JP2008025354A - Weld joining structure and weld joining method of intake manifold - Google Patents

Weld joining structure and weld joining method of intake manifold Download PDF

Info

Publication number
JP2008025354A
JP2008025354A JP2006195405A JP2006195405A JP2008025354A JP 2008025354 A JP2008025354 A JP 2008025354A JP 2006195405 A JP2006195405 A JP 2006195405A JP 2006195405 A JP2006195405 A JP 2006195405A JP 2008025354 A JP2008025354 A JP 2008025354A
Authority
JP
Japan
Prior art keywords
intake
divided body
divided
split
substantially along
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006195405A
Other languages
Japanese (ja)
Inventor
Tomoshi Enokida
智志 榎田
Hiroki Inagaki
宏樹 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DaikyoNishikawa Corp
Original Assignee
DaikyoNishikawa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DaikyoNishikawa Corp filed Critical DaikyoNishikawa Corp
Priority to JP2006195405A priority Critical patent/JP2008025354A/en
Publication of JP2008025354A publication Critical patent/JP2008025354A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To materialize stable high joining strength by regulating slippage to the outside of the split body substantially along an inclination direction of an inclined part and suppressing variation of welding strength even when both split bodies include curved parts having inclined parts inclined to a pressing direction at vibration welding when forming an intake manifold of a pair of synthetic resin made split bodies which keeps intake pipe parts of an intake manifold respectively containing split surfaces substantially along an axial line of an intake passage and joining the split bodies by a vibration welding method. <P>SOLUTION: A receiving part 21 which is substantially orthogonal to an inclination direction of an inclined part in a split surface and which receives a force to the inside of the split body substantially along the inclination direction is provided on a back side of the split surface of an upper side split body 15 in an intake pipe part 10. The upper side split body 15 and lower side split 16 are joined to each other by a vibration welding method with a force to the inside of the split body substantially along the inclined direction acting on the receiving part. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、吸気容積部と合成樹脂製の吸気管部とを備え、該吸気管部が吸気通路の軸線に略沿った分割面をそれぞれ有する一対の分割体で構成され、これら両分割体を振動溶着法により前記分割面の衝合部で溶着接合してなるインテークマニホールドの溶着接合構造および溶着接合方法に関する。   The present invention comprises an intake volume part and a synthetic resin intake pipe part, and the intake pipe part is composed of a pair of split bodies each having a split surface substantially along the axis of the intake passage, The present invention relates to a welded joint structure and a welded joint method for an intake manifold that are welded and joined at an abutting portion of the divided surface by a vibration welding method.

従来、自動車等の車両のエンジンに付設されるインテークマニホールドとして、吸気供給源に連通する吸気容積部と、一端が該吸気容積部に連通し他端がエンジンの気筒に連通する複数の吸気通路を有する合成樹脂製の吸気管部とを備え、該吸気管部の少なくとも一部が、吸気通路の軸線に略沿った分割面をそれぞれ有する一対の分割体(第1分割体と第2分割体)で構成され、これら両分割体を振動溶着法により前記分割面の衝合部で溶着接合するようにしたものは公知である(例えば、特許文献1参照)。   2. Description of the Related Art Conventionally, as an intake manifold attached to an engine of a vehicle such as an automobile, there are an intake volume portion communicating with an intake air supply source, and a plurality of intake passages with one end communicating with the intake volume portion and the other end communicating with an engine cylinder. A pair of divided bodies (a first divided body and a second divided body) each having a divided surface substantially along the axis of the intake passage. It is known that both of these divided bodies are welded and joined at the abutting portions of the divided surfaces by a vibration welding method (see, for example, Patent Document 1).

かかるインテークマニホールドのサイズや形状に関連して、エンジンルームの省スペース化に伴って、インテークマニホールドの吸気通路の長さを所要の長さに確保した上で、或いは、更に複数の吸気通路の長さをできるだけ等しくなるように設定した上で、より一層コンパクトにすることが求められている。このため、吸気管部の形状も、比較的直線的な直管から、湾曲部を有する曲がり管にするなどの工夫が必要とされる。   In relation to the size and shape of the intake manifold, the length of the intake passage of the intake manifold is secured to a required length in accordance with the space saving of the engine room, or the length of a plurality of intake passages. There is a demand for further compactness while setting the lengths to be as equal as possible. For this reason, the shape of the intake pipe portion needs to be devised such as changing from a relatively straight straight pipe to a bent pipe having a curved portion.

図10は従来のインテークマニホールドの一例を示す全体斜視図で、図11は図10のY11−Y11線に沿った縦断面説明図である。
これらの図に示すように、この従来例に係るインテークマニホールドMaは、一端がサージタンク51(吸気容積部)に連通し他端がエンジン(不図示)の気筒に連通する4つの吸気通路62を有する合成樹脂製の吸気管部60を備え、該吸気管部60の一部が、吸気通路62の軸線に略沿った分割面65f,66fをそれぞれ有する一対の分割体65,66(第1分割体と第2分割体)で構成されている。そして、これら両分割体65,66を、各々の分割面65f,66fを衝合させた衝合部で、振動溶着法により溶着接合することで、一体化されたインテークマニホールドMaが得られる。
FIG. 10 is an overall perspective view showing an example of a conventional intake manifold, and FIG. 11 is a longitudinal sectional explanatory view taken along line Y11-Y11 in FIG.
As shown in these drawings, the intake manifold Ma according to this conventional example has four intake passages 62 having one end communicating with a surge tank 51 (intake volume portion) and the other end communicating with a cylinder of an engine (not shown). A pair of divided bodies 65 and 66 (first divided parts) each having a split surface 65f and 66f substantially along the axis of the intake passage 62. Body and second divided body). Then, these two divided bodies 65 and 66 are welded and joined by the vibration welding method at the abutting portions where the respective divided surfaces 65f and 66f are abutted, whereby an integrated intake manifold Ma is obtained.

