JP2008022784A - Biodegradable lure - Google Patents

Biodegradable lure Download PDF

Info

Publication number
JP2008022784A
JP2008022784A JP2006199618A JP2006199618A JP2008022784A JP 2008022784 A JP2008022784 A JP 2008022784A JP 2006199618 A JP2006199618 A JP 2006199618A JP 2006199618 A JP2006199618 A JP 2006199618A JP 2008022784 A JP2008022784 A JP 2008022784A
Authority
JP
Japan
Prior art keywords
gelatin
cross
pseudo bait
bait
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006199618A
Other languages
Japanese (ja)
Other versions
JP4960662B2 (en
Inventor
Hiroichi Ito
博一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Midori Hokuyo Co Ltd
Original Assignee
Midori Hokuyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Midori Hokuyo Co Ltd filed Critical Midori Hokuyo Co Ltd
Priority to JP2006199618A priority Critical patent/JP4960662B2/en
Publication of JP2008022784A publication Critical patent/JP2008022784A/en
Application granted granted Critical
Publication of JP4960662B2 publication Critical patent/JP4960662B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biodegradable lure made from a natural raw material, equipped with tearing strength and heat resistance of enduring practical uses and solving a problem of the decrease of the tearing strength caused by swelling with water absorption. <P>SOLUTION: This biodegradable lure consists mainly of gelatin gel having ≥4.0 mPa s viscosity measured in accordance with the JIS K6503. Or, it is formed as a gelled material of a gelatin composition containing at least one kind of a cross-linking component in epoxy cross-linking agents and aldehyde cross-linking agents and the gelatin, or it consists mainly of the gelatin-gelled material cross-link-treated with the above cross-linking agent, and some non-melted substance remains in molten gelatin in the measurement of the viscosity in accordance with the JIS K6503. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、環境へ与える影響が少ない生分解性疑似餌に関し、詳細には、使用中の吸水膨潤や破断等に対する耐久性が向上して満足な使用可能時間が確保される生分解性疑似餌に関する。   The present invention relates to a biodegradable pseudo bait that has little impact on the environment, and more specifically, a biodegradable pseudo bait that has improved durability against water absorption swelling or breakage during use and ensures a satisfactory usable time. About.

近年、趣味としての釣りの人気が上昇し、釣り人口が増加しているが、これに伴い、疑似餌や釣り糸などの釣り具が大量に環境中に放置されることによって生物や自然環境へ及ぼす影響が顕著になっている。このため、環境保護の観点から、環境中に放置しても分解するような釣り具が必要とされている。   In recent years, the popularity of fishing as a hobby has increased, and the fishing population has increased. With this increase, fishing gear such as artificial baits and fishing lines are left in the environment in large quantities, affecting the living environment and the natural environment. The impact is noticeable. For this reason, from the viewpoint of environmental protection, there is a need for fishing gear that can be decomposed even if left in the environment.

上記ニーズに対応すべく、生分解性を有する物質を用いた疑似餌の製造が研究され、例えば、下記特許文献1では、生分解性合成高分子を用いた疑似餌が提案されている。また、蒟蒻や多糖類、寒天等のような天然素材の利用も検討されており、例えば、下記特許文献2では蒟蒻製疑似餌が、下記特許文献3では寒天を利用した疑似餌が、下記特許文献4ではカードランを用いた疑似餌が、下記特許文献5ではゼラチンを利用した疑似餌が提案されている。
特開2005−143413号公報 特開平10−084884号公報 特開平09−322676号公報 特開2001−309737号公報 特開2000−060363号公報
In order to meet the above needs, production of a pseudo bait using a biodegradable substance has been studied. For example, in Patent Document 1 below, a pseudo bait using a biodegradable synthetic polymer has been proposed. In addition, utilization of natural materials such as persimmons, polysaccharides, agar, etc. has been studied. For example, the following patent document 2 is a smoked pseudo bait, and the following patent document 3 is a pseudo bait using agar. Document 4 proposes a pseudo bait using curdlan, and Patent Document 5 below proposes a pseudo bait using gelatin.
JP 2005-143413 A Japanese Patent Laid-Open No. 10-084884 JP 09-322676 A JP 2001-309737 A JP 2000-060363 A

合成材料は、必要とされる材料特性に近づけるための分子設計の変更が可能であるが、自然環境下での分解性が不十分となるおそれがある。又、プラスチック製疑似餌に用いられる添加剤には、環境ホルモンとして作用する疑いのある成分もあり、予測不可能な生態系への影響が懸念されることから、疑似餌の素材としては天然素材の使用が望ましい。   Synthetic materials can be modified in molecular design to bring them closer to the required material properties, but may be insufficiently degradable in the natural environment. In addition, some additives used in plastic simulated bait are suspected of acting as environmental hormones, and there is concern about unpredictable effects on the ecosystem. Is desirable.

一方、天然素材は生分解性が良いが、素材自体の強度や耐熱性等が高くないため、天然素材の疑似餌は、引き裂き強度不足により針から外れ易い。このため、上記特許文献においては、添加剤の配合、酵素処理、化学処理等によって材質が改善されているが、満足なものは得られ難く、また、吸水膨潤や耐熱性不足などの問題もあることから、現状において市場に提供されているのは、カードラン製の疑似餌のみである。   On the other hand, natural materials have good biodegradability, but the strength and heat resistance of the materials themselves are not high, so that the natural food pseudo bait is easily detached from the needle due to insufficient tear strength. For this reason, in the above-mentioned patent document, the material is improved by blending additives, enzyme treatment, chemical treatment, etc., but it is difficult to obtain satisfactory materials, and there are also problems such as water absorption swelling and insufficient heat resistance. Therefore, only the curdlan-made artificial bait is currently offered to the market.

本発明は、上述の点を解決し、天然素材で構成され、実用に耐え得る引き裂き強度及び耐熱性を備え、吸水膨潤による強度低下等の問題が解決された生分解性疑似餌の提供を可能とすることを課題とする。   The present invention can provide a biodegradable artificial bait that solves the above-mentioned points, is composed of natural materials, has tear strength and heat resistance that can withstand practical use, and solves problems such as strength reduction due to water absorption swelling. The problem is to do.

また、本発明は、副産物として扱われている天然素材の有効利用を促進でき、現在市場に提供されている生分解性疑似餌と同等又はそれ以上の物性を備える生分解性疑似餌を提供することを課題とする。   In addition, the present invention provides a biodegradable pseudo bait that can promote effective use of natural materials treated as a by-product and has physical properties equivalent to or higher than those of the biodegradable pseudo bait currently provided on the market. This is the issue.

上記課題を解決するために、本発明者らは鋭意研究を重ねた結果、ゼラチンを用いて疑似餌を製造するプロセスを工夫することによって実用に耐え得る疑似餌を提供することができることを見出し、本発明を完成するに至った。   In order to solve the above-mentioned problem, the present inventors have found that, as a result of intensive research, they can provide a pseudo bait that can withstand practical use by devising a process for producing a pseudo bait using gelatin, The present invention has been completed.

本発明の一態様によれば、生分解性疑似餌は、JIS K6503に準じて測定される粘度が4.0mPa・s以上となるゼラチンゲル化物を主成分とすることを要旨とする。   According to one aspect of the present invention, the biodegradable simulated bait is mainly composed of a gelatin gel product having a viscosity measured according to JIS K6503 of 4.0 mPa · s or more.

又、本発明の他の態様によれば、生分解性疑似餌は、エポキシ架橋剤及びアルデヒド架橋剤のうちの少なくとも一種で架橋処理されたゼラチンゲル化物を主成分とし、JIS K6503に準じた粘度測定において不融物が残存することを要旨とする。   According to another aspect of the present invention, the biodegradable simulated bait is mainly composed of a gelatin gel product crosslinked with at least one of an epoxy crosslinking agent and an aldehyde crosslinking agent, and has a viscosity according to JIS K6503. The gist is that infusible material remains in the measurement.

更に、本発明の他の態様によれば、生分解性疑似餌は、エポキシ架橋剤及びアルデヒド架橋剤のうちの少なくとも一種の架橋成分とゼラチンとを含有するゼラチン組成物のゲル化物で形成されることを要旨とする。   Furthermore, according to another aspect of the present invention, the biodegradable simulated bait is formed of a gelled gelatin composition containing at least one crosslinking component of an epoxy crosslinking agent and an aldehyde crosslinking agent and gelatin. This is the gist.

上記架橋成分の含有量は、前記ゼラチンの含有量の1〜10質量%としてよい。   The content of the crosslinking component may be 1 to 10% by mass of the gelatin content.

上記生分解性疑似餌は、JIS K6503に準じて測定される粘度が4.0mPa・s以上となる融解ゼラチンをゲル化して疑似餌に成形することによって得られる。   The biodegradable simulated bait can be obtained by gelling molten gelatin having a viscosity measured in accordance with JIS K6503 of 4.0 mPa · s or more and forming the gel.

あるいは、疑似餌のゼラチンを架橋する架橋処理を設け、架橋処理において、エポキシ架橋剤及びアルデヒド架橋剤のうちの少なくとも一種を用いた疑似餌全体又は疑似餌表面のゼラチンの架橋を行うことによって得られる。   Alternatively, a cross-linking treatment for cross-linking gelatin of the pseudo bait is provided, and in the cross-linking treatment, the whole pseudo bait or the surface of the pseudo bait is cross-linked using at least one of an epoxy cross-linking agent and an aldehyde cross-linking agent. .

上記疑似餌表面の架橋は、成形した疑似餌を架橋剤水溶液に浸漬して施すことができ、架橋剤で処理した後に、疑似餌を60〜110℃の温度に加熱すると柔軟性が向上する。   The cross-linking of the pseudo bait surface can be performed by immersing the molded pseudo bait in an aqueous crosslinking agent solution, and the flexibility is improved by heating the pseudo bait to a temperature of 60 to 110 ° C. after the treatment with the cross-linking agent.

上記生分解性疑似餌は、耐熱温度40℃以上で提供でき、吸水後の引き裂き強度を100gf以上に維持可能である。架橋処理によって膨潤度90%以下のものが提供可能であり、JIS K6503に準じた粘度測定において不融物が残存するものとして区別し得る。   The biodegradable simulated bait can be provided at a heat resistant temperature of 40 ° C. or higher, and the tear strength after water absorption can be maintained at 100 gf or higher. Those having a degree of swelling of 90% or less can be provided by the crosslinking treatment, and can be distinguished as infusible substances remaining in the viscosity measurement according to JIS K6503.

本発明によれば、ゼラチンを用いて実用に耐え得る生分解性疑似餌を製造することができ、自然環境に放置される釣り具による自然破壊の防止に貢献でき、又、ゼラチン原料として、皮革製品の製造における副産物である床皮を使用可能であり、副産物の有効利用に貢献することができる。   INDUSTRIAL APPLICABILITY According to the present invention, a biodegradable pseudo bait that can withstand practical use can be manufactured using gelatin, can contribute to prevention of natural destruction by fishing gear left in the natural environment, and, as a raw material for gelatin, leather It is possible to use floor skin, which is a by-product in the manufacture of products, and can contribute to effective use of the by-product.

一般に皮革製品の製造に用いられる原料皮は、乳頭層(銀面)及び網状層からなる構造を有し、鞣工程前に適当な厚さに分割する。分割後、乳頭層は鞣工程を経て皮革製品の原料として用いられるが、網状層は緻密性に欠けるため皮革原料としては用いられず、床皮として副産物となる。このため、これを有効利用するために、床皮の用途開発が試みられており、用途の1つにゼラチン原料としての利用がある。ゼラチンを用いて実用に耐え得る生分解性疑似餌が製造できれば、副産物の有効利用となるので、非常に有用である。   Generally, the raw material skin used for the production of leather products has a structure composed of a nipple layer (silver surface) and a net layer, and is divided into an appropriate thickness before the wrinkle process. After division, the nipple layer is used as a raw material for leather products through a wrinkle process, but the mesh layer is not used as a raw material for leather because it is not dense, and becomes a by-product as a floor skin. For this reason, in order to make effective use of this, development of use for floor skins has been attempted, and one of the uses is as a raw material for gelatin. If a biodegradable pseudo bait that can withstand practical use can be produced using gelatin, it will be an effective use of by-products, which is very useful.

しかし、ゼラチンは、吸水膨潤し易いため、水中で短時間に膨潤して崩壊し、耐熱性も低いので夏期の温度上昇により容易に融解する。ゼラチンを用いて疑似餌を製造するためには、(a)引き裂き強度を高める、(b)吸水膨潤及びそれに伴う強度減少を抑制する、(c)実用的な耐熱性を付与する、(d)疑似餌の素材として適切な柔軟性を確保する、の4点の改良が必要であり、これらを実現する手段は、得られる疑似餌が自然環境に影響を及ぼさないようなものでなければならない。   However, gelatin easily swells due to water absorption, so that it swells and disintegrates in water in a short time, and has low heat resistance, so it easily melts due to an increase in summer temperature. In order to produce a pseudo bait using gelatin, (a) increase the tear strength, (b) suppress water absorption swelling and the accompanying strength reduction, (c) impart practical heat resistance, (d) It is necessary to improve the four points of ensuring appropriate flexibility as a material for the simulated food, and the means for realizing these must be such that the resulting simulated food does not affect the natural environment.

上記改良に有効な手段として、(1)特化したゼラチンを用いる、(2)ゼラチンに架橋処理を施す、の2つがある。(1)では、一般的なゼラチンより高分子量のゼラチンで疑似餌を構成することにより、ゲル化・成形したゼラチンの強度が向上するので、吸水によって強度が低下しても実用に耐え得る程度の強度が確保される。又、成形時の冷却速度を適切に制御することによって特に有効性が高まる。(2)では、疑似餌の形状に成形されるゼラチンに架橋処理を施す(従って、分子量が増加する)ことにより、耐水性及び耐熱性が付与され、吸水による強度及び硬度の低下が抑制される。架橋処理は、疑似餌全体又は表面のみのゼラチンに施すことができる。更に、架橋後に加熱処理を施すことによって柔軟性の向上が可能である。(1)及び(2)は、高分子量化という点では共通する。(1)及び(2)を組み合わせると、効果は相乗的に増大し、有効性は格段に向上する。以下、本発明の生分解性疑似餌の製造方法について詳細に説明する。   As effective means for the improvement, there are two methods: (1) using specialized gelatin and (2) subjecting gelatin to a crosslinking treatment. In (1), the strength of the gelatinized and molded gelatin is improved by constructing the pseudo bait with higher molecular weight gelatin than general gelatin, so that it can withstand practical use even if the strength decreases due to water absorption. Strength is secured. In addition, the effectiveness is particularly enhanced by appropriately controlling the cooling rate during molding. In (2), water resistance and heat resistance are imparted by applying a crosslinking treatment to the gelatin molded into the shape of a pseudo bait (thus increasing the molecular weight), and a decrease in strength and hardness due to water absorption is suppressed. . The cross-linking treatment can be applied to the whole simulated bait or the surface-only gelatin. Furthermore, flexibility can be improved by performing a heat treatment after crosslinking. (1) and (2) are common in terms of high molecular weight. When (1) and (2) are combined, the effect increases synergistically and the effectiveness is significantly improved. Hereinafter, the manufacturing method of the biodegradable pseudo bait of this invention is demonstrated in detail.

本発明において生分解性疑似餌を構成する素材は、コラーゲンの熱等による変性物であるゼラチンであり、上記(1)で用いられるゼラチンは、市販のゼラチンより分子量が大きい、つまり、高粘度のゼラチンである。具体的には、市販されるゼラチンのJIS K6503に準じて測定される粘度(試料を70℃で融解して15分以内に60℃で測定)が概して2.0〜3.5mPa・s程度であるのに対し、(1)として用いられるものは、JIS K6503による粘度が4.0mPa・s以上、好ましくは7〜30mPa・s、より好ましくは15〜25mPa・sとなるゼラチン(コラーゲンの変性物)である。このような高粘度(高分子量)のゼラチン融解物をゲル化・成形することによって、得られる疑似餌の引き裂き強度及び硬度が増加し、吸水しても実用に耐え得る強度及び適正な硬度が確保され、耐熱温度も上がる。このようなゼラチンは、コラーゲン原料に含まれる不溶性コラーゲンを可溶化する際の処理条件を調節することによって得られる。   In the present invention, the material constituting the biodegradable simulated bait is gelatin that is a modified product of collagen due to heat or the like, and the gelatin used in the above (1) has a higher molecular weight than commercially available gelatin, that is, has a high viscosity. Gelatin. Specifically, the viscosity (measured at 60 ° C. within 15 minutes after melting the sample at 70 ° C.) of a commercially available gelatin according to JIS K6503 is generally about 2.0 to 3.5 mPa · s. On the other hand, what is used as (1) is gelatin (denatured collagen product) having a viscosity according to JIS K6503 of 4.0 mPa · s or more, preferably 7 to 30 mPa · s, more preferably 15 to 25 mPa · s. ). By gelling and molding such a high-viscosity (high molecular weight) gelatin melt, the tear strength and hardness of the resulting pseudo bait increase, and the strength and proper hardness that can withstand practical use even when water is absorbed are ensured. The heat-resistant temperature is also raised. Such gelatin can be obtained by adjusting processing conditions when solubilizing insoluble collagen contained in a collagen raw material.

ゼラチンは、牛、豚、鳥等の動物の生皮、腱、骨やその他のコラーゲンを多量に含む組織を利用して調製される。魚皮や魚鱗等の水生生物原料から得ても良く、原料を特に限定する必要はない。皮革製造の副産物である床皮のコラーゲンを原料として使用すると、資源の有効利用の点で特に好ましい。牛皮、豚皮等のコラーゲン原料は、必要に応じて、石灰漬け等による脱毛、水洗、チョッパー等を用いた細切などの処理を施して適切な寸法の原料片に調製する。   Gelatin is prepared by using raw tissues, tendons, bones and other tissues containing a large amount of collagen from animals such as cows, pigs and birds. You may obtain from aquatic raw materials, such as a fish skin and a fish scale, and it is not necessary to specifically limit a raw material. It is particularly preferable in terms of effective utilization of resources to use as a raw material collagen of the floor skin, which is a by-product of leather manufacture. Collagen raw materials such as cow skin and pork skin are prepared into raw material pieces of appropriate dimensions by performing treatments such as depilation by lime pickling, washing with water, chopping using a chopper or the like, if necessary.

コラーゲン分子は、3本のポリペプチド鎖からなる棒状の分子で、主要部はヘリックス構造を有し(ヘリックス領域)、両端にヘリックスを形成しない短いテロペプチド領域を有する。生体内では、コラーゲンは、テロペプチド領域及びヘリックス領域の間に形成された分子間架橋により重合した巨大分子として存在するため、通常、水、希酸、希アルカリ、有機溶媒などに対して不溶性であり、コラーゲン原料片を加熱しても溶解しない。しかし、コラーゲン原料片に可溶化処理を施すことによって、コラーゲン中の結合が切断されて分子量が低下し、加熱融解が可能な状態のコラーゲンが得られる。これを熱融解その他等によって変性させるとゼラチンになる。   The collagen molecule is a rod-like molecule composed of three polypeptide chains, the main part has a helix structure (helix region), and a short telopeptide region that does not form a helix at both ends. In vivo, collagen exists as a macromolecule polymerized by intermolecular crosslinking formed between the telopeptide region and the helix region, so it is usually insoluble in water, dilute acid, dilute alkali, organic solvent, etc. Yes, even if the collagen raw material piece is heated, it does not dissolve. However, by subjecting the collagen raw material pieces to a solubilization treatment, the collagen in the state in which the bonds in the collagen are broken and the molecular weight is lowered and heat melting is possible. When this is denatured by heat melting or the like, it becomes gelatin.

コラーゲンの可溶化処理は、タンパク質分解酵素を用いた方法(例えば特公昭44−1175号公報参照。以下、酵素処理法と称する)と、苛性アルカリ及び硫酸ナトリウムが共存する水溶液中に少量のアミン類又はその類似物を添加したもので処理する方法(例えば特公昭46−15033号公報参照。以下、アルカリ処理法と称する)とに大別できる。本発明では、アルカリ処理法に準じて可溶化処理を施すが、加熱溶解が可能な範囲で可能な限り重合度の高いコラーゲンを得るために、特定条件下での可溶化処理を施す。具体的には、可溶化を促進するアミン類等を用いず、苛性アルカリ及び硫酸ナトリウムのみが存在する水溶液を用いて浸漬処理する。これは、本発明で用いる好適な粘度のゼラチンを調製可能な特徴的な処理方法であり、コラーゲン分子間のテロペプチド領域のみが選択的に分解してテロペプチド領域とヘリックス領域との間の架橋が切断されるので、重合度は減少するが、コラーゲン分子内の切断が起き難く、過度の低分子化を避けることが可能である。処理時間は1〜3日程度、好ましくは1〜2日程度、より好ましくは1日程度に設定する。この間にコラーゲン分子間架橋の切断が進行し、処理時間が増すに従って低分子化が進行するが、4日程度を越えると粘度が過度に低下する。又、処理温度が30℃を超えるとヘリックス領域の切断が起こり、得られるゼラチンの分子量が小さくなるので、この温度以下、好ましくは20〜28℃に維持する。アルカリ処理法では、アスパラギン残基及びグルタミン残基が脱アミノ反応によって各々アスパラギン酸残基及びグルタミン酸残基に変化し、コラーゲンの等イオン点は概して約4.8〜5.0となる。可溶化処理後の水溶液のpHを等イオン点に調整して、脱水等により水分を除去することによって、原料片の形状を保った加熱溶解可能なコラーゲンが回収される。更に、必要に応じて、水洗及び脱水を行って金属塩等の不純物を除去する。このコラーゲンは等イオン点に調整されているため、水洗により金属塩が除去されても水に溶解しない。可溶化処理、pH調整及び水洗工程を経て得られるコラーゲンは、固形分量が約30質量%前後の含水物で、原料片の形状を保持した固形コラーゲンである。   Collagen solubilization is performed by a method using a proteolytic enzyme (see, for example, Japanese Patent Publication No. 44-1175, hereinafter referred to as an enzyme treatment method), and a small amount of amines in an aqueous solution in which caustic alkali and sodium sulfate coexist. Alternatively, it can be roughly classified into a method of treating with an addition of an analog thereof (for example, see Japanese Examined Patent Publication No. 46-15033, hereinafter referred to as an alkali treatment method). In the present invention, the solubilization treatment is performed according to the alkali treatment method, but the solubilization treatment is performed under specific conditions in order to obtain collagen having a polymerization degree as high as possible within a range in which heat dissolution is possible. Specifically, the immersion treatment is performed using an aqueous solution containing only caustic alkali and sodium sulfate without using amines or the like that promote solubilization. This is a characteristic processing method capable of preparing gelatin having a suitable viscosity for use in the present invention, and only the telopeptide region between collagen molecules is selectively decomposed to crosslink between the telopeptide region and the helix region. Since the polymer is cleaved, the degree of polymerization is reduced, but it is difficult to cleave within the collagen molecule, and excessively low molecular weight can be avoided. The treatment time is set to about 1 to 3 days, preferably about 1 to 2 days, more preferably about 1 day. During this time, the cleavage of the collagen intermolecular crosslinks proceeds, and the molecular weight decreases as the treatment time increases. However, when the time exceeds about 4 days, the viscosity decreases excessively. Further, when the treatment temperature exceeds 30 ° C., the helix region is cut and the molecular weight of the resulting gelatin becomes small. Therefore, the temperature is kept below this temperature, preferably 20 to 28 ° C. In the alkali treatment method, the asparagine residue and glutamine residue are changed to aspartic acid residue and glutamic acid residue, respectively, by deamination reaction, and the isoionic point of collagen is generally about 4.8 to 5.0. By adjusting the pH of the aqueous solution after the solubilization treatment to an isoionic point and removing the water by dehydration or the like, the heat-dissolvable collagen maintaining the shape of the raw material pieces is recovered. Further, if necessary, impurities such as metal salts are removed by washing and dehydrating. Since this collagen is adjusted to an isoionic point, even if the metal salt is removed by washing with water, it does not dissolve in water. Collagen obtained through the solubilization treatment, pH adjustment, and water washing step is a solid collagen having a solid content of about 30% by mass and retaining the shape of the raw material pieces.

コラーゲンは、30℃程度の加熱処理によってヘリックス構造を失ってゼラチンに変性するので、上述の固形コラーゲンを加熱融解するとゼラチンに変性し、JIS K6503に準じて測定される粘度が4.0mPa・s以上の融解ゼラチンが得られ、より適切な可溶化処理条件によって7〜30mPa・s程度の融解ゼラチンを得ることができる。pHは弱酸性〜中性の範囲を示す。食材等の用途で市販されているゼラチンの一般的な製造法においては、可溶化処理においてコラーゲン分子内の切断を伴い、中和及び水洗を経た可溶化コラーゲンを60〜100℃で熱抽出して得ているので、熱抽出中の低分子化も被っているため、市販のゼラチンのJIS K6503による粘度は概して2.0〜3.5mPa・s程度である。   Collagen loses its helix structure by heat treatment at about 30 ° C. and is denatured into gelatin. Therefore, when the above-described solid collagen is heated and melted, it denatures into gelatin, and the viscosity measured according to JIS K6503 is 4.0 mPa · s or more. A molten gelatin of about 7 to 30 mPa · s can be obtained under more appropriate solubilization conditions. The pH ranges from weakly acidic to neutral. In a general production method of gelatin commercially available for use as a food material, solubilized collagen is subjected to neutralization and washing with water at 60 to 100 ° C. by heat extraction at the collagen molecule in the solubilization treatment. Since it is obtained, the molecular weight is reduced during the heat extraction, so that the viscosity of commercially available gelatin according to JIS K6503 is generally about 2.0 to 3.5 mPa · s.

本発明の疑似餌の製造では、上述で得られた固形コラーゲン、または、これを熱変性したゼラチンを原料とし、コラーゲン又はゼラチンを加熱融解した融解物を疑似餌の形状に成形する。つまり、液状の融解ゼラチンを疑似餌の形状の鋳型中で冷却してゲル化することによって疑似餌に成形する。融解ゼラチンは、固形コラーゲン又はゼラチンを鋳型中で加熱して得ても、又は、鋳型の外で融解して鋳型に流し込んでも良い。あるいは、ゲル化したゼラチン塊を切削等により疑似餌に成形加工することも可能である。コラーゲン及びゼラチンは、加熱融解により低分子化が進行して粘度が低下するので、原料ゼラチンはゲル化・融解を繰り返したり長時間の加熱を経ることを避けるのが望ましく、この点で上述の固形コラーゲンを原料として用いるのが最適である。乾燥によって含水量が極度に低下したコラーゲンを用いる場合は、水を添加して含水量が50〜80質量%程度になるように調整するのが好ましい。成形物の離型性の観点では、シリコーンラバー製の鋳型を用いることが望ましい。コラーゲン又はゼラチンを融解する加熱温度は、好ましくは70〜95℃、より好ましくは90℃程度とする。加熱温度が70℃未満であると、融解が不完全なために均一な融解物が得られなくなる虞があり、95℃を超えると、ゼラチンの分解が促進されて分子量の減少が著しくなる。過剰な加熱はゼラチン分子の分解を進行させるので、可能な限り短時間の加熱で融解することが好ましく、10分以内が望ましい。この点に関しては水蒸気加熱が有効であり、熱伝導が促進され、5分程度以内の加熱で透明な融解ゼラチンが得られる。   In the production of the pseudo bait of the present invention, the solid collagen obtained above or gelatin obtained by heat denaturation thereof is used as a raw material, and a melt obtained by heating and melting collagen or gelatin is formed into the shape of the pseudo bait. That is, liquid molten gelatin is cooled and gelled in a mold in the shape of a pseudo bait, thereby forming a pseudo bait. The molten gelatin may be obtained by heating solid collagen or gelatin in a mold, or may be melted outside the mold and poured into the mold. Alternatively, the gelatinized gelatin mass can be formed into a pseudo food by cutting or the like. Collagen and gelatin are reduced in molecular weight by heating and melting and the viscosity is lowered. Therefore, it is desirable to avoid repeated gelatinization / melting and long-time heating of raw material gelatin. It is optimal to use collagen as a raw material. When using collagen whose water content is extremely reduced by drying, it is preferable to add water to adjust the water content to about 50 to 80% by mass. From the viewpoint of mold releasability, it is desirable to use a silicone rubber mold. The heating temperature for melting collagen or gelatin is preferably 70 to 95 ° C, more preferably about 90 ° C. When the heating temperature is less than 70 ° C., there is a possibility that a uniform melt cannot be obtained due to incomplete melting. When the heating temperature exceeds 95 ° C., the decomposition of gelatin is promoted and the molecular weight is remarkably reduced. Excessive heating causes the decomposition of gelatin molecules, so melting with heating for as short a time as possible is preferable and within 10 minutes is desirable. In this respect, steam heating is effective, heat conduction is promoted, and transparent molten gelatin can be obtained by heating within about 5 minutes.

融解ゼラチンを冷却すると、ゼラチンがゲル化して疑似餌に成形される。この際の冷却速度は、得られる疑似餌の強度に影響し、徐冷するとゼラチンゲル化物の強度が高くなる。これは、ゲル化中にゼラチン分子間で螺旋の巻き戻りが起こり易くなるためと考えられる。従って、疑似餌の強度向上の点から、氷冷、水冷等よりも空冷の方が適している。冷却速度を1℃/分以下(特にゲル化温度から室温に達するまでの平均)に調節すると好ましい。   When the molten gelatin is cooled, the gelatin gels and is formed into a pseudo food. The cooling rate at this time influences the strength of the pseudo food to be obtained, and when it is slowly cooled, the strength of the gelatin gel product increases. This is presumably because spiral unwinding easily occurs between gelatin molecules during gelation. Therefore, air cooling is more suitable than ice cooling, water cooling, etc. from the viewpoint of improving the strength of the pseudo food. It is preferable to adjust the cooling rate to 1 ° C./min or less (particularly the average from the gelation temperature to room temperature).

疑似餌を構成するゼラチンに架橋処理を施すと、耐水性及び耐熱性が向上した疑似餌が得られるので、市販の低粘度のゼラチンを用いた場合にも実用可能な疑似餌の製造が可能になる。使用可能な架橋剤は、水溶性の架橋剤であり、親水性のエポキシ系架橋剤やアルデヒド系架橋剤等が挙げられる。但し、アルデヒド系架橋剤は着色を生じる場合があるので、製品色調を考慮する必要がある。架橋処理によってゼラチンのアミノ基と架橋剤のエポキシ基やアルデヒド基とが反応して架橋が形成される。ゼラチン成形物に耐水性及び耐熱性を付与するには、架橋剤がゼラチンのヘリックスの解離を抑制するアンカーとして作用すればよい。反応性基(エポキシ基等)が3つ以上、特に4つ以上ある分子構造の架橋剤であると、ヘリックスの解離を抑制する効果が高い。但し、架橋剤の分子構造が剛直であると、ゼラチンの柔軟性が低下するので、疑似餌の柔軟性を重視する場合は、架橋剤が柔軟な分子構造であることが望ましい。このためには、単結合を主とする柔軟性のある鎖状基で反応性基間が結合された分子構造の化合物を架橋剤として用いると好適である。鎖状基としては、例えば、直鎖状又は分岐状の炭化水素鎖があり、その構成原子として酸素原子、硫黄原子等を含んでも良い。ある程度以上の長さの鎖状炭化水素は、その親油性(疎水性)によってゼラチンに耐水性を付与し得る。また、架橋剤が水酸基を有すると、ゼラチンの極性基との水素結合によって分子間の親和性が増すので、分子間の相互作用及び架橋反応性が高まり、成形物表面付近で架橋を密に形成し易い。このようなことから、好ましいエポキシ系架橋剤として、1つ以上の水酸基と複数(望ましくは3つ以上)の末端エポキシ基とを有する脂肪族化合物が挙げられ、例えば、ポリグリセロールポリグリシジルエーテル等が好適に用いられる。その入手可能な市販品としては、例えば、ナガセケムテック社製のデナコールEX−512(商品名)が挙げられ、これは、4つの末端エポキシ基と2つの水酸基とを有する化合物である。   When cross-linking treatment is applied to gelatin that constitutes a pseudo bait, a pseudo bait having improved water resistance and heat resistance can be obtained, which makes it possible to produce a practical bait even when commercially available low-viscosity gelatin is used. Become. Usable crosslinking agents are water-soluble crosslinking agents, and examples thereof include hydrophilic epoxy crosslinking agents and aldehyde crosslinking agents. However, since the aldehyde crosslinking agent may cause coloring, it is necessary to consider the product color tone. By crosslinking treatment, the amino group of gelatin reacts with the epoxy group or aldehyde group of the crosslinking agent to form a crosslinking. In order to impart water resistance and heat resistance to the gelatin molded product, the crosslinking agent may act as an anchor that suppresses dissociation of the helix of gelatin. A cross-linking agent having a molecular structure having three or more reactive groups (epoxy groups or the like), particularly four or more, has a high effect of suppressing helix dissociation. However, if the molecular structure of the cross-linking agent is rigid, the flexibility of gelatin is lowered. Therefore, when emphasizing the flexibility of the pseudo bait, it is desirable that the cross-linking agent has a flexible molecular structure. For this purpose, it is preferable to use, as a crosslinking agent, a compound having a molecular structure in which reactive groups are bonded with a flexible chain group mainly composed of a single bond. The chain group includes, for example, a linear or branched hydrocarbon chain, and may contain an oxygen atom, a sulfur atom, or the like as a constituent atom. A chain hydrocarbon having a certain length or more can impart water resistance to gelatin due to its lipophilicity (hydrophobicity). In addition, when the cross-linking agent has a hydroxyl group, the affinity between molecules increases due to hydrogen bonding with the polar group of gelatin, so intermolecular interaction and cross-linking reactivity are enhanced, and the cross-linking is formed close to the surface of the molded product. Easy to do. For this reason, preferable epoxy-based crosslinking agents include aliphatic compounds having one or more hydroxyl groups and a plurality (preferably three or more) terminal epoxy groups, such as polyglycerol polyglycidyl ether. Preferably used. Examples of the commercially available products include Denacol EX-512 (trade name) manufactured by Nagase Chemtech, which is a compound having four terminal epoxy groups and two hydroxyl groups.

架橋処理は、疑似餌全体のゼラチンを架橋する方法であっても、疑似餌表面のゼラチンを架橋する方法であってもよい。表面の架橋は、特に耐水性の付与に優れており、全体の架橋は、条件によって柔軟性に優れた疑似餌を得るのに有用である。   The cross-linking treatment may be a method of cross-linking gelatin on the whole pseudo bait or a method of cross-linking gelatin on the surface of the pseudo bait. The surface cross-linking is particularly excellent in imparting water resistance, and the entire cross-linking is useful for obtaining a pseudo bait excellent in flexibility depending on conditions.

疑似餌全体のゼラチンを架橋する場合には、ゲル化・成形する前の融解ゼラチンに架橋剤を均一に混合して疑似餌に成形し、ゲル化・成形中又はそれ以後に架橋反応を進行させる。この際、アルデヒド系架橋剤は反応速度が速いので、成形作業が難しくなる場合にはエポキシ系架橋剤を用いるとよい。また、温度が50℃程度の融解ゼラチンに架橋剤を配合し、配合後30分程度以内に鋳型に投入することが好ましい。架橋剤の均一配合を容易にするために、必要に応じて水を添加して固形分量を低下させることによって融解ゼラチンに流動性を付与してもよい。この場合、成形物の強度を確保するために、固形分量が10質量%程度以上、好ましくは約15質量%以上になるように水量を調整するのが好ましい。但し、固形分量が40質量%を超えると流動性が低下して鋳型への流し込みが難しくなるので配慮を要する。架橋剤の量は、ゼラチン(乾燥質量)の1〜10質量%程度が好ましく、より好ましくは2〜8質量%程度に調整し、架橋剤が過剰であるとゲル化物が脆くなる。ゲル化物を20〜30℃程度で約1日以上静置することにより架橋反応が充分に進行して安定化する。あるいは、ゲル化物を60〜70℃程度に30分程度加熱して架橋反応を完了させる。   When cross-linking the gelatin of the whole pseudo bait, the cross-linking agent is uniformly mixed with the melted gelatin before gelation / molding to form the pseudo bait, and the cross-linking reaction proceeds during or after gelation / molding. . At this time, since the aldehyde-based crosslinking agent has a high reaction rate, an epoxy-based crosslinking agent may be used when the molding operation becomes difficult. Further, it is preferable that a cross-linking agent is blended with molten gelatin having a temperature of about 50 ° C., and is put into the mold within about 30 minutes after blending. In order to facilitate uniform blending of the crosslinking agent, fluidity may be imparted to the molten gelatin by adding water as necessary to reduce the solid content. In this case, in order to ensure the strength of the molded product, it is preferable to adjust the amount of water so that the solid content is about 10% by mass or more, preferably about 15% by mass or more. However, if the solid content exceeds 40% by mass, the fluidity is lowered and it becomes difficult to pour into the mold, so care must be taken. The amount of the crosslinking agent is preferably about 1 to 10% by mass of gelatin (dry mass), more preferably about 2 to 8% by mass. If the crosslinking agent is excessive, the gelled product becomes brittle. By allowing the gelled product to stand at about 20 to 30 ° C. for about 1 day or longer, the crosslinking reaction sufficiently proceeds and stabilizes. Alternatively, the gelled product is heated to about 60 to 70 ° C. for about 30 minutes to complete the crosslinking reaction.

疑似餌表面のゼラチンを架橋する場合は、融解ゼラチンをゲル化・成形した疑似餌を架橋剤水溶液と接触させる。つまり、成形された疑似餌を架橋剤水溶液中に浸漬して、架橋剤と接触する疑似餌表面からゼラチンを架橋する。この場合、反応速度が速いアルデヒド系架橋剤等も好適に使用できる。架橋剤水溶液の架橋剤の濃度は、0.05〜0.4質量%程度が好ましく、架橋反応は、23〜28℃程度の温度で約2〜7日間行うとよい。これにより、架橋剤は、主として疑似餌表面で反応し、状況によって一部が疑似餌表面から浸透して反応が内側に進行する。この結果、疑似餌表面部分のゼラチンは強く架橋されて内部より強度及び硬度が増し、被膜のように作用して、表面付近に耐水性を付与すると共に耐熱性が向上する。架橋処理後の疑似餌は、架橋剤水溶液を除去して、必要に応じて水洗等により洗浄する。   When cross-linking the gelatin on the surface of the pseudo bait, the pseudo bait obtained by gelling / molding the melted gelatin is brought into contact with the aqueous crosslinking agent solution. That is, the molded pseudo bait is immersed in an aqueous crosslinking agent solution, and gelatin is cross-linked from the surface of the pseudo bait that comes into contact with the cross-linking agent. In this case, an aldehyde-based cross-linking agent having a high reaction rate can be suitably used. The concentration of the crosslinking agent in the aqueous crosslinking agent solution is preferably about 0.05 to 0.4% by mass, and the crosslinking reaction is preferably performed at a temperature of about 23 to 28 ° C. for about 2 to 7 days. As a result, the cross-linking agent mainly reacts on the pseudo bait surface, and part of the cross-linking agent penetrates from the pseudo bait surface depending on the situation, and the reaction proceeds inward. As a result, the gelatin on the surface portion of the pseudo bait is strongly cross-linked and increases in strength and hardness from the inside, acts like a film, imparts water resistance near the surface and improves heat resistance. The pseudo bait after the crosslinking treatment is washed with water or the like as necessary after removing the crosslinking agent aqueous solution.

上述の疑似餌は、そのまま釣りに使用可能であるが、更に、短時間の熱処理を施すと、疑似餌内部でゼラチン分子のペプチド鎖間の水素結合が解離して分解が起こり、柔軟性が向上する。これにより、水中で疑似餌として好ましい挙動を示し易くなる。熱処理を施す温度は、60〜110℃程度、好ましくは90〜105℃程度であり、処理時間は1〜60分程度、好ましくは5〜30分程度である。処理温度が高すぎ処理時間が長すぎると、ゼラチンの分解により疑似餌の強度が低下する。   The above-mentioned pseudo bait can be used for fishing as it is. However, when heat treatment is performed for a short time, the hydrogen bond between the peptide chains of gelatin molecules is dissociated inside the pseudo bait, resulting in decomposition and improved flexibility. To do. Thereby, it becomes easy to show a behavior preferable as a pseudo bait in water. The temperature at which the heat treatment is performed is about 60 to 110 ° C., preferably about 90 to 105 ° C., and the processing time is about 1 to 60 minutes, preferably about 5 to 30 minutes. If the treatment temperature is too high and the treatment time is too long, the strength of the pseudo food is reduced due to the degradation of gelatin.

上述に従って調製することにより、ゼラチンの高分子量化に起因して強度及び耐熱温度が向上した疑似餌が得られる。このため、吸水による強度低下を経ても使用に耐え得る程度の強度が保持される。架橋処理を施さないゼラチンで疑似餌を形成する場合、JIS K6503の粘度が4.0mPa・s以上、好ましくは7.0mPa・s以上となるゼラチンを用いると、引き裂き強度が500gf程度以上、耐熱温度が40℃以上の疑似餌が得られ、面積当たり破断強度も2000gf/cm程度以上に向上する。このような疑似餌は、吸水後でも崩壊せずに、100gf程度以上の引き裂き強度、500gf/cm程度以上の面積当たり破断強度を発揮する。架橋処理されたゼラチンによる疑似餌の場合は、原料ゼラチンのJIS K6503の粘度が4.0mPa・s以下であっても、引き裂き強度300gf以上、耐熱温度40℃以上の疑似餌を得ることができ、同時に膨潤度が90%以下になって吸水膨潤による強度低下が抑制されるので、吸水後引き裂き強度100gf程度以上、面積当たり破断強度500gf/cm程度以上を達成できる。より高粘度(15mPa・s以上)のゼラチンを用いたり、架橋処理を併用することによって、引き裂き強度が700gf以上、耐熱温度が70℃程度のゼラチン製生分解性疑似餌を得ることができ、吸水後の引き裂き強度は200gf以上の値が確保される。ゼラチンは加熱によって分解が進行するので、疑似餌のJIS K6503による粘度は、原料ゼラチンの値より減少はするが、近い値になり、架橋処理を経た場合は、粘度測定の際に架橋程度に応じて不融物が残存するので、判別基準に用いられる。架橋によって耐水性及び耐熱性を付与でき、且つ、柔軟性を損なわずに強度を高められるので、水中で好ましい挙動を示す疑似餌が提供される。 By preparing according to the above, a pseudo bait having improved strength and heat-resistant temperature due to high molecular weight of gelatin can be obtained. For this reason, the intensity | strength which can be endured use is hold | maintained even if the intensity | strength fall by water absorption is passed. When forming a pseudo bait with gelatin not subjected to cross-linking treatment, if gelatin having a viscosity of JIS K6503 of 4.0 mPa · s or more, preferably 7.0 mPa · s or more is used, the tear strength is about 500 gf or more, and the heat resistance temperature. Is obtained, a pseudo bait of 40 ° C. or higher is obtained, and the breaking strength per area is improved to about 2000 gf / cm 2 or more. Such a pseudo bait does not collapse even after water absorption, and exhibits a tear strength of about 100 gf or more and a breaking strength per area of about 500 gf / cm 2 or more. In the case of a pseudo bait made from cross-linked gelatin, even if the viscosity of the raw material gelatin JIS K6503 is 4.0 mPa · s or less, a pseudo bait having a tear strength of 300 gf or more and a heat resistant temperature of 40 ° C. or more can be obtained. At the same time, since the degree of swelling is 90% or less and the strength reduction due to water absorption swelling is suppressed, it is possible to achieve a tear strength after water absorption of about 100 gf or more and a breaking strength per area of about 500 gf / cm 2 or more. By using gelatin with higher viscosity (15 mPa · s or higher) or combined with a crosslinking treatment, it is possible to obtain a gelatin biodegradable pseudo bait having a tear strength of 700 gf or higher and a heat-resistant temperature of about 70 ° C. A value of 200 gf or more is secured for the subsequent tear strength. Since gelatin is decomposed by heating, the viscosity according to JIS K6503 of the pseudo bait is close to the value of the raw gelatin but is close to the value. Since infusible material remains, it is used as a criterion. Water resistance and heat resistance can be imparted by cross-linking, and strength can be increased without impairing flexibility, so that a pseudo bait that exhibits favorable behavior in water is provided.

更に、疑似餌に防腐処理を施すことによって、疑似餌の保存可能な期間が長くなる。防腐処理は、ゼラチン成形物に防腐剤を接触させることで可能であり、例えば防腐剤としてエチレングリコール、プロピレングリコール、ヘキシレングリコール、ペンチレングリコール、硫酸ナトリウム水溶液等を用い、12〜24時間程度浸漬すればよい。防腐処理後の疑似餌は、20〜25℃程度で4ヶ月間以上保存できる。   Furthermore, by preserving the pseudo bait, the period during which the pseudo bait can be stored becomes longer. Preservation treatment is possible by bringing a preservative into contact with the gelatin molded product, for example, using ethylene glycol, propylene glycol, hexylene glycol, pentylene glycol, sodium sulfate aqueous solution or the like as the preservative, and soaking for about 12 to 24 hours. do it. The pseudo food after the antiseptic treatment can be stored at about 20 to 25 ° C. for 4 months or more.

ゼラチン製疑似餌は、上述のように、ゼラチンゲル化物又は架橋処理されたゼラチンゲル化物からなることが好ましいが、その性質を実質的に損なわない範囲での添加剤の配合を排除するものではない。つまり、ゼラチンゲル化物又は架橋処理されたゼラチンゲル化物を主成分として、着色剤、防腐剤、誘引剤、蛍光剤等のような主成分の機能に影響を与えない添加剤を配合することができる。その配合割合は、添加剤総量として20質量%を限度とし、ゼラチンの融解時に均一混合できるように導入する。又、疑似餌を、ゼラチンゲル化物又は架橋処理されたゼラチンゲル化物を主成分とする主体と、主体を補助する副体とで構成するように応用することも可能である。例えば、天然繊維等の水に不溶の生分解性材料で紐状の副体を調製して、ゲル化成形の際に主体中に副体を埋設又は軸設したり、副体を主体に巻装することによって、主体の補強が可能である。   As described above, the gelatin-made pseudo bait is preferably made of a gelatin gel product or a cross-linked gelatin gel product, but does not exclude the addition of additives in a range that does not substantially impair the properties thereof. . In other words, an additive that does not affect the function of the main component, such as a colorant, preservative, attractant, fluorescent agent, etc., can be blended with the gelatin gel product or the gelatin gel product subjected to crosslinking treatment as the main component. . The mixing ratio is limited to 20% by mass as the total amount of additives, and is introduced so that uniform mixing can be performed when gelatin is melted. Moreover, it is also possible to apply the pseudo bait so as to be composed of a main body mainly composed of gelatin gelled material or a cross-linked gelatin gelled material and a sub-body that assists the main body. For example, a string-like sub-body is prepared with a biodegradable material insoluble in water such as natural fibers, and the sub-body is embedded or pivoted in the main body during gel forming, or the sub-body is wound around the main body. The main body can be reinforced by wearing it.

上記疑似餌は、釣りに使用するものとして構成されているが、魚類の養殖、生育用の餌として使用することも可能であり、一般的に使用される各種添加物を必要に応じて配合しても良い。   The pseudo bait is configured for fishing, but it can also be used as a fish culture and growth bait, and various commonly used additives can be blended as necessary. May be.

以下、本発明の疑似餌の製造方法について、実施例を参照して具体的に説明する。尚、本願において、試料の等イオン点は、以下の操作に従って測定している。   Hereinafter, the method for producing simulated bait according to the present invention will be specifically described with reference to examples. In the present application, the isoionic point of the sample is measured according to the following operation.

先ず、予め活性化及び洗浄した陽イオン交換樹脂(アンバーライトIPR−120B、オルガノ(株)社製)と陰イオン交換樹脂(アンバーライトIPA−400、オルガノ(株)社製)とを2:5の割合で混合して混床イオン交換体を調製する。次に、混床イオン交換体100mLを脱イオン水で平衡化させた後、タンパク質濃度が5%になるように試料を水に溶解した試料溶液を50mL加えて、40℃の水浴中に保持して30分間穏やかに攪拌して混合し、混合液から上澄みを分離して上澄みのpHを測定して、その値を等イオン点とする(J.W.Janus, A.W.Kenchington and A.G.Ward, Research, 4247(1951)に記載の方法を参考としている)。   First, a cation exchange resin (Amberlite IPR-120B, manufactured by Organo Corp.) and an anion exchange resin (Amberlite IPA-400, manufactured by Organo Corp.) that have been activated and washed in advance are 2: 5. To prepare a mixed bed ion exchanger. Next, after 100 mL of the mixed bed ion exchanger is equilibrated with deionized water, 50 mL of a sample solution in which the sample is dissolved in water so that the protein concentration is 5% is added and kept in a 40 ° C. water bath. Gently mix for 30 minutes, separate the supernatant from the mixture, measure the pH of the supernatant, and use that value as the isoionic point (JW Janus, AW Kenchington and AGWard, Research, 4247 (1951 ) Is used as a reference).

(試料A1)
<ゼラチンの調製>
定法に従って、牛塩蔵皮から水洗・水漬け、フレッシング(肉面除去)・トリミング、脱毛石灰漬けの工程を経て得られた皮を、銀面を有する銀面層と肉面層(床皮)とに分割して、得られた床皮を細片状に裁断した。これを原料として、以下の操作を行った。
(Sample A1)
<Preparation of gelatin>
According to the standard method, the skin obtained through the steps of washing and immersing from beef salted hide, fleshing (removing the meat surface), trimming, depilatory lime pickling, the silver surface layer with the silver surface and the meat surface layer (floor skin) The resulting skin was cut into strips. The following operations were performed using this as a raw material.

可溶化液として、水酸化ナトリウム5.0質量%、硫酸ナトリウム12.0質量%を含有する水溶液1600gを調製して、液温を25℃に保ち、この中に細片状床皮400g(固形分28.3質量%)を浸漬し、30分間程度攪拌混合して可溶化液とよく馴染ませた後、24時間静置した。この後、液温を23〜25℃に保持しながら37.5質量%硫酸水溶液を徐々に加えて中和し、pHを4.8に調整することによってコラーゲンを等電点沈澱状態にして、原料形状を保持した皮片を得た。中和した可溶化液を皮片から除去し、更に軽く圧搾して内部に含まれる水分を押し出した。更に、皮片を流水で洗浄して脱塩した後、再度軽く圧搾して内部に含まれる水分を押し出して除去し、アルカリ処理皮片401g(固形分26.9質量%、回収率95%)を得た。アルカリ処理皮片ではコラーゲンの変性(ゼラチン化)は起きていないが、コラーゲン間の架橋切断が進行している。このアルカリ処理皮片の、JIS K6503に準じて測定した粘度(温度70℃でゼラチンを融解して60℃において測定)は、24.7mPa・sであった。   As a solubilizing solution, 1600 g of an aqueous solution containing 5.0% by mass of sodium hydroxide and 12.0% by mass of sodium sulfate was prepared, and the temperature of the solution was kept at 25 ° C. 28.3 mass%) was immersed, mixed with stirring for about 30 minutes to be well blended with the solubilized solution, and then allowed to stand for 24 hours. Thereafter, while maintaining the liquid temperature at 23 to 25 ° C., a 37.5 mass% aqueous sulfuric acid solution was gradually added to neutralize, and the pH was adjusted to 4.8 to bring the collagen to an isoelectric precipitation state. A skin piece retaining the raw material shape was obtained. The neutralized solubilized solution was removed from the skin pieces, and further squeezed lightly to extrude moisture contained therein. Furthermore, after the skin pieces are washed with running water and desalted, they are lightly squeezed again to extrude and remove moisture contained therein, and 401 g of alkali-treated skin pieces (solid content 26.9% by mass, recovery rate 95%) Got. In the alkali-treated skin pieces, denaturation (gelatinization) of collagen does not occur, but cross-linking between collagens proceeds. The viscosity (measured at 60 ° C. after melting gelatin at a temperature of 70 ° C.) of this alkali-treated skin piece measured according to JIS K6503 was 24.7 mPa · s.

このアルカリ処理皮片乾燥物のタンパク質含有量をキエルダール法による総窒素測定の結果から算出したところ、91.3質量%であり、JIS K6503に準じた塩酸分解ヘキサン抽出法により検出された粗脂肪は2.40質量%であった。また、アルカリ処理皮片乾燥物の灰分(JIS K6503:2001の灰分測定法参照)は0.5質量%であった。   The protein content of this dried alkali-treated skin product was calculated from the result of total nitrogen measurement by the Kjeldahl method, and found to be 91.3% by mass. The crude fat detected by the hydrochloric acid-decomposed hexane extraction method according to JIS K6503 was 2.40% by mass. Moreover, the ash content (refer to the ash measurement method of JIS K6503: 2001) of the dried alkali-treated skin piece was 0.5% by mass.

<疑似餌の製造>
シリコーン製鋳型のワーム形状型孔(幅:約0.8cm、長さ:約8cm)にアルカリ処理皮片4gを入れ、蒸気発生用の水を収容するステンレス容器中に鋳型を配置し、90℃に加熱して約5分間水蒸気加熱することにより、アルカリ処理皮片が融解した。この後、鋳型を取り出して室温で放置することにより徐冷し、ゼラチン成形物を得た。
<Manufacture of simulated bait>
Place 4g of alkali-treated skin in a worm-shaped mold hole (width: about 0.8cm, length: about 8cm) in a silicone mold, place the mold in a stainless steel container containing water for steam generation, And the alkali-treated skin melted by heating with steam for about 5 minutes. Thereafter, the mold was taken out and allowed to cool at room temperature to obtain a gelatin molded product.

エポキシ架橋剤(商品名:デナコールEX−512、ナガセケムテックス社製)0.1質量%、硫酸ナトリウム12質量%及び酢酸ナトリウム3質量%を含有する架橋剤水溶液(pH8.5)を調製し、これに鋳型から取り出したゼラチン成形物を浸漬して25℃で3日間静置した。ここで、硫酸ナトリウムを用いないと処理中にゼラチン成形物が膨潤してしまう。この後、架橋剤水溶液からゼラチン成形物を取り出して、水に投入して12時間流水水洗して、疑似餌を得た。この疑似餌をプロピレングリコールに12時間浸漬することにより防腐処理を施した。   An aqueous crosslinking agent solution (pH 8.5) containing 0.1% by mass of an epoxy crosslinking agent (trade name: Denacol EX-512, manufactured by Nagase ChemteX Corporation), 12% by mass of sodium sulfate and 3% by mass of sodium acetate, The gelatin molded product taken out from the mold was immersed in this and allowed to stand at 25 ° C. for 3 days. Here, if sodium sulfate is not used, the gelatin molded product will swell during processing. Thereafter, the gelatin molded product was taken out from the aqueous solution of the crosslinking agent, put into water and washed with running water for 12 hours to obtain a pseudo food. The simulated bait was immersed in propylene glycol for 12 hours for preservative treatment.

(試料A1’)
試料A1の疑似餌の製造において、防腐処理を施す前に、疑似餌に105℃で10分間加熱処理を施したこと以外は試料A1と同様の操作を行って試料A1’の疑似餌を得た。
(Sample A1 ′)
In the production of the pseudo bait of sample A1, before performing the antiseptic treatment, the pseudo bait of sample A1 ′ was obtained by performing the same operation as sample A1, except that the pseudo bait was subjected to a heat treatment at 105 ° C. for 10 minutes. .

(試料a1)
試料A1の疑似餌の製造において、エポキシ架橋剤による架橋処理を行わなかったこと以外は試料A1と同様の操作を行って試料a1の疑似餌を得た。
(Sample a1)
In the production of the pseudo bait of the sample A1, a pseudo bait of the sample a1 was obtained by performing the same operation as the sample A1 except that the crosslinking treatment with the epoxy crosslinking agent was not performed.

(試料A2)
ゼラチンの調製において可溶化処理時間を24時間から3日に変更したこと以外は試料A1と同様の操作を行って、アルカリ処理皮片559g(固形分14.9質量%、回収率74%)を得た。このアルカリ処理皮片の、JIS K6503に準じて測定した粘度(温度70℃でゼラチンを溶解して60℃において測定)は7.9mPa・sであった。このアルカリ処理皮片乾燥物のタンパク質含有量をキエルダール法による総窒素測定の結果から算出したところ、89.4質量%であり、JIS K6503に準じた塩酸分解ヘキサン抽出法により検出された粗脂肪は0.24質量%であった。また、アルカリ処理皮片乾燥物の灰分(JIS K6503:2001の灰分測定法参照)は0.5質量%であった。
(Sample A2)
Except that the solubilization time was changed from 24 hours to 3 days in the preparation of gelatin, the same operation as in sample A1 was performed to obtain 559 g of alkali-treated skin pieces (solid content 14.9% by mass, recovery rate 74%). Obtained. The viscosity (measured at 60 ° C. by dissolving gelatin at a temperature of 70 ° C.) of the alkali-treated skin piece measured according to JIS K6503 was 7.9 mPa · s. The protein content of this dried alkali-treated skin product was calculated from the result of total nitrogen measurement by the Kieldahl method. As a result, it was 89.4% by mass, and the crude fat detected by the hydrochloric acid-decomposed hexane extraction method according to JIS K6503 was It was 0.24 mass%. Moreover, the ash content (refer to the ash measurement method of JIS K6503: 2001) of the dried alkali-treated skin piece was 0.5% by mass.

上記ゼラチンを用いたこと以外は試料A1と同様の操作によって試料A2の疑似餌を製造した。   A simulated bait of Sample A2 was produced by the same operation as Sample A1, except that the gelatin was used.

(試料A3)
ゼラチンの調製において可溶化処理時間を24時間から5日に変更した以外は試料A1と同様の操作を行って、アルカリ処理皮片512g(固形分16.3質量%、回収率74%)を得た。このアルカリ処理皮片の、JIS K6503に準じて測定した粘度(温度70℃でゼラチンを溶解して60℃において測定)は5.8mPa・sであった。このアルカリ処理皮片乾燥物のタンパク質含有量をキエルダール法による総窒素測定の結果から算出したところ、88.5質量%であり、JIS K6503に準じた塩酸分解ヘキサン抽出法により検出された粗脂肪は0.13質量%であった。また、ゼラチン乾燥物の灰分(JIS K6503:2001の灰分測定法参照)は0.5質量%であった。
(Sample A3)
Except for changing the solubilization time from 24 hours to 5 days in the preparation of gelatin, the same operation as Sample A1 was performed to obtain 512 g of alkali-treated skin pieces (solid content: 16.3% by mass, recovery rate: 74%). It was. The viscosity (measured at 60 ° C. by dissolving gelatin at a temperature of 70 ° C.) of the alkali-treated skin piece measured in accordance with JIS K6503 was 5.8 mPa · s. The protein content of this dried alkali-treated skin piece was calculated from the result of total nitrogen measurement by the Kjeldahl method. As a result, it was 88.5% by mass, and the crude fat detected by the hydrochloric acid-decomposed hexane extraction method according to JIS K6503 was It was 0.13 mass%. The ash content of the dried gelatin product (see ash content measurement method of JIS K6503: 2001) was 0.5% by mass.

上記ゼラチンを用いたこと以外は試料A1と同様の操作によって試料A3の疑似餌を製造した。   A simulated bait of Sample A3 was produced in the same manner as Sample A1, except that the gelatin was used.

(試料B1〜B3)
市販のゼラチン乾燥物3種について、JIS K6503に準じて粘度を測定したところ、試料B1(商品名:PG-80、Gelita社製)は2.3mPa・s、試料B2(商品名:PG-120、Gelita社製)は3.1mPa・s、試料B3(商品名:PG-240、Gelita社製)は3.4mPa・sであった。
(Samples B1 to B3)
When three types of commercially available dried gelatin were measured for viscosity according to JIS K6503, Sample B1 (trade name: PG-80, manufactured by Gelita) was 2.3 mPa · s, Sample B2 (trade name: PG-120 , Manufactured by Gelita) was 3.1 mPa · s, and sample B3 (trade name: PG-240, manufactured by Gelita) was 3.4 mPa · s.

上記市販のゼラチン乾燥物を用いたこと以外は試料A1と同様の操作によって試料B1〜B3の疑似餌を製造した。   The simulated baits of Samples B1 to B3 were produced by the same operation as Sample A1 except that the above-mentioned commercially available dried gelatin was used.

(疑似餌の物性評価)
試料A1〜A3,A1’,a1,B1〜B3の疑似餌について、下記に従って、引き裂き強度、伸び、破断強度及び硬度(柔軟性)を測定した。尚、参考試料として、市販のカードラン製疑似餌(試料C1、商品名:EDUM、Jackall Bros.社製)、プラスチック疑似餌(試料C2、商品名:Paramax 5 inch、マルキュー社製)及びシリコーン製疑似餌(試料C3、商品名:Crazy Shaker 315-Orange Neon Craw、Angler Technologies社製)についても同様の測定を行った。
(Physical property evaluation of simulated food)
About the pseudo bait of sample A1-A3, A1 ', a1, B1-B3, tear strength, elongation, breaking strength, and hardness (flexibility) were measured according to the following. As a reference sample, commercially available curdlan pseudo food (sample C1, trade name: EDUM, manufactured by Jackall Bros.), plastic simulated food (sample C2, trade name: Paramax 5 inch, manufactured by Marquee) and silicone The same measurement was performed on a simulated bait (sample C3, trade name: Crazy Shaker 315-Orange Neon Craw, manufactured by Angler Technologies).

又、18℃の水に24時間浸漬した後の疑似餌にも同じ測定を行って、吸水膨潤が物性に及ぼす影響も評価した。   In addition, the same measurement was performed on a pseudo bait after being immersed in water at 18 ° C. for 24 hours to evaluate the influence of water absorption swelling on physical properties.

<引き裂き強度及び伸び>
疑似餌を3cmの長さに裁断し、中央部分に釣り針(商品名:WIDE GAPE WRM951 Size 1、FINA社製)2本を5mm間隔で掛け、レオメータ(商品名:FUDOH NRM-2010J-CW、レオテック社製)を用いて、釣り針の間隔を6cm/分の比率で増加することによって引っ張り荷重をかけて疑似餌が破断する迄の伸びと荷重との関係を調べてプロットし、引き裂き強度(破断時の最大荷重[gf])を求めた。結果を表1に示す。尚、表1の記載において、吸水前の試料C2の疑似餌は、所定測定範囲において破断しなかったことを意味し、ブランクは、測定を省略したものである。
<Tear strength and elongation>
Cut the pseudo bait to a length of 3cm, hang 2 fishhooks (product name: WIDE GAPE WRM951 Size 1, FINA) at 5mm intervals, and a rheometer (product name: FUDOH NRM-2010J-CW, Rheotech). ), And by plotting the relationship between elongation and load until the pseudo bait breaks by applying a tensile load by increasing the distance between the fishing hooks at a rate of 6 cm / min. Maximum load [gf]). The results are shown in Table 1. In the description of Table 1, the pseudo bait of the sample C2 before water absorption means that it did not break in the predetermined measurement range, and the blank is omitted from the measurement.

表1によれば、粘度の高いゼラチンを用いて製造した疑似餌(試料A1、A1’)は、粘度の低いゼラチンを用いた場合(試料B1〜B3)に比べて引き裂き強度が格段に高いことが明らかである。又、架橋処理がない場合(試料a1)も、吸水により強度が低下しても実用可能な程度の引き裂き強度が確保される。カードラン製の疑似餌(試料C1)は、吸水膨潤による引き裂き強度の低下が著しい。   According to Table 1, the pseudo bait (samples A1 and A1 ′) manufactured using gelatin with a high viscosity has a much higher tear strength than that when gelatin with a low viscosity is used (samples B1 to B3). Is clear. Even when there is no cross-linking treatment (sample a1), a tear strength of a practical level is ensured even if the strength decreases due to water absorption. The curdlan artificial bait (sample C1) has a remarkable decrease in tear strength due to water absorption swelling.

(表1)
疑似餌の伸び及び引き裂き強度
試料 引き裂き時間[秒] 伸び[%] 引き裂き強度[gf]
吸水前 吸水後 吸水前 吸水後 吸水前 吸水後
A1 18 19 360 380 780 420
A1’ 27 13 540 260 560 250
a1 29 11 580 220 720 280
A2 19 25 380 500 720 220
A3 16 11 320 220 550 120
B1 14 0 280 0 100 0
B2 20 0 400 0 220 0
B3 13 8 260 160 330 100
C1 19 20 380 400 580 100
C2 >39 >39 >780 >780 >740 >880
(吸水前後で裂けず)
C3 12 19 240 380 160 250
(Table 1)
Elongation and tear strength of simulated food
Sample Tear time [sec] Elongation [%] Tear strength [gf]
Before water absorption After water absorption Before water absorption After water absorption Before water absorption Before water absorption
A1 18 19 360 380 780 420
A1 '27 13 540 260 560 250
a1 29 11 580 220 720 280
A2 19 25 380 500 720 220
A3 16 11 320 220 550 120
B1 14 0 280 0 100 0
B2 20 0 400 0 220 0
B3 13 8 260 160 330 100
C1 19 20 380 400 580 100
C2>39>39>780>780>740> 880
(No tearing before and after water absorption)
C3 12 19 240 380 160 250

<破断強度>
レオメータ(商品名:FUDOH NRM-2010J-CW、レオテック社製)に歯型を取り付け、歯型に疑似餌を6cm/分の比率で押し進めることによって荷重をかけて、疑似餌が破断する時の最大荷重[gf]を調べ、破断強度とした。また、疑似餌の断面積を測定して単位面積当たり破断強度[gf/cm]を算出した。結果を表2に示す。
<Break strength>
The maximum when a pseudo bait breaks when a tooth mold is attached to a rheometer (trade name: FUDOH NRM-2010J-CW, manufactured by Rheotech Co., Ltd.) and the pseudo bait is pushed to the tooth mold at a rate of 6 cm / min. The load [gf] was examined and determined as the breaking strength. Moreover, the cross-sectional area of the pseudo bait was measured to calculate the breaking strength [gf / cm 2 ] per unit area. The results are shown in Table 2.

表2によれば、粘度の高いゼラチンを用いて製造した疑似餌(試料A1、A1’)は、粘度の低いゼラチンを用いた場合(試料B1〜B3)に比べて破断強度が格段に高く、又、吸水膨潤による破断強度の低下も抑制されることが明らかである。A1とa1との比較により、架橋処理によって強度が増加するだけでなく、吸水による強度低下の抑制が可能であり、耐水性が付与されることが解る。尚、架橋処理がない場合でも、実用可能な程度の吸水後破断強度は得られる。   According to Table 2, the pseudo bait (samples A1 and A1 ′) manufactured using gelatin with a high viscosity has a significantly higher breaking strength than that when gelatin with a low viscosity (samples B1 to B3) is used. Further, it is clear that the decrease in breaking strength due to water absorption swelling is also suppressed. From comparison between A1 and a1, it is understood that not only the strength is increased by the crosslinking treatment, but also a decrease in strength due to water absorption can be suppressed and water resistance is imparted. Even when there is no cross-linking treatment, a practically sufficient post-water absorption breaking strength can be obtained.

(表2)
疑似餌の破断強度
試料 断面積[cm] 破断強度[gf] 面積当たり破断強度[gf/cm]
吸水前 吸水後 吸水前 吸水後 吸水前 吸水後
A1 0.63 0.71 2700 2200 4279 3099
A1’ 0.63 0.76 2800 2700 4438 3541
a1 0.74 0.84 1600 550 2173 654
A2 0.55 0.97 2000 1550 3622 1593
A3 0.45 0.76 1100 550 2461 721
B1 0.71 1.26 400 220 563 182
B2 0.58 1.10 400 800 692 721
B3 0.63 0.87 800 1250 1268 1441
C1 0.50 0.82 800 80 1602 98
C2 0.71 0.60 1200 1200 1690 1984
C3 0.21 0.42 1100 1400 5230 3328
(Table 2)
Fracture strength of simulated bait
Sample Cross-sectional area [cm 2 ] Breaking strength [gf] Breaking strength per area [gf / cm 2 ]
Before water absorption After water absorption Before water absorption After water absorption Before water absorption Before water absorption
A1 0.63 0.71 2700 2200 4279 3099
A1 '0.63 0.76 2800 2700 4438 3541
a1 0.74 0.84 1600 550 2173 654
A2 0.55 0.97 2000 1550 3622 1593
A3 0.45 0.76 1100 550 2461 721
B1 0.71 1.26 400 220 563 182
B2 0.58 1.10 400 800 692 721
B3 0.63 0.87 800 1250 1268 1441
C1 0.50 0.82 800 80 1602 98
C2 0.71 0.60 1200 1200 1690 1984
C3 0.21 0.42 1100 1400 5230 3328

<硬度(柔軟性)>
ゴム・プラスチック用の硬度計(商品名:デュロメータGS-754G、テクロック社製)を用いて、弾性体用モードで疑似餌の硬度を測定した。結果を表3に示す。
<Hardness (flexibility)>
Using a hardness meter for rubber and plastic (trade name: Durometer GS-754G, manufactured by Teclock Corporation), the hardness of the pseudo bait was measured in the elastic mode. The results are shown in Table 3.

ゼラチン製疑似餌の吸水膨潤による硬度の変動は、架橋処理によって抑制されているが、表3によれば、粘度の高いゼラチンを用いて製造すると疑似餌の硬度が高く、柔軟性に欠ける。しかし、この点は、架橋処理後に加熱処理を施すことによって改善されることが試料A1’から明らかである。   The fluctuation of the hardness due to the water absorption swelling of the gelatinous pseudo bait is suppressed by the cross-linking treatment, but according to Table 3, when the gelatin is manufactured using a high viscosity gelatin, the pseudo bait has a high hardness and lacks flexibility. However, it is clear from the sample A1 'that this point can be improved by performing a heat treatment after the crosslinking treatment.

(表3)
疑似餌の硬度
試料 硬度 硬度差
吸水前 吸水後
A1 70 68 −2
A1’ 43 41 −2
a1 53 40 −13
A2 57 52 −5
A3 45 56 11
B1 1 9 8
B2 16 10 −6
B3 45 45 0
C1 38 25 −13
C2 22 19 −3
C3 30 15 −15
(Table 3)
Simulated bait hardness
Sample Hardness Difference in hardness
Before water absorption After water absorption
A1 70 68 -2
A1 '43 41 -2
a1 53 40 -13
A2 57 52-5
A3 45 56 11
B1 1 9 8
B2 16 10 -6
B3 45 45 0
C1 38 25 -13
C2 22 19 -3
C3 30 15 -15

<加熱処理の効果>
架橋後の加熱処理の効果を評価するために、試料A1と同様にして粘度25mPa・sのゼラチンから疑似餌を製造し、これを105℃に加熱しながら硬度を測定して、硬度の経時変化を調べた。併せて、試料の長さを測定し、加熱による収縮率を算出した。結果を表4に示す。
<Effect of heat treatment>
In order to evaluate the effect of heat treatment after crosslinking, a pseudo bait was produced from gelatin having a viscosity of 25 mPa · s in the same manner as sample A1, and the hardness was measured while heating this to 105 ° C. I investigated. In addition, the length of the sample was measured, and the shrinkage rate due to heating was calculated. The results are shown in Table 4.

表4によれば、加熱によって疑似餌の硬度が減少し、柔軟性が向上することが明らかである。但し、表1に示されるように、引き裂き強度の低下も起こるので、この点を考慮して加熱時間を設定する必要がある。   According to Table 4, it is clear that the hardness of the pseudo bait is reduced by heating and the flexibility is improved. However, as shown in Table 1, since the tear strength also decreases, it is necessary to set the heating time in consideration of this point.

(表4)
加熱による硬度変化
加熱時間[分] 硬度 硬度変化 試料長さ[mm] 収縮率[%]
0 57 0 78 0
5 43 −14 75 4
10 41 −16 73 6
20 30 −27 71 9
30 20 −37 70 10
(Table 4)
Hardness change due to heating
Heating time [min] Hardness Hardness change Sample length [mm] Shrinkage [%]
0 57 0 78 0
5 43 -14 75 4
10 41 -16 73 6
20 30 -27 71 9
30 20 -37 70 10

<膨潤度>
18℃の水に疑似餌を24時間浸漬し、浸漬前後の質量変化を調べて膨潤度(浸漬前の質量に対する質量変化の割合(%))を算出した。結果を表5に示す。
<Swelling degree>
The simulated bait was immersed in water at 18 ° C. for 24 hours, and the change in mass before and after immersion was examined to calculate the degree of swelling (the ratio (%) of the change in mass with respect to the mass before immersion). The results are shown in Table 5.

<耐熱性>
ポリプロピレン製袋に疑似餌を封入し加熱乾燥機に入れ、室温から105℃まで温度を上昇させて、疑似餌が融解する温度(耐熱温度)を測定した。結果を表5に示す。
<Heat resistance>
The pseudo bait was enclosed in a polypropylene bag, placed in a heat dryer, the temperature was raised from room temperature to 105 ° C., and the temperature at which the pseudo bait melted (heat resistant temperature) was measured. The results are shown in Table 5.

表5によれば、A1及びa1の結果は、架橋処理によって吸水膨潤が抑制され、耐熱温度が向上することを示す。又、粘度の高いゼラチンを用いることによっても、疑似餌の耐熱性が向上し、吸水膨潤も抑制されることが解る。   According to Table 5, the results of A1 and a1 indicate that the water absorption swelling is suppressed by the crosslinking treatment, and the heat resistant temperature is improved. It can also be seen that the use of gelatin with high viscosity improves the heat resistance of the pseudo bait and suppresses water absorption swelling.

(表5)
疑似餌の膨潤度及び耐熱温度
試料 膨潤度[%] 耐熱温度[℃]
A1 10 〜70
A1’ 44 〜70
a1 147 60
A2 85 〜70
A3 84 40
B1 111 30
B2 97 30
B3 53 40
C1 45 融解せず
C2 2 融解せず
C3 −5 融解せず
(Table 5)
Swelling degree and heat-resistant temperature of simulated food
Sample Swelling degree [%] Heat-resistant temperature [° C]
A1 10-70
A1'44-70
a1 147 60
A2 85-70
A3 84 40
B1 111 30
B2 97 30
B3 53 40
C1 45 does not melt C2 2 does not melt
C3-5 not melted

<ゼラチン成形物の調製>
蒸気発生用の水を収容するステンレス容器中に、実施例1における試料B3のゼラチン乾燥物(240ブルーム、JIS K6503に準じた粘度:3.4mPa・s)及び水を入れた容器を据えて、70℃に加熱して約10分間水蒸気加熱することにより、固形分30質量%のゼラチン水溶液18gを調製した。これをシリコーン製鋳型のワーム形状型孔(幅:約0.8cm、長さ:約8cm)に流し込み、鋳型を室温で放置することにより徐冷し、ゼラチン成形物を得た。
<Preparation of gelatin molding>
In a stainless steel container containing water for generating steam, a container containing a dried gelatin product of sample B3 in Example 1 (240 bloom, viscosity according to JIS K6503: 3.4 mPa · s) and water was placed, By heating to 70 ° C. and steam heating for about 10 minutes, 18 g of an aqueous gelatin solution having a solid content of 30% by mass was prepared. This was poured into a worm-shaped mold hole (width: about 0.8 cm, length: about 8 cm) of a silicone mold, and the mold was allowed to cool at room temperature to obtain a gelatin molded product.

<浸漬処理によるゼラチンの架橋>
下記に示す架橋剤の1種、硫酸ナトリウム及び酢酸ナトリウムを用いて、架橋剤濃度:0.1質量%、硫酸ナトリウム濃度:12質量%及び酢酸ナトリウム濃度:3質量%の架橋剤水溶液を調製した。原料の架橋剤が水溶液の場合は、その濃度から換算して調製後の濃度が0.1質量%になるように配合した。この溶液に、上述の鋳型から取り出したゼラチン成形物を浸漬して25℃で3日間静置した。この後、架橋剤水溶液からゼラチン成形物を取り出して、水に投入して12時間流水水洗して、疑似餌を得た。この疑似餌をプロピレングリコールに12時間浸漬することにより防腐処理を施した。
<Crosslinking of gelatin by immersion treatment>
A crosslinking agent aqueous solution having a crosslinking agent concentration of 0.1% by mass, a sodium sulfate concentration of 12% by mass and a sodium acetate concentration of 3% by mass was prepared using one of the following crosslinking agents, sodium sulfate and sodium acetate. . When the raw material crosslinking agent was an aqueous solution, it was blended so that the concentration after preparation was 0.1% by mass in terms of the concentration. The gelatin molded product taken out from the above mold was immersed in this solution and allowed to stand at 25 ° C. for 3 days. Thereafter, the gelatin molded product was taken out from the aqueous solution of the crosslinking agent, put into water and washed with running water for 12 hours to obtain a pseudo food. The simulated bait was immersed in propylene glycol for 12 hours for preservative treatment.

得られた疑似餌について、実施例1と同様にして、吸水後の引き裂き強度及び耐熱温度を測定した。又、外観及び性状を観察して着色及び柔軟性やべとつきなどの触感を評価した。結果を表6に示す。尚、測定値は、2回の測定の平均値である。   About the obtained pseudo bait, it carried out similarly to Example 1, and measured the tear strength after water absorption, and heat-resistant temperature. Further, the appearance and properties were observed to evaluate the tactile sensation such as coloring, flexibility and stickiness. The results are shown in Table 6. The measured value is an average value of two measurements.

表6によれば、架橋処理の有効性は、架橋剤の種類によって傾向が異なる。金属系架橋剤M1,M2では、耐水性及び強度が付与される反面、柔軟性が損なわれ、耐熱性は得られ難い。アルデヒド系架橋剤L1〜L3では、柔軟性及び耐熱性が得られない場合や着色が生じる場合があるが、概して耐水性及び強度が付与されることが吸水後の引き裂き強度から理解される。エポキシ系架橋剤E1〜E6では、化合物によって効果に差があるが、着色は生じず、架橋剤E4に関しては、耐水性、強度、耐熱性及び触感の何れについても良好である。架橋剤E4の反応性基(エポキシ基)の多さ、反応性基間が柔軟な分子鎖で結合されること、親水性及びゼラチンへの親和性を発現する水酸基を有することによって、架橋の強度及び柔軟性と反応性とを発現すると考えられる。架橋剤E3は水溶性が低く、そのためにゼラチンへの反応性が架橋剤E4より低いと考えられる。   According to Table 6, the tendency of the effectiveness of the crosslinking treatment varies depending on the type of the crosslinking agent. In the metal-based crosslinking agents M1 and M2, water resistance and strength are imparted, but flexibility is impaired and heat resistance is difficult to obtain. In the aldehyde-based crosslinking agents L1 to L3, flexibility and heat resistance may not be obtained or coloring may occur, but it is generally understood from the tear strength after water absorption that water resistance and strength are imparted. Epoxy crosslinking agents E1 to E6 have different effects depending on the compound, but coloration does not occur, and the crosslinking agent E4 is good in all of water resistance, strength, heat resistance and touch. Crosslinker E4 has a large number of reactive groups (epoxy groups), the reactive groups are bonded with flexible molecular chains, and has a hydroxyl group that expresses hydrophilicity and affinity for gelatin. In addition, it is considered that flexibility and reactivity are expressed. The crosslinking agent E3 is considered to be less water-soluble and therefore less reactive to gelatin than the crosslinking agent E4.

尚、架橋剤E1〜E6,L1〜L3を用いた疑似餌を、湖沼水に浸漬して25℃で放置したところ、30〜40日で腐敗し溶解したことを確認した。   In addition, when the pseudo bait using the crosslinking agents E1 to E6 and L1 to L3 was immersed in lake water and left at 25 ° C., it was confirmed that it decayed and dissolved in 30 to 40 days.

(架橋剤)
架橋剤E1:グリシドール(アルドリッチ社製)、エポキシ基数:1
架橋剤E2:グリセロールポリグリシジルエーテル(商品名:デナコールEX-313、ナガセケムテックス社製)、エポキシ基数:2〜3
架橋剤E3:ペンタエリスリトールポリグリシジルエーテル(商品名:デナコールEX-414、ナガセケムテックス社製)、エポキシ基数:4
架橋剤E4:ポリグリセロールポリグリシジルエーテル(商品名:デナコールEX-512、ナガセケムテックス社製)、エポキシ基数:3
架橋剤E5:ソルビトールポリグリシジルエーテル(商品名:デナコールEX-614B、ナガセケムテックス社製)、エポキシ基数:4以上
架橋剤E6:ポリエチレングリコールグリシジルエーテル(商品名:デナコールEX-830、ナガセケムテックス社製)、エポキシ基数:2
架橋剤M1:硫酸クロム(商品名:ベアクロム、日本電工社製)
架橋剤M2:硫酸アルミニウム(商品名:硫酸バンド、日本軽金属社製)
架橋剤L1:40重量%グリオキサール水溶液(ナカライ社製)
架橋剤L2:36重量%ホルムアルデヒド水溶液(小宗化学社製)
架橋剤L3:40重量%グルタルアルデヒド水溶液(ナカライ社製)
(表6)
架橋剤の影響(浸漬法)
架橋剤 引き裂き強度[gf] 耐熱温度[℃] 着色 触感
E1 12 30 無し 不良(べとつく)
E2 30 30 無し 良好
E3 70 40 無し 良好
E4 330 70 無し 良好
E5 10 30 無し 不良(べとつく)
E6 0 30 無し 不良(べとつく)
M1 320 30 緑色 不良(硬い)
M2 610 30 無し 不良(硬い)
L1 220 60 薄褐色 良好
L2 260 30 無し 不良(硬い)
L3 210 30 薄褐色 不良(硬い)
(Crosslinking agent)
Cross-linking agent E1: glycidol (manufactured by Aldrich), number of epoxy groups: 1
Crosslinking agent E2: Glycerol polyglycidyl ether (trade name: Denacol EX-313, manufactured by Nagase ChemteX Corporation), number of epoxy groups: 2-3
Crosslinking agent E3: Pentaerythritol polyglycidyl ether (trade name: Denacol EX-414, manufactured by Nagase ChemteX Corporation), number of epoxy groups: 4
Crosslinking agent E4: Polyglycerol polyglycidyl ether (trade name: Denacol EX-512, manufactured by Nagase ChemteX Corporation), number of epoxy groups: 3
Crosslinking agent E5: Sorbitol polyglycidyl ether (trade name: Denacol EX-614B, manufactured by Nagase ChemteX Corporation), number of epoxy groups: 4 or more Crosslinking agent E6: Polyethylene glycol glycidyl ether (trade name: Denacol EX-830, Nagase ChemteX Corporation) Product), epoxy group number: 2
Crosslinking agent M1: Chromium sulfate (trade name: Bare Chromium, manufactured by Nippon Electric Works)
Crosslinking agent M2: Aluminum sulfate (trade name: sulfate band, manufactured by Nippon Light Metal Co., Ltd.)
Crosslinking agent L1: 40% by weight glyoxal aqueous solution (Nacalai)
Cross-linking agent L2: 36% by weight aqueous formaldehyde solution (manufactured by Koso Chemical Co., Ltd.)
Crosslinking agent L3: 40% by weight glutaraldehyde aqueous solution (manufactured by Nacalai)
(Table 6)
Effect of crosslinking agent (immersion method)
Cross-linking agent Tear strength [gf] Heat-resistant temperature [° C] Coloring Touch
E1 12 30 None Defective (sticky)
E2 30 30 None Good E3 70 40 None Good E4 330 70 None Good E5 10 30 None Defective (sticky)
E6 0 30 None Defective (sticky)
M1 320 30 Green Defect (hard)
M2 610 30 None Defective (hard)
L1 220 60 Light brown Good L2 260 30 None Defective (hard)
L3 210 30 Light brown Poor (hard)

<ゼラチンに配合した架橋剤>
(架橋剤E4を用いたゼラチン成形物)
蒸気発生用の水を収容するステンレス容器中に、実施例1における試料B3のゼラチン乾燥物(240ブルーム、JIS K6503に準じた粘度:3.4mPa・s)及び水を入れた容器を据えて、70℃に加熱して約10分間水蒸気加熱することにより、固形分30質量%のゼラチン水溶液48gを調製した。これに1.5gの酢酸ナトリウム及び0.48gの上記架橋剤E4を均一に混合して、シリコーン製鋳型のワーム形状型孔(幅:約0.8cm、長さ:約8cm)に流し込み、鋳型を室温で放置することにより徐冷し、ゼラチン成形物を得た。
<Crosslinking agent in gelatin>
(Gelatin molded product using cross-linking agent E4)
In a stainless steel container containing water for generating steam, a container containing the dried gelatin (240 bloom, viscosity according to JIS K6503) of sample B3 in Example 1 and water was placed. 48 g of an aqueous gelatin solution having a solid content of 30% by mass was prepared by heating to 70 ° C. and steam heating for about 10 minutes. To this, 1.5 g of sodium acetate and 0.48 g of the cross-linking agent E4 are uniformly mixed and poured into a worm-shaped mold hole (width: about 0.8 cm, length: about 8 cm) of a silicone mold. Was allowed to cool at room temperature to obtain a gelatin molded product.

得られたゼラチン成形物を25℃で4日間静置した後、鋳型からゼラチン成形物を取り出して、水に投入して12時間流水水洗して、疑似餌を得た。この疑似餌をプロピレングリコールに12時間浸漬することにより防腐処理を施した。   The obtained gelatin molded product was allowed to stand at 25 ° C. for 4 days, and then the gelatin molded product was taken out of the mold, poured into water and washed with running water for 12 hours to obtain a pseudo food. The simulated bait was immersed in propylene glycol for 12 hours for preservative treatment.

得られた疑似餌について、実施例1と同様にして、吸水後の引き裂き強度及び耐熱温度を測定した。又、外観及び性状を観察して着色及び触感を評価した。結果を表7(測定値は2回の測定の平均値である)に示す。   About the obtained pseudo bait, it carried out similarly to Example 1, and measured the tear strength after water absorption, and heat-resistant temperature. The appearance and properties were observed to evaluate coloring and touch. The results are shown in Table 7 (measured values are average values of two measurements).

(架橋剤L1を用いたゼラチン成形物)
蒸気発生用の水を収容するステンレス容器中に、実施例1における試料B3のゼラチン乾燥物(240ブルーム、JIS K6503に準じた粘度:3.4mPa・s)及び水を入れた容器を据えて、90℃に加熱して約5分間水蒸気加熱することにより、固形分30質量%のゼラチン水溶液30gを調製した。これに27gのグリセリン及び3gの上記架橋剤L1を均一に混合して、シリコーン製鋳型のワーム形状型孔(幅:約0.8cm、長さ:約8cm)に流し込み、鋳型を室温で放置することにより徐冷し、ゼラチン成形物を得た。
(Gelatin molded product using cross-linking agent L1)
In a stainless steel container containing water for generating steam, a container containing the dried gelatin (240 bloom, viscosity according to JIS K6503) of sample B3 in Example 1 and water was placed. 30 g of an aqueous gelatin solution with a solid content of 30% by mass was prepared by heating to 90 ° C. and steam heating for about 5 minutes. 27 g of glycerin and 3 g of the cross-linking agent L1 are uniformly mixed into this, and poured into a worm-shaped mold hole (width: about 0.8 cm, length: about 8 cm) of a silicone mold, and the mold is left at room temperature. This was gradually cooled to obtain a gelatin molded product.

得られたゼラチン成形物を70℃で30分間加熱した後に放冷して、鋳型からゼラチン成形物を取り出して疑似餌を得た。この疑似餌をプロピレングリコールに12時間浸漬することにより防腐処理を施した。   The obtained gelatin molded product was heated at 70 ° C. for 30 minutes and then allowed to cool, and the gelatin molded product was taken out of the mold to obtain a pseudo bait. The simulated bait was immersed in propylene glycol for 12 hours for preservative treatment.

得られた疑似餌について、実施例1と同様にして、吸水後の引き裂き強度及び耐熱温度を測定した。又、外観及び性状を観察して着色及び柔軟性を評価した。結果を表7に示す。   About the obtained pseudo bait, it carried out similarly to Example 1, and measured the tear strength after water absorption, and heat-resistant temperature. The appearance and properties were observed to evaluate coloring and flexibility. The results are shown in Table 7.

(D−グルコースを架橋剤として用いたゼラチン成形物)
蒸気発生用の水を収容するステンレス容器中に、実施例1における試料B3のゼラチン乾燥物(240ブルーム、JIS K6503に準じた粘度:3.4mPa・s)及び水を入れた容器を据えて、70℃に加熱して約10分間水蒸気加熱することにより、固形分30質量%のゼラチン水溶液9gを調製した。これに0.9gのD−グルコース(和光純薬社製)を混合して均一になったことを確認し、シリコーン製鋳型のワーム形状型孔(幅:約0.8cm、長さ:約8cm)に流し込み、鋳型を室温で放置することにより徐冷し、ゼラチン成形物を得た。
(Gelatin molded product using D-glucose as a crosslinking agent)
In a stainless steel container containing water for generating steam, a container containing the dried gelatin (240 bloom, viscosity according to JIS K6503) of sample B3 in Example 1 and water was placed. By heating to 70 ° C. and steaming for about 10 minutes, 9 g of a gelatin aqueous solution having a solid content of 30% by mass was prepared. 0.9 g of D-glucose (manufactured by Wako Pure Chemical Industries, Ltd.) was mixed with this to confirm that it was uniform, and the worm-shaped mold hole (width: about 0.8 cm, length: about 8 cm) of the silicone mold And the mold was allowed to cool at room temperature to obtain a gelatin molded product.

得られたゼラチン成形物を90℃で1時間加熱した後に放冷して、鋳型からゼラチン成形物を取り出して疑似餌を得た。この疑似餌をプロピレングリコールに12時間浸漬することにより防腐処理を施した。   The obtained gelatin molded product was heated at 90 ° C. for 1 hour and then allowed to cool, and the gelatin molded product was taken out of the mold to obtain a pseudo bait. The simulated bait was immersed in propylene glycol for 12 hours for preservative treatment.

得られた疑似餌について、実施例1と同様にして、吸水後の引き裂き強度及び耐熱温度を測定した。又、外観及び性状を観察して着色及び触感を評価した。結果を表7に示す。   About the obtained pseudo bait, it carried out similarly to Example 1, and measured the tear strength after water absorption, and heat-resistant temperature. The appearance and properties were observed to evaluate coloring and touch. The results are shown in Table 7.

(表7)
架橋剤の影響(混合法)
架橋剤 引き裂き強度[gf] 耐熱温度[℃] 着色 触感
E4 180 40 無し 良好
L1 160 >90 褐色 良好
D−グルコース 50 30 薄褐色 良好
(Table 7)
Effect of crosslinking agent (mixing method)
Cross-linking agent Tear strength [gf] Heat-resistant temperature [° C.] Colored feel E4 180 40 None Good L1 160> 90 Brown Good
D-glucose 50 30 Light brown Good

<ゼラチン成形物の調製>
蒸気発生用の水を収容するステンレス容器中に、実施例1における試料B3のゼラチン乾燥物(240ブルーム、JIS K6503に準じた粘度:3.4mPa・s)及び水を入れた容器を据えて、70℃に加熱して約10分間水蒸気加熱することにより、固形分30質量%のゼラチン水溶液18gを調製した。これをシリコーン製鋳型のワーム形状型孔(幅:約0.8cm、長さ:約8cm)に流し込み、鋳型を室温で放置することにより徐冷し、ゼラチン成形物を得た。
<Preparation of gelatin molding>
In a stainless steel container containing water for generating steam, a container containing the dried gelatin (240 bloom, viscosity according to JIS K6503) of sample B3 in Example 1 and water was placed. By heating to 70 ° C. and steam heating for about 10 minutes, 18 g of an aqueous gelatin solution having a solid content of 30% by mass was prepared. This was poured into a worm-shaped mold hole (width: about 0.8 cm, length: about 8 cm) of a silicone mold, and the mold was allowed to cool at room temperature to obtain a gelatin molded product.

<浸漬処理における架橋剤濃度>
硫酸ナトリウム、酢酸ナトリウム、及び、架橋剤として前述のエポキシ系架橋剤E4を用いて、架橋剤濃度:0〜1.0質量%、硫酸ナトリウム濃度:12質量%及び酢酸ナトリウム濃度:3質量%の架橋剤水溶液を調製した。
<Crosslinking agent concentration in immersion treatment>
Using sodium sulfate, sodium acetate, and the above-mentioned epoxy-based crosslinking agent E4 as a crosslinking agent, a crosslinking agent concentration: 0 to 1.0% by mass, sodium sulfate concentration: 12% by mass, and sodium acetate concentration: 3% by mass An aqueous crosslinking agent solution was prepared.

この溶液に、上述の鋳型から取り出したゼラチン成形物を浸漬して25℃で3日間静置した。この後、架橋剤水溶液からゼラチン成形物を取り出して、水に投入して12時間流水水洗して、疑似餌を得た。この疑似餌をプロピレングリコールに12時間浸漬することにより防腐処理を施した。   The gelatin molded product taken out from the above mold was immersed in this solution and allowed to stand at 25 ° C. for 3 days. Thereafter, the gelatin molded product was taken out from the aqueous solution of the crosslinking agent, put into water and washed with running water for 12 hours to obtain a pseudo food. The simulated bait was immersed in propylene glycol for 12 hours for preservative treatment.

得られた疑似餌について、実施例1と同様にして、吸水後の引き裂き強度及び耐熱温度を測定した。又、外観及び性状を観察して着色及び触感を評価した。結果を表8に示す。測定値は、2回の測定の平均値である。   About the obtained pseudo bait, it carried out similarly to Example 1, and measured the tear strength after water absorption, and heat-resistant temperature. The appearance and properties were observed to evaluate coloring and touch. The results are shown in Table 8. The measured value is an average value of two measurements.

表8によれば、ゼラチン成形物を浸漬する架橋剤溶液の濃度が増加すると、疑似餌の耐熱性、耐水性及び強度が向上するが、0.1質量%を超えると、耐水性及び強度は減少し、硬度が過剰になるために柔軟性が損なわれ脆くなる。表8の結果からは、架橋剤濃度の最適値は0.1質量%前後にあると考えられる。   According to Table 8, when the concentration of the cross-linking agent solution in which the gelatin molded product is immersed increases, the heat resistance, water resistance and strength of the pseudo bait are improved. Decreases and the hardness becomes excessive, so that the flexibility is lost and the brittleness is caused. From the results in Table 8, it is considered that the optimum value of the concentration of the crosslinking agent is around 0.1% by mass.

(表8)
架橋剤濃度の影響
架橋剤濃度 引き裂き強度 耐熱温度 着色 触感
[%] [gf] [℃]
0 80 30 無し 不良(べとつく)
0.01 50 30 無し 良好
0.05 110 30 無し 良好
0.1 330 70 無し 良好
0.5 180 90 無し 不良(脆い)
1.0 150 90 無し 不良(脆い)
(Table 8)
Effect of crosslinker concentration
Cross-linking agent concentration Tear strength Heat-resistant temperature Coloring Touch
[%] [Gf] [° C]
0 80 30 None Defective (sticky)
0.01 50 30 None Good 0.05 110 30 None Good 0.1 330 70 None Good 0.5 180 90 None Bad (brittle)
1.0 150 90 None Defective (brittle)

(架橋剤を混合したゼラチン成形物)
蒸気発生用の水を収容するステンレス容器中に、実施例1における試料A1のアルカリ処理皮片(JIS K6503に準じた粘度:24.7mPa・s)及び水を入れた容器を据えて、80〜90℃に加熱して約10分間水蒸気加熱することにより、固形分13〜28質量%のゼラチン水溶液(D1:13質量%、D2:18質量%、D3:23質量%、D4:28質量%)30gを調製した。これに0.3gの前記架橋剤E4(ポリグリセロールポリグリシジルエーテル)を均一に混合して、50℃でシリコーン製鋳型のワーム形状型孔(幅:約0.8cm、長さ:約8cm)に30分以内に流し込み、鋳型を室温で放置することにより徐冷し、試料D1〜D4のゼラチン成形物を得た。
(Gelatin molded product mixed with crosslinking agent)
In a stainless steel container containing water for generating steam, an alkali-treated skin piece of sample A1 in Example 1 (viscosity according to JIS K6503: 24.7 mPa · s) and a container containing water were placed, and 80 to Gelatin aqueous solution having a solid content of 13 to 28% by mass (D1: 13% by mass, D2: 18% by mass, D3: 23% by mass, D4: 28% by mass) by heating to 90 ° C. and steam heating for about 10 minutes 30 g was prepared. 0.3 g of the cross-linking agent E4 (polyglycerol polyglycidyl ether) is uniformly mixed with this to form a worm-shaped hole (width: about 0.8 cm, length: about 8 cm) of a silicone mold at 50 ° C. Poured within 30 minutes and allowed to cool slowly by allowing the mold to stand at room temperature to obtain gelatin moldings of samples D1 to D4.

得られたゼラチン成形物を鋳型から取り出して25℃で3日間静置した後、ゼラチン成形物を水に投入して12時間流水水洗して、疑似餌を得た。この疑似餌をプロピレングリコールに12時間浸漬することにより防腐処理を施した。   The obtained gelatin molded product was taken out from the mold and allowed to stand at 25 ° C. for 3 days, and then the gelatin molded product was poured into water and washed with running water for 12 hours to obtain a pseudo food. The simulated bait was immersed in propylene glycol for 12 hours for preservative treatment.

得られた疑似餌について、実施例1と同様にして、吸水前後の伸び及び引き裂き強度(表9)、破断強度(表10)、硬度(表11)、膨潤度及び耐熱温度(表12)を測定した。   About the obtained pseudo bait, similarly to Example 1, the elongation and tear strength before and after water absorption (Table 9), the breaking strength (Table 10), the hardness (Table 11), the degree of swelling and the heat resistant temperature (Table 12) It was measured.

表9〜11によれば、ゼラチン水溶液の固形分濃度が高いほど吸水前の引き裂き強度、破断強度及び硬度が高い。吸水後の引き裂き強度については、固形分濃度による差が減少すると思われる。また、表11では、表3の浸漬法による架橋の場合(試料A1)と比べて硬度が小さく、柔軟性があることが分かる。又、表12によれば、浸漬法の場合と比べて膨潤度がやや大きいが、耐熱温度が高い。   According to Tables 9 to 11, the higher the solid content concentration of the gelatin aqueous solution is, the higher the tear strength before water absorption, break strength and hardness are. Regarding the tear strength after water absorption, the difference due to the solid content concentration seems to decrease. Moreover, in Table 11, it turns out that hardness is small compared with the case of bridge | crosslinking by the immersion method of Table 3 (sample A1), and there exists a softness | flexibility. Moreover, according to Table 12, although the degree of swelling is slightly larger than in the case of the immersion method, the heat resistant temperature is high.

(表9)
疑似餌の伸び及び引き裂き強度
試料 引き裂き時間[秒] 伸び[%] 引き裂き強度[gf]
吸水前 吸水後 吸水前 吸水後 吸水前 吸水後
D1 14 11 280 220 195 140
D2 15 12 300 240 220 180
D3 15 19 300 380 290 200
D4 9 16 180 320 420 130
(Table 9)
Elongation and tear strength of simulated food
Sample Tear time [sec] Elongation [%] Tear strength [gf]
Before water absorption After water absorption Before water absorption After water absorption Before water absorption Before water absorption
D1 14 11 280 220 195 140
D2 15 12 300 240 220 180
D3 15 19 300 380 290 200
D4 9 16 180 320 420 420 130

(表10)
疑似餌の破断強度
試料 断面積[cm] 破断強度[gf] 面積当たり破断強度[gf/cm]
吸水前 吸水後 吸水前 吸水後 吸水前 吸水後
D1 0.44 0.74 1800 1500 4091 2027
D2 0.59 0.67 1750 1700 2966 2537
D3 0.66 0.81 2600 1400 3939 1728
D4 0.50 0.72 3200 3100 6400 4306
(Table 10)
Fracture strength of simulated bait
Sample Cross-sectional area [cm 2 ] Breaking strength [gf] Breaking strength per area [gf / cm 2 ]
Before water absorption After water absorption Before water absorption After water absorption Before water absorption Before water absorption
D1 0.44 0.74 1800 1500 4091 2027
D2 0.59 0.67 1750 1700 2966 2537
D3 0.66 0.81 2600 1400 3939 1728
D4 0.50 0.72 3200 3100 6400 4306

(表11)
疑似餌の硬度
試料 硬度 硬度差
吸水前 吸水後
D1 37 39 2
D2 42 41 −1
D3 43 40 −3
D4 50 49 −1
(Table 11)
Simulated bait hardness
Sample Hardness Difference in hardness
Before water absorption After water absorption
D1 37 39 2
D2 42 41 -1
D3 43 40 -3
D4 50 49 -1

(表12)
疑似餌の膨潤度及び耐熱温度
試料 膨潤度[%] 耐熱温度[℃]
D1 42 80
D2 30 80
D3 36 80
D4 44 80
(Table 12)
Swelling degree and heat-resistant temperature of simulated food
Sample Swelling degree [%] Heat-resistant temperature [° C]
D1 42 80
D2 30 80
D3 36 80
D4 44 80

(架橋剤濃度の影響)
前述の試料D3のゼラチン成形物の調製において、架橋剤E4の添加量をゼラチン水溶液の0〜5質量%(ゼラチン質量の0〜21.5%)の範囲で変更した点以外は同様にしてゼラチン成形物を調製し、得られたゼラチン成形物を鋳型から取り出して25℃で3日間静置した後、ゼラチン成形物を、水に投入して12時間流水水洗して、疑似餌を得た。この疑似餌をプロピレングリコールに12時間浸漬することにより防腐処理を施した。
(Influence of crosslinker concentration)
Gelatin was prepared in the same manner except that the amount of the crosslinking agent E4 added was changed in the range of 0 to 5% by mass of the gelatin aqueous solution (0 to 21.5% of the gelatin mass) in the preparation of the gelatin molded product of the sample D3 described above. A molded product was prepared, and the obtained gelatin molded product was taken out from the mold and allowed to stand at 25 ° C. for 3 days. The gelatin molded product was poured into water and washed with running water for 12 hours to obtain a pseudo food. The simulated bait was immersed in propylene glycol for 12 hours for preservative treatment.

得られた疑似餌について、外観及び性状を観察して着色及び触感を評価し、実施例1と同様にして、引き裂き強度、面積当たり破断強度、耐熱温度、膨潤度及び硬度を測定した。結果を表13に示す。測定値は、2回の測定の平均値である
表13によれば、架橋剤量の最適値は、ゼラチン水溶液質量の1質量%付近にあると考えられ、この時の引き裂き強度は290gf、破断強度は3939gf/cmであった。
About the obtained pseudo bait, the appearance and properties were observed to evaluate the coloring and the tactile sensation, and the tear strength, the rupture strength per area, the heat resistant temperature, the swelling degree and the hardness were measured in the same manner as in Example 1. The results are shown in Table 13. The measured value is an average value of two measurements. According to Table 13, the optimum value of the amount of the crosslinking agent is considered to be around 1% by mass of the gelatin aqueous solution mass, and the tear strength at this time is 290 gf, the fracture strength The strength was 3939 gf / cm 2 .

(表13)
架橋剤濃度の影響
架橋剤量 引き裂き 耐熱温度 着色 触感 膨潤度 硬度 面積当たり破断
[%] 強度[gf] [℃] [%] 強度[gf/cm
0 80 30 無し 良好 113 38 1883
0.1 220 30 無し 良好 52 35 4099
0.5 290 70 無し 良好 39 50 3663
1.0 290 80 無し 良好 36 43 3939
3.0 160 80 無し 不良 22 43 3958
(脆い)
5.0 140 80 無し 不良 13 50 3000
(脆い)
(Table 13)
Effect of crosslinker concentration
Amount of cross-linking agent Tear Heat-resistant temperature Color Tactile feel Swelling degree Hardness Breaking per area
[%] Strength [gf] [° C] [%] Strength [gf / cm 2 ]
0 80 30 None Good 113 38 1883
0.1 220 30 None Good 52 35 4099
0.5 290 70 None Good 39 50 3663
1.0 290 80 None Good 36 43 3939
3.0 160 80 None Bad 22 43 3958
(brittle)
5.0 140 80 None Defective 13 50 3000
(brittle)

Claims (4)

JIS K6503に準じて測定される粘度が4.0mPa・s以上となるゼラチンゲル化物を主成分とする生分解性疑似餌。   A biodegradable pseudo bait whose main component is a gelatin gelled product having a viscosity measured in accordance with JIS K6503 of 4.0 mPa · s or more. エポキシ架橋剤及びアルデヒド架橋剤のうちの少なくとも一種で架橋処理されたゼラチンゲル化物を主成分とし、JIS K6503に準じた粘度測定において不融物が残存する生分解性疑似餌。   A biodegradable pseudo bait which contains a gelatin gelled product cross-linked with at least one of an epoxy cross-linking agent and an aldehyde cross-linking agent as a main component and remains infusible in viscosity measurement according to JIS K6503. エポキシ架橋剤及びアルデヒド架橋剤のうちの少なくとも一種の架橋成分とゼラチンとを含有するゼラチン組成物のゲル化物で形成される生分解性疑似餌。   A biodegradable pseudo bait formed from a gelled product of a gelatin composition containing at least one crosslinking component of an epoxy crosslinking agent and an aldehyde crosslinking agent and gelatin. 前記架橋成分の含有量は、前記ゼラチンの含有量の1〜10質量%である請求項3記載の生分解性疑似餌。   The biodegradable simulated bait according to claim 3, wherein the content of the cross-linking component is 1 to 10% by mass of the content of the gelatin.
JP2006199618A 2006-07-21 2006-07-21 Biodegradable simulated bait Expired - Fee Related JP4960662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006199618A JP4960662B2 (en) 2006-07-21 2006-07-21 Biodegradable simulated bait

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006199618A JP4960662B2 (en) 2006-07-21 2006-07-21 Biodegradable simulated bait

Publications (2)

Publication Number Publication Date
JP2008022784A true JP2008022784A (en) 2008-02-07
JP4960662B2 JP4960662B2 (en) 2012-06-27

Family

ID=39114082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006199618A Expired - Fee Related JP4960662B2 (en) 2006-07-21 2006-07-21 Biodegradable simulated bait

Country Status (1)

Country Link
JP (1) JP4960662B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020050205A1 (en) * 2018-09-03 2020-03-12 富士フイルム株式会社 Gel formation kit, gel, and gel production method
WO2020169885A1 (en) * 2019-02-20 2020-08-27 Kl-Teho Oy A fishing bait, a mouldable composition for manufacturing the fishing bait, a method for manufacturing the fishing bait and a use of the mouldable composition
KR20210010002A (en) * 2019-07-19 2021-01-27 정규화 A Method for Producing a Fishing Bait and the Fishing Bait Produced by the Same
RU2785712C1 (en) * 2019-02-20 2022-12-12 Кл-Техо Ой Fishing bait and its manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06319414A (en) * 1993-05-11 1994-11-22 Mikakutou Kk Gel-like artificial bait for fishing
JP2003259767A (en) * 2002-03-11 2003-09-16 Kanro Kk Artificial bait

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06319414A (en) * 1993-05-11 1994-11-22 Mikakutou Kk Gel-like artificial bait for fishing
JP2003259767A (en) * 2002-03-11 2003-09-16 Kanro Kk Artificial bait

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020050205A1 (en) * 2018-09-03 2020-03-12 富士フイルム株式会社 Gel formation kit, gel, and gel production method
JPWO2020050205A1 (en) * 2018-09-03 2021-08-30 富士フイルム株式会社 Gel formation kit, gel and gel manufacturing method
JP7216735B2 (en) 2018-09-03 2023-02-01 富士フイルム株式会社 Gel forming kit, gel and method of making gel
WO2020169885A1 (en) * 2019-02-20 2020-08-27 Kl-Teho Oy A fishing bait, a mouldable composition for manufacturing the fishing bait, a method for manufacturing the fishing bait and a use of the mouldable composition
JP2022520806A (en) * 2019-02-20 2022-04-01 コーアェル - テホ オサケ ユキチュア Fishing baits, formable compositions for producing fishing baits, methods for producing fishing baits, and use of formable compositions.
EP3927155A4 (en) * 2019-02-20 2022-12-07 KL-Teho Oy A fishing bait, a mouldable composition for manufacturing the fishing bait, a method for manufacturing the fishing bait and a use of the mouldable composition
RU2785712C1 (en) * 2019-02-20 2022-12-12 Кл-Техо Ой Fishing bait and its manufacturing method
KR20210010002A (en) * 2019-07-19 2021-01-27 정규화 A Method for Producing a Fishing Bait and the Fishing Bait Produced by the Same
KR102370855B1 (en) * 2019-07-19 2022-03-04 정규화 A Method for Producing a Fishing Bait and the Fishing Bait Produced by the Same

Also Published As

Publication number Publication date
JP4960662B2 (en) 2012-06-27

Similar Documents

Publication Publication Date Title
US7022358B2 (en) Collagen membrane made from porcine skin
Giménez et al. Physico-chemical and film forming properties of giant squid (Dosidicus gigas) gelatin
US3123482A (en) R lieberman
JP4960662B2 (en) Biodegradable simulated bait
US4626286A (en) Collagen gel and the process of making said gel
Mohammed Functional properties of tilapia’s fish scale gelatin film: Effects of different type of plasticizers
JPH0344732B2 (en)
FI80571B (en) FOERBAETTRAT WITH COLLAGENKORVSKAL.
US4233329A (en) Concentrated acid swelling of collagen in preparation of edible collagen casing
US3620775A (en) Edible collagen casing
US3930036A (en) Edible collagen sausage casing and method of preparing same
US3627542A (en) Edible collagen casing containing monoglyceride or acetylated monoglyceride softener
US3821439A (en) Coagulating and hardening bath for edible collagen sausage casings
US7754258B2 (en) Porcine collagen film
US3930035A (en) Edible collagen sausage casing and process for preparing same
CN113453545A (en) Fishing lures, moldable compositions for making fishing lures, methods of making fishing lures, and uses of moldable compositions
US3567467A (en) Edible collagen casing containing antioxidant
US3932677A (en) Collagen casings from limed hide collagen
CN108452366A (en) A kind of gelatin-compounded bleeding-stopping dressing of cod skin and preparation method thereof
US3425847A (en) Method of preparing an edible tubular collagen casing
EP2727938B1 (en) Method for obtaining collagen from animal skin
US3885054A (en) Edible collagen casing cross-linked by bisulfite addition
US3922356A (en) Sulfite catalyzed aluminum tannage of collagen casing
KR101187258B1 (en) Preparation of artificial fishing bait using hydrogel
JPH0661240B2 (en) Hams and sausages and their manufacturing method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090630

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090709

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120323

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees