JP2008022596A - Control method of accumulator and control device - Google Patents

Control method of accumulator and control device Download PDF

Info

Publication number
JP2008022596A
JP2008022596A JP2006189833A JP2006189833A JP2008022596A JP 2008022596 A JP2008022596 A JP 2008022596A JP 2006189833 A JP2006189833 A JP 2006189833A JP 2006189833 A JP2006189833 A JP 2006189833A JP 2008022596 A JP2008022596 A JP 2008022596A
Authority
JP
Japan
Prior art keywords
storage battery
discharge
stratification
charge
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006189833A
Other languages
Japanese (ja)
Other versions
JP4413893B2 (en
Inventor
Katsuya Nukui
克弥 温井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2006189833A priority Critical patent/JP4413893B2/en
Publication of JP2008022596A publication Critical patent/JP2008022596A/en
Application granted granted Critical
Publication of JP4413893B2 publication Critical patent/JP4413893B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control method of an accumulator which controls an accumulator so as to secure a discharging capacity by estimating a degree of stratification, and to provide a control device. <P>SOLUTION: The control device 100 comprises a pole plate voltage calculation part 130, an SOC calculation part 140 and an SOH calculation part 150, in order to calculate the present discharging capacity of the accumulator 1 at a COD calculation part 160. In addition to a determination part 170 determines whether the discharging capacity calculated at the COD calculation part 160 satisfies the required discharging capacity, determines whether the required discharging capacity can be satisfied by improving the degree of stratification; and when the required capacity is satisfied, outputs a requirement signal to a generator control part 4 so as to perform gashing. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、蓄電池の制御方法及び制御装置に関するものである。   The present invention relates to a storage battery control method and control device.

液式鉛蓄電池では、充放電を繰り返すことによって蓄電池上部の電解液比重が低くなる一方、蓄電池下部には比重の高い電解液が蓄積する成層化という現象が発生する。成層化現象は、例えば以下のようにして促進される。(1)液式鉛蓄電池を長期間放置する、あるいは充電しないまま大容量放電を行なう、ことによって電池の残容量を低下させる。(2)その後充電を開始する。このとき、充電作用により極板表面で硫酸が生成される。(3)水と硫酸の比重差のために硫酸が沈殿して液層が形成される(成層化)。(4)満充電容量に到達する前に充電を終了する。(5)(1)から(4)の充放電を繰り返す。   In a liquid lead acid battery, the specific gravity of the electrolyte at the upper part of the storage battery is lowered by repeated charge and discharge, while the phenomenon of stratification in which the electrolyte with a higher specific gravity accumulates at the lower part of the storage battery occurs. The stratification phenomenon is promoted as follows, for example. (1) The remaining capacity of the battery is reduced by leaving the liquid lead-acid battery for a long period of time or performing a large capacity discharge without charging. (2) Charging is then started. At this time, sulfuric acid is generated on the surface of the electrode plate by charging. (3) Due to the specific gravity difference between water and sulfuric acid, sulfuric acid is precipitated and a liquid layer is formed (stratification). (4) Terminate charging before reaching full charge capacity. (5) The charging / discharging of (1) to (4) is repeated.

上記のような成層化の促進過程において、特に(4)で蓄電池の残容量が満充電容量に達する前に充電を終了させてしまうと、これにより成層化がますます促進されてしまう。成層化が形成された状態では、硫酸が沈殿していない極板上部だけで所定の反応が起こり、硫酸が沈殿した極板下部では反応が起こらなくなってしまう。硫酸が沈殿した極板下部では、極板の不活性化が生じるとともに、硫酸の層が固定化されて対流も起こらなくなってしまう。   In the process of promoting stratification as described above, in particular, if charging is terminated before the remaining capacity of the storage battery reaches the full charge capacity in (4), stratification is further promoted. In a state in which stratification is formed, a predetermined reaction occurs only at the upper part of the electrode plate where sulfuric acid is not precipitated, and the reaction does not occur at the lower part of the electrode plate where sulfuric acid is precipitated. In the lower part of the electrode plate where the sulfuric acid is precipitated, the electrode plate is inactivated and the sulfuric acid layer is fixed and convection does not occur.

上記のような成層化が進んだ状態で蓄電池を使用し続けると、硫酸が沈殿していない蓄電池の上部だけで反応が繰り返し行われることになり、電池の寿命が設計されたものより短くなってしまうといった問題がある。   If you continue to use the storage battery in a state where stratification has progressed as described above, the reaction will be repeated only at the top of the storage battery where sulfuric acid has not precipitated, and the battery life will be shorter than what was designed. There is a problem such as.

そこで、蓄電池の成層化を低減するための技術開発が進められており、いくつかの技術が開示されている。例えば特許文献1では、過充電のときに電極から発生するガスを利用して電解液を攪拌させる攪拌装置を備えており、これに加えて攪拌効率を上げるためにジグザグ形状のセパレータを電極間に配置している。また、特許文献2では、蓄電池の製造過程で発生する成層化を短時間で改善するために、蓄電池本体を上下反転させることによって電解液を攪拌し、成層化を効率良く改善する方法を開示している。   Therefore, technological development for reducing the stratification of the storage battery is underway, and several techniques are disclosed. For example, Patent Document 1 includes a stirrer that stirs an electrolyte solution using gas generated from electrodes during overcharging. In addition, a zigzag separator is interposed between the electrodes to increase stirring efficiency. It is arranged. Moreover, in patent document 2, in order to improve the stratification which generate | occur | produces in the manufacturing process of a storage battery in a short time, the electrolytic solution is stirred by inverting a storage battery main body up and down, and the method of improving stratification efficiently is disclosed. ing.

