JP2008024997A - Method for charging material to be charged into bell-less blast furnace - Google Patents

Method for charging material to be charged into bell-less blast furnace Download PDF

Info

Publication number
JP2008024997A
JP2008024997A JP2006199871A JP2006199871A JP2008024997A JP 2008024997 A JP2008024997 A JP 2008024997A JP 2006199871 A JP2006199871 A JP 2006199871A JP 2006199871 A JP2006199871 A JP 2006199871A JP 2008024997 A JP2008024997 A JP 2008024997A
Authority
JP
Japan
Prior art keywords
furnace
ore
coke
charged
blast furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006199871A
Other languages
Japanese (ja)
Other versions
JP4706583B2 (en
Inventor
Shin Sugiyama
慎 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2006199871A priority Critical patent/JP4706583B2/en
Publication of JP2008024997A publication Critical patent/JP2008024997A/en
Application granted granted Critical
Publication of JP4706583B2 publication Critical patent/JP4706583B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for charging a material to be charged into a bell-less blast furnace with which gas permeability in a fused zone range at the lowest part of the furnace is improved and the stable operation of the blast furnace can be obtained by stabilizing the flowing of the gas in the furnace. <P>SOLUTION: The method for charging the material to be charged is performed as the followings, with which ore is divided into two or more of batches and small block cokes having 5-40mm granular diameter are mixed in each batch dividing the charged ores and the small block coke mixing quantity in the ore first batch is made to be larger than the small block coke mixing quantity on and after the second batch and also, the materials are charged from the furnace wall side toward the furnace center part. Further, in the case of setting X for distance in the furnace radius direction between the piling position in the furnace after charging the small block coke mixed in the ore into the blast furnace and the furnace wall and R for radius of the furnace opening hole in the blast furnace, it is desirable to charge the charging material so that the distance between the piling position of the small block coke and the furnace wall, and the radius of the furnace opening hole satisfies the relation of X/R≤0.3. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、高炉における装入物の装入方法に関し、さらに詳しくは、高炉炉頂部に炉頂バンカーと分配シュートを有するベルレス高炉において、鉱石に小塊コークスを混合するとともに、炉内における小塊コークスの堆積位置を調整する装入物装入方法に関する。   The present invention relates to a charging method of a charge in a blast furnace, and more particularly, in a bell-less blast furnace having a furnace bunker and a distribution chute at the top of the blast furnace and mixing a small coke with the ore and a small lump in the furnace. The present invention relates to a charging method for adjusting a coke accumulation position.

高炉操業においては、一般に炉上部から還元材としてのコークスと、鉄源としての焼結鉱、ペレット、塊鉱石など(以下、これらの鉄源を総称して「鉱石」という)が交互に装入され、炉下部の羽口から熱風が送風されるとともに微粉炭やタールなどが吹き込まれる。   In blast furnace operation, coke as a reducing material and sintered ore, pellets, lump ore, etc. as iron sources (hereinafter these iron sources are collectively referred to as “ores”) are generally charged alternately from the top of the furnace. Then, hot air is blown from the tuyeres at the bottom of the furnace, and pulverized coal or tar is blown.

高炉の安定操業を維持するには、良好な通気性を確保し、炉内のガス流れを安定化すること、すなわち、安定した中心ガス流および炉壁ガス流を確保することが必要である。高炉内における通気性は、装入されるコークスおよび鉱石(以下、「装入物」ともいう)の性状、粒度および装入量により大きく影響を受けるが、それ以外に、炉頂からの装入物の装入方法、例えば、炉内に装入する装入物の分布状況によっても大きく影響を受ける。   In order to maintain the stable operation of the blast furnace, it is necessary to ensure good air permeability and to stabilize the gas flow in the furnace, that is, to secure a stable center gas flow and furnace wall gas flow. The air permeability in the blast furnace is greatly affected by the properties, grain size, and amount of charged coke and ore (hereinafter also referred to as “charge”). It is also greatly affected by the method of charging the object, for example, the distribution of the charge charged in the furnace.

高炉内の通気性を改善する方法として、鉱石層中に小塊コークスを混合装入することにより、高炉下部に形成される融着帯(鉱石層が軟化融着した通気抵抗の大きい領域)の通気性を改善できることが知られている。このため、高炉内における融着帯の通気性を改善することを目的とした鉱石とコークスの混合方法が数多く開示されている。   As a method of improving the air permeability in the blast furnace, the cohesive zone formed in the lower part of the blast furnace by mixing and charging small coke into the ore layer (the region where the ore layer is softened and fused) It is known that breathability can be improved. For this reason, many mixing methods of ore and coke aiming at improving the air permeability of the cohesive zone in a blast furnace are disclosed.

例えば、特許文献1には、鉱石ホッパ群の下流側先頭複数個の鉱石ホッパにコークスを装入し、鉱石類切出コンベア上の鉱石全量の先頭部分10%以内においてコークスを排出開始し、鉱石層全量の30%以上の上部にコークスを積層し、この積層した鉱石とコークスとを鉱石類切出ホッパに装入し、鉱石類切出ホッパから切出した鉱石とコークスとを炉頂バンカーに装入し、炉頂バンカーから排出した鉱石とコークスを旋回シュートを介して高炉内に装入するベルレス高炉における原料装入方法が開示されている。この方法は、鉱石中のコークスの割合を炉内の半径方向で均一化することを目的としている。   For example, in Patent Document 1, coke is charged into a plurality of ore hoppers on the downstream side of the ore hopper group, and discharge of coke is started within 10% of the total amount of ore on the ore cutting conveyor. Coke is stacked on the top of 30% or more of the total amount of the layer, and the stacked ore and coke are charged into the ore cutting hopper, and the ore and coke cut from the ore cutting hopper are loaded into the furnace bunker. A raw material charging method in a bell-less blast furnace is disclosed in which ore and coke discharged from a top bunker are charged into a blast furnace through a turning chute. This method aims to make the ratio of coke in the ore uniform in the radial direction in the furnace.

しかし、高炉内の通気性は、炉壁部における装入物の通気抵抗に大きく影響されることから、鉱石とコークスの混合物を炉内半径方向に均一に装入するよりも、通気性の改善効果の高い部位に配分して装入する方が、炉内での還元効率の向上および通気性の改善には顕著な効果を発揮する。   However, since the air permeability in the blast furnace is greatly affected by the air flow resistance of the charge in the furnace wall, the air permeability is improved rather than uniformly charging the mixture of ore and coke in the radial direction of the furnace. Distributing and charging in high-efficiency parts has a remarkable effect in improving the reduction efficiency in the furnace and improving the air permeability.

また、特許文献2には、高炉の炉壁から500mmの範囲の鉱石層の直上に粒径が5〜30mmの小塊コークスを装入することによって、炉壁近傍のガス流分布と温度分布を調整し、炉壁付着物の形成を防止する高炉操業方法が開示されている。しかし、高炉は炉容積に応じて炉口半径が異なることから、炉壁から500mmの範囲を規定しても、高炉の炉口半径の大きさによって小塊コークスの炉内半径方向の相対的位置が相違する。したがって、この方法は、全ての高炉に対して適用できるものではない。また、大型高炉の場合には、一部の小塊コークスが炉中心部に流れ込み、中心流を阻害するおそれがある。   Patent Document 2 describes the gas flow distribution and temperature distribution in the vicinity of the furnace wall by charging small coke with a particle size of 5 to 30 mm directly above the ore layer in the range of 500 mm from the furnace wall of the blast furnace. A blast furnace operating method is disclosed that regulates and prevents the formation of furnace wall deposits. However, since the blast furnace has a different radii depending on the furnace volume, the relative position of the small coke in the radial direction of the furnace depends on the size of the blast furnace radii. Is different. Therefore, this method is not applicable to all blast furnaces. In the case of a large blast furnace, some small coke may flow into the center of the furnace and hinder the center flow.

さらに、特許文献3には、コークスおよび鉱石類の双方の原料をそれぞれ粒度別に2つ以上に分割し、粒度別のコークスと鉱石とを細粒は細粒同士、粗粒は粗粒同士で混合し、炉の中心および中間領域に粗粒の混合物を、炉壁部の領域に細粒の混合物を装入する方法が開示されている。   Furthermore, in Patent Document 3, the raw materials for both coke and ore are divided into two or more according to particle size, and fine particles are mixed with fine particles, and coarse particles are mixed with coarse particles. However, a method is disclosed in which a coarse mixture is charged in the center and middle regions of the furnace and a fine mixture is charged in the region of the furnace wall.

しかし、特許文献3で開示される方法では、細粒原料同士を混合した原料を炉壁部の領域に装入することから、炉壁部に極端に粒度の小さい原料が集中することにより、炉内の通気性が大幅に悪化することが予想される。したがって、この方法を実施する際には、小塊コークスの使用量およびその効果に制約が生じることが予想される。   However, in the method disclosed in Patent Document 3, since raw materials obtained by mixing fine raw materials are charged into the region of the furnace wall portion, the raw material with extremely small particle size concentrates on the furnace wall portion. It is expected that the air permeability of the inside will deteriorate significantly. Therefore, when this method is carried out, it is expected that the amount of the small coke used and the effect thereof are limited.

一方、近年の高炉操業方法においては、高炉装入物の分布制御性の向上を目的として、多バッチ装入法が主流となりつつある。多バッチ装入法とは、1回の装入物の装入(これを1チャージと称する)として、各装入物を複数のバッチに分けて炉内に装入することにより、炉内において複数の鉱石層を形成させる装入方法である。   On the other hand, in recent blast furnace operation methods, a multi-batch charging method is becoming mainstream for the purpose of improving the distribution controllability of the blast furnace charge. In the multi-batch charging method, as charging of one charge (referred to as one charge), each charge is divided into a plurality of batches and charged into the furnace. This is a charging method for forming a plurality of ore layers.

例えば、1チャージとして、鉱石を2バッチに分けて炉内に装入する場合には、炉内において2つの鉱石層が形成されることになる。多バッチ装入法の中でも、特に、鉱石バッチの多バッチ化は、炉内におけるコークス崩れ現象を有効利用した炉内通気性の改善に好適な装入方法であり、また、安価装入物および細粒装入物の使用量増加に好適な装入方法であることから、ベルレス高炉においては不可欠な装入方法となっている。   For example, when ore is divided into two batches and charged into the furnace as one charge, two ore layers are formed in the furnace. Among the multi-batch charging methods, in particular, the batching of ore batches is a charging method suitable for improving the air permeability in the furnace by effectively utilizing the coke collapse phenomenon in the furnace, Since it is a charging method suitable for increasing the amount of fine-grained charge, it is an indispensable charging method in a bell-less blast furnace.

例えば、特許文献4には、炉内半径方向の中間部から周辺部の鉱石層中に粒径が5〜40mmの中小塊コークスを混合する高炉操業方法が開示されており、さらに、鉱石を2回に分けて装入して炉内に2つの鉱石層を形成するとともに、いずれか一方の鉱石層の炉半径方向の中間部から周辺部の鉱石中に中小塊コークスを混合する方法が開示されている。   For example, Patent Document 4 discloses a blast furnace operation method in which medium and small-sized coke having a particle size of 5 to 40 mm is mixed from an intermediate portion in the radial direction of the furnace into a peripheral ore layer. Disclosed is a method of charging in small batches to form two ore layers in the furnace, and mixing small or large coke into the ore in the peripheral part from the intermediate part in the furnace radial direction of one of the ore layers ing.