第1分割体65と第2分割体66とを振動溶着する際には、両者65,66をそれぞれの分割面65f,66fで衝合させ、図10において矢印A10で示すように、分割面65f,66fの背面側から治具を介し加圧した状態で、図10において往復矢印B10で示す方向に振動を加えて両分割体65,66を衝合部分で溶着させる。
前記インテークマニホールドMaの吸気管部60は、比較的小さい設置スペースでも吸気通路62の長さを所要長さに確保するために、上方に膨出するように湾曲した湾曲部を有しており、この湾曲部では、振動溶着時の加圧方向に対して傾斜した左右の傾斜部63を有している。
特開2002−364470号公報
When the first divided body 65 and the second divided body 66 are welded by vibration, the two divided surfaces 65f and 66 are brought into contact with each other by dividing surfaces 65f and 66f, and as shown by an arrow A10 in FIG. , 66f in a state of being pressurized through the jig from the back side, vibration is applied in the direction indicated by the reciprocating arrow B10 in FIG. 10 to weld the two divided bodies 65, 66 at the abutting portion.
The intake pipe portion 60 of the intake manifold Ma has a curved portion curved so as to bulge upward in order to secure the length of the intake passage 62 at a required length even in a relatively small installation space. This curved portion has left and right inclined portions 63 that are inclined with respect to the pressing direction during vibration welding.
JP 2002-364470 A

前記第1分割体65と第2分割体66とを振動溶着する場合、前記傾斜部63がある関係上、両者65,66を各々の分割面65f,66fの背面側から加圧すると、前記傾斜部63では、例えば図11における右側の傾斜部63を例にとって説明すれば、第1分割体65に作用する加圧力F1は、分割面65f,66fの接線に垂直な(つまり傾斜部63の傾斜方向に垂直な)方向に働き両分割面65f,66f間に面圧を作用させる垂直分力Fvと、分割面65f,66fの接線に沿った(つまり傾斜部63の傾斜方向に沿った)方向の傾斜分力Fkとを生じさせ、この傾斜分力Fkは、第1分割体65の右側の傾斜部63を傾斜方向に沿って右外方へ滑らせるように作用することになる。同様にして、第1分割体66の左側の傾斜部63には、左外方へ滑らせる力が作用することになる。   In the case where the first divided body 65 and the second divided body 66 are vibration welded, when the both inclined portions 65f and 66f are pressurized from the back side of the respective divided surfaces 65f, 66f due to the presence of the inclined portion 63, the inclined portion 63 is provided. In the portion 63, for example, the right inclined portion 63 in FIG. 11 will be described as an example. The applied pressure F1 acting on the first divided body 65 is perpendicular to the tangent lines of the divided surfaces 65f and 66f (that is, the inclined portion 63 is inclined). A vertical component force Fv acting in a direction (perpendicular to the direction) and applying a surface pressure between the two split surfaces 65f and 66f, and a direction along the tangent line of the split surfaces 65f and 66f (that is, along the tilt direction of the tilt portion 63). The inclined component force Fk is generated, and the inclined component force Fk acts to slide the right inclined portion 63 of the first divided body 65 outward in the right direction along the inclination direction. Similarly, a force for sliding leftward outwardly acts on the left inclined portion 63 of the first divided body 66.

この結果、第1分割体65には、全体として、図11において矢印A11で示すように、左右下部を左右外方へ開く方向の力が働き、両分割体65,66の分割面65f,66fの全体にわたって均一で十分な加圧力、特に強固な溶着に寄与する分割面65f,66fに垂直な加圧力(前記垂直分力Fv)、を得ることは難しい。このため、吸気通路62の軸線に沿って溶着強度のばらつきが生じ易く、十分な溶着強度を安定して得ることが難しいという問題があった。   As a result, as a whole, as shown by an arrow A11 in FIG. 11, a force in a direction to open the left and right lower portions outwardly acts on the first divided body 65, and the divided surfaces 65f and 66f of both the divided bodies 65 and 66 are applied. It is difficult to obtain a uniform and sufficient pressing force over the entire surface, particularly a pressing force perpendicular to the dividing surfaces 65f and 66f that contributes to strong welding (the vertical component force Fv). For this reason, there is a problem that the welding strength easily varies along the axis of the intake passage 62 and it is difficult to stably obtain a sufficient welding strength.

そこで、この発明は、吸気管部の少なくとも一部が、吸気通路の軸線に略沿った分割面をそれぞれ有する一対の合成樹脂製の分割体を振動溶着法により溶着接合してなるインテークマニホールドについて、前記両分割体の分割面が、振動溶着時の加圧方向に対して傾斜した傾斜部を有する湾曲形状部を備えている場合でも、前記傾斜部の傾斜方向に略沿った分割体の滑りを規制することで、溶着強度のばらつきを抑制し、安定した高い接合強度の実現を図ることができるようにすることを基本的な目的としてなされたものである。   Accordingly, the present invention relates to an intake manifold in which at least a part of the intake pipe portion is formed by welding and joining a pair of synthetic resin divided bodies each having a divided surface substantially along the axis of the intake passage by a vibration welding method. Even when the split surfaces of the two split bodies are provided with a curved portion having an inclined portion inclined with respect to the pressurizing direction during vibration welding, the split bodies slide substantially along the inclined direction of the inclined portion. By restricting, the basic purpose is to suppress the dispersion of the welding strength and to achieve a stable high bonding strength.

このため、本願発明に係るインテークマニホールドの溶着接合構造は、吸気供給源に連通する吸気容積部と、一端が該吸気容積部に連通し他端がエンジンの気筒に連通する複数の吸気通路を有する合成樹脂製の吸気管部とを備え、該吸気管部の少なくとも一部が、前記吸気通路の軸線に略沿った分割面をそれぞれ有する第1分割体と第2分割体とで構成されたインテークマニホールドについて、これら両分割体を、各々の前記分割面を衝合させた衝合部で振動溶着法により溶着接合してなるインテークマニホールドの溶着接合構造であって、
前記両分割体の分割面は、振動溶着時の加圧方向に対して傾斜した傾斜部を有する湾曲形状部を備えており、前記第1分割体における前記分割面の傾斜部の背面側に、該傾斜部の傾斜方向と略直交し、該傾斜方向に略沿った方向の力を受け止める受け部が設けられると共に、前記第2分割体に、前記分割面の衝合時に前記受け部と当接する当接部が設けられ、該当接部を介して、前記受け部に対し前記傾斜方向に略沿った加圧分力に対向する対向力を作用させた状態で、前記第1分割体と第2分割体とが振動溶着法により接合されている、ことを特徴としたものである。
For this reason, the welding connection structure of the intake manifold according to the present invention has an intake volume portion communicating with an intake air supply source, and a plurality of intake passages having one end communicating with the intake volume portion and the other end communicating with a cylinder of the engine. An intake pipe portion made of a synthetic resin, and at least a part of the intake pipe portion includes a first divided body and a second divided body each having a divided surface substantially along the axis of the intake passage. The manifold is a welded joint structure of an intake manifold in which both of these divided bodies are welded and joined by vibration welding at an abutting portion where the respective divided surfaces are abutted.
The dividing surfaces of the two divided bodies are provided with a curved shape portion having an inclined portion inclined with respect to the pressurizing direction during vibration welding, and on the back side of the inclined portion of the dividing surface in the first divided body, A receiving portion that receives a force in a direction substantially perpendicular to the inclined direction of the inclined portion and substantially along the inclined direction is provided, and the second divided body comes into contact with the receiving portion when the divided surfaces collide with each other. A contact part is provided, and the first divided body and the second part are applied to the receiving part through the contact part in a state in which an opposing force is applied to the receiving part, which opposes the pressure component substantially along the tilt direction. The divided body is joined by a vibration welding method.