さらに、特許文献3では、鉛蓄電池の成層化を改善するためのバッテリ充電器として、充電中の蓄電池の充電受け入れ能力または充電状態をもとに過充電のタイミングと過充電電流を決定し、このような過充電電流を供給するよう発電機を制御する装置が提案されている。
実公平6−21179号公報 特開平6−111814号公報 特開2003−243039号公報
Furthermore, in Patent Document 3, as a battery charger for improving the stratification of the lead storage battery, the overcharge timing and the overcharge current are determined based on the charge acceptance capability or the charge state of the storage battery being charged. An apparatus for controlling a generator to supply such an overcharge current has been proposed.
Japanese Utility Model Publication No. 6-21179 JP-A-6-111814 Japanese Patent Laid-Open No. 2003-243039

しかしながら、従来の成層化を低減するための蓄電池の制御方法及び制御装置では、以下のような課題があった。特許文献1に記載の蓄電池では、攪拌装置やジグザグ形状のセパレータを備えるなど複雑な構造を有しているため、大きさの規格やコスト等の面から、車載用の蓄電池として用いるのは困難である。   However, the conventional storage battery control method and control device for reducing stratification have the following problems. The storage battery described in Patent Document 1 has a complicated structure such as a stirrer or a zigzag separator, so it is difficult to use it as an in-vehicle storage battery in terms of size standards and costs. is there.

また特許文献2に記載の方法では、蓄電池の製造過程で発生する成層化を短時間で改善するために蓄電池本体を上下反転させているが、このような方法は蓄電池の製造時など限られた条件でのみ実現できるものであり、車両等に設置された蓄電池では採用することはできない。   Further, in the method described in Patent Document 2, the storage battery body is turned upside down in order to improve the stratification that occurs in the manufacturing process of the storage battery in a short time, but such a method is limited at the time of manufacturing the storage battery. It can be realized only under conditions, and cannot be adopted for a storage battery installed in a vehicle or the like.

さらに特許文献3に記載の装置では、蓄電池の充電受け入れ能力や充電状態を判定するにあたって、電池の経年劣化等に伴う電池容量の低下を反映していない。経年劣化が進行した蓄電池では、充放電できる容量が蓄電池の初期容量よりも低下しているにもかかわらず、初期容量のままとして充電制御を行わせると、必要以上の過充電状態を生じさせて電池の劣化を促進させてしまうといった問題があった。   Furthermore, in the apparatus described in Patent Document 3, in determining the charge acceptance capacity and the state of charge of the storage battery, a decrease in battery capacity due to battery aging or the like is not reflected. In storage batteries that have deteriorated over time, the chargeable / dischargeable capacity is lower than the initial capacity of the storage battery. There has been a problem of promoting the deterioration of the battery.

そこで、本発明はこれらの問題を解決するためになされたものであり、成層化度を推定して放電能力を確保するよう制御する蓄電池の制御方法及び制御装置を提供することを目的とする。   Therefore, the present invention has been made to solve these problems, and an object of the present invention is to provide a storage battery control method and a control device that control the degree of stratification to ensure discharge capacity.

本発明の蓄電池の制御方法の第1の態様は、発電機で充電可能に構成された蓄電池の制御方法であって、前記蓄電池の状態量を測定し、前記状態量から前記蓄電池の充放電履歴を求めて記憶し、前記充放電履歴から所定の相関データに基づいて前記蓄電池の成層化度を推定し、前記成層化度が所定の基準値に達したとき、前記蓄電池が成層化による劣化状態であると判定することを特徴とする。   A first aspect of the storage battery control method of the present invention is a storage battery control method configured to be rechargeable by a generator, which measures a state quantity of the storage battery, and charges and discharges the storage battery from the state quantity. And determining the stratification degree of the storage battery based on predetermined correlation data from the charge / discharge history, and when the stratification degree reaches a predetermined reference value, the storage battery is in a deteriorated state due to stratification. It is determined that it is.

本発明の蓄電池の制御方法の他の態様は、前記状態量として前記蓄電池の電流を測定し、前記電流の充放電パターンを前記電流の大きさ及び時間に応じて1以上の放電深度パターンに分類し、前記放電深度パターン毎に充放電繰返しサイクル数を算出し、前記充放電履歴として、前記放電深度パターン毎の前記充放電繰返しサイクル数の総和を算出することを特徴とする。   According to another aspect of the storage battery control method of the present invention, the current of the storage battery is measured as the state quantity, and the charge / discharge pattern of the current is classified into one or more discharge depth patterns according to the magnitude and time of the current. The charge / discharge repetition cycle number is calculated for each discharge depth pattern, and the sum of the charge / discharge repetition cycle numbers for each discharge depth pattern is calculated as the charge / discharge history.

本発明の蓄電池の制御方法の他の態様は、前記状態量として前記蓄電池の電圧を測定し、前記充放電履歴として、前記電圧から所定幅以上の電圧変動繰返しサイクル数を算出することを特徴とする。   Another aspect of the method for controlling a storage battery according to the present invention is characterized in that the voltage of the storage battery is measured as the state quantity, and a voltage fluctuation repetition cycle number of a predetermined width or more is calculated from the voltage as the charge / discharge history. To do.

本発明の蓄電池の制御方法の他の態様は、前記成層化による劣化状態を判定すると、さらに前記発電機の発電量を調整してガッシングを発生させることを特徴とする。   Another aspect of the storage battery control method of the present invention is characterized in that when the deterioration state due to the stratification is determined, the amount of power generated by the generator is further adjusted to generate gassing.

本発明の蓄電池の制御方法の他の態様は、前記状態量から所定の等価回路モデルに基づいて前記蓄電池の放電能力を推定し、前記放電能力が所定の要求値未満となり、かつ前記成層化による劣化状態を判定すると、前記発電機の発電量を調整してガッシングを発生させることを特徴とする。   According to another aspect of the storage battery control method of the present invention, the discharge capacity of the storage battery is estimated from the state quantity based on a predetermined equivalent circuit model, the discharge capacity is less than a predetermined required value, and the stratification is performed. When the deterioration state is determined, gas generation is generated by adjusting the power generation amount of the generator.

本発明の蓄電池の制御方法の他の態様は、前記放電能力が所定の要求値未満となり、かつ前記成層化による劣化状態を判定するとともに、前記成層化による劣化状態を解消することで前記放電能力が前記要求値以上確保できると判定すると、前記発電機の発電量を調整してガッシングを発生させることを特徴とする。   In another aspect of the storage battery control method of the present invention, the discharge capacity is less than a predetermined required value, and the deterioration state due to the stratification is determined, and the discharge state is eliminated by eliminating the deterioration state due to the stratification. Is determined to be able to secure more than the required value, the power generation amount of the generator is adjusted to generate gassing.

本発明の蓄電池の制御装置の第1の態様は、発電機で充電可能に構成された蓄電池の制御装置であって、前記蓄電池の状態量を測定するセンサーと、前記センサーで測定された前記状態量から前記蓄電池の充放電履歴を求めて記憶し、前記充放電履歴から所定の相関データに基づいて前記蓄電池の成層化度を推定し、前記成層化度が所定の基準値に達したとき前記蓄電池が成層化による劣化状態であると判定する制御部と、を備えることを特徴とする。   A first aspect of the storage battery control device of the present invention is a storage battery control device configured to be rechargeable by a generator, the sensor measuring a state quantity of the storage battery, and the state measured by the sensor The charge / discharge history of the storage battery is obtained from the quantity and stored, and the stratification degree of the storage battery is estimated based on predetermined correlation data from the charge / discharge history, and when the stratification degree reaches a predetermined reference value, And a control unit that determines that the storage battery is in a deteriorated state due to stratification.

本発明の蓄電池の制御装置の他の態様は、前記センサーが前記蓄電池の電流を測定する電流センサーであって、前記制御部が、前記電流センサーから電流測定値を入力し、入力した前記電流測定値を積算して充電量及び放電量を算出し、前記充放電履歴として、前記充電量及び放電量から充放電繰返しサイクル数を算出するよう構成されていることを特徴とする。   Another aspect of the storage battery control device according to the present invention is a current sensor in which the sensor measures a current of the storage battery, wherein the control unit inputs a current measurement value from the current sensor and inputs the current measurement. The charge amount and the discharge amount are calculated by integrating the values, and the charge / discharge history is calculated from the charge amount and the discharge amount as the charge / discharge history.

本発明の蓄電池の制御装置の他の態様は、前記センサーが前記蓄電池の電圧を測定する電圧センサーであって、前記制御部が、前記電圧センサーから電圧測定値を入力し、前記充放電履歴として、入力した前記電圧測定値から所定幅以上の電圧変動繰返しサイクル数を算出するよう構成されていることを特徴とする。   According to another aspect of the storage battery control device of the present invention, the sensor is a voltage sensor that measures the voltage of the storage battery, and the control unit inputs a voltage measurement value from the voltage sensor, and the charge / discharge history is The number of voltage fluctuation repeated cycles having a predetermined width or more is calculated from the input voltage measurement value.

本発明の蓄電池の制御装置の他の態様は、前記制御部が、前記成層化による劣化状態を判定すると、前記発電機の制御部にガッシングを発生させるための発電要求信号を出力するよう構成されていることを特徴とする。   Another aspect of the storage battery control device of the present invention is configured to output a power generation request signal for causing the control unit of the generator to generate gassing when the control unit determines a deterioration state due to the stratification. It is characterized by.

本発明の蓄電池の制御装置の他の態様は、前記制御部が、前記状態量から所定の等価回路モデルに基づいて前記蓄電池の放電能力を推定し、前記放電能力が所定の要求値未満となり、かつ前記成層化による劣化状態を判定すると、前記発電機の制御部に前記発電要求信号を出力するよう構成されていることを特徴とする。   In another aspect of the storage battery control device of the present invention, the control unit estimates the discharge capacity of the storage battery based on a predetermined equivalent circuit model from the state quantity, and the discharge capacity becomes less than a predetermined required value. And when the deterioration state by the said stratification is determined, it is comprised so that the said electric power generation request signal may be output to the control part of the said generator.

本発明によれば、成層化度を推定して放電能力を確保するよう制御する蓄電池の制御方法及び制御装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the control method and control apparatus of a storage battery which control to estimate a stratification degree and to ensure discharge capability can be provided.

本発明の好ましい実施の形態における蓄電池の制御方法及び制御装置について、図面を参照して詳細に説明する。なお、同一機能を有する各構成部については、図示及び説明簡略化のため、同一符号を付して示す。本発明の蓄電池の制御方法及び制御装置は、蓄電池と蓄電池を充電するための発電機を備えたシステムに適用されるものであり、以下では、蓄電池及び発電機として、車両用電源システムの車載用バッテリ及びオルタネータを例に説明する。   A storage battery control method and control apparatus according to a preferred embodiment of the present invention will be described in detail with reference to the drawings. In addition, about each structural part which has the same function, the same code | symbol is attached | subjected and shown for simplification of illustration and description. The storage battery control method and the control device of the present invention are applied to a system including a storage battery and a generator for charging the storage battery. Hereinafter, the storage battery and the generator are used in a vehicle power supply system. A battery and an alternator will be described as an example.

本発明の蓄電池の制御方法及び制御装置では、蓄電池の現在の放電能力(Capability of Discharge)COD_nowを監視し、これが要求される放電能力COD_needを下回って不足していると判定された場合に、蓄電池の成層化度を改善することで蓄電池の放電能力を回復させることが可能かを判定している。そして、放電能力の回復が可能と判定されると、成層化を改善させるために、蓄電池のガッシングを発生させる制御を発電機の制御装置に要求する。   In the storage battery control method and control device of the present invention, the current discharge capability (capability of discharge) COD_now of the storage battery is monitored, and when it is determined that the storage battery is insufficient below the required discharge capability COD_need, the storage battery It is determined whether or not the discharge capacity of the storage battery can be recovered by improving the degree of stratification. When it is determined that the discharge capacity can be recovered, the control device for the generator is requested to control the storage battery to cause gassing in order to improve the stratification.

本発明の実施の形態に係る蓄電池の制御装置の構成図を図1に示す。本実施形態の制御装置100では、センサー110で蓄電池1の状態量を測定し、測定データをもとにCOD算出部160で蓄電池1の現在の放電能力COD_nowを算出している。また、判定部170は、COD算出部160で算出された放電能力COD_nowとSOH算出部150で算出された蓄電池1の成層化度とを入力し、所定の条件を満たす場合に蓄電池1のガッシングを発生させる制御を、車両運行用メインECU3を介して発電機制御装置4に対して要求する。   FIG. 1 shows a configuration diagram of a storage battery control device according to an embodiment of the present invention. In the control apparatus 100 of this embodiment, the state quantity of the storage battery 1 is measured by the sensor 110, and the current discharge capacity COD_now of the storage battery 1 is calculated by the COD calculation unit 160 based on the measurement data. Further, the determination unit 170 inputs the discharge capacity COD_now calculated by the COD calculation unit 160 and the stratification degree of the storage battery 1 calculated by the SOH calculation unit 150, and performs the gassing of the storage battery 1 when a predetermined condition is satisfied. Control to be generated is requested to the generator control device 4 via the main ECU 3 for vehicle operation.

センサー110は、蓄電池1の電圧と電流を測定する電圧センサーと電流センサー、及び蓄電池1の表面温度を測定する温度センサーからなり、各センサーで測定した測定電圧、測定電流及び測定温度を、センサー110が持つ測定経過時間と共に入力部120に送信する。また、COD算出部160で蓄電池1の現在の放電能力COD_nowを算出するために、本実施形態の制御装置100は、極板電圧算出部130、SOC算出部140及びSOH算出部150を備えている。以下では、各算出部130〜150の処理内容を説明する。   The sensor 110 includes a voltage sensor and a current sensor that measure the voltage and current of the storage battery 1, and a temperature sensor that measures the surface temperature of the storage battery 1. The sensor 110 measures the measurement voltage, the measurement current, and the measurement temperature measured by each sensor. Is transmitted to the input unit 120 together with the elapsed measurement time. In addition, in order for the COD calculation unit 160 to calculate the current discharge capacity COD_now of the storage battery 1, the control device 100 of this embodiment includes an electrode plate voltage calculation unit 130, an SOC calculation unit 140, and an SOH calculation unit 150. . Below, the processing content of each calculation part 130-150 is demonstrated.

極板電圧算出部130は、センサー110で測定した電圧をもとに、蓄電池1に内蔵される+極とー極の極板間の電圧(以下では極板電圧という)を算出する。極板電圧V_batは、次式で算出することができる。   Based on the voltage measured by the sensor 110, the electrode plate voltage calculation unit 130 calculates the voltage between the positive electrode and the negative electrode incorporated in the storage battery 1 (hereinafter referred to as electrode plate voltage). The electrode plate voltage V_bat can be calculated by the following equation.

V_bat=V_mes*A_temp*B_pol (式1)
ここで、
V_mes :測定電圧
A_temp :極板電圧の温度係数
B_pol :分極係数
である。
V_bat = V_mes * A_temp * B_pol (Formula 1)
here,
V_mes: Measurement voltage
A_temp: Temperature coefficient of electrode plate voltage
B_pol: Polarization coefficient.

温度係数A_tempは、極板電圧V_batの温度依存性を補償するための補正係数である。この温度依存性は、極板電圧V_batが極板における温度T_batによって変化するという極板電圧の特性をいう。また、分極係数B_polは、電池の充放電によって発生する分極の影響を補正するものである。温度係数A_temp及び分極係数B_polの算出方法を、図2、3を用いて説明する。   The temperature coefficient A_temp is a correction coefficient for compensating for the temperature dependence of the electrode plate voltage V_bat. This temperature dependency refers to a characteristic of the electrode plate voltage in which the electrode plate voltage V_bat varies with the temperature T_bat in the electrode plate. The polarization coefficient B_pol corrects the influence of polarization generated by charging / discharging of the battery. A method for calculating the temperature coefficient A_temp and the polarization coefficient B_pol will be described with reference to FIGS.

温度係数A_tempを算出するにあたって、まず測定温度T_mesから極板温度T_batを求める必要があるが、測定温度T_mes及び極板温度T_batは、時間応答が比較的長く安定するまでに時間を要する。そのため本実施形態では、図2(a)に示すように、測定温度T_mesのログを取って測定温度T_mesの時間依存性を求める。次に、図2(b)に示す測定温度T_mesと極板温度T_batとの時間依存の相関カーブを示す参照データから、測定温度T_mesの時間依存性に対応する極板温度T_batの時間依存性を求め、これから極板温度T_batを求める。   In calculating the temperature coefficient A_temp, it is first necessary to obtain the electrode plate temperature T_bat from the measured temperature T_mes. The measured temperature T_mes and the electrode plate temperature T_bat require time until the time response is relatively long and stable. Therefore, in the present embodiment, as shown in FIG. 2A, the measured temperature T_mes is logged and the time dependency of the measured temperature T_mes is obtained. Next, from the reference data showing the time-dependent correlation curve between the measured temperature T_mes and the electrode plate temperature T_bat shown in FIG. 2B, the time dependency of the electrode plate temperature T_bat corresponding to the time dependency of the measured temperature T_mes is obtained. Obtain electrode plate temperature T_bat from this.

極板温度T_batが求まると、次に図2(c)に示す極板温度T_batと極板電圧V_batとの相関を示す参照データから、上記で算出された極板温度T_batに対応する極板電圧の温度係数A_tempを算出する。温度係数A_tempを算出するのに用いる図2(b)及び(c)の参照データは、蓄電池1の構造や大きさ、センサー110の測定ポイント等によって変化するため、対象とする蓄電池1に合わせて測定データを取得しておくか、シミュレーションにより、上記の参照データを作成して用いることができる。   When the electrode plate temperature T_bat is obtained, the electrode plate voltage corresponding to the electrode plate temperature T_bat calculated above is obtained from the reference data indicating the correlation between the electrode plate temperature T_bat and the electrode plate voltage V_bat shown in FIG. The temperature coefficient A_temp of is calculated. 2B and 2C used for calculating the temperature coefficient A_temp varies depending on the structure and size of the storage battery 1, the measurement point of the sensor 110, and the like. The reference data can be created and used by acquiring measurement data or by simulation.

次に、分極係数B_polの算出方法を、図3を用いて以下に説明する。蓄電池は、充放電を行うと蓄電池内部で分極(polarization)が発生し、その影響で極板電圧が安定時の値V_batから過渡的に変化してしまう。そこで、極板電圧算出部130では分極の影響をB_polで補正するようにしている。分極は、電池の反応物質の活量や蓄電池容量、充放電履歴等によってその度合いが異なるため、分極が発生してから安定した端子電圧になるまでの関係を測定データあるいはシミュレーション等により予め求めておき、これを参照用データとして極板電圧算出部130に持たせておく。   Next, a method for calculating the polarization coefficient B_pol will be described below with reference to FIG. When a storage battery is charged and discharged, polarization occurs inside the storage battery, and the electrode plate voltage changes transiently from the stable value V_bat due to the influence. Therefore, the electrode plate voltage calculation unit 130 corrects the influence of polarization with B_pol. Since the degree of polarization varies depending on the activity of the reactants in the battery, the storage battery capacity, the charge / discharge history, etc., the relationship between the occurrence of polarization and the stable terminal voltage is obtained in advance by measurement data or simulation. This is given to the electrode plate voltage calculator 130 as reference data.

分極が発生してから安定した端子電圧になるまでの関係の例を図3(b)に示す。端子電圧、すなわち測定電圧V_mesとして、図3(a)に示すように少なくとも2点の測定値を取得し、これを図3(b)の参照用データと照合して現在の分極度合いを推定し、これから分極係数B_polを決定する。   FIG. 3B shows an example of the relationship from the occurrence of polarization to the stable terminal voltage. As the terminal voltage, that is, the measurement voltage V_mes, at least two measurement values are obtained as shown in FIG. 3A, and these are compared with the reference data in FIG. 3B to estimate the current degree of polarization. From this, the polarization coefficient B_pol is determined.

上記のようにして、温度係数A_temp及び分極係数B_polが算出されると、これと測定電圧V_mesを(式1)に代入することで、極板電圧V_batを算出することができる。算出された極板電圧V_batは、COD算出部160に出力されてCODの算出に用いられる。   When the temperature coefficient A_temp and the polarization coefficient B_pol are calculated as described above, the electrode plate voltage V_bat can be calculated by substituting this and the measurement voltage V_mes into (Equation 1). The calculated electrode plate voltage V_bat is output to the COD calculating unit 160 and used for calculating the COD.

次に、蓄電池1のSOC(残電池容量)を算出するSOC算出部140について、以下に説明する。SOCの時系列的な算出値をSOC_now-iと表わしたとき、
SOC_now-n≦SOC_now-(n-1) ≦・・・≦SOC_now-0=SOC_start (式2)
なる関係があり、時間の経過とともにSOCは低下していく。SOCの初期値をSOC_now-0=SOC_startとしており、設計上の電池容量を100%としてSOC_now-i をA・hまたは%に換算することができる。
Next, the SOC calculation unit 140 that calculates the SOC (remaining battery capacity) of the storage battery 1 will be described below. When the SOC time-series calculated value is expressed as SOC_now-i,
SOC_now-n ≦ SOC_now- (n-1) ≦ ・ ・ ・ ≦ SOC_now-0 = SOC_start (Formula 2)
The SOC decreases with the passage of time. The initial value of the SOC is SOC_now-0 = SOC_start, and the SOC_now-i can be converted to A · h or% by setting the designed battery capacity to 100%.

また、SOCの変化を次式のように表すことができる。   Further, the change in SOC can be expressed as the following equation.

SOC_now-n=SOC_now-(n-1)+ΔSOC+ΔSOH (式3)
ここで、ΔSOCは、前回のSOC算出時点からのSOC増分(減少のときは負の値)であり、ΔSOHは前回のSOC算出時点からのSOH増分(SOH増のとき負とする)である。SOCの算出回数は、ΔSOCやΔSOHの算出回数と必ずしも一致している必要はなく、n番目のSOC算出値SOC_now-nに対して、それまでのΔSOC、ΔSOHの算出回数はそれぞれ、l回、m回であってよい(l、m、nは0以上の整数)。
SOC_now-n = SOC_now- (n-1) + ΔSOC + ΔSOH (Formula 3)
Here, ΔSOC is the SOC increment from the previous SOC calculation time (a negative value when decreasing), and ΔSOH is the SOH increment from the previous SOC calculation time (negative when increasing SOH). The number of times of calculation of the SOC does not necessarily match the number of times of calculation of ΔSOC or ΔSOH. For the nth SOC calculation value SOC_now-n, the number of calculations of ΔSOC and ΔSOH so far is l, It may be m times (l, m, n are integers of 0 or more).

SOC増分ΔSOCは、充電電流積算値をΔSOC1、放電電流積算値をΔSOC2としたとき、
ΔSOC=ΔSOC1+ΔSOC2 (式4)
と表すことができる。ここで、
ΔSOC1=η_I*∫I*dt (式5)
η_I=SOC_now-(n-1)*I*T_bat (式6)
ΔSOC2=∫I_load*dt_load+∫I_dark*dt_dark (式7)
と表すことができる。ΔSOC算出の流れを図4に示す。
The SOC increment ΔSOC is obtained when the charge current integrated value is ΔSOC1 and the discharge current integrated value is ΔSOC2.
ΔSOC = ΔSOC1 + ΔSOC2 (Formula 4)
It can be expressed as. here,
ΔSOC1 = η_I * ∫I * dt (Formula 5)
η_I = SOC_now- (n-1) * I * T_bat (Formula 6)
ΔSOC2 = ∫I_load * dt_load + ∫I_dark * dt_dark (Formula 7)
It can be expressed as. The flow of ΔSOC calculation is shown in FIG.

充電電流積算値ΔSOC1は、(式5)に示す通り、充電電流Iの積算値に充電効率η_Iをかけることで算出される。充電効率η_Iは、残容量SOC_now-(n-1)、充電電流I、及び極板温度T_batに対し図4に示すような変化を示すことから、式6のような相関式で表わせる。この充電効率η_Iは、蓄電池の種類毎または蓄電池毎にその特性を事前に評価し、これを参照データとしてSOC算出部140に持たせておく。   The charging current integrated value ΔSOC1 is calculated by multiplying the integrated value of the charging current I by the charging efficiency η_I as shown in (Equation 5). The charging efficiency η_I can be expressed by a correlation equation such as Equation 6 because it shows the changes shown in FIG. 4 with respect to the remaining capacity SOC_now- (n−1), the charging current I, and the electrode plate temperature T_bat. The charging efficiency η_I is evaluated in advance for each type of storage battery or for each storage battery, and is given to the SOC calculation unit 140 as reference data.

(式7)で表される放電電流積算値ΔSOC2は、車両走行中の放電量と車両のエンジン停止中の放電量の和で算出される。I_loadは、車両運行中の負荷による強制放電が行われているときの電流値を示し、I_darkは、エンジン停止中に車両システムが暗電流として蓄電池から消費している電流値を示す。I_loadとI_darkとは、それぞれの時間応答と電流レンジ特性が異なるため、サンプリングタイミングや測定レンジを共有できない場合は、異なる電流積算値を用いてΔSOC2を算出するようにするのがよい。   The discharge current integrated value ΔSOC2 represented by (Equation 7) is calculated as the sum of the discharge amount while the vehicle is traveling and the discharge amount when the engine of the vehicle is stopped. I_load indicates a current value when forced discharge is performed by a load during vehicle operation, and I_dark indicates a current value consumed from the storage battery as a dark current by the vehicle system while the engine is stopped. Since I_load and I_dark have different time responses and current range characteristics, when the sampling timing and measurement range cannot be shared, ΔSOC2 is preferably calculated using different current integrated values.

次に、蓄電池1のSOH(State of health)を算出するSOH算出部150について、以下に説明する。ここでは、蓄電池1の各種劣化パラメータSOHiの変化量の和であるΔSOHを算出している。劣化パラメータとしては、以下のものがある。   Next, the SOH calculation unit 150 that calculates the SOH (State of health) of the storage battery 1 will be described below. Here, ΔSOH, which is the sum of changes in various deterioration parameters SOHi of the storage battery 1, is calculated. The deterioration parameters include the following.

(1)SOH1:電解液の成層化による放電容量の低下
(2)SOH2:電解液の減液による放電容量の低下
(3)SOH3:深度放電回数に対応した放電容量の低下
(4)SOH4:充放電を行わない自然放電のみの放置期間に対応した放電容量の低下
(5)SOH5:長期間使用に伴う内部抵抗の増大による放電容量の低下
(6)SOH6:その他故障等による放電容量の低下
上記各劣化パラメータの変化量をΔSOHiとしたとき、全劣化変化量ΔSOHは、
ΔSOH=ΣΔSOHi (式8)
と表わされる。上記の劣化量(劣化進行具合)は、蓄電池1の初期放電容量に対する影響度を%に換算して評価したものである。以下では、各劣化パラメータについて説明する。
(1) SOH1: Decrease in discharge capacity due to stratification of electrolyte (2) SOH2: Decrease in discharge capacity due to decrease in electrolyte (3) SOH3: Decrease in discharge capacity corresponding to the number of depth discharges (4) SOH4: (5) SOH5: Decrease in discharge capacity due to increase in internal resistance due to long-term use (6) SOH6: Decrease in discharge capacity due to other failures, etc. When the change amount of each deterioration parameter is ΔSOHi, the total deterioration change amount ΔSOH is
ΔSOH = ΣΔSOHi (Formula 8)
It is expressed as The amount of deterioration (degradation progress) is evaluated by converting the degree of influence on the initial discharge capacity of the storage battery 1 into%. Below, each deterioration parameter is demonstrated.

まず、電解液の成層化による放電容量の低下を示すSOH1は、以下に示す4つのプロセスにおける成層化の進行度を推定して求めることができる。   First, SOH1 indicating a decrease in discharge capacity due to stratification of the electrolytic solution can be obtained by estimating the progress of stratification in the following four processes.

(1)放電電流積算値ΔSOC2の経時変化
(2)充電電流積算値ΔSOC1の経時変化
(3)充電効率η_Iが10%以上の領域で起こるガッシング過程 Guss_base
(4)充電効率η_Iが10%以下の領域で起こるガッシング過程 Guss_out
又は、SOC_now≧SOC_now-1となった時点を起点として、ガッシングが行われた電流積算値∫I_guss*dt =Guss_out
(1)〜(4)のプロセスにおける放電容量、成層化度、及びガッシング量(ガス発生量)の変化の例を図5に示す。同図に示す通り、成層化度は放電の後充電を行っているときに大きく増加し、ガッシングの発生とともに減少していく。また、ガッシング量(ガス発生量)は充電効率η_Iが10%以下で充電されているときに大きくなり、過充電のときに最大となる。
(1) Change with time of discharge current integrated value ΔSOC2 (2) Change with time of charge current integrated value ΔSOC1 (3) Gassing process that occurs when charge efficiency η_I is 10% or more Guss_base
(4) Gassing process that occurs when the charging efficiency η_I is less than 10% Guss_out
Or, from the time when SOC_now ≧ SOC_now-1 is set as the starting point, the accumulated current value ガ I_guss * dt = Guss_out
FIG. 5 shows an example of changes in discharge capacity, stratification degree, and gassing amount (gas generation amount) in the processes (1) to (4). As shown in the figure, the degree of stratification increases greatly during charging after discharging, and decreases with the occurrence of gassing. Further, the amount of gassing (gas generation amount) becomes large when the charging efficiency η_I is charged at 10% or less, and becomes maximum when the battery is overcharged.

上記の各プロセスにおける放電容量の変化は、電流積算値に換算することができ、また上記の(1)と(2)のプロセスから、電解液の成層化度を求めることができる。すなわち、成層化度は充放電繰り返しサイクル数(ΔSOC2とΔSOC1との繰返しサイクル数)と図6(a)に示すような相関があり、これを参照データとしてSOH算出部150に持たせて成層化度の算出に用いるようにすることができる。   The change in discharge capacity in each of the above processes can be converted into an integrated current value, and the degree of stratification of the electrolyte can be obtained from the processes (1) and (2). That is, the degree of stratification has a correlation as shown in FIG. 6A with the number of charge / discharge repetition cycles (number of cycles between ΔSOC2 and ΔSOC1), and this is given as reference data to the SOH calculation unit 150 for stratification. It can be used for calculating the degree.

なお、充放電のパターンには、例えば図7に示すように、電流の大きさや充放電時間によって様々なものがある。そこで、上記の充放電繰り返しサイクル数として、まず充放電パターンを電流の大きさ及び充放電時間に応じて1以上の放電深度パターン(DOD)に分類し、各放電深度パターン毎に充放電繰返しサイクル数を算出してその総和を算出したものを用いるのがよい。   As shown in FIG. 7, for example, there are various charge / discharge patterns depending on the magnitude of current and charge / discharge time. Therefore, as the number of charge / discharge cycle cycles, first, charge / discharge patterns are classified into one or more discharge depth patterns (DOD) according to the magnitude of current and charge / discharge time, and the charge / discharge cycle is repeated for each discharge depth pattern. It is good to use what calculated the number and calculated the sum total.

次に、上記の(3)、(4)のプロセス毎に発生するガッシング量を予め参照データとして取得しておき、ガッシングによる成層化度の改善度を算出できるようにする。これより、(1)、(2)のプロセスによる成層化度の増加と、(3)、(4)のプロセスによる成層化度の改善度から成層化度を算出することができる。成層化度と放電容量とは図6(b)に示すような相関があり、これを参照データとして持つことにより、成層化による放電容量の低下量ΔSOH1を算出することができる。   Next, the amount of gassing generated for each of the above processes (3) and (4) is acquired in advance as reference data so that the degree of improvement in the degree of stratification by gassing can be calculated. Thus, the stratification degree can be calculated from the increase in the stratification degree by the processes (1) and (2) and the improvement degree of the stratification degree by the processes (3) and (4). The degree of stratification and the discharge capacity have a correlation as shown in FIG. 6B, and by having this as reference data, the reduction amount ΔSOH1 of the discharge capacity due to stratification can be calculated.

次に、電解液の減液による放電容量の低下を示すSOH2について説明する。電解液の減液による放電容量の低下量ΔSOH2は、上記のプロセス(3)Guss_baseにおけるガス発生量とプロセス(4)Guss_outにおけるガス発生量、及び液面から自然に発生する気化量Guss_surfaceの総和から算出することができる。   Next, SOH2 indicating a decrease in discharge capacity due to a decrease in the electrolyte will be described. The amount of decrease ΔSOH2 in the discharge capacity due to the decrease in the electrolyte is calculated from the sum of the gas generation amount in process (3) Guss_base, the gas generation amount in process (4) Guss_out, and the vaporization amount Guss_surface naturally generated from the liquid surface. Can be calculated.

次に、深度放電回数に対応した放電容量の低下を示すSOH3について説明する。深度放電回数に対応した放電容量の低下量ΔSOH3は、残容量SOC_nowが現在の放電容量(初期放電容量から劣化による喪失容量を除いた放電容量)の10%以下まで放電した回数、すなわちSOC_now≦0.1*SOC_start*ΔSOHとなるまで放電した回数(深度放電回数)から算出することができ、これをログとして保存しておく。深度放電回数が極板に与える劣化度を参照データとしてSOH算出部150に事前に持たせておき、上記の深度放電回数のログを参照データと照合させることによりΔSOH3を算出する。   Next, SOH3 which shows the fall of the discharge capacity corresponding to the frequency | count of depth discharge is demonstrated. The amount of decrease ΔSOH3 in the discharge capacity corresponding to the number of times of deep discharge is the number of times the remaining capacity SOC_now has been discharged to 10% or less of the current discharge capacity (discharge capacity excluding lost capacity due to deterioration from the initial discharge capacity), that is, SOC_now ≦ 0.1 * SOC_start * ΔSOH can be calculated from the number of times of discharge (depth discharge number), and this is stored as a log. The degree of deterioration that the number of times of depth discharge gives to the electrode plate is given in advance to the SOH calculation unit 150 as reference data, and ΔSOH3 is calculated by collating the log of the number of times of depth discharge with reference data.

次に、充放電を行わない自然放電のみの放置期間に対応した放電容量の低下を示すSOH4について説明する。充放電を行わない自然放電のみの放置期間に対応した放電容量の低下量ΔSOH4は、蓄電池が製造された後車載されるまでの時間、又は開放端子状態で輸送中の経時変化、を外部から与えることによって劣化度を算出することができる。蓄電池にセンサーが取り付けられている場合には、上記のΔSOC2及びΔSOC3から算出することもできる。   Next, SOH4 which shows the fall of the discharge capacity corresponding to the leaving period of only the natural discharge which does not perform charging / discharging is demonstrated. The amount of decrease ΔSOH4 in discharge capacity corresponding to the period of time during which only natural discharge without charge / discharge is performed gives the time from when the storage battery is manufactured until it is mounted on the vehicle, or the change over time during transportation in the open terminal state, from the outside. Thus, the degree of deterioration can be calculated. When a sensor is attached to the storage battery, it can also be calculated from the above ΔSOC2 and ΔSOC3.

次に、長期間使用に伴う内部抵抗の増大による放電容量の低下を示すSOH5について説明する。長期間使用に伴う内部抵抗の増大による放電容量の低下量ΔSOH5は、内部抵抗値またはインピーダンス値と放電容量の低下度との関係を参照データとしてSOH算出部150に事前に持たせておき、定期的又は/及び特定の時点で測定される内部抵抗値またはインピーダンス値を上記の参照データと照合させることで算出することができる。   Next, SOH5 which shows the fall of the discharge capacity by the increase in internal resistance accompanying long-term use is demonstrated. The amount of decrease ΔSOH5 in the discharge capacity due to the increase in internal resistance due to long-term use is given in advance to the SOH calculator 150 as reference data with the relationship between the internal resistance value or impedance value and the degree of decrease in discharge capacity, The internal resistance value or the impedance value measured at a specific time and / or at a specific time can be calculated by collating with the above reference data.

最後に、その他故障等による放電容量の低下を示す(6)SOH6について説明する。その他故障等による放電容量の低下量ΔSOH6は、電流、電圧、温度の測定値を基に、各測定値に不連続な点が見られたり、モデルで推定される予測値と大きなずれが発生するのを監視し、これらが発生した場合を故障モードとして劣化度を推定するか、あるいは外部から入力させる。   Finally, (6) SOH6, which indicates a decrease in discharge capacity due to other failures, will be described. The amount of decrease in discharge capacity ΔSOH6 due to other failures or the like is based on the measured values of current, voltage, and temperature. Discontinuous points are observed in each measured value, or a large deviation from the predicted value estimated by the model occurs. This is monitored, and when these occur, the deterioration level is estimated as a failure mode, or input from the outside.

上記で説明したΔSOH1〜ΔSOH6を(式8)で合計することにより、蓄電池1のΔSOHを算出することができる。なお、上記で各種参照データをSOH算出部150に持たせるようにしたが、各参照データは蓄電池の種類ごと、あるいは個別の蓄電池毎に持たせるようにすることができる。また、参照データを表形式で持たせるようにしてもよいし、所定の関数で算出できるようにしてもよい。   ΔSOH of the storage battery 1 can be calculated by summing ΔSOH1 to ΔSOH6 described above using (Equation 8). In addition, although various reference data was given to the SOH calculation part 150 above, each reference data can be given for every kind of storage battery, or for each individual storage battery. Further, the reference data may be provided in a tabular form or may be calculated by a predetermined function.

COD算出部160は、極板電圧算出部130で算出された極板電圧V_batと、SOC算出部140で算出されたΔSOCと、SOH算出部150で算出されたΔSOHとを入力し、これを所定の非線形等価回路モデルに入力することで、現在の放電能力COD_nowを算出する。   The COD calculating unit 160 inputs the electrode plate voltage V_bat calculated by the electrode plate voltage calculating unit 130, the ΔSOC calculated by the SOC calculating unit 140, and the ΔSOH calculated by the SOH calculating unit 150, and inputs them. The current discharge capacity COD_now is calculated by inputting to the nonlinear equivalent circuit model.

判定部170では、COD算出部160で算出された現在の放電能力COD_nowが要求される放電能力COD_needを満たしているか否かを判定している。これに加えて、SOH算出部150で算出された成層化による放電容量低下度ΔSOH1を基に、成層化度を改善することで要求放電能力COD_needを満たすことが可能かを判定し、可能な場合にはガッシングを行うよう発電機制御部4に要求信号を出力するようにしている。   The determination unit 170 determines whether or not the current discharge capability COD_now calculated by the COD calculation unit 160 satisfies the required discharge capability COD_need. In addition to this, based on the discharge capacity decrease degree ΔSOH1 due to stratification calculated by the SