JP2008024774A - Fluorescent substance sheet and light-emission element - Google Patents

Fluorescent substance sheet and light-emission element Download PDF

Info

Publication number
JP2008024774A
JP2008024774A JP2006196860A JP2006196860A JP2008024774A JP 2008024774 A JP2008024774 A JP 2008024774A JP 2006196860 A JP2006196860 A JP 2006196860A JP 2006196860 A JP2006196860 A JP 2006196860A JP 2008024774 A JP2008024774 A JP 2008024774A
Authority
JP
Japan
Prior art keywords
layered silicate
trivalent
phosphor sheet
phosphor
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006196860A
Other languages
Japanese (ja)
Inventor
Ryota Ohashi
良太 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2006196860A priority Critical patent/JP2008024774A/en
Publication of JP2008024774A publication Critical patent/JP2008024774A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluorescent substance sheet having a flexibility and usable under a high temperature environment, and a flexible light-emission element. <P>SOLUTION: The fluorescent substance sheet is provided, which is characterized in a structure that laminar silicate crystalline pieces activated by a rare earth ion are laminated. Further, the laminar silicate crystalline piece has an aligned plane orientation, and a crystalline structure of the laminar silicate crystalline piece is any one of a mica structure, a chlorite structure, a kaolinite structure or a smectite structure. Further, the rare earth ion is the one selected from the group consisting of divalent Eu, divalent Sm, trivalent Ce, trivalent Eu, trivalent Sm and trivalent Tb. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、蛍光体シート及び発光素子に関する。詳しくは、フラットパネルディスプレイに用いられるエレクトロルミネッセンス蛍光体シート及び発光素子に関する。   The present invention relates to a phosphor sheet and a light emitting device. In detail, it is related with the electroluminescent fluorescent substance sheet and light emitting element which are used for a flat panel display.

発光機能を有する微粒子及び薄膜を用いたフラットパネルディスプレイ(FPD)の一つに、エレクトロルミネッセンス(EL)ディスプレイがある。エレクトロルミネッセンス蛍光体は電界励起型の蛍光体であり、分散型ELと薄膜型ELがある。分散型ELは蛍光体粉末を高誘電率の有機バインダ中に分散したものを、少なくとも一方が透明な二枚の電極の間に挟み込んだ構成になっている。薄膜型ELは真空蒸着やスパッタなどにより基板上に順に透明導電膜、絶縁層、EL発光層、絶縁層、背面電極を積層した構成になっている。分散型ELは、作成過程で高温プロセスを用いないため、次のような特長を有する。即ち、プラスチック基板などを用いたフレキシブルなパネルの形成が可能であること、真空装置が不要であり低コストでの製造が可能であること、及び異なる発光色の蛍光体粒子を混合することで発光色の調節が容易であることである。
特開2005−283911号公報
One of flat panel displays (FPD) using fine particles and a thin film having a light emitting function is an electroluminescence (EL) display. The electroluminescent phosphor is an electric field excitation type phosphor and includes a dispersion type EL and a thin film type EL. The dispersion type EL has a configuration in which a phosphor powder dispersed in an organic binder having a high dielectric constant is sandwiched between two electrodes at least one of which is transparent. The thin film type EL has a structure in which a transparent conductive film, an insulating layer, an EL light emitting layer, an insulating layer, and a back electrode are sequentially stacked on a substrate by vacuum deposition or sputtering. Since the dispersion type EL does not use a high temperature process in the production process, it has the following features. That is, it is possible to form a flexible panel using a plastic substrate, etc., it is possible to manufacture at a low cost without using a vacuum device, and to emit light by mixing phosphor particles of different emission colors. Color adjustment is easy.
JP 2005-283911 A

しかしながら、上記構成の分散型ELによるフレキシブル発光素子は、蛍光体粉末を分散させている有機バインダやプラスチック基板が熱により劣化するため、高温環境下で使用することが困難であった。   However, the flexible light-emitting element using the dispersion-type EL having the above configuration is difficult to use in a high-temperature environment because the organic binder and the plastic substrate in which the phosphor powder is dispersed are deteriorated by heat.