この場合において、前記当接部は、板状に形成され、且つ、前記振動溶着時の振動方向と略直交する方向に配設されていることが好ましい。   In this case, it is preferable that the contact portion is formed in a plate shape and is disposed in a direction substantially orthogonal to the vibration direction at the time of vibration welding.

また、以上の場合において、前記吸気管部は少なくとも一部が互いに分離した複数の吸気管で構成され、前記受け部及び前記当接部の少なくとも何れか一方は、前記分離した吸気管どうしを連結していることが、より好ましい。   Further, in the above case, the intake pipe part is configured by a plurality of intake pipes at least partially separated from each other, and at least one of the receiving part and the contact part connects the separated intake pipes It is more preferable.

本願発明に係るインテークマニホールドの溶着接合方法は、吸気供給源に連通する吸気容積部と、一端が該吸気容積部に連通し他端がエンジンの気筒に連通する複数の吸気通路を有する合成樹脂製の吸気管部とを備え、該吸気管部の少なくとも一部が、前記吸気通路の軸線に略沿った分割面をそれぞれ有する第1分割体と第2分割体とで構成されたインテークマニホールドについて、前記両分割体を、各々の前記分割面を衝合させた衝合部で振動溶着法により溶着接合するインテークマニホールドの溶着接合方法であって、
前記両分割体の分割面は、振動溶着時の加圧方向に対して傾斜した傾斜部を有する湾曲形状部を備えており、前記第1分割体における前記分割面の傾斜部の背面側に、該傾斜部の傾斜方向と略直交し、該傾斜方向に略沿った方向の力を受け止める受け部を設けておき、前記受け部に対し、前記傾斜方向に略沿った加圧分力に対向する対向力を作用させた状態で、前記第1分割体と第2分割体とが振動溶着法により溶着接合する、ことを特徴としたものである。
An intake manifold welding and joining method according to the present invention comprises a synthetic resin having an intake volume portion communicating with an intake air supply source, and a plurality of intake passages having one end communicating with the intake volume portion and the other end communicating with an engine cylinder. An intake manifold, wherein at least a part of the intake pipe is composed of a first divided body and a second divided body each having a divided surface substantially along the axis of the intake passage. A method for welding and joining intake manifolds, in which the two divided bodies are welded and joined by vibration welding at the abutting portions where the divided surfaces abut each other.
The dividing surfaces of the two divided bodies are provided with a curved shape portion having an inclined portion inclined with respect to the pressurizing direction during vibration welding, and on the back side of the inclined portion of the dividing surface in the first divided body, A receiving portion is provided to receive a force in a direction substantially along the inclination direction substantially orthogonal to the inclination direction of the inclination portion, and is opposed to a pressure component force substantially along the inclination direction with respect to the receiving portion. The first divided body and the second divided body are welded and joined by a vibration welding method in a state where an opposing force is applied.

本願発明に係るインテークマニホールドの溶着接合構造によれば、第1分割体に設けられた受け部に対し、第2分割体に設けた当接部を介して、分割面の傾斜部の傾斜方向に略沿った加圧分力に対向する対向力を作用させた状態で、前記第1分割体と第2分割体とが振動溶着法により溶着接合されている。従って、前記両分割体が、振動溶着時の加圧方向に対して傾斜した傾斜部を有する湾曲形状部を備えている場合であっても、前記傾斜部の傾斜方向に略沿った第1分割体の滑りを有効に規制することができる。これにより、溶着強度のばらつきを抑制し、安定した高い接合強度の実現を図ることができる。   According to the welded joint structure of the intake manifold according to the present invention, with respect to the receiving portion provided in the first divided body, in the inclination direction of the inclined portion of the dividing surface via the contact portion provided in the second divided body. The first divided body and the second divided body are welded and joined by a vibration welding method in a state in which an opposing force that opposes the substantially pressing force component is applied. Therefore, even when both the divided bodies are provided with a curved portion having an inclined portion inclined with respect to the pressurizing direction at the time of vibration welding, the first division substantially along the inclined direction of the inclined portion. The body slip can be effectively controlled. Thereby, the dispersion | variation in welding intensity | strength can be suppressed and realization of the stable high joint strength can be aimed at.

この場合において、好ましくは、前記当接部が、板状に形成され、且つ、振動溶着時の振動方向と直交する方向に配設されていることにより、前記受け部と当接する前記当接部が振動溶着時に容易に溶け出すことを防止でき、前記傾斜方向に略沿った第1分割体の滑りをより有効に規制することができる。   In this case, preferably, the contact portion is formed in a plate shape and disposed in a direction orthogonal to the vibration direction at the time of vibration welding, so that the contact portion is in contact with the receiving portion. Can be prevented from being easily melted during vibration welding, and the sliding of the first divided body substantially along the inclined direction can be more effectively regulated.

また、以上の場合において、より好ましくは、前記吸気管部は少なくとも一部が互いに分離した複数の吸気管で構成され、前記受け部及び前記当接部の少なくとも何れか一方は、前記分離した吸気管どうしを連結しているので、分離した吸気管どうしの分離間隔が振動溶着時の加圧により広げられて溶着バランスが損なわれることを、特別な機構を新たに設ける必要無しに、コンパクトな構造で防止できる。   In the above case, more preferably, the intake pipe part is configured by a plurality of intake pipes at least partially separated from each other, and at least one of the receiving part and the contact part is the separated intake pipe. Since the pipes are connected together, the separation interval between the separated intake pipes is widened by pressurization during vibration welding, and the welding balance is impaired. Can prevent.

