melting facility, the gas melting furnace 1 is supported by a floor beam formed integrally with a solid reinforced concrete garbage bit 8. Moreover, the combustion furnace 2 and the boiler 3 that are particularly heavy among plant equipment are supported by the frame 6 independently of the garbage bit 8. Specifically, in the combustion furnace 2, the vertical load is supported at the part a, and at the time of an earthquake, the horizontal load is supported at the parts a and c.

一方、ボイラ3においては、下部のb部にて鉛直荷重を支持し、地震時にはb及びd部にて水平荷重を支持する。また、ボイラ3においては高温(225〜250℃)の水冷壁が構造体となっているため、支持方法については熱膨張による配慮が必要であり、b部では周囲の支持部の一点を固定部とし、他はすべり支承としている。さらに、d部については予め熱膨張代をギャップとして設定しておく等の配慮が必要である。また、燃焼炉2は耐火物で内張りされているため鉄皮温度は60〜80℃程度と低いが、ボイラ3は上述のように高温のため、両者を連結するガス排出管12には大きな高さ方向膨張差が発生する。そこで、この熱膨張差を吸収できるようにガス排出管12には伸縮管7を設けている。   On the other hand, in the boiler 3, a vertical load is supported by the lower part b, and a horizontal load is supported by the parts b and d during an earthquake. Moreover, since the high-temperature (225-250 degreeC) water-cooled wall is a structure in the boiler 3, the support method needs consideration by thermal expansion, and in b part, one point of the surrounding support part is fixed part. And others are sliding supports. Furthermore, it is necessary to consider such as setting a thermal expansion allowance as a gap in advance for the portion d. Further, since the combustion furnace 2 is lined with a refractory, the iron skin temperature is as low as about 60 to 80 ° C., but since the boiler 3 is high as described above, the gas exhaust pipe 12 connecting the both has a large high temperature. A vertical expansion difference occurs. Therefore, the gas exhaust pipe 12 is provided with an expansion / contraction pipe 7 so as to absorb this thermal expansion difference.

上述のとおり、廃棄物ガス化溶融設備を構成するプラント機器の中で燃焼炉2及びボイラ3は重量がとりわけ大きく、地震時には大きな水平力が作用する。また、両者とも重心位置が高いため、大きな転倒モーメント荷重が発生する。この地震荷重に対し、燃焼炉2及びボイラ3を安定的に支持するためには、架構6を上部まで組み上げる必要がある。地震時の水平震度(自重に対する水平力の比)は基礎地盤の条件にもよるが、通常0.3程度の値で弾性範囲に入るように設計される。このため従来の廃棄物ガス化溶融設備では、燃焼炉2及びボイラ3を支持する架構6やその基礎の構築にかかるコストが高くなるという問題がある。また、さらに大きな水平震度が想定される大地震における安全性が要求される場合には、より強固な構造が要求される。   As described above, the combustion furnace 2 and the boiler 3 are particularly heavy in the plant equipment constituting the waste gasification and melting facility, and a large horizontal force acts during an earthquake. In addition, since the center of gravity is high in both cases, a large fall moment load is generated. In order to stably support the combustion furnace 2 and the boiler 3 against this seismic load, it is necessary to assemble the frame 6 to the upper part. The horizontal seismic intensity (ratio of horizontal force to its own weight) at the time of earthquake depends on the conditions of the foundation ground, but it is usually designed to be in the elastic range with a value of about 0.3. For this reason, in the conventional waste gasification and melting equipment, there is a problem that the cost for constructing the frame 6 and the foundation for supporting the combustion furnace 2 and the boiler 3 is increased. In addition, when safety is required in a large earthquake where a greater horizontal seismic intensity is assumed, a stronger structure is required.

これに対して、特許文献1及び特許文献2には、ごみ焼却プラントの制震架構及び免震架構が開示されているが、いずれもプラントの支持に架構を使用することを前提としているため、架構やその基礎の構築にかかるコストが高くなるという問題は解消されない。   In contrast, Patent Literature 1 and Patent Literature 2 disclose a seismic control frame and a seismic isolation frame of a garbage incineration plant, both of which are based on the premise that a frame is used to support the plant. The problem of high costs for the construction of the frame and its foundation cannot be solved.

ここで、架構にかかるコスト低減のため、図8において架構6の上部構造を廃止し、鉛直荷重を支持する支持部a,b部までとし、地震発生時の転倒モーメントも支持部a,b部で負担する構造とすることも考えられる。しかし、燃焼炉2とボイラ3とでは振動の固有周期が異なるため大きな相対変位が、ガス排出管12に設けた伸縮管7に発生し、破断することが考えられる。このため、従来の廃棄物ガス化溶融設備では、図8に示すとおり、地震を想定した強固な架構6を上部まで組み上げている。   Here, in order to reduce the cost of the frame, the upper structure of the frame 6 is abolished in FIG. 8 and the support portions a and b supporting the vertical load are used, and the overturning moment when the earthquake occurs is also the support portions a and b. It is also possible to use a structure that bears the However, since the natural period of vibration is different between the combustion furnace 2 and the boiler 3, it is considered that a large relative displacement occurs in the expansion and contraction tube 7 provided in the gas discharge pipe 12 and breaks. For this reason, in the conventional waste gasification melting equipment, as shown in FIG. 8, the strong frame 6 which assumed the earthquake is assembled to the upper part.