しかし、特許文献4で開示された方法は、鉱石を2バッチに分け、その一方のバッチにのみ中小塊コークスを混合する方法であることから、中小塊コークスを混合しないバッチから装入された鉱石層においては、中小塊コークス混合の効果が得られないという問題がある。   However, since the method disclosed in Patent Document 4 is a method in which the ore is divided into two batches and the medium and small coke is mixed only in one of the batches, the ore charged from the batch that does not mix the medium and small coke. In the layer, there is a problem that the effect of mixing small and medium coke cannot be obtained.

また、特許文献5には、装入物を炉中心部から炉壁部に向かって装入する高炉の操業方法において、鉱石を2バッチ以上に分割し、分割された1つのバッチを小塊コークスと混合した混合バッチとし、該混合バッチを、炉壁部へ装入することにより、円滑かつ安定した操業が可能となる高炉操業方法が開示されている。しかし、特許文献5で開示された方法では、炉中心部から炉壁部に向かって装入することから、小塊コークスと鉱石の混合が促進されず、その結果、小塊コークスの装入が炉壁部への装入に限定されるという問題がある。   Further, in Patent Document 5, in a method of operating a blast furnace in which a charge is charged from a furnace center toward a furnace wall, ore is divided into two or more batches, and one divided batch is divided into small coke. A blast furnace operating method is disclosed in which a smooth and stable operation is possible by charging the mixed batch into a furnace wall portion. However, in the method disclosed in Patent Document 5, since charging is performed from the furnace center toward the furnace wall, mixing of the small coke and the ore is not promoted, and as a result, charging of the small coke is not performed. There is a problem that it is limited to the charging to the furnace wall.

本出願人は、これらの問題点を解決するために特許文献6において、鉱石を2以上のバッチに分割して装入する方法として、装入する鉱石の分割された各バッチに小塊コークスを混合し、鉱石第2バッチ以降における小塊コークス混合量を鉱石第1バッチにおける小塊コークス混合量よりも多くすることを特徴とするベルレス高炉への装入物装入方法を提案した。この方法により、小塊コークスの混合量および炉内への装入位置が適正化され、中小塊コークス混合の効果が十分に発揮されないという問題点は解決された。   In order to solve these problems, the present applicant, in Patent Document 6, as a method of charging ore into two or more batches, a small coke is added to each divided batch of ores to be charged. A charging method for charging a bellless blast furnace was proposed, characterized in that the mixing amount of the small coke after the second ore batch is larger than the mixing amount of the small coke in the first ore batch. By this method, the mixing amount of the small coke and the charging position in the furnace were optimized, and the problem that the effect of mixing the small coke was not sufficiently exhibited was solved.

このように、特許文献6で提案された方法は、小塊コークス混合の効果を最大限に高めて炉下部融着帯領域における通気性を改善し、炉内ガス流れを安定化してベルレス高炉の安定操業を図ることができる優れた装入物装入方法である。しかし、特許文献6で提案された装入物装入方法は、炉壁の熱負荷が高い場合、例えば、炉内装入物の半径方向の分布状態に起因して、中心側より炉壁側の通気性がよく、羽口からの送風が中心側より炉壁側に流れるような場合には、さらなる改善の余地があることが判明した。   As described above, the method proposed in Patent Document 6 maximizes the effect of mixing the small coke to improve the air permeability in the lower cohesive zone region, stabilize the gas flow in the furnace, and improve the bellless blast furnace. It is an excellent charging method that can achieve stable operation. However, in the charging method proposed in Patent Document 6, when the heat load on the furnace wall is high, for example, due to the distribution state in the radial direction of the furnace interior charge, the furnace wall side is more than the center side. It has been found that there is room for further improvement when the ventilation is good and the air from the tuyeres flows from the center side to the furnace wall side.

すなわち、特許文献6で提案された方法では、鉱石第2バッチ以降の小塊コークス混合量を鉱石第1バッチにおける小塊コークス混合量よりも多く使用することから、炉壁部に近い融着帯の通気性の改善効果が過剰になる事態が発生する。このため、融着帯よりも炉壁側でのガス流れが強くなることから、炉壁の熱負荷がさらに上昇することが確認された。   That is, in the method proposed in Patent Document 6, the amount of small coke mixed after the ore second batch is used more than the amount of small coke mixed in the ore first batch, so that the cohesive zone close to the furnace wall is used. A situation occurs in which the effect of improving air permeability becomes excessive. For this reason, since the gas flow on the furnace wall side becomes stronger than the cohesive zone, it was confirmed that the heat load on the furnace wall further increased.

特許第2820478号公報(特許請求の範囲および第2頁左欄40行〜右欄2行)Japanese Patent No. 2820478 (claims and page 2 left column 40 lines to right column 2 lines) 特開平8−239705号公報(特許請求の範囲および段落[0006])JP-A-8-239705 (Claims and paragraph [0006]) 特開昭63−140006号公報(特許請求の範囲および第2頁右下欄2〜15行)JP 63-140006 (Claims and page 2, lower right column, lines 2 to 15) 特開2002−3910号公報(特許請求の範囲および段落[0020])JP 2002-3910 (Claims and paragraph [0020]) 特許第3700457号公報(特許請求の範囲および段落[0010])Japanese Patent No. 3700457 (Claims and paragraph [0010]) 特開2005−290511号公報(特許請求の範囲および段落[0023])JP 2005-290511 A (Claims and paragraph [0023])

前述の通り、高炉の安定操業のためには、高炉内における鉱石の還元効率を高め、炉下部の融着帯における通気性を良好に維持することが不可欠であり、そのためには、鉱石層中に小塊コークスを混合することが有効である。   As mentioned above, in order to ensure stable operation of the blast furnace, it is essential to increase the efficiency of ore reduction in the blast furnace and maintain good air permeability in the cohesive zone at the bottom of the furnace. It is effective to mix the small coke with the.