本願発明に係るインテークマニホールドの溶着接合方法によれば、第1分割体に設けられた受け部に対し、分割面の傾斜部の傾斜方向に略沿った加圧分力に対向する対向力を作用させた状態で、前記第1分割体と第2分割体とが振動溶着法により溶着接合されている。従って、前記両分割体が、振動溶着時の加圧方向に対して傾斜した少なくとも2つの傾斜部を有する湾曲形状部を備えている場合であっても、前記傾斜方向に略沿った第1分割体の滑りを有効に規制することができる。これにより、溶着強度のばらつきを抑制し、安定した高い接合強度の実現を図ることができる。   According to the method for welding and joining an intake manifold according to the present invention, the opposing force that opposes the pressure component force substantially along the inclination direction of the inclined portion of the dividing surface acts on the receiving portion provided in the first divided body. In this state, the first divided body and the second divided body are welded and joined by the vibration welding method. Therefore, even when both the divided bodies have a curved shape portion having at least two inclined portions inclined with respect to the pressurizing direction at the time of vibration welding, the first division substantially along the inclined direction is provided. The body slip can be effectively controlled. Thereby, the dispersion | variation in welding intensity | strength can be suppressed and realization of the stable high joint strength can be aimed at.

以下、本発明の実施形態をについて、添付図面を参照しながら説明する。
図1は本発明の実施形態に係るインテークマニホールドの全体斜視図、図2は前記インテークマニホールドの上側分割体(第1分割体)を示す斜視図、図3は前記インテークマニホールドの下側分割体(第2分割体)を示す斜視図、図4は下側分割体の平面説明図、図5は図1のY5−Y5線に沿った前記インテークマニホールドの縦断面説明図、また、図6は図1のY6−Y6線に沿った前記インテークマニホールドの横断面説明図である。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
1 is an overall perspective view of an intake manifold according to an embodiment of the present invention, FIG. 2 is a perspective view showing an upper divided body (first divided body) of the intake manifold, and FIG. 3 is a lower divided body of the intake manifold (first divided body). FIG. 4 is a plan view of the lower divided body, FIG. 5 is a longitudinal sectional view of the intake manifold taken along line Y5-Y5 of FIG. 1, and FIG. It is a cross-sectional explanatory drawing of the said intake manifold along the Y6-Y6 line of 1. FIG.

これらの図に示すように、本実施形態に係るインテークマニホールドM1は、吸気供給源に連通する吸気容積部としてのサージタンク1と、一端が該サージタンク1に連通し他端がエンジンの気筒(不図示)に連通する複数(本実施形態では4本)の吸気通路15を有する吸気管部10とを備えている。この吸気管部10の他端は、好ましくは合成樹脂製の取付フランジ5を介してエンジンの気筒側に結合される。前記取付フランジ5には、エンジンへの取付ボルト(不図示)を挿通させる金属ブッシュ6を備えた複数のボルト挿通孔7が設けられている。尚、前記サージタンク1は、好ましくは合成樹脂製で、上半割体2と下半割体3とを、例えば溶着により接合し一体化したものである。   As shown in these drawings, the intake manifold M1 according to the present embodiment includes a surge tank 1 as an intake volume communicating with an intake supply source, and one end communicating with the surge tank 1 and the other end being an engine cylinder ( And an intake pipe portion 10 having a plurality of (four in this embodiment) intake passages 15 communicating with each other. The other end of the intake pipe portion 10 is preferably coupled to the cylinder side of the engine via a mounting flange 5 made of synthetic resin. The mounting flange 5 is provided with a plurality of bolt insertion holes 7 having metal bushes 6 through which mounting bolts (not shown) to the engine are inserted. The surge tank 1 is preferably made of synthetic resin, and is formed by joining the upper half 2 and the lower half 3 together by welding, for example.

前記吸気管部10は、合成樹脂製で、少なくとも一部が互いに分離した複数(4本)の吸気管11で構成されている。具体的には、吸気管部10は、その他端に近い側が途中から4本の互いに分離した吸気管11に分岐し、この分岐した吸気管11の端末側が前記取付フランジ5に繋がっている。尚、この代わりに、吸気管部を分離した吸気管が全く無い構成とすることもできる。   The intake pipe portion 10 is made of a synthetic resin and includes a plurality (four) of intake pipes 11 at least partially separated from each other. Specifically, the intake pipe portion 10 is branched from the other end into four intake pipes 11 separated from each other, and the terminal side of the branched intake pipe 11 is connected to the mounting flange 5. Instead of this, it is possible to adopt a configuration in which there is no intake pipe separated from the intake pipe portion.

本実施形態では、前記吸気管部10の少なくとも一部が、吸気通路12の軸線L12(図5参照)に略沿った分割面15f,16fをそれぞれ有する上側分割体15と下側分割体16とで構成されており、これら両分割体15,16を分割面15f,16fで互いに衝合させた上で、図1及び図5において矢印A1で示すように、分割面15f,16fの背面側から治具(不図示)を介し加圧した状態で、図1において往復矢印B1で示す方向に、所定振動数および振幅の振動を加えて両分割体15,16を衝合部分で溶着させる。これにより、一体のインテークマニホールドM1が得られる。尚、前記下側分割体16は、好ましくは、サージタンク1の上半割体2及び取付フランジ5と一体成形されている。   In the present embodiment, at least a part of the intake pipe portion 10 has an upper divided body 15 and a lower divided body 16 each having divided surfaces 15f and 16f substantially along the axis L12 (see FIG. 5) of the intake passage 12. After the two divided bodies 15 and 16 are brought into contact with each other at the divided surfaces 15f and 16f, as shown by an arrow A1 in FIG. 1 and FIG. 5, from the back side of the divided surfaces 15f and 16f. In a state of being pressurized through a jig (not shown), vibrations of a predetermined frequency and amplitude are applied in the direction indicated by the reciprocating arrow B1 in FIG. 1 to weld the two divided bodies 15 and 16 at the abutting portion. Thereby, the integral intake manifold M1 is obtained. The lower divided body 16 is preferably integrally formed with the upper half 2 of the surge tank 1 and the mounting flange 5.

前記吸気管部10の上側及び下側の各分割体15,16には、振動溶着により溶融して溶着する溶着用突起部P(図3,図4及び図6参照)と、過剰な溶融樹脂が生じた場合に、これが衝合部の内側および外側にはみ出すことを抑制するための樹脂溜まり用の溝部G(図6参照)とが設けられている。尚、図3及び図4においては、図面が過度に複雑化することを回避するために、溝部Gの表示は省略されている。   The upper and lower divided bodies 15 and 16 of the intake pipe portion 10 have welding protrusions P (see FIGS. 3, 4 and 6) that are melted and welded by vibration welding, and an excessive molten resin. When this occurs, a resin reservoir groove G (see FIG. 6) is provided to prevent this from protruding to the inside and outside of the abutting portion. In FIGS. 3 and 4, the display of the groove portion G is omitted in order to avoid an excessively complicated drawing.

前記インテークマニホールドM1の吸気管部10は、比較的小さい設置スペースでも吸気通路12の長さを所要長さに確保するために、上方に膨出するように湾曲した湾曲部を有しており、この湾曲部では、振動溶着時の加圧方向(図1及び図5における矢印A1参照)に対して傾斜した左右の傾斜部13(図5参照)を有している。   The intake pipe portion 10 of the intake manifold M1 has a curved portion curved so as to bulge upward in order to ensure the length of the intake passage 12 at a required length even in a relatively small installation space. This curved portion has left and right inclined portions 13 (see FIG. 5) that are inclined with respect to the pressurizing direction (see arrow A1 in FIGS. 1 and 5) during vibration welding.

本実施形態では、このように両分割体15,16が振動溶着時の加圧方向に対して傾斜した左右の傾斜部13を有する湾曲形状部を備えている場合であっても、分割面15f,16fの接線に沿った(つまり傾斜部13の傾斜方向に沿った)上側分割体15の左右方向における外方への滑りを規制できるように、上側分割体15に、前記傾斜部13の傾斜方向と略直交し、該傾斜方向に略沿った分割体内方への力を受け止める受け部21が設けられている。
この受け部21は、上側分割体15における分割面15fの背面側(上側)に設けられ、下端側が分割体15の上側に繋がった板状の脚部23と、該脚部23の上端から前記傾斜方向と略直交する方向に広がる板状の受圧板22とで構成されている。
In the present embodiment, even when both the divided bodies 15 and 16 are provided with curved portions having left and right inclined portions 13 inclined with respect to the pressurizing direction at the time of vibration welding, the dividing surfaces 15f are provided. , 16f along the tangent line (that is, along the inclination direction of the inclined portion 13), the upper divided body 15 is inclined to the upper divided body 15 so as to be restricted from sliding in the left-right direction. A receiving portion 21 is provided which receives a force toward the inside of the divided body substantially perpendicular to the direction and substantially along the inclined direction.
The receiving portion 21 is provided on the back side (upper side) of the dividing surface 15 f in the upper divided body 15, and has a plate-like leg portion 23 whose lower end side is connected to the upper side of the divided body 15, and the upper end of the leg portion 23. It is comprised with the plate-shaped pressure receiving plate 22 extended in the direction substantially orthogonal to the inclination direction.

この例では、前述のように、吸気管部10は、取付フランジ5に繋がる端部に近い側が途中から4本の互いに分離した吸気管11に分岐しており、前記受け部21は、分離した各吸気管11の両側に設けられている。5つの受け部21のうち、吸気管11の間に位置する中央側の3つの受け部21は、分離した吸気管11どうしを連結するように形成されている。これら3つの連結受け部21は、一対の板状脚部23を備え、各板状脚部23の下端部がそれぞれ両側の吸気管11の分割体15の上側にそれぞれ繋がっている。   In this example, as described above, the intake pipe portion 10 is branched into four separate intake pipes 11 on the side close to the end connected to the mounting flange 5, and the receiving portion 21 is separated. It is provided on both sides of each intake pipe 11. Of the five receiving portions 21, three central receiving portions 21 located between the intake pipes 11 are formed so as to connect the separated intake pipes 11 to each other. These three connection receiving portions 21 include a pair of plate-like leg portions 23, and the lower ends of the plate-like leg portions 23 are respectively connected to the upper sides of the divided bodies 15 of the intake pipes 11 on both sides.

このように、受け部21が、分離した吸気管11どうしを連結して形成されることにより、分離した吸気管11どうしの分離間隔が振動溶着時の加圧により広げられて溶着バランスが損なわれることを、特別な機構を新たに設ける必要無しに、コンパクトな構造で防止できる。   As described above, the receiving portion 21 is formed by connecting the separated intake pipes 11, so that the separation interval between the separated intake pipes 11 is widened by pressurization during vibration welding, and the welding balance is impaired. This can be prevented with a compact structure without the need for providing a special mechanism.

前記5つの受け部21のうち、吸気管11の間ではなく吸気管11の端に位置する外側の2つの受け部21では、板状脚部23が1枚で、この板状脚部23の下端部が端の吸気管11の分割体15の上側に繋がっている。
尚、吸気管部10が、分離した吸気管が全く無く、全て一体とされた構成の場合には、吸気管11の端に位置する外側の2つの受け部21のみが設けられることになる。
Out of the five receiving portions 21, the outer two receiving portions 21 positioned at the end of the intake pipe 11, not between the intake pipes 11, have one plate-like leg portion 23. The lower end portion is connected to the upper side of the divided body 15 of the intake pipe 11 at the end.
In the case where the intake pipe portion 10 has no separated intake pipe and is integrated, only the two outer receiving portions 21 positioned at the end of the intake pipe 11 are provided.

一方、下側分割体16には、上側分割体15に設けた前記受け部21と当接する(具体的には、前記受圧板22と当接する)当接部26が設けられている。該当接部26は、板状の基板部28を備え、この基板部28上に受け部21の受圧板22と当接する板状の当接板27が立設されている。   On the other hand, the lower divided body 16 is provided with an abutting portion 26 that abuts on the receiving portion 21 provided on the upper divided body 15 (specifically, abuts on the pressure receiving plate 22). The contact portion 26 includes a plate-shaped substrate portion 28, and a plate-shaped contact plate 27 that contacts the pressure receiving plate 22 of the receiving portion 21 is provided on the substrate portion 28.

5つの当接部26のうち、吸気管11の間に位置する中央側の3つの当接部26は、分離した吸気管11どうしを連結するように形成されている。これら3つの連結当接部26では、基板部28の両端部が両側の吸気管11の分割体16にそれぞれ繋がっている。
このように、当接部26が、分離した吸気管11どうしを連結して形成されることにより、分離した吸気管11どうしの分離間隔が振動溶着時の加圧により広げられて溶着バランスが損なわれることを、特別な機構を新たに設ける必要無しに、コンパクトな構造で防止できる。
Of the five abutting portions 26, the three abutting portions 26 on the center side located between the intake pipes 11 are formed so as to connect the separated intake pipes 11 to each other. In these three connecting contact portions 26, both end portions of the substrate portion 28 are connected to the divided bodies 16 of the intake pipes 11 on both sides.
As described above, the contact portion 26 is formed by connecting the separated intake pipes 11, so that the separation interval between the separated intake pipes 11 is widened by pressurization during vibration welding, and the welding balance is lost. This can be prevented with a compact structure without the need for providing a special mechanism.

そして、振動溶着時、衝合された上側及び下側の分割体15,16を上下方向から加圧することにより、当接部26の当接板27を介して、傾斜部13の傾斜方向に略沿った分割体内方への力が、受け部21の前記受圧板22に作用するようになっている。   During vibration welding, the upper and lower divided bodies 15 and 16 that are brought into contact with each other are pressurized from above and below, so that they are substantially aligned in the inclination direction of the inclined portion 13 via the contact plate 27 of the contact portion 26. A force toward the inside of the divided body is applied to the pressure receiving plate 22 of the receiving portion 21.

このように、本実施形態によれば、上側分割体15に設けられた受け部21の受圧板22に対し、傾斜部13の傾斜方向に略沿った分割体内方への力を作用させた状態で、上側分割体15と下側分割体16とが振動溶着法により接合されている。従って、前記両分割体15,16が、振動溶着時の加圧方向に対して傾斜した左右の傾斜部13を有する湾曲形状部を備えている場合であっても、前記傾斜部13の傾斜方向に略沿った上側分割体15の左右外方への滑りを有効に規制することができる。これにより、溶着強度のばらつきを抑制し、安定した高い接合強度の実現を図ることができるのである。   Thus, according to the present embodiment, a state in which a force toward the divided body substantially along the inclination direction of the inclined portion 13 is applied to the pressure receiving plate 22 of the receiving portion 21 provided in the upper divided body 15. Thus, the upper divided body 15 and the lower divided body 16 are joined by the vibration welding method. Therefore, even if both the divided bodies 15 and 16 are provided with curved portions having left and right inclined portions 13 inclined with respect to the pressurizing direction during vibration welding, the inclination direction of the inclined portion 13 is It is possible to effectively regulate the sliding of the upper divided body 15 substantially along the left and right outwards. Thereby, the dispersion | variation in welding strength can be suppressed and the realization of the stable high joint strength can be aimed at.

この場合において、前記当接部26の当接板27は、前述のように板状に形成され、しかも、振動溶着時の振動方向と略直交する方向に配設されている。
これにより、受け部21の前記受圧板22と当接する前記当接板27が振動溶着時に容易に溶け出すことを防止でき、前記傾斜部13の傾斜方向に略沿った上側分割体15の左右外方への滑りをより有効に規制することができる。
In this case, the contact plate 27 of the contact portion 26 is formed in a plate shape as described above, and is disposed in a direction substantially orthogonal to the vibration direction at the time of vibration welding.
Thereby, it can prevent that the said contact plate 27 contact | abutted with the said pressure receiving plate 22 of the receiving part 21 melts | dissolves easily at the time of vibration welding, and the left-right outer side of the upper side division body 15 along the inclination direction of the said inclination part 13 substantially. Can be more effectively regulated.

尚、本実施形態では、上側分割体15に設けられた受け部21の受圧板22に対し、傾斜部13の傾斜方向に略沿った分割体内方への力を作用させるために、上側分割体15の前記受け部21の受圧板22と当接する当接板27を備えた当接部26を、下側分割体16に設けるようにしていたが、この代わりに、振動溶着時に上下の分割体15,16を加圧する治具(不図示)のうち、下側分割体16を保持する治具に突起部を設けておき、この突起部を上側分割体15の受け部21の受圧板22に当接させることで、該受圧板22に対して、傾斜部13の傾斜方向に略沿った分割体内方への力を作用させるように構成することもできる。   In the present embodiment, the upper divided body is applied to the pressure receiving plate 22 of the receiving portion 21 provided in the upper divided body 15 in order to apply a force toward the divided body along the inclined direction of the inclined portion 13. The contact portion 26 having the contact plate 27 that contacts the pressure receiving plate 22 of the 15 receiving portions 21 is provided in the lower divided body 16, but instead of the upper and lower divided bodies at the time of vibration welding. Of the jigs (not shown) for pressurizing 15, 16, a protrusion is provided on the jig for holding the lower divided body 16, and this protrusion is attached to the pressure receiving plate 22 of the receiving part 21 of the upper divided body 15. By abutting, it is also possible to configure the pressure receiving plate 22 to apply a force toward the inside of the divided body substantially along the inclination direction of the inclined portion 13.

図7から図9は、前述の実施形態(図1から図6で示した実施形態)に対して、主として滑り止め部の形状が異なる変形例を示している。尚、この変形例の説明において、前述の実施形態における場合と同様のものについては、同一の符号を付し、それ以上の説明は省略する。   7 to 9 show modifications in which the shape of the anti-slip portion is mainly different from the above-described embodiment (the embodiment shown in FIGS. 1 to 6). In the description of this modification, the same components as those in the above-described embodiment are denoted by the same reference numerals, and further description thereof is omitted.

この変形例に係るインテークマニホールドM2では、上側分割体15における分割面15fの背面側に設けた受け部31は、傾斜部13の傾斜方向と略直交し、該傾斜方向に略沿った分割体内方への力を受け止める方向に広がる1枚の板材31で構成され、この板材31の端部が吸気管11の分割体16に繋がっている。つまり、板材31が、前述の実施形態における受圧板22及び脚部23の作用を兼用して行っている。尚、下側分割体16に設けた当接部26については、前述の実施形態におけるものと同様である。   In the intake manifold M2 according to this modification, the receiving portion 31 provided on the back side of the dividing surface 15f in the upper divided body 15 is substantially orthogonal to the inclined direction of the inclined portion 13, and is divided into the divided body inside along the inclined direction. The end of the plate 31 is connected to the divided body 16 of the intake pipe 11. That is, the plate material 31 performs the functions of the pressure receiving plate 22 and the leg portion 23 in the above-described embodiment. The contact portion 26 provided in the lower divided body 16 is the same as that in the above-described embodiment.

尚、本発明は、以上の実施形態に限定されるものではなく、その要旨を逸脱しない範囲において、種々の変更や修正を加え得るものであることは言うまでもない。   Needless to say, the present invention is not limited to the above embodiments, and various changes and modifications can be made without departing from the scope of the present invention.

本発明は、吸気容積部と合成樹脂製の吸気管部とを備え、該吸気管部が吸気通路の軸線に略沿った分割面をそれぞれ有する一対の分割体で構成され、これら分割体を振動溶着法により前記分割面で接合してなるインテークマニホールドの溶着接合構造に関するもので、前記両分割体が、振動溶着時の加圧方向に対して傾斜した傾斜部を有する湾曲形状部を備えている場合でも、前記傾斜部の傾斜方向に略沿った分割体外方への滑りを規制することで、溶着強度のばらつきを抑制し、安定した高い接合強度の実現を図ることができ、自動車等の車両のエンジンに付設されるインテークマニホールドの溶着接合構造として、有効に利用することができる。   The present invention includes an intake volume part and a synthetic resin intake pipe part, and the intake pipe part is constituted by a pair of split bodies each having a split surface substantially along the axis of the intake passage, and the split bodies are vibrated. The present invention relates to a welded joint structure of an intake manifold that is joined at the divided surface by a welding method, and both the divided bodies are provided with a curved portion having an inclined portion that is inclined with respect to a pressurizing direction during vibration welding. Even in this case, by restricting the sliding of the inclined portion outward along the inclined direction of the inclined portion, it is possible to suppress a variation in welding strength and achieve a stable high bonding strength. It can be effectively used as a welded joint structure of an intake manifold attached to the engine.

本発明の実施形態に係るインテークマニホールドの全体斜視図である。1 is an overall perspective view of an intake manifold according to an embodiment of the present invention. 前記インテークマニホールドの上側分割体を示す斜視図である。It is a perspective view which shows the upper side division body of the said intake manifold. 前記インテークマニホールドの下側分割体を示す斜視図である。It is a perspective view which shows the lower side division body of the said intake manifold. 前記下側分割体の平面説明図である。It is a plane explanatory view of the lower divided body. 図1のY5−Y5線に沿った前記インテークマニホールドの縦断面説明図である。FIG. 5 is a longitudinal cross-sectional explanatory view of the intake manifold taken along line Y5-Y5 of FIG. 図1のY6−Y6線に沿った前記インテークマニホールドの横断面説明図である。It is a cross-sectional explanatory drawing of the said intake manifold along the Y6-Y6 line | wire of FIG. 前記実施形態の変形例に係るインテークマニホールドの全体斜視図である。It is a whole perspective view of the intake manifold which concerns on the modification of the said embodiment. 前記変形例に係るインテークマニホールドの上側分割体の斜視図である。It is a perspective view of the upper side division body of the intake manifold which concerns on the said modification. 前記変形例に係るインテークマニホールドの下側分割体の斜視図である。It is a perspective view of the lower part division body of the intake manifold which concerns on the said modification. 従来例に係るインテークマニホールドの全体斜視図である。It is a whole perspective view of the intake manifold which concerns on a prior art example. 図10のY11−Y11線に沿った前記従来例に係るインテークマニホールドの縦断面説明図である。It is longitudinal cross-sectional explanatory drawing of the intake manifold which concerns on the said prior art example along the Y11-Y11 line | wire of FIG.

符号の説明Explanation of symbols

1 サージタンク
10 吸気管部
11 吸気管
12 吸気通路
13 傾斜部
15 上側分割体
15f (上側分割体の)分割面
16 上側分割体
16f (上側分割体の)分割面
21,31 受け部
26 当接部
M1,M2 インテークマニホールド
DESCRIPTION OF SYMBOLS 1 Surge tank 10 Intake pipe part 11 Intake pipe 12 Intake passage 13 Inclination part 15 Upper division body 15f (Upper division body) Dividing surface 16 Upper division body 16f (Upper division body) Dividing surface 21,31 Receiving part 26 Contact M1, M2 Intake manifold

Claims (4)

吸気供給源に連通する吸気容積部と、一端が該吸気容積部に連通し他端がエンジンの気筒に連通する複数の吸気通路を有する合成樹脂製の吸気管部とを備え、該吸気管部の少なくとも一部が、前記吸気通路の軸線に略沿った分割面をそれぞれ有する第1分割体と第2分割体とで構成されたインテークマニホールドについて、これら両分割体を、各々の前記分割面を衝合させた衝合部で振動溶着法により溶着接合してなるインテークマニホールドの溶着接合構造であって、
前記両分割体の分割面は、振動溶着時の加圧方向に対して傾斜した傾斜部を有する湾曲形状部を備えており、
前記第1分割体における前記分割面の傾斜部の背面側に、該傾斜部の傾斜方向と略直交し、該傾斜方向に略沿った方向の力を受け止める受け部が設けられると共に、
前記第2分割体に、前記分割面の衝合時に前記受け部と当接する当接部が設けられ、
該当接部を介して、前記受け部に対し前記傾斜方向に略沿った加圧分力に対向する対向力を作用させた状態で、前記第1分割体と第2分割体とが振動溶着法により接合されている、
ことを特徴とするインテークマニホールドの溶着接合構造。
An intake volume portion communicating with an intake air supply source, and a synthetic resin intake pipe portion having a plurality of intake passages having one end communicating with the intake volume portion and the other end communicating with a cylinder of the engine. At least a portion of the intake manifold formed of a first divided body and a second divided body each having a divided surface substantially along the axis of the intake passage. A weld joint structure of an intake manifold that is welded and joined by a vibration welding method at an abutted joint part,
The split surfaces of the two split bodies include a curved shape portion having an inclined portion inclined with respect to the pressurizing direction during vibration welding,
On the back side of the inclined portion of the dividing surface in the first divided body, a receiving portion is provided that receives a force in a direction substantially perpendicular to the inclined direction of the inclined portion and substantially along the inclined direction,
The second divided body is provided with a contact portion that comes into contact with the receiving portion at the time of the collision of the divided surfaces,
The first divided body and the second divided body are vibration welded in a state in which an opposing force that opposes the pressure component force substantially along the inclination direction is applied to the receiving portion via the contact portion. Joined by,
This is a welded joint structure for intake manifolds.
前記当接部は、板状に形成され、且つ、前記振動溶着時の振動方向と略直交する方向に配設されていることを特徴とする請求項1記載のインテークマニホールドの溶着接合構造。   2. The intake manifold weld joint structure according to claim 1, wherein the contact portion is formed in a plate shape and disposed in a direction substantially orthogonal to a vibration direction at the time of vibration welding. 前記吸気管部は少なくとも一部が互いに分離した複数の吸気管で構成され、前記受け部及び前記当接部の少なくとも何れか一方は、前記分離した吸気管どうしを連結していることを特徴とする請求項1又は2に記載のインテークマニホールドの溶着接合構造。   The intake pipe part is constituted by a plurality of intake pipes at least partially separated from each other, and at least one of the receiving part and the contact part connects the separated intake pipes. A welded joint structure for an intake manifold according to claim 1 or 2. 吸気供給源に連通する吸気容積部と、一端が該吸気容積部に連通し他端がエンジンの気筒に連通する複数の吸気通路を有する合成樹脂製の吸気管部とを備え、該吸気管部の少なくとも一部が、前記吸気通路の軸線に略沿った分割面をそれぞれ有する第1分割体と第2分割体とで構成されたインテークマニホールドについて、前記両分割体を、各々の前記分割面を衝合させた衝合部で振動溶着法により溶着接合するインテークマニホールドの溶着接合方法であって、
前記両分割体の分割面は、振動溶着時の加圧方向に対して傾斜した傾斜部を有する湾曲形状部を備えており、
前記第1分割体における前記分割面の傾斜部の背面側に、該傾斜部の傾斜方向と略直交し、該傾斜方向に略沿った方向の力を受け止める受け部を設けておき、
前記受け部に対し、前記傾斜方向に略沿った加圧分力に対向する対向力を作用させた状態で、前記第1分割体と第2分割体とが振動溶着法により溶着接合する、
ことを特徴とするインテークマニホールドの溶着接合方法。
An intake volume portion communicating with an intake air supply source, and a synthetic resin intake pipe portion having a plurality of intake passages having one end communicating with the intake volume portion and the other end communicating with a cylinder of the engine. At least a portion of the intake manifold formed of a first divided body and a second divided body each having a divided surface substantially along the axis of the intake passage, the two divided bodies are divided into the divided surfaces. A method of welding and joining an intake manifold that welds and joins by a vibration welding method at the abutted contact portion,
The split surfaces of the two split bodies include a curved shape portion having an inclined portion inclined with respect to the pressurizing direction during vibration welding,
On the back side of the inclined portion of the dividing surface in the first divided body, a receiving portion is provided that receives a force in a direction substantially perpendicular to the inclined direction of the inclined portion and substantially along the inclined direction,
The first divided body and the second divided body are welded and joined to each other by a vibration welding method in a state in which an opposing force that opposes the pressure component force substantially along the tilt direction is applied to the receiving portion.
Intake manifold welding method characterized by the above.
JP2006195405A 2006-07-18 2006-07-18 Weld joining structure and weld joining method of intake manifold Pending JP2008025354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006195405A JP2008025354A (en) 2006-07-18 2006-07-18 Weld joining structure and weld joining method of intake manifold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006195405A JP2008025354A (en) 2006-07-18 2006-07-18 Weld joining structure and weld joining method of intake manifold

Publications (1)

Publication Number Publication Date
JP2008025354A true JP2008025354A (en) 2008-02-07

Family

ID=39116267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006195405A Pending JP2008025354A (en) 2006-07-18 2006-07-18 Weld joining structure and weld joining method of intake manifold

Country Status (1)

Country Link
JP (1) JP2008025354A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010084642A (en) * 2008-09-30 2010-04-15 Toyota Boshoku Corp Welding structure
JP2012140891A (en) * 2010-12-28 2012-07-26 Mikuni Corp Intake manifold made of resin
JP2014532147A (en) * 2011-10-18 2014-12-04 ダイムラー・アクチェンゲゼルシャフトDaimler AG Intake module for internal combustion engine
JP2014532146A (en) * 2011-10-18 2014-12-04 ダイムラー・アクチェンゲゼルシャフトDaimler AG Arrangement of air supply device in cylinder head for internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010084642A (en) * 2008-09-30 2010-04-15 Toyota Boshoku Corp Welding structure
JP2012140891A (en) * 2010-12-28 2012-07-26 Mikuni Corp Intake manifold made of resin
JP2014532147A (en) * 2011-10-18 2014-12-04 ダイムラー・アクチェンゲゼルシャフトDaimler AG Intake module for internal combustion engine
JP2014532146A (en) * 2011-10-18 2014-12-04 ダイムラー・アクチェンゲゼルシャフトDaimler AG Arrangement of air supply device in cylinder head for internal combustion engine

Similar Documents

Publication Publication Date Title
JP2010507051A (en) sleeve
US10203012B2 (en) Unit mount, in particular for a motor vehicle
JP2008025354A (en) Weld joining structure and weld joining method of intake manifold
CN102337996B (en) Intake unit
JP2011526226A (en) Automobiles, especially utility vehicles (NKW) and joint devices
KR100351540B1 (en) Vibration welding apparatus
JP2007283890A (en) Piping fixing structure
JP2006212692A (en) Ultrasonic joining method and device therefor
US20140326781A1 (en) Linear Friction Welding Method
JP2007224782A (en) Oil strainer for vehicle
JP2015199072A (en) Welded component
JP2008185193A (en) Vibration isolator
JP2006194370A (en) Vibration-proof device
JP7024406B2 (en) Intake manifold
US20200269351A1 (en) Suspension arm clamping process consisting of two laser-welded, formed parts
JP3888551B2 (en) Vehicle door hinge mounting structure
US6983765B2 (en) Method of producing fluid unit
JP5870391B2 (en) Fixing device having a planar coupling member for an additional member in a vehicle
KR20140032411A (en) Fuel distributor
JP2008111415A (en) Intake manifold joint structure
KR101813949B1 (en) Subframe of dissimilar materials and method for manufacturing the same
JP2015110992A (en) Vibration control device
JP2004148592A (en) Article to which thermoplastic resin molding is welded and method for producing article
JP2018179196A (en) Vibration control device and manufacturing method thereof
JP2002361745A (en) Vibration-welded structure of resin-made construction