この問題に対し、例えば特許文献1のように、EL表示パネルの背面に良熱伝導性の部材を配置することによって、有機バインダやプラスチック基板の熱による劣化を低減する方法が提案されている。しかしながら、バインダとして有機物を用いていることには変わりなく、外部雰囲気の温度が有機バインダの耐熱温度限の限界よりも高い場合には使用することが出来ない。   To solve this problem, for example, as disclosed in Patent Document 1, a method of reducing deterioration due to heat of an organic binder or a plastic substrate by arranging a member having good heat conductivity on the back surface of an EL display panel has been proposed. However, the organic substance is used as the binder, and cannot be used when the temperature of the external atmosphere is higher than the limit of the heat resistant temperature limit of the organic binder.

本発明は上記課題を解決するために提案されたものであり、本発明の目的は、柔軟性を有し、高温環境下で使用可能な蛍光体シート、及びフレキシブル発光素子を提供することである。   The present invention has been proposed to solve the above-described problems, and an object of the present invention is to provide a phosphor sheet having flexibility and usable in a high-temperature environment, and a flexible light-emitting element. .

上記の課題は本発明の以下の構成及び製法により解決出来る。   The above problems can be solved by the following configuration and manufacturing method of the present invention.

即ち、本発明の蛍光体シートは、希土類イオンで付活された層状珪酸塩結晶片が積層された構造からなることを特徴とする蛍光体シートである。   That is, the phosphor sheet of the present invention is a phosphor sheet characterized by having a structure in which layered silicate crystal pieces activated by rare earth ions are laminated.

ここで、前記層状珪酸塩結晶片の結晶構造が、雲母構造、緑泥石構造、カオリナイト構造又はスメクタイト構造のいずれかであることを特徴とする蛍光体シートである。   Here, the phosphor sheet is characterized in that the crystal structure of the layered silicate crystal piece is any one of a mica structure, a chlorite structure, a kaolinite structure, and a smectite structure.

本発明によれば、柔軟性を有し、高温環境下で使用可能な蛍光体シート、及びフレキシブル発光素子を提供することが出来る。   ADVANTAGE OF THE INVENTION According to this invention, it has a softness | flexibility and can provide the fluorescent substance sheet which can be used in a high temperature environment, and a flexible light emitting element.

以下に本発明の実施形態を説明する。   Embodiments of the present invention will be described below.

本発明の蛍光体シートは、希土類イオンで付活された層状珪酸塩結晶片が積層された構造からなることを特徴とするものである。   The phosphor sheet of the present invention has a structure in which layered silicate crystal pieces activated by rare earth ions are laminated.

無機結晶である層状珪酸塩結晶は、800℃までの高温においても安定で構造変化がない。また、層状珪酸塩結晶、例えば雲母は、SiO正四面体が連なった層が2対向かい合った構造であり、その層間にOH基及び八面体配位をとるイオン(Al3+、Mg2+、Fe2+等)が存在している。そして、以上から成る厚さ約1nmの単位層が、単位層の間に存在するアルカリ金属イオン又はアルカリ土類金属イオンによるイオン結合により結合された構造となっている。単位層内のSi−O共有結合やイオン結合と比較し、単位層間のイオン結合は非常に弱いため雲母は薄膜状に剥がれ易い。従って層状珪酸塩結晶は薄膜状の結晶片になり易く、この結晶片を面方位を揃えて無数に堆積させると、層状珪酸塩結晶片が分子間力により結合した自立膜が得られ、及びそれは粒子間の結合力は弱く容易にずれることが可能となるため、膜は柔軟性を持つ。 Layered silicate crystals that are inorganic crystals are stable and have no structural change even at high temperatures up to 800 ° C. A layered silicate crystal, for example, mica, has a structure in which two layers of SiO 4 tetrahedrons are connected to each other, and ions (Al 3+ , Mg 2+ , Fe that take OH groups and octahedral coordination between the layers) 2+ etc.). The unit layer having a thickness of about 1 nm composed of the above is bonded by ionic bonding with alkali metal ions or alkaline earth metal ions existing between the unit layers. Compared with the Si—O covalent bond or ionic bond in the unit layer, the ionic bond between the unit layers is very weak, so the mica is easily peeled off in a thin film. Therefore, the layered silicate crystal tends to be a thin film-like crystal piece, and when this crystal piece is deposited innumerably with the plane orientation aligned, a self-supporting film in which the layered silicate crystal piece is bonded by intermolecular force is obtained, and Since the bonding force between the particles is weak and can be easily shifted, the film has flexibility.

本発明の層状珪酸塩結晶としては、雲母構造、緑泥石構造、カオリナイト構造、スメクタイト構造のいずれの構造であってよい。詳しくは、雲母構造としては、白雲母(Muscovite)、加水雲母(illite)、金雲母(Phlogopite)、黒雲母(Biotite)、鱗雲母(Lepidolite)等が挙げられる。また、緑泥石構造としては、シャモサイト(chamosite)、クリノクロア(clinochlore)、スチルプノメレーン(stilpnomelane)等が挙げられる。カオリナイト構造としては、カオリナイト(kaolinite)、ハロイサイト(halloysite)、アンチゴライト(antigorite)、クリソタイル(chrysotile)、石綿(asbestos)が挙げられる。スメクタイト構造としては、モンモリロナイト(montmorillonite)、ぶどう石(prehnite)、魚眼石(fluorapophyllite)が挙げられる。   The layered silicate crystal of the present invention may have any structure of mica structure, chlorite structure, kaolinite structure, and smectite structure. Specifically, examples of the mica structure include muscovite, hydrate mica, phlogopite, biotite, lepidite, and the like. In addition, examples of the chlorite structure include chamosite, clinochlore, and stilpnolane. Examples of the kaolinite structure include kaolinite, halloysite, antigolite, chrysotile, and asbestos. Examples of the smectite structure include montmorillonite, prehnite, and fisheye stone (fluoropophyllite).

付活材として用いる希土類イオンとしては、色純度の良好な青色の発光を得るためには、二価のEu、三価のCeが挙げられる。また、赤色発光を得るには三価のEu、三価のSm、緑色発光を得るには三価のTb等が挙げられる。また、二価のSmも付活材として用いられる。   Examples of rare earth ions used as the activator include divalent Eu and trivalent Ce in order to obtain blue light emission with good color purity. In addition, trivalent Eu and trivalent Sm are used to obtain red light emission, and trivalent Tb is used to obtain green light emission. Bivalent Sm is also used as an activator.

また、蛍光体シートの厚さは、蛍光体シートが一体膜として保持される為に、5μm以上であることが好ましく、及び適度な柔軟性を実現する為に、100μm以下であることが好ましい。   The thickness of the phosphor sheet is preferably 5 μm or more in order to hold the phosphor sheet as an integral film, and preferably 100 μm or less in order to achieve appropriate flexibility.

これより本発明に従う実施例について説明するが、本発明は以下の実施例に限定されるものではない。   Examples according to the present invention will be described below, but the present invention is not limited to the following examples.

(実施例1)
本実施例では、層状珪酸塩結晶として金雲母(Phlogopite)を用い、付活材の希土類イオンとしてEu2+を用いた本発明の蛍光体シートを示す。
(Example 1)
In this example, the phosphor sheet of the present invention using phlogopite as the layered silicate crystal and Eu 2+ as the rare earth ion of the activator is shown.

まず、金雲母にEu2+が付活された組成K0.98MgSiAlO10Eu0.01になるように、KCOを2.40g、MgFを6.65g、SiOを6.61g、Alを1.82g、Euを0.063gとして各原料を混合した。次に混合した前記の原料を、真空アニール装置を用いて5%の水素を含んだ窒素雰囲気下、約1200℃で熱処理し、二価のEuにより付活された金雲母結晶蛍光体を得た。アニール後の蛍光体に水銀ランプで254nmの紫外線を照射すると、色純度の良好な青色の発光が観察された。また、得られた金雲母結晶蛍光体は、X線回折測定により、金雲母特有の回折パターンを示した。得られた蛍光体を遊星型ボールミルにより300回転/秒で5分間粉砕し、層状珪酸塩結晶片とした。粉砕後の結晶片は走査電子顕微鏡観察によると、厚さが約10nm、大きさ約10μm×10μm程度の結晶片となっていた。この層状珪酸塩結晶片2gを秤量し、100cmの蒸留水に加えて激しく攪拌し、均一な層状珪酸塩結晶片分散液を得た。分散液を底面が平坦である10cm×10cmの容器に注いで水平に静置し、層状珪酸塩結晶片をゆっくり沈積させて緻密に積層させ、60℃に設定した乾燥器中で5時間乾燥して、厚さ約100μmの半透明層状珪酸塩結晶片シートを得た。以上の製法により得られる蛍光体シートに水銀ランプ254nmの紫外線を照射すると、400nm付近にピークを持つ青色発光が観察された。蛍光体シートは600℃に加熱された後、室温に戻されても、構造に変化は無く柔軟性を保ったままであり、また発光特性も良好な青色発光を維持した。 First, 2.40 g of K 2 CO 3 , 6.65 g of MgF 2, and composition K 0.98 Mg 3 Si 3 AlO 10 F 2 Eu 0.01 in which Eu 2+ is activated in phlogopite. Each raw material was mixed with 6.61 g of SiO 2 , 1.82 g of Al 2 O 3 and 0.063 g of Eu 2 O 3 . Next, the mixed raw materials were heat-treated at about 1200 ° C. in a nitrogen atmosphere containing 5% hydrogen using a vacuum annealing apparatus, and a phlogopite crystal phosphor activated by divalent Eu was obtained. . When the annealed phosphor was irradiated with 254 nm ultraviolet light with a mercury lamp, blue light emission with good color purity was observed. Further, the obtained phlogopite crystal phosphor showed a diffraction pattern peculiar to phlogopite by X-ray diffraction measurement. The obtained phosphor was pulverized with a planetary ball mill at 300 rpm for 5 minutes to obtain layered silicate crystal pieces. According to observation with a scanning electron microscope, the crushed crystal piece was a crystal piece having a thickness of about 10 nm and a size of about 10 μm × 10 μm. 2 g of this layered silicate crystal piece was weighed and added to 100 cm 3 of distilled water and stirred vigorously to obtain a uniform layered silicate crystal piece dispersion. The dispersion is poured into a 10 cm × 10 cm container with a flat bottom and allowed to stand horizontally, and the layered silicate crystal pieces are slowly deposited and densely laminated, and dried in a drier set at 60 ° C. for 5 hours. Thus, a translucent layered silicate crystal piece sheet having a thickness of about 100 μm was obtained. When the phosphor sheet obtained by the above production method was irradiated with ultraviolet rays of 254 nm of a mercury lamp, blue light emission having a peak near 400 nm was observed. Even after the phosphor sheet was heated to 600 ° C. and returned to room temperature, the structure did not change and the flexibility remained, and the blue light emission with good emission characteristics was maintained.

(実施例2)
本実施例では、異なる希土類イオンにより付活され、発光色の異なる層状珪酸塩結晶を連続して堆積することにより、任意の発光色を得る蛍光体シートを示す。特に、白色発光を示す蛍光体シートの実施例を示す。
(Example 2)
In this example, a phosphor sheet that is activated by different rare earth ions and obtains an arbitrary emission color by continuously depositing layered silicate crystals having different emission colors is shown. In particular, examples of phosphor sheets that emit white light are shown.

青色発光の層状珪酸塩結晶として、実施例1と同様の工程でKCOを2.40g、MgFを6.65g、SiOを6.61g、Alを1.82g、Euを0.063gとして各原料を混合した。次に混合した前記の材料を、真空アニール装置を用いて5%の水素を含んだ窒素雰囲気下、約1200℃で熱処理し、二価のEuにより付活された金雲母結晶蛍光体を得た。 As the layered silicate crystal blue light, 2.40 g of K 2 CO 3 in the same steps as in Example 1, the MgF 2 6.65 g, and SiO 2 6.61 g, the Al 2 O 3 1.82g, Eu the 2 O 3 were mixed the raw materials as a 0.063 g. Next, the mixed materials were heat-treated at about 1200 ° C. in a nitrogen atmosphere containing 5% hydrogen by using a vacuum annealing apparatus to obtain a phlogopite crystal phosphor activated by divalent Eu. .

赤色発光の層状珪酸塩結晶として、KCOを2.40g、MgFを6.65g、SiOを6.61g、Alを1.82g、Euを0.063gとして各原料を混合した。次に混合した前記の原料を大気雰囲気下約1200℃で熱処理し、三価のEuにより付活された金雲母結晶蛍光体を得た。 As the layered silicate crystal red light, the K 2 CO 3 2.40 g, the MgF 2 6.65 g, and SiO 2 6.61 g, the Al 2 O 3 1.82 g, the Eu 2 O 3 as 0.063g Each raw material was mixed. Next, the mixed raw materials were heat-treated at about 1200 ° C. in an air atmosphere to obtain a phlogopite crystal phosphor activated by trivalent Eu.

緑色発光の層状珪酸塩結晶として、Kを2.40g、MgFを6.65g、SiOを6.61g、Alを1.82g、Tbを0.030gとして各原料を混合した。次に混合した前記の原料を約1200℃で熱処理し、三価のTbにより付活された金雲母結晶蛍光体を得た。 As a green luminescent layered silicate crystal, K 2 O 3 is 2.40 g, MgF 2 is 6.65 g, SiO 2 is 6.61 g, Al 2 O 3 is 1.82 g, and Tb 4 O 7 is 0.030 g. Each raw material was mixed. Next, the mixed raw materials were heat-treated at about 1200 ° C. to obtain a phlogopite crystal phosphor activated by trivalent Tb.

上記工程により得られる、青色、赤色、緑色発光を示すそれぞれの蛍光体を別々に遊星型ボールミルにより300回転/秒で5分間粉砕し、各色の層状珪酸塩結晶片とした。得られた青色発光層状珪酸塩結晶片0.8g、赤色発光層状珪酸塩結晶片0.6g、緑色発光層状珪酸塩結晶片0.6g、を秤量し、100cmの蒸留水に加えて激しく攪拌し、均一な層状珪酸塩結晶片分散液を得た。分散液を底面が平坦である10cm×10cmの容器に注いで水平に静置し、層状珪酸塩結晶片を沈積させて緻密に積層させ、60℃に設定した乾燥器中で5時間乾燥して、厚さ約100μmの半透明層状珪酸塩結晶片シートを得た。以上の製法により得られる蛍光体シートに水銀ランプ254nmの紫外線を照射すると、白色の発光が観察された。蛍光体シートは600℃に加熱された後、室温に戻されても、構造に変化は無く柔軟性を保ったままであり、また発光特性も良好であった。 Each phosphor showing blue, red and green light emission obtained by the above process was separately pulverized with a planetary ball mill at 300 rpm for 5 minutes to obtain layered silicate crystal pieces of each color. The obtained blue light emitting layered silicate crystal piece 0.8 g, red light emitting layered silicate crystal piece 0.6 g, and green light emitting layered silicate crystal piece 0.6 g were weighed and added to 100 cm 3 distilled water and stirred vigorously. Thus, a uniform layered silicate crystal piece dispersion was obtained. The dispersion is poured into a 10 cm × 10 cm container having a flat bottom surface and allowed to stand horizontally, the layered silicate crystal pieces are deposited and densely laminated, and dried in a drier set at 60 ° C. for 5 hours. A semi-transparent layered silicate crystal piece sheet having a thickness of about 100 μm was obtained. When the phosphor sheet obtained by the above production method was irradiated with ultraviolet rays of 254 nm of a mercury lamp, white light emission was observed. Even when the phosphor sheet was heated to 600 ° C. and then returned to room temperature, the structure remained unchanged and the light emission characteristics were good.

(実施例3)
本実施例では、本発明の蛍光体シートを用いた発光素子を示す。
(Example 3)
In this example, a light-emitting element using the phosphor sheet of the present invention is shown.

図1は本実施形態で作成した発光素子の模式図である。作成工程は基板となる層状珪酸塩シート、電極、誘電体層、蛍光層、誘電体層、透明導電膜の順であり、詳細を以下に示す。   FIG. 1 is a schematic view of a light-emitting element created in this embodiment. A preparation process is the order of the layered silicate sheet | seat used as a board | substrate, an electrode, a dielectric material layer, a fluorescent layer, a dielectric material layer, and a transparent conductive film, and shows a detail below.

COを2.45g、MgFを6.65g、SiOを6.61g、Alを1.82gとして各原料を混合した。次に混合した前記の原料を約1000℃で熱処理して得られる金雲母結晶を遊星型ボールミルにより300回転/秒で5分間粉砕し、結晶片とした。この層状珪酸塩結晶片8gを秤量し、300cmの蒸留水に加えて激しく攪拌し、均一な層状珪酸塩結晶片分散液を得た。分散液を底面が平坦である10cm×10cmの容器に注いで水平に静置し、層状珪酸塩結晶片を沈積させて緻密に積層させ、60℃に設定した乾燥器中で5時間乾燥して、厚さ約400μmの層状珪酸塩シート11、及び層状珪酸塩シート17を作成した。得られた層状珪酸塩シート11上に、透明導電膜12としてITO、誘電体層13としてSiOの順に形成した。実施例1と同様の工程で作成したEu2+を付活材として含有する層状珪酸塩蛍光層14を5μm堆積し、誘電体層15としてSi、電極膜16としてAlを記載の順に積層した。そして最後に層状珪酸塩シート11及び17で挟み、熱とロール圧力をかけてシートのはみ出し部をシールした。それによって、透明導電膜12、誘電体層13、層状珪酸塩蛍光層14、誘電体層15、電極膜16が封止された。透明導電膜12と電極膜16に1kHZの交流電圧を徐々に印加すると、100V程度から青色の発光が見られた。 Each raw material was mixed with 2.45 g of K 2 CO 3 , 6.65 g of MgF 2 , 6.61 g of SiO 2 , and 1.82 g of Al 2 O 3 . Next, the phlogopite crystal obtained by heat-treating the mixed raw material at about 1000 ° C. was pulverized with a planetary ball mill at 300 rpm for 5 minutes to obtain crystal pieces. 8 g of this layered silicate crystal piece was weighed and added to 300 cm 3 of distilled water and stirred vigorously to obtain a uniform layered silicate crystal piece dispersion. The dispersion is poured into a 10 cm × 10 cm container having a flat bottom surface and allowed to stand horizontally, the layered silicate crystal pieces are deposited and densely laminated, and dried in a drier set at 60 ° C. for 5 hours. The layered silicate sheet 11 and the layered silicate sheet 17 having a thickness of about 400 μm were prepared. On the obtained layered silicate sheet 11, ITO was formed as the transparent conductive film 12 and SiO 2 was formed as the dielectric layer 13 in this order. 5 μm of a layered silicate phosphor layer 14 containing Eu 2+ prepared in the same process as in Example 1 as an activator is deposited, and Si 3 N 4 is laminated as the dielectric layer 15 and Al is laminated in the order described. did. Finally, the sheet was sandwiched between the layered silicate sheets 11 and 17, and heat and roll pressure were applied to seal the protruding portion of the sheet. Thereby, the transparent conductive film 12, the dielectric layer 13, the layered silicate phosphor layer 14, the dielectric layer 15, and the electrode film 16 were sealed. When an alternating voltage of 1 kHz was gradually applied to the transparent conductive film 12 and the electrode film 16, blue light emission was observed from about 100V.

本発明の無機EL型薄膜状発光素子の模式図である。It is a schematic diagram of the inorganic EL thin film light emitting element of the present invention.

符号の説明Explanation of symbols

11 層状珪酸塩シート
12 透明導電膜
13 誘電体層
14 層状珪酸塩蛍光層
15 誘電体層
16 電極膜
17 層状珪酸塩シート
11 Layered silicate sheet 12 Transparent conductive film 13 Dielectric layer 14 Layered silicate fluorescent layer 15 Dielectric layer 16 Electrode film 17 Layered silicate sheet

Claims (6)

希土類イオンで付活された層状珪酸塩結晶片が積層された構造からなることを特徴とする蛍光体シート。   A phosphor sheet comprising a structure in which layered silicate crystal pieces activated by rare earth ions are laminated. 前記層状珪酸塩結晶片は、面方位が揃って積層していることを特徴とする請求項1に記載の蛍光体シート。   The phosphor sheet according to claim 1, wherein the layered silicate crystal pieces are laminated with the same plane orientation. 前記層状珪酸塩結晶片の結晶構造は、雲母構造、緑泥石構造、カオリナイト構造又はスメクタイト構造のいずれかであることを特徴とする請求項1又は2に記載の蛍光体シート。   3. The phosphor sheet according to claim 1, wherein a crystal structure of the layered silicate crystal piece is any one of a mica structure, a chlorite structure, a kaolinite structure, and a smectite structure. 前記希土類イオンは、二価のEu、二価のSm、三価のCe、三価のEu、三価のSm及び三価のTbからなる群から選択される1つ以上の希土類イオンであることを特徴とする請求項1から3のいずれか一項に記載の蛍光体シート。   The rare earth ion is one or more rare earth ions selected from the group consisting of divalent Eu, divalent Sm, trivalent Ce, trivalent Eu, trivalent Sm, and trivalent Tb. The phosphor sheet according to any one of claims 1 to 3, wherein: 前記蛍光体シートの厚さは、5μm以上100μm以下であることを特徴とする請求項1から4のいずれか一項に記載の蛍光体シート。   5. The phosphor sheet according to claim 1, wherein a thickness of the phosphor sheet is 5 μm or more and 100 μm or less. 請求項1から5のいずれか一項に記載の蛍光体シートを用いることを特徴とする発光素子。

6. A light emitting device using the phosphor sheet according to claim 1.

JP2006196860A 2006-07-19 2006-07-19 Fluorescent substance sheet and light-emission element Withdrawn JP2008024774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006196860A JP2008024774A (en) 2006-07-19 2006-07-19 Fluorescent substance sheet and light-emission element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006196860A JP2008024774A (en) 2006-07-19 2006-07-19 Fluorescent substance sheet and light-emission element

Publications (1)

Publication Number Publication Date
JP2008024774A true JP2008024774A (en) 2008-02-07

Family

ID=39115757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006196860A Withdrawn JP2008024774A (en) 2006-07-19 2006-07-19 Fluorescent substance sheet and light-emission element

Country Status (1)

Country Link
JP (1) JP2008024774A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012124426A1 (en) * 2011-03-11 2012-09-20 コニカミノルタオプト株式会社 Method for manufacturing light emitting device and mixed phosphor solution
WO2022138205A1 (en) * 2020-12-22 2022-06-30 日亜化学工業株式会社 Fluoride fluorescent body, method for producing same, and light emission apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012124426A1 (en) * 2011-03-11 2012-09-20 コニカミノルタオプト株式会社 Method for manufacturing light emitting device and mixed phosphor solution
JP5761330B2 (en) * 2011-03-11 2015-08-12 コニカミノルタ株式会社 Method for manufacturing light emitting device and phosphor mixture
US9260654B2 (en) 2011-03-11 2016-02-16 Konica Minolta, Inc. Manufacturing method for light emitting device and phosphor mixture
WO2022138205A1 (en) * 2020-12-22 2022-06-30 日亜化学工業株式会社 Fluoride fluorescent body, method for producing same, and light emission apparatus

Similar Documents

Publication Publication Date Title
Lou et al. Cathodoluminescence of rare-earth-doped zinc aluminate films
JP5093694B2 (en) Oxide perovskite thin film EL device
JP4867055B2 (en) Dispersive electroluminescence device
Zhang et al. Preparation and optical properties of ZnGa2O4: Cr3+ thin films derived by sol–gel process
Song et al. Utilization of All Hydrothermally Synthesized Red, Green, Blue Nanophosphors for Fabrication of Highly Transparent Monochromatic and Full‐Color Plasma Display Devices
JP2009161642A (en) Flexible fluorescent film containing clay as principal component
JP2013053279A (en) Inorganic fluorescent material
JP2007250435A (en) Light-emitting element
WO2006093095A1 (en) Dispersion-type electroluminescent element
Afandi et al. Red ZnGa2O4: Cr3+ powder electroluminescence co-generating sounds with a longer lifetime and no thermal quenching behaviors
JP2008024774A (en) Fluorescent substance sheet and light-emission element
KR20160059598A (en) Electroluminescent element of metal-organic coordination polymers
Choi et al. Preparation of blue-emitting CaMgSi2O6: Eu2+ phosphors in reverse micellar system and their application to transparent emissive display devices
TWI503399B (en) Preparation of Mn - Activated Zinc - Aluminum Spinel Fluorescent Films
JP5371044B2 (en) Perovskite phosphor thin film
KR20150146107A (en) Electric field light emitting composition, manufacturing method thereof and electric field light emitting device comprising the same
Choo et al. Luminescence mechanisms of organic/inorganic hybrid organic light-emitting devices fabricated utilizing a Zn2SiO4: Mn color-conversion layer
JP2011258416A (en) Perovskite type oxide thin film el element
JP5979361B2 (en) Light emitting element and light emitting device
JP4751972B2 (en) Driving method of electroluminescent element
TW201044907A (en) Dispersion-type electroluminescence device
JP3574829B2 (en) Inorganic electroluminescent material, inorganic electroluminescent device using the same, and image display device
Ahn et al. White organic light-emitting devices utilizing a mixed color-conversion phosphor layer consisting of CaAl12O19: Mn and Zn2SiO4: Mn
Sun et al. Tuning electroluminescence performance in Pr-doped piezoelectric bulk ceramics and composites
JP4944408B2 (en) Oxide phosphor, light emitting element, and display device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080207

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090324

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091006