この架構は、法規上は建築物としては扱われないが、廃棄物処理設備の場合建築物に準じる耐震性が求められる場合が多く、大地震に耐える、強固な構造体とする必要がある。
特開平9−264504号公報 特開2001−254905号公報
This frame is not treated as a building by law, but in the case of waste treatment facilities, it is often required to have earthquake resistance equivalent to that of the building, and it is necessary to make it a strong structure that can withstand a large earthquake.
JP-A-9-264504 JP 2001-254905 A

本発明が解決しようとする課題は、耐震性を備えつつ、燃焼炉及びボイラを支持する架構を省略できる廃棄物ガス化溶融設備を提供することにある。   The problem to be solved by the present invention is to provide a waste gasification and melting facility that has earthquake resistance and can omit the frame that supports the combustion furnace and the boiler.

燃焼炉及びボイラは本来、鉄皮や水冷壁で囲まれた剛性の高いシェル構造体であり、本体を直接、地盤基礎と強固に接合すれば十分な地震強度を得ることができる。ただし、この場合、強い転倒モーメントに耐える基礎や杭を必要とする。   Combustion furnaces and boilers are inherently highly rigid shell structures surrounded by iron shells and water-cooled walls, and sufficient seismic strength can be obtained if the main body is directly joined firmly to the ground foundation. However, in this case, a foundation or pile that can withstand a strong overturning moment is required.

そこで、本発明では、基礎地盤上に免震装置を介して基礎架台を配置し、この基礎架台上に燃焼炉及びボイラを自立させて搭載するようにした。   Therefore, in the present invention, the foundation frame is arranged on the foundation ground via the seismic isolation device, and the combustion furnace and the boiler are independently mounted on the foundation frame.

すなわち、本発明は、廃棄物をガス化、溶融するガス化溶融炉と、ガス化により生成した可燃性ガスを燃焼する燃焼炉と、燃焼炉からの燃焼排ガスを冷却し、熱回収するボイラとを有する廃棄物ガス化溶融設備において、燃焼炉とボイラは、共通の基礎架台上に、架構によって側面を支持されることなく自立して搭載されており、前記基礎架台は、免震装置を介して基礎地盤に支持されていることを特徴とするものである。   That is, the present invention includes a gasification melting furnace that gasifies and melts waste, a combustion furnace that burns a combustible gas generated by gasification, a boiler that cools the combustion exhaust gas from the combustion furnace and recovers heat. In the waste gasification and melting facility, the combustion furnace and the boiler are mounted on a common foundation stand independently without being supported on the side by the frame, and the foundation stand is connected via a seismic isolation device. It is characterized by being supported by the foundation ground.

このように、燃焼炉及びボイラを基礎架台上に自立させて搭載することにより、燃焼炉及びボイラを支持する架構を省略することができる。また、燃焼炉及びボイラを搭載する基礎架台は、免震装置を介して基礎地盤に支持されているので耐震性も確保される。そして、免震装置を介して基礎架台を基礎地盤上に配置したことによって、耐震性を確保するために従来のような強固な基礎を構築する必要がなくなり、基礎構築コストを低減することもできる。   Thus, the frame which supports a combustion furnace and a boiler can be abbreviate | omitted by mounting a combustion furnace and a boiler independently on a foundation frame. In addition, since the foundation frame on which the combustion furnace and the boiler are mounted is supported on the foundation ground via the seismic isolation device, the earthquake resistance is also ensured. And, by placing the foundation frame on the foundation ground via the seismic isolation device, it is not necessary to build a strong foundation as in the past to ensure earthquake resistance, and the foundation construction cost can be reduced. .

また、従来の廃棄物ガス化溶融設備においては、上述のとおり燃焼炉とボイラとを連結するガス排出管に設けた伸縮管が地震時に破断するおそれがあった。この伸縮管は、おもに燃焼炉2とボイラ3との間の高さ方向の膨張差を吸収するために設置したものである。したがって、このガス排出管の位置を下側の支持部近傍とすれば高さ方向膨張差に対する配慮は必要なくなる。   Further, in the conventional waste gasification and melting equipment, as described above, the expansion pipe provided in the gas discharge pipe connecting the combustion furnace and the boiler may be broken during an earthquake. This telescopic tube is mainly installed to absorb the expansion difference in the height direction between the combustion furnace 2 and the boiler 3. Therefore, if the position of the gas discharge pipe is in the vicinity of the lower support portion, it is not necessary to consider the difference in expansion in the height direction.

すなわち、本発明では、燃焼炉の下端部を前記基礎架台に固定して支持すると共に、ガス化溶融炉からの可燃性ガスを燃焼させる燃焼バーナを燃焼炉の上部に配置し、燃焼排ガスを排出するガス排出管を燃焼炉の下部に配置し、ボイラをガス排出管と剛結合により連結することが好ましい。このようにガス排出管を燃焼炉の下部に配置することで、従来必要であった伸縮管を設ける必要がなくなる。そして、燃焼炉とボイラとをガス排出管によって剛結合にて連結することで、地震時にガス排出管の軸線方向の水平力が互いに伝達される。その水平力は、燃焼炉及びボイラを搭載する基礎架台に伝達されるが、基礎架台は免震装置を介して基礎地盤に支持されているので、その水平力は大幅に抑えられ、転倒モーメントも小さくなり、耐震性が確保される。   That is, in the present invention, the lower end portion of the combustion furnace is fixed and supported on the foundation gantry, and a combustion burner for combusting the combustible gas from the gasification melting furnace is disposed on the upper portion of the combustion furnace to discharge the combustion exhaust gas. It is preferable that the gas discharge pipe to be disposed is disposed at the lower part of the combustion furnace, and the boiler is connected to the gas discharge pipe by a rigid connection. By disposing the gas discharge pipe in the lower part of the combustion furnace in this way, it becomes unnecessary to provide an expansion / contraction pipe that has been conventionally required. And a horizontal force of the axial direction of a gas exhaust pipe is transmitted mutually at the time of an earthquake by connecting a combustion furnace and a boiler by a rigid connection with a gas exhaust pipe. The horizontal force is transmitted to the foundation frame on which the combustion furnace and boiler are mounted, but since the foundation frame is supported on the foundation ground via the seismic isolation device, the horizontal force is greatly suppressed and the tipping moment is also reduced. It becomes smaller and seismic resistance is secured.

また、基礎架台へのボイラ3の支持にあたっては、ボイラの熱膨張に対する配慮が必要である。そのため、本発明では、ボイラの下端部を基礎架台上に配置したボイラ受け架台上に、水平方向の移動を自在にするすべり支承を介して支持し、ボイラの下端部とボイラ受け架台との間に、ボイラに作用する前記ガス排出管の軸線と直交する方向の水平力をボイラ受け架台に伝達すると共に前記ガス排出管の軸線方向の水平移動を拘束しない水平力受け機構を配置することが好ましい。このような構成とすることで、ボイラの熱膨張を拘束せず、地震時に作用する水平力はガス排出管及び水平力受け機構によって基礎架台に伝達することができる。   Further, in supporting the boiler 3 on the foundation frame, consideration must be given to the thermal expansion of the boiler. Therefore, in the present invention, the lower end of the boiler is supported on a boiler support base disposed on the foundation base via a slide support that allows horizontal movement, and between the lower end of the boiler and the boiler support base. In addition, it is preferable to arrange a horizontal force receiving mechanism that transmits a horizontal force in a direction perpendicular to the axis of the gas discharge pipe acting on the boiler to the boiler receiving frame and does not restrict horizontal movement of the gas discharge pipe in the axial direction. . By setting it as such a structure, the horizontal force which acts at the time of an earthquake can be transmitted to a foundation stand by a gas exhaust pipe and a horizontal force receiving mechanism, without restraining thermal expansion of a boiler.

別の構成として、ボイラの側壁下端部を基礎架台上に複数の支柱を介して支持し、この複数の支柱を、その両端をそれぞれ基礎架台とボイラの側壁下端部にピン結合することにより前記ガス排出管の軸線方向に沿って揺動可能とし、さらに、ガス排出管の軸線の軸線と直交する面には、前記支柱とボイラの側壁下端中央部とを接続する補強部材を設けてトラス構造体することもできる。この構成によっても、ボイラの熱膨張は拘束されず、地震時に作用する水平力はガス排出管及びトラス構造体によって基礎架台に伝達することができる。   As another configuration, the lower end of the side wall of the boiler is supported on a foundation frame via a plurality of columns, and the plurality of columns are connected to the foundation frame and the lower end of the side wall of the boiler, respectively, by means of pin coupling. A truss structure body that is swingable along the axial direction of the exhaust pipe, and further provided with a reinforcing member that connects the column and the lower end center of the side wall of the boiler on a surface orthogonal to the axial line of the gas exhaust pipe You can also Also with this configuration, the thermal expansion of the boiler is not constrained, and the horizontal force acting during an earthquake can be transmitted to the foundation frame by the gas discharge pipe and the truss structure.

本発明によれば、燃焼炉及びボイラを基礎架台上に自立させて搭載することにより、燃焼炉及びボイラを支持する架構を省略することができる。また、燃焼炉及びボイラを搭載する基礎架台を、免震装置を介して基礎地盤に支持することにより、耐震性も確保することができる。そして、免震装置を介して基礎架台を基礎地盤上に配置したことによって、耐震性を確保するために従来のような強固な基礎を構築する必要がなくなり、基礎構築コストを低減することもできる。   According to the present invention, the frame for supporting the combustion furnace and the boiler can be omitted by mounting the combustion furnace and the boiler on the foundation frame. Moreover, earthquake resistance can also be ensured by supporting the foundation frame carrying the combustion furnace and the boiler on the foundation ground via a seismic isolation device. And, by placing the foundation frame on the foundation ground via the seismic isolation device, it is not necessary to build a strong foundation as in the past to ensure earthquake resistance, and the foundation construction cost can be reduced. .

以下、図面に示す実施例に基づき本発明の実施の形態を説明する。   Embodiments of the present invention will be described below based on examples shown in the drawings.

図1は本発明の廃棄物ガス化溶融設備におけるガス化溶融炉からボイラまでの立面図、図2は図1のA−A矢視図、図3は図1のB−B矢視図、図4は図3のI部の拡大図を示す。   1 is an elevation view from a gasification melting furnace to a boiler in the waste gasification and melting equipment of the present invention, FIG. 2 is a view taken along the line AA in FIG. 1, and FIG. 3 is a view taken along the line BB in FIG. 4 shows an enlarged view of a portion I in FIG.

図1において、ごみピット8に貯留されたごみ9はごみクレーン10によりガス化溶融炉1に炉上部より投入され、可燃分はガス化され、ガス化により生成した可燃性ガスはガス導入管4を経由して燃焼炉2の上部に設けられた燃焼バーナ11部分に導入され、燃焼炉2内で完全燃焼される。燃焼後の高温の燃焼排ガスは燃焼炉2の下部に設置したガス排出管12を経由してボイラ3に送られ、熱回収が行われる。熱回収後の燃焼排ガスは排ガス処理装置により無害化され煙突より排出される。   In FIG. 1, the waste 9 stored in the waste pit 8 is put into the gasification melting furnace 1 from the top of the furnace by a garbage crane 10, the combustible component is gasified, and the combustible gas generated by the gasification is the gas introduction pipe 4. Is introduced into the combustion burner 11 provided in the upper part of the combustion furnace 2 and is completely burned in the combustion furnace 2. The high-temperature combustion exhaust gas after combustion is sent to the boiler 3 via a gas discharge pipe 12 installed at the lower part of the combustion furnace 2 and heat recovery is performed. The combustion exhaust gas after heat recovery is rendered harmless by the exhaust gas treatment device and discharged from the chimney.

燃焼炉2は、その下端部がスカート支持構造により基礎架台13に直接支持されている。基礎架台13は鋼製あるいは鉄筋コンクリート製とすることができる。   The lower end portion of the combustion furnace 2 is directly supported on the foundation frame 13 by a skirt support structure. The foundation mount 13 can be made of steel or reinforced concrete.

一方、ボイラ3はガス排出管12と剛結合により連結されており、その下端部が基礎架台13上に形成されたボイラ受け架台16を介してb部で支持されている。b部は複数の支持点を含み、いずれもスライド式の支承部、すなわちすべり支承としている。このすべり支承には摩擦係数の小さいテフロン(登録商標)樹脂等を用いることが好ましい。このすべり支承によるスライド機構により、ボイラ3本体の熱膨張や燃焼炉2との間の熱膨張を自由にしている。   On the other hand, the boiler 3 is connected to the gas discharge pipe 12 by a rigid connection, and a lower end portion thereof is supported by the part b via a boiler receiving frame 16 formed on the foundation frame 13. Part b includes a plurality of support points, all of which are slidable bearings, that is, sliding bearings. It is preferable to use a Teflon (registered trademark) resin or the like having a small friction coefficient for this sliding bearing. The sliding mechanism based on the sliding support frees the thermal expansion of the main body of the boiler 3 and the thermal expansion with the combustion furnace 2.

基礎架台13と基礎地盤との間には免震装置が設置されている。図5は免震装置の設置例を示し、(a)はその平面図、(b)はその正面図である。免震装置としては様々の形式のものが提案されているが、本例ではすべり支承19とU形ダンパ20の組み合わせで免震を行う場合を示している。すべり支承19の設置数は本例では6箇所であるが、荷重条件や機器構成により設定される。免震装置としては積層ゴム式や積層ゴムとすべり支承とを組み合わせた例もある。   A seismic isolation device is installed between the foundation frame 13 and the foundation ground. FIG. 5 shows an installation example of the seismic isolation device, (a) is a plan view thereof, and (b) is a front view thereof. Although various types of seismic isolation devices have been proposed, this example shows a case where the base isolation is performed by a combination of the sliding bearing 19 and the U-shaped damper 20. Although the number of sliding supports 19 is six in this example, it is set according to load conditions and equipment configuration. Examples of seismic isolation devices include laminated rubber types and combinations of laminated rubber and sliding bearings.

次に、地震による水平力成分を図2に示すX、Y方向に分け、地震による力の伝達挙動を説明する。基礎地盤の地震動に対し、スライド支承19とU型ダンパ20とで構成される免震装置によって、地震加速度としては1/2から1/3程度に減衰されて基礎架台13に伝達し、燃焼炉2及びボイラ3に伝えられ、慣性による水平力が基礎架台13に作用する。   Next, the horizontal force component caused by the earthquake is divided into the X and Y directions shown in FIG. 2, and the transmission behavior of the force caused by the earthquake will be described. In response to seismic motion of the foundation ground, the seismic isolation device composed of the slide bearing 19 and the U-shaped damper 20 attenuates the earthquake acceleration to about 1/2 to 1/3 and transmits it to the foundation gantry 13, and the combustion furnace 2 and the boiler 3, and a horizontal force due to inertia acts on the foundation frame 13.

燃焼炉2は、その下端部が基礎架台13と直結しているため、燃焼炉2には、X、Y方向ともに直接、水平力が伝達される。一方、ボイラ3は、その下端部がb部のすべり支承で支持されているため、基礎架台13への力の伝達が異なる。X方向成分の水平力、すなわちガス排出管12の軸線方向の水平力は、ガス排出管12を介して燃焼炉2に伝達される。また、Y方向成分の水平力、すなわちガス排出管12軸線と直交する方向の水平力は、図3のI部に示す位置に設置した水平力受け機構によって伝達される。この水平力受け機構は、その中心がガス排出管12の軸線を含む鉛直面内に位置するように、反燃焼炉側と燃焼炉側の2箇所に設置されている、この水平力受け機構の具体的な構成としては、図4に示すように、ボイラ3側に設けられたボイラ側ブラケット14を挟持するようにボイラ受け架台16側から水平力受けブラケット15が設けられている。ただし、水平力受けブラケット15は、ボイラ3のX方向の熱膨張移動を妨げないように、ボイラ側ブラケット14をX方向にスライド可能に挟持している。すなわち、この水平力受け機構により、ボイラ3の熱膨張を妨げることなく、ボイラ3に作用するY方向の水平力を基礎架台13へ伝達することが可能である。なお、X方向の水平力は上述のとおり、ガス排出管12を介して燃焼炉2に伝達され、最終的には基礎架台13に伝達される。このように、燃焼炉2及びボイラ3に作用する水平力は、いずれも最終的には基礎架台13に伝達され、基礎架台13が免震装置を介して基礎地盤に支持されていることで、耐震性が確保される。しかも、上述のような水平力受け機構を設置することで、ボイラ3の熱膨張が妨げられることもない。   Since the lower end portion of the combustion furnace 2 is directly connected to the foundation frame 13, horizontal force is directly transmitted to the combustion furnace 2 in both the X and Y directions. On the other hand, since the lower end portion of the boiler 3 is supported by the sliding support of the portion b, the transmission of force to the foundation mount 13 is different. The horizontal force of the X direction component, that is, the horizontal force in the axial direction of the gas exhaust pipe 12 is transmitted to the combustion furnace 2 through the gas exhaust pipe 12. Further, the horizontal force of the Y direction component, that is, the horizontal force in the direction orthogonal to the axis of the gas discharge pipe 12 is transmitted by the horizontal force receiving mechanism installed at the position indicated by the portion I in FIG. This horizontal force receiving mechanism is installed at two locations on the anti-combustion furnace side and the combustion furnace side so that its center is located in a vertical plane including the axis of the gas discharge pipe 12. As a specific configuration, as shown in FIG. 4, a horizontal force receiving bracket 15 is provided from the boiler support stand 16 side so as to sandwich the boiler side bracket 14 provided on the boiler 3 side. However, the horizontal force receiving bracket 15 sandwiches the boiler side bracket 14 so as to be slidable in the X direction so as not to prevent the thermal expansion movement of the boiler 3 in the X direction. That is, the horizontal force receiving mechanism can transmit the horizontal force in the Y direction acting on the boiler 3 to the foundation frame 13 without hindering the thermal expansion of the boiler 3. As described above, the horizontal force in the X direction is transmitted to the combustion furnace 2 through the gas discharge pipe 12 and finally to the foundation frame 13. Thus, the horizontal force acting on the combustion furnace 2 and the boiler 3 is finally transmitted to the foundation gantry 13, and the foundation gantry 13 is supported on the foundation ground via the seismic isolation device. Seismic resistance is ensured. And the thermal expansion of the boiler 3 is not prevented by installing the above horizontal force receiving mechanisms.

図6は、燃焼炉2及びボイラ3の支持構造の他の例を示し、(a)はその正面図、(b)はその側面図である。この例では、ボイラ3の自重を複数の支柱21で支えるようにしている。   FIG. 6 shows another example of a support structure for the combustion furnace 2 and the boiler 3, wherein (a) is a front view thereof and (b) is a side view thereof. In this example, the own weight of the boiler 3 is supported by a plurality of columns 21.

支柱21は、ボイラ3の側壁下端部の少なくとも四隅部に配置され、その両端がそれぞれ基礎架台13とボイラ3の側壁下端部にピン結合されることにより、ガス排出管12の軸線方向に沿って揺動可能となっている。   The struts 21 are disposed at least at the four corners of the lower end of the side wall of the boiler 3, and both ends thereof are respectively pin-coupled to the lower end of the side wall of the foundation frame 13 and the boiler 3, thereby extending along the axial direction of the gas discharge pipe 12. It can swing.

図6(a)において、二点鎖線は燃焼炉2とボイラ3の間の熱膨張及びボイラ3の熱膨張を誇張して示したものであるが、上述のようにボイラ3を支柱21により支持しているため熱膨張が妨げられることはない。また、ガス排出管12の軸線方向に沿った水平力(図2におけるX方向成分の水平力)はガス排出管12によって燃焼炉2に伝達される。   In FIG. 6A, a two-dot chain line exaggerates the thermal expansion between the combustion furnace 2 and the boiler 3 and the thermal expansion of the boiler 3, but the boiler 3 is supported by the support column 21 as described above. Therefore, thermal expansion is not hindered. Further, the horizontal force along the axial direction of the gas exhaust pipe 12 (the horizontal force of the X direction component in FIG. 2) is transmitted to the combustion furnace 2 by the gas exhaust pipe 12.

一方、ガス排出管12の軸線と直交する面においては、図6(b)に示すように、支柱21とボイラ3と補強部材(ブレス)22とでトラス構造体を構成している。この面においても、図6(b)に二点鎖線で誇張して示すようにボイラ3の熱膨張が妨げられることはないが、この面の水平力(図2におけるY方向成分の水平力)はトラス構造体により基礎架台13に伝達される。   On the other hand, on the surface orthogonal to the axis of the gas exhaust pipe 12, as shown in FIG. 6 (b), the support column 21, the boiler 3, and the reinforcing member (breath) 22 constitute a truss structure. In this surface as well, the thermal expansion of the boiler 3 is not hindered as shown exaggerated by a two-dot chain line in FIG. 6B, but the horizontal force on this surface (the horizontal force of the Y direction component in FIG. 2). Is transmitted to the foundation frame 13 by the truss structure.

この支持構造においても燃焼炉2及びボイラ3に作用する水平力は、いずれも基礎架台13に伝達され、基礎架台13が免震装置を介して基礎地盤に支持されていることで、耐震性が確保される。しかも、上述のような支柱21による支持機構を採用することで、ボイラ3の熱膨張が妨げられることもない。   Also in this support structure, the horizontal force acting on the combustion furnace 2 and the boiler 3 is all transmitted to the foundation gantry 13, and the foundation gantry 13 is supported on the foundation ground via the seismic isolation device, so that the earthquake resistance is improved. Secured. And the thermal expansion of the boiler 3 is not prevented by employ | adopting the support mechanism by the above support | pillars 21 as mentioned above.

ここで、上述のような免震構造の採用により、地震発生時の設備に作用する水平地震力は大幅に低減されるが、基礎地盤との相対変位は大きくなることが想定される。したがって、免震構造採用の場合はこのための配慮が必要となる。   Here, by adopting the seismic isolation structure as described above, the horizontal seismic force acting on the equipment at the time of the earthquake is greatly reduced, but it is assumed that the relative displacement with the foundation ground becomes large. Therefore, when using a seismic isolation structure, consideration for this is necessary.

そこで、図1の例では、ガス化溶融炉1が剛性の高いごみビット8と一体的に形成されているに対し、燃焼炉2は免震されているため、両者間をつなぐガス導入管4には地震時に相互の相対変位を吸収する構造を採用している。図7はその説明図である。すなわち、伸縮管5を管路に2台、間隔をあけて配置することにより、1台の伸縮管では吸収できない変位を、2台の伸縮管の角変位で吸収するものである。同様な考え方をボイラ出口管17での伸縮管18にも採用している。   Therefore, in the example of FIG. 1, the gasification melting furnace 1 is integrally formed with the highly rigid garbage bit 8, whereas the combustion furnace 2 is seismically isolated, and therefore the gas introduction pipe 4 connecting the two. Adopts a structure that absorbs mutual relative displacement during earthquakes. FIG. 7 is an explanatory diagram thereof. That is, by disposing two expansion tubes 5 in the pipeline at an interval, a displacement that cannot be absorbed by one expansion tube is absorbed by an angular displacement of the two expansion tubes. A similar concept is adopted for the expansion tube 18 at the boiler outlet tube 17.

本発明の廃棄物ガス化溶融設備におけるガス化溶融炉からボイラまでの立面図を示す。The elevation view from the gasification melting furnace to the boiler in the waste gasification melting equipment of the present invention is shown. 図2は図1のA−A矢視図を示す。FIG. 2 shows an AA arrow view of FIG. 図1のB−B矢視図を示す。The BB arrow line view of FIG. 1 is shown. 図3のI部の拡大図を示す。The enlarged view of the I section of FIG. 3 is shown. 免震装置の設置例を示し、(a)はその平面図、(b)はその正面図である。The example of installation of a seismic isolation apparatus is shown, (a) is the top view, (b) is the front view. 燃焼炉及びボイラの支持構造の他の例を示し、(a)はその正面図、(b)はその側面図である。The other example of the support structure of a combustion furnace and a boiler is shown, (a) is the front view, (b) is the side view. 地震による変位を配管で吸収する構造例を示す。An example of a structure that absorbs displacement caused by an earthquake with piping is shown. 従来の廃棄物ガス化溶融設備におけるガス化溶融炉からボイラまでの一般的な立面図を示す。A general elevation view from a gasification melting furnace to a boiler in a conventional waste gasification melting equipment is shown.

符号の説明Explanation of symbols

1 ガス化溶融炉
2 燃焼炉
3 ボイラ
4 ガス導入管
5 伸縮管
6 架構
7 伸縮管
8 ごみビット
9 ごみ
10 ごみクレーン
11 燃焼バーナ
12 ガス排出管
13 基礎架台
14 ボイラ側ブラケット
15 水平力受けブラケット
16 ボイラ受け架台
17 ボイラ出口管
18 伸縮管
19 すべり支承
20 U型ダンパ
21 支柱
22 補強部材(ブレス)
a、c 燃焼炉の支持部
b、d ボイラの支持部
I 水平力受け機構
DESCRIPTION OF SYMBOLS 1 Gasification melting furnace 2 Combustion furnace 3 Boiler 4 Gas introduction pipe 5 Telescopic pipe 6 Frame 7 Telescopic pipe 8 Garbage bit 9 Garbage 10 Garbage crane 11 Combustion burner 12 Gas discharge pipe 13 Foundation stand 14 Boiler side bracket 15 Horizontal force receiving bracket 16 Boiler stand 17 Boiler outlet pipe 18 Telescopic pipe 19 Sliding bearing 20 U-type damper 21 Post 22 Reinforcing member (brace)
a, c Supporting part of combustion furnace b, d Supporting part of boiler I Horizontal force receiving mechanism

Claims (3)

廃棄物をガス化、溶融するガス化溶融炉と、ガス化により生成した可燃性ガスを燃焼する燃焼炉と、燃焼炉からの燃焼排ガスを冷却し、熱回収するボイラとを有する廃棄物ガス化溶融設備において、燃焼炉とボイラは、共通の基礎架台上に、架構によって側面を支持されることなく自立して搭載されており、前記基礎架台は、免震装置を介して基礎地盤に支持されている廃棄物ガス化溶融設備。   Gasification melting furnace that gasifies and melts waste, combustion furnace that combusts combustible gas generated by gasification, and boiler that cools combustion exhaust gas from the combustion furnace and recovers heat In the melting facility, the combustion furnace and boiler are mounted on a common foundation stand independently without being supported on the side by the frame, and the foundation stand is supported on the foundation ground via a seismic isolation device. Waste gasification and melting equipment. 燃焼炉は、その下端部が前記基礎架台に固定されて支持されており、前記可燃性ガスを燃焼させる燃焼バーナが燃焼炉の上部に配置されると共に、燃焼排ガスを排出するガス排出管が燃焼炉の下部に配置されており、
ボイラは、前記ガス排出管と剛結合により連結されると共に、その下端部が前記基礎架台上に配置したボイラ受け架台上に、水平方向の移動を自在にするすべり支承を介して支持されており、
さらに、ボイラの下端部とボイラ受け架台との間に、ボイラに作用する前記ガス排出管の軸線と直交する方向の水平力をボイラ受け架台に伝達すると共に前記ガス排出管の軸線方向の水平移動を拘束しない水平力受け機構が配置されている請求項1に記載の廃棄物ガス化溶融設備。
The combustion furnace has a lower end fixed to and supported by the foundation frame, a combustion burner for burning the combustible gas is disposed at the upper portion of the combustion furnace, and a gas exhaust pipe for discharging combustion exhaust gas is burned. Located at the bottom of the furnace,
The boiler is connected to the gas discharge pipe by a rigid connection, and a lower end portion thereof is supported on a boiler support frame disposed on the foundation frame via a slide support that allows horizontal movement. ,
Further, a horizontal force in a direction perpendicular to the axis of the gas discharge pipe acting on the boiler is transmitted between the lower end portion of the boiler and the boiler support base to the boiler support base and the horizontal movement of the gas discharge pipe in the axial direction is performed. The waste gasification and melting equipment according to claim 1, wherein a horizontal force receiving mechanism that does not restrain the gas is disposed.
燃焼炉は、その下端部が前記基礎架台に固定されて支持されており、前記可燃性ガスを燃焼させる燃焼バーナが燃焼炉の上部に配置されると共に、燃焼排ガスを排出するガス排出管が燃焼炉の下部に配置されており、
ボイラは、前記ガス排出管と剛結合により連結されると共に、その側壁下端部が前記基礎架台上に複数の支柱を介して支持されており、
前記複数の支柱は、その両端がそれぞれ前記基礎架台とボイラの側壁下端部にピン結合されることにより前記ガス排出管の軸線方向に沿って揺動可能であり、さらに、前記ガス排出管の軸線の軸線と直交する面には、前記支柱とボイラの側壁下端中央部とを接続する補強部材を設けてトラス構造体とした請求項1に記載の廃棄物ガス化溶融設備。
The combustion furnace has a lower end fixed to and supported by the foundation frame, a combustion burner for burning the combustible gas is disposed at the upper portion of the combustion furnace, and a gas exhaust pipe for discharging combustion exhaust gas is burned. Located at the bottom of the furnace,
The boiler is connected to the gas discharge pipe by a rigid connection, and the lower end of the side wall is supported on the foundation frame via a plurality of columns.
The plurality of struts can swing along the axial direction of the gas exhaust pipe by pin-bonding both ends thereof to the foundation frame and the lower end of the side wall of the boiler, respectively, and further, the axis of the gas exhaust pipe The waste gasification and melting equipment according to claim 1, wherein a reinforcing member that connects the column and the lower end central portion of the side wall of the boiler is provided on a surface orthogonal to the axis of the truss structure.
JP2006199966A 2006-07-21 2006-07-21 Waste gasification and melting equipment Active JP4751262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006199966A JP4751262B2 (en) 2006-07-21 2006-07-21 Waste gasification and melting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006199966A JP4751262B2 (en) 2006-07-21 2006-07-21 Waste gasification and melting equipment

Publications (2)

Publication Number Publication Date
JP2008025930A true JP2008025930A (en) 2008-02-07
JP4751262B2 JP4751262B2 (en) 2011-08-17

Family

ID=39116736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006199966A Active JP4751262B2 (en) 2006-07-21 2006-07-21 Waste gasification and melting equipment

Country Status (1)

Country Link
JP (1) JP4751262B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08121727A (en) * 1994-10-27 1996-05-17 Nippon Steel Corp Secondary combustion furnace structure for melting furnace of wasted matter
JPH09264504A (en) * 1996-03-28 1997-10-07 Nkk Corp Antivibration frame of refuse incineration plant
JPH11241804A (en) * 1998-02-25 1999-09-07 Toshiba Eng Co Ltd Supporting structure
JP2001254905A (en) * 2000-03-09 2001-09-21 Nkk Corp Vibration isolating frame for refuse incinerating plant
JP2002276925A (en) * 2001-01-12 2002-09-25 Kawasaki Heavy Ind Ltd Method for treating exhaust gas of gasifying furnace and exhaust gas treating facility

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08121727A (en) * 1994-10-27 1996-05-17 Nippon Steel Corp Secondary combustion furnace structure for melting furnace of wasted matter
JPH09264504A (en) * 1996-03-28 1997-10-07 Nkk Corp Antivibration frame of refuse incineration plant
JPH11241804A (en) * 1998-02-25 1999-09-07 Toshiba Eng Co Ltd Supporting structure
JP2001254905A (en) * 2000-03-09 2001-09-21 Nkk Corp Vibration isolating frame for refuse incinerating plant
JP2002276925A (en) * 2001-01-12 2002-09-25 Kawasaki Heavy Ind Ltd Method for treating exhaust gas of gasifying furnace and exhaust gas treating facility

Also Published As

Publication number Publication date
JP4751262B2 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
US4567700A (en) Frame-supported membrane for chimney
JP2007107789A (en) Installation method of boiler equipment
JP2007107785A (en) Installation method of boiler equipment
JPH02290405A (en) Radial supporting device for outer shell member
JP4751262B2 (en) Waste gasification and melting equipment
JP6076511B2 (en) Fluidized bed boiler including support structure for particle separator
JP2009180420A (en) Refractory material supporting structure
KR101441119B1 (en) Supporting device for inner wall of incinerator
JP6122744B2 (en) Seismic tie for boiler vibration control and boiler seismic structure using the same
JPWO2010087136A1 (en) Blast furnace equipment, method for improving seismic performance of blast furnace equipment and coupled vibration control device
JP2016056633A (en) Chimney for building
JP4076014B2 (en) Waste heat recovery boiler and its installation method
JP3163736U (en) Refractories for water pipe protection and wall structures for water pipe protection
JP5992322B2 (en) Circulating fluidized bed boiler
JP2014234935A (en) Circulating fluidized bed boiler
TWI706110B (en) System and method for supporting a boiler load
JP5868713B2 (en) Windbox support structure and boiler steel structure having the same
ES2807833T3 (en) Circulating fluidized bed apparatus
KR101433616B1 (en) Anchor and Anchor bracket for supporting fire bricks used for incinerator combustion chamber
JP2680514B2 (en) High temperature windbox for boiler
JP2007107788A (en) Installation method of boiler facility
JP2001032568A (en) Fire resisting device for vibration isolation device
JP4301697B2 (en) boiler
CN218151130U (en) Muffler support, container formula generating set and system of discharging fume thereof
JPS5974497A (en) Exhaust-gas heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110520

R150 Certificate of patent or registration of utility model

Ref document number: 4751262

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250