しかしながら、鉱石層中に小塊コークスを混合する方法を採用しても、小塊コークスの混合方法および炉内への装入位置によっては、その効果が十分に発揮されないという問題がある。さらに、炉壁の熱負荷が高い場合には、炉壁側に近い融着帯の通気性の改善効果が過剰になると、融着帯よりも炉壁側でのガス流れが強くなることから、炉壁の熱負荷がさらに上昇するという問題もある。   However, even if the method of mixing the small coke in the ore layer is employed, there is a problem that the effect is not sufficiently exhibited depending on the mixing method of the small coke and the charging position in the furnace. Furthermore, when the heat load on the furnace wall is high, if the effect of improving the air permeability of the cohesive zone near the furnace wall side becomes excessive, the gas flow on the furnace wall side becomes stronger than the cohesive zone, There is also a problem that the heat load on the furnace wall further increases.

本発明は、鉱石を2以上のバッチに分割して装入する方法において、各バッチ中へ装入された小塊コークスの混合装入効果を最大限に発揮させることにより、炉下部融着帯領域における通気性を改善し、炉内ガス流れを安定化して高炉の安定操業を図ることができるベルレス高炉への装入物装入方法を提供することを課題としている。   The present invention relates to a method of charging ore into two or more batches, in which the effect of mixing and charging the small coke charged into each batch is maximized, so It is an object of the present invention to provide a charging method for a bell-less blast furnace that can improve the air permeability in the region, stabilize the gas flow in the furnace, and achieve stable operation of the blast furnace.

本発明者は、前記の課題を解決するために、従来の問題点を踏まえて、高炉内における温度、ガス組成および装入物荷重条件にシミュレートした高温までの昇温荷重軟化試験を主体とした種々の検討を重ねた。その結果、下記の(a)〜(d)に示す知見を得た。
(a)鉱石を2以上のバッチ(炉内装入後には2以上の層を形成)に分割し、その分割されたバッチに小塊コークスを混合して高炉内に装入するに際して、各々の鉱石層中に小塊コークスを混合すると、特定の鉱石層にのみ小塊コークスを混合した場合に比べて、鉱石の還元反応が速やかに進行し、通気性も良好となることから、高温荷重軟化特性(コークスおよび鉱石充填層におけるガスの圧力損失を昇温試験温度にわたって積分した値を意味する)は向上する。
(b)装入物を炉壁側から炉中心部に向かって装入すると、小塊コークスが炉内装入物堆積層の最上表面、すなわち、ストックレベルの傾斜面に沿って流れ込むことから、小塊コークスと鉱石の混合を促進することが可能となるので、鉱石の還元反応がより速やかに進行し、高温荷重軟化特性も向上する。
(c)鉱石に混合された小塊コークスの装入後の堆積位置は、炉壁から炉口半径の30%以内の領域とするのが望ましい。前記の堆積位置が炉壁から炉口半径の30%を超えて大きくなると、ストックレベルの傾斜面に沿って流れ込む小塊コークスが炉中心部まで達し、高炉の断面積に対して大きな比率を占める炉壁部における融着帯の通気性改善効果が低減するからである。
(d)鉱石第2バッチ以降よりも、鉱石第1バッチの小塊コークスの混合量を多くすることにより、炉壁部のガス流れの制御が容易になる。その理由は、炉壁の熱負荷が高い場合には、鉱石第2バッチ以降の小塊コークスを多くすることによって炉壁部に近い融着帯の通気性の改善効果が過剰になる事態が発生することから、鉱石第1バッチに小塊コークスを多く装入し、炉壁から炉口半径の30%以内の領域で鉱石と小塊コークスの混合層を形成させることによって、この領域における炉壁部融着帯の通気性が改善され、ガス流れの制御が容易になるからである。
In order to solve the above-mentioned problems, the present inventor mainly conducted a heating load softening test up to a high temperature simulated based on the temperature in the blast furnace, the gas composition, and the charging load condition based on the conventional problems. Various studies were made. As a result, the knowledge shown in the following (a) to (d) was obtained.
(A) When ores are divided into two or more batches (two or more layers are formed after entering the furnace interior), and when the small batch coke is mixed into the divided batches and charged into the blast furnace, When small coke is mixed in the layer, the reduction reaction of the ore proceeds more quickly and the air permeability becomes better than when small coke is mixed only in a specific ore layer. (Meaning the value obtained by integrating the pressure loss of gas in the coke and ore packed bed over the temperature rise test temperature) is improved.
(B) When the charge is charged from the furnace wall side toward the furnace center, small coke flows along the uppermost surface of the furnace interior charge accumulation layer, that is, along the inclined surface of the stock level. Since it becomes possible to promote mixing of the lump coke and the ore, the reduction reaction of the ore proceeds more rapidly, and the high temperature load softening property is also improved.
(C) It is desirable that the deposition position after charging the small coke mixed with the ore is an area within 30% of the furnace port radius from the furnace wall. When the deposition position becomes larger than 30% of the furnace port radius from the furnace wall, the small coke flowing along the inclined surface of the stock level reaches the center of the furnace and occupies a large ratio to the cross-sectional area of the blast furnace. This is because the effect of improving the air permeability of the cohesive zone in the furnace wall portion is reduced.
(D) Control of the gas flow in the furnace wall becomes easier by increasing the mixing amount of the small coke in the first ore batch than in the second ore batch or later. The reason for this is that when the heat load on the furnace wall is high, the effect of improving the air permeability of the cohesive zone close to the furnace wall part becomes excessive by increasing the small coke after the second batch of ore. Therefore, a large amount of small coke is charged into the first batch of ore, and a mixed layer of ore and small coke is formed within an area within 30% of the furnace port radius from the furnace wall. This is because the gas permeability of the partial cohesive zone is improved and the gas flow can be easily controlled.

本発明は、上記の知見に基づいて完成されたものであり、下記の(1)および(2)に示すベルレス高炉への装入物の装入方法を要旨としている。
(1)鉱石を2以上のバッチに分割して装入するベルレス高炉への装入物装入方法であって、装入する鉱石の分割された各バッチに粒径が5〜40mmの小塊コークスを混合し、鉱石第1バッチにおける小塊コークス混合量を鉱石第2バッチ以降における小塊コークス混合量より多くするとともに、炉壁側から炉中心部に向かって装入物を装入することを特徴とするベルレス高炉への装入物装入方法。
(2)鉱石に混合された小塊コークスの高炉内装入後の炉内での堆積位置と炉壁との炉半径方向距離をX、高炉の炉口半径をRとしたとき、前記小塊コークスの堆積位置と炉壁との距離および炉口半径が下記(1)式で表される関係を満足する前記(1)に記載のベルレス高炉への装入物装入方法。
X/R≦0.3 ・・・(1)
本発明において、「炉壁側から炉中心部に向かって装入物を装入する」とは、分配シュートを回転させながら、その傾斜角度(分配シュートの長手方向と鉛直線とのなす角度)を順次低下させることにより、炉壁側から炉中心部に向かって螺旋状または多重リング状に装入物を装入することを意味する。
The present invention has been completed on the basis of the above findings, and the gist thereof is the method of charging the charged material into the bell-less blast furnace shown in the following (1) and (2).
(1) A charge charging method for a bell-less blast furnace in which ore is divided and charged into two or more batches, each of which is divided into small batches having a particle size of 5 to 40 mm. Mix coke and make the amount of small coke mixed in the first batch of ore larger than the amount of small coke mixed in the second batch of ore and charge from the furnace wall side toward the furnace center. Charging method for the bell-less blast furnace characterized by
(2) Small coke mixed with ore, where X is the distance in the furnace radial direction between the deposition position and the furnace wall after entering the blast furnace interior, and R is the blast furnace radius of the blast furnace. The method of charging a bell-less blast furnace according to (1), wherein the distance between the deposition position and the furnace wall and the radius of the furnace port satisfy the relationship represented by the following expression (1).
X / R ≦ 0.3 (1)
In the present invention, “loading the charge from the furnace wall side toward the furnace center” means that the distribution chute is rotated while its inclination angle (angle formed between the longitudinal direction of the distribution chute and the vertical line). Means that the charge is charged in a spiral or multiple ring shape from the furnace wall side toward the furnace center.

また、「鉱石に混合された小塊コークスの高炉内装入後の炉内での堆積位置」とは、鉱石の各バッチ中に混合された小塊コークスが高炉内に装入された後、ストックレベル面上で堆積した炉内半径方向の位置を意味する。   In addition, “position of small coke mixed with ore in the furnace after entering the blast furnace interior” means that after the small coke mixed in each batch of ore is charged into the blast furnace, It means the position in the furnace radial direction deposited on the level surface.

本発明のベルレス高炉への装入物装入方法によれば、鉱石を2以上のバッチに分け、各バッチ中への小塊コークスの混合量および炉内への小塊コークスの装入位置の適正化を図ることにより、小塊コークス混合の効果を最大限に高めて炉下部融着帯領域における通気性を改善し、安定した炉内ガス流れを確保して高炉の安定操業を図ることができる。   According to the charging method of the bellless blast furnace according to the present invention, the ore is divided into two or more batches, and the mixing amount of the small coke into each batch and the charging position of the small coke into the furnace are determined. By optimizing, the effect of mixing the small coke can be maximized to improve the air permeability in the cohesive zone of the lower part of the furnace, and the stable operation of the blast furnace can be ensured by ensuring a stable gas flow in the furnace. it can.

また、炉壁の熱負荷が高い場合にも、炉壁部に近い融着帯の通気性を改善しつつ、炉壁の熱負荷のさらなる上昇を抑制することができる。   Further, even when the heat load on the furnace wall is high, further increase in the heat load on the furnace wall can be suppressed while improving the air permeability of the fusion zone near the furnace wall.

本発明のベルレス高炉への装入物装入方法は、鉱石を2以上のバッチに分割して装入する方法であって、装入する鉱石の分割された各バッチに粒径が5〜40mmの小塊コークスを混合し、鉱石第1バッチにおける小塊コークス混合量を鉱石第2バッチ以降における小塊コークス混合量より多くするとともに、炉壁側から炉中心部に向かって装入物を装入することを特徴とする。以下に、本発明を前記の範囲に限定した理由および好ましい範囲について説明する。
(1)装入物を炉壁側から炉中心側へ装入
炉壁側から炉中心部に向かって装入物を装入することにより、ストックレベルの傾斜を利用して小塊コークスと鉱石との混合が促進されるからである。このように、小塊コークスと鉱石の混合が促進されると、鉱石の還元反応がより速やかに進行するとともに、融着帯の通気性改善作用がより顕著に発揮されることになる。
(2)鉱石第2バッチ以降よりも第1バッチに多量の小塊コークスを混合
鉱石の各バッチ中に小塊コークスを混合する理由は、小塊コークスを各バッチの鉱石層に混合すると、小塊コークスと鉱石との接触面積が大きくなり、炉内を上昇する還元ガスによって効率よく還元が進行するからである。
The charge charging method to the bell-less blast furnace of the present invention is a method of charging ore into two or more batches, and the particle size is 5 to 40 mm in each batch of the ore to be charged. The amount of small coke mixed in the first ore batch is made larger than the amount of small coke mixed in the second or subsequent batch of ore and the charge is charged from the furnace wall toward the furnace center. It is characterized by entering. The reason why the present invention is limited to the above range and the preferable range will be described below.
(1) Charging the charge from the furnace wall side to the furnace center side By charging the charge from the furnace wall side to the furnace center, small coke and ore using the stock level inclination This is because the mixing with is promoted. As described above, when the mixing of the small coke and the ore is promoted, the reduction reaction of the ore proceeds more rapidly, and the air permeability improvement effect of the cohesive zone is more remarkably exhibited.
(2) Mixing a larger amount of small coke in the first batch than in the second batch of ore The reason for mixing small coke in each batch of ore is that small coke is mixed in the ore layer of each batch. This is because the contact area between the block coke and the ore increases, and the reduction proceeds efficiently by the reducing gas rising in the furnace.

しかし、炉壁の熱負荷が高い場合には、炉壁部に近い融着帯の通気性の改善効果が過剰になると、融着帯よりも炉壁側でのガス流れが強くなることから、炉壁の熱負荷がさらに上昇するという問題もある。   However, when the heat load on the furnace wall is high, if the effect of improving the air permeability of the cohesive zone near the furnace wall becomes excessive, the gas flow on the furnace wall side becomes stronger than the cohesive zone, There is also a problem that the heat load on the furnace wall further increases.

このため、本発明の装入物装入方法では、鉱石を2以上のバッチに分割して装入した場合に、第1バッチにおける鉱石中の小塊コークス混合率を、第2バッチ以降における鉱石層中の小塊コークス混合率よりも高くすることにより、融着帯の通気性の改善効果を適正化させた。鉱石第2バッチ以降よりも第1バッチに多量の小塊コークスを混合することにより、通気性の改善効果が適正化される理由は下記のとおりである。   For this reason, in the charging method of the present invention, when the ore is divided into two or more batches and charged, the small coke mixing ratio in the ore in the first batch is changed to the ore in the second batch and thereafter. The effect of improving the air permeability of the cohesive zone was optimized by increasing the mixing ratio of the small coke in the layer. The reason why the air permeability improvement effect is optimized by mixing a larger amount of small coke in the first batch than in the second ore batch or more is as follows.

第1バッチの鉱石層はコークス層上に装入される際に、斜面分級の効果によりコークス層と鉱石層の混合が進む。これに対し、第2バッチ以降の鉱石層はコークスとの混合はおこり難くなる。   When the ore layer of the first batch is charged on the coke layer, mixing of the coke layer and the ore layer proceeds due to the effect of slope classification. On the other hand, the ore layer after the second batch is hardly mixed with coke.

本発明の装入物装入方法では、第1バッチの鉱石層中に小塊コークスを多量に混合することにより、さらにコークスと鉱石との接触を高め、鉱石の還元を速やかに進行させることができる。   In the charging method according to the present invention, a large amount of small coke is mixed in the ore layer of the first batch, so that contact between the coke and the ore can be further increased, and the reduction of the ore can proceed rapidly. it can.

すなわち、鉱石の還元を速やかに進行させるために、第2バッチ以降の鉱石層に小塊コークスを多量に混合することを要しないため、炉壁側に近い融着帯の通気性の改善効果が過剰にならないからである。
(3)小塊コークスの粒径5〜40mm
小塊コークスとして、粒径が5〜40mmのものを用いる理由は、この粒子径の範囲であれば高炉内を降下する間に鉱石との還元反応が効率よく行われ、かつ、小塊コークスとして必要量を確保できるからである。
(4)小塊コークスの炉内装入後の堆積位置と炉壁との炉半径方向距離の比、(X/R)の値が0.3以下
比(X/R)の値は0.3以下とすることが好ましい。前記の比の値が0.3以下では、炉壁側から炉中心部に向かって装入物を装入する場合においても小塊コークスがストックレベルの傾斜面に沿って炉中心部まで流れ込むことも少なく、融着帯の通気性改善作用が発揮されるからである。
That is, it is not necessary to mix a large amount of small coke in the ore layer after the second batch in order to proceed the reduction of the ore quickly, so the effect of improving the permeability of the cohesive zone close to the furnace wall side is achieved. It is because it does not become excessive.
(3) Particle size of small coke 5-40mm
The reason why a small coke having a particle size of 5 to 40 mm is used is that if the particle size is within this range, the reduction reaction with the ore is efficiently performed while descending the blast furnace, and as the small coke, This is because the necessary amount can be secured.
(4) The ratio of the radial position distance between the deposition position of the small coke after entering the furnace interior and the furnace wall, the value of (X / R) is 0.3 or less The value of the ratio (X / R) is 0.3 The following is preferable. When the value of the ratio is 0.3 or less, even when charging the charge from the furnace wall side toward the furnace center, small coke flows into the furnace center along the stock level inclined surface. This is because the air permeability improving effect of the cohesive zone is exhibited.

本発明の装入方法の効果を確認するため、炉内容積が5370m3の高炉で試験操業を行い、その結果を評価した。なお、試験操業は、出銑比:2.1t/d/m3、(Ore/Coke)比:4.4、微粉炭吹込量:120kg/t−pig、コークスベース:31tを基準条件として、同一操業条件にて5日間の継続操業を行い、その後、次の操業条件による操業に移行して5日間の継続操業を行った。鉱石は1チャージ(ch)を2バッチに分割して装入し、鉱石1チャージ当たりの小塊コークス混合量を3.2t/chで一定として、鉱石の各バッチ中の小塊コークス混合量を種々に変更して、操業を行った。試験操業条件および操業結果を表1に示した。 In order to confirm the effect of the charging method of the present invention, a test operation was performed in a blast furnace having a furnace internal volume of 5370 m 3 and the results were evaluated. The test operation is based on the following conditions: output ratio: 2.1 t / d / m 3 , (Ore / Coke) ratio: 4.4, pulverized coal injection amount: 120 kg / t-pig, coke base: 31 t The operation was continued for 5 days under the same operating conditions, and then the operation was shifted to the operation under the next operating conditions and continued for 5 days. The ore is charged by dividing one charge (ch) into two batches, the small coke mixing amount per charge of ore is constant at 3.2 t / ch, and the small coke mixing amount in each batch of ore is The operation was carried out with various changes. Table 1 shows the test operation conditions and the operation results.

Figure 2008024997
Figure 2008024997

同表において、ガス利用率とは、高炉上昇管にて採取したガス分析値に基づき、下記(2)式により算出される値であり、その値が大きいほど還元効率が高いことを意味する。   In the table, the gas utilization rate is a value calculated by the following equation (2) based on the gas analysis value collected by the blast furnace rise pipe, and the larger the value, the higher the reduction efficiency.

ガス利用率=CO2(%)×100/(CO(%)+CO2(%))・・・(2)
また、高炉内通気抵抗指数(KR)は、下記(3)式により算出される指数であり、その値が小さいほど炉内通気性が良好なことを示す。
Gas utilization rate = CO 2 (%) × 100 / (CO (%) + CO 2 (%)) (2)
Further, the blast furnace air flow resistance index (KR) is an index calculated by the following equation (3), and the smaller the value, the better the furnace air permeability.

KR=(PB−PT)/L/(kμβρ1-β2-β) ・・・(3)
ここで、KRは高炉通気抵抗指数(1/m)、PBおよびPTはそれぞれ送風圧力および炉頂圧力(Pa)、Lは羽口と炉頂間の距離(m)、βおよびkはガス流れの形態などにより定まる定数、μはガスの粘度(Pa・s)、ρはガスの密度(kg/m3)、そしてuは炉内のガス流速(m/s)をそれぞれ表す。
KR = (P B −P T ) / L / (kμ β ρ 1−β u 2−β ) (3)
Where KR is the blast furnace ventilation resistance index (1 / m), P B and P T are the blowing pressure and the top pressure (Pa), L is the distance between the tuyere and the top (m), β and k are A constant determined by the form of the gas flow, μ is the gas viscosity (Pa · s), ρ is the gas density (kg / m 3 ), and u is the gas flow velocity (m / s) in the furnace.

なお、試験結果は、表1の欄外に示したとおりの方法で、炉内ガス利用率および高炉内通気抵抗指数の値によりA〜Eの5段階に区分して評価した。   The test results were evaluated according to the methods shown in the margins of Table 1, classified into five stages A to E according to the furnace gas utilization rate and the blast furnace ventilation resistance index.

試験番号T1、T2およびT3は、本発明で規定する範囲を満足する本発明例の試験であり、試験番号T4、T5およびT6は、本発明で規定する範囲を外れた比較例の試験である。   Test numbers T1, T2 and T3 are tests of the present invention examples that satisfy the range specified in the present invention, and test numbers T4, T5 and T6 are tests of comparative examples outside the range specified in the present invention. .

本発明例である試験番号T2およびT3は、鉱石第2バッチ中の小塊コークス混合量と鉱石第1バッチ中の小塊コークス混合量との比であるFC2/FC1の値が1以下であり、炉下部の融着帯における鉱石の還元促進効果および通気抵抗の低減効果が発揮された結果、比較例に比べてガス利用率が高く、また、高炉内通気抵抗指数(KR)も低い値となって炉内通気性は良好であった。   Test Nos. T2 and T3, which are examples of the present invention, have an FC2 / FC1 value of 1 or less, which is the ratio of the small coke mixing amount in the second ore batch and the small coke mixing amount in the first ore batch. As a result of the effect of promoting the reduction of ore and the reduction of ventilation resistance in the cohesive zone at the lower part of the furnace, the gas utilization rate is higher than that of the comparative example, and the blast furnace ventilation resistance index (KR) is also low. Thus, the air permeability in the furnace was good.

本発明例である試験番号T1は、小塊コークス堆積位置が0.3以下であって、前記のFC2/FC1の値が0.3であることから、試験番号T2およびT3よりもさらにガス利用率が高く、また、炉内通気性も良好であった。   Test No. T1, which is an example of the present invention, has a small coke deposition position of 0.3 or less, and the value of FC2 / FC1 is 0.3. Therefore, the gas utilization is higher than those of Test Nos. T2 and T3. The rate was high and the air permeability in the furnace was good.

これらに対して、鉱石第2バッチ中に小塊コークスを混合しなかった比較例の試験番号T4、鉱石第1バッチ中に鉱石を混合しなかった比較例の試験番号T5、および小塊コークスが炉壁から炉口半径の30%以内の領域に堆積しなかった比較例の試験番号T6は、いずれもガス利用率が低く、また、炉内通気性も劣った結果であった。   In contrast, the test number T4 of the comparative example in which the small coke was not mixed in the second ore batch, the test number T5 of the comparative example in which the ore was not mixed in the first ore batch, and the small coke The test numbers T6 of the comparative examples that were not deposited in the region within 30% of the furnace port radius from the furnace wall were the results of low gas utilization rate and poor in-furnace air permeability.

本発明のベルレス高炉への装入物装入方法によれば、鉱石を2以上のバッチに分け、各バッチ中への小塊コークスの混合量および炉内への小塊コークスの装入位置の適正化を図ることにより、小塊コークス混合の効果を最大限に高めて炉下部融着帯領域における通気性を改善し、安定した炉内ガス流れを確保して高炉の安定操業を図ることができる。   According to the charging method of the bellless blast furnace according to the present invention, the ore is divided into two or more batches, and the mixing amount of the small coke into each batch and the charging position of the small coke into the furnace are determined. By optimizing, the effect of mixing the small coke can be maximized to improve the air permeability in the cohesive zone of the lower part of the furnace, and the stable operation of the blast furnace can be ensured by ensuring a stable gas flow in the furnace. it can.

また、炉壁の熱負荷が高い場合にも、炉壁部に近い融着帯の通気性を改善しつつ、炉壁の熱負荷の上昇を抑制することができる。   Further, even when the heat load on the furnace wall is high, an increase in the heat load on the furnace wall can be suppressed while improving the air permeability of the cohesive zone near the furnace wall.

これにより、本発明の装入物装入方法は、炉下部融着帯領域における通気性を改善し、炉内のガス流れの安定化に寄与する装入物装入方法として、ベルレス高炉の操業に広く適用できる。
As a result, the charging method of the present invention improves the air permeability in the lower zone cohesive zone, and the operation of the bell-less blast furnace as the charging method that contributes to the stabilization of the gas flow in the furnace. Widely applicable to.

Claims (2)

鉱石を2以上のバッチに分割して装入するベルレス高炉への装入物装入方法であって、装入する鉱石の分割された各バッチに粒径が5〜40mmの小塊コークスを混合し、鉱石第1バッチにおける小塊コークス混合量を鉱石第2バッチ以降における小塊コークス混合量より多くするとともに、炉壁側から炉中心部に向かって装入物を装入することを特徴とするベルレス高炉への装入物装入方法。   A charge charging method for a bell-less blast furnace in which ore is divided and charged in two or more batches, and a small amount of coke having a particle size of 5 to 40 mm is mixed in each divided batch of ore to be charged. The amount of the small coke mixed in the first ore batch is made larger than the amount of the small coke mixed in the second ore batch or more, and the charge is charged from the furnace wall side toward the furnace center. To charge the bellless blast furnace. 鉱石に混合された小塊コークスの高炉内装入後の炉内での堆積位置と炉壁との炉半径方向距離をX、高炉の炉口半径をRとしたとき、前記小塊コークスの堆積位置と炉壁との距離および炉口半径が下記(1)式で表される関係を満足する請求項1に記載のベルレス高炉への装入物装入方法。
X/R≦0.3 ・・・(1)
The position where the small coke mixed with ore is deposited in the furnace after entering the blast furnace and the furnace radial distance between the furnace wall and X is X, and the blast furnace radius is R, where the small coke is deposited. The method for charging a bell-less blast furnace according to claim 1, wherein the distance between the furnace and the furnace wall and the radius of the furnace port satisfy the relationship represented by the following formula (1).
X / R ≦ 0.3 (1)
JP2006199871A 2006-07-21 2006-07-21 How to charge the bellless blast furnace Active JP4706583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006199871A JP4706583B2 (en) 2006-07-21 2006-07-21 How to charge the bellless blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006199871A JP4706583B2 (en) 2006-07-21 2006-07-21 How to charge the bellless blast furnace

Publications (2)

Publication Number Publication Date
JP2008024997A true JP2008024997A (en) 2008-02-07
JP4706583B2 JP4706583B2 (en) 2011-06-22

Family

ID=39115947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006199871A Active JP4706583B2 (en) 2006-07-21 2006-07-21 How to charge the bellless blast furnace

Country Status (1)

Country Link
JP (1) JP4706583B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011068926A (en) * 2009-09-24 2011-04-07 Nippon Steel Corp Method for charging raw material into blast furnace

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002003910A (en) * 2000-06-23 2002-01-09 Nippon Steel Corp Method for operating blast furnace
JP2005290511A (en) * 2004-04-02 2005-10-20 Sumitomo Metal Ind Ltd Method for operating blast furnace

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002003910A (en) * 2000-06-23 2002-01-09 Nippon Steel Corp Method for operating blast furnace
JP2005290511A (en) * 2004-04-02 2005-10-20 Sumitomo Metal Ind Ltd Method for operating blast furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011068926A (en) * 2009-09-24 2011-04-07 Nippon Steel Corp Method for charging raw material into blast furnace

Also Published As

Publication number Publication date
JP4706583B2 (en) 2011-06-22

Similar Documents

Publication Publication Date Title
JP5696814B2 (en) Raw material charging method for bell-less blast furnace
JP6041072B1 (en) Raw material charging method to blast furnace
JP2006265644A (en) Method for charging raw materials into blast furnace
JP5011955B2 (en) Ferro-coke manufacturing method
JP4114626B2 (en) Blast furnace operation method
JP4899726B2 (en) Blast furnace operation method
JP4706583B2 (en) How to charge the bellless blast furnace
JP5515288B2 (en) Raw material charging method to blast furnace
JP6260751B2 (en) Raw material charging method to blast furnace
JP5834922B2 (en) Blast furnace operation method
JP5751037B2 (en) Blast furnace operation method
JP5338309B2 (en) Raw material charging method to blast furnace
JP2008057028A (en) Method for manufacturing sintered ore
JP2014214331A (en) Method of charging raw material into blast furnace
JP6198649B2 (en) Raw material charging method for blast furnace
JP7003725B2 (en) How to charge blast furnace raw materials
JP5338308B2 (en) Raw material charging method to blast furnace
JP5338310B2 (en) Raw material charging method to blast furnace
WO2021152989A1 (en) Method for charging raw material into blast furnace
JP2018070954A (en) Method for loading raw materials into blast furnace
JP6885528B1 (en) How to charge raw materials to the blast furnace
JP7372600B2 (en) Blast furnace raw material charging method
JP6627717B2 (en) Raw material charging method for blast furnace
JP7363751B2 (en) Blast furnace raw material charging method
JP7127676B2 (en) Method for charging raw materials into blast furnace and method for producing hot metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110228

R150 Certificate of patent or registration of utility model

Ref document number: 4706583

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140325

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140325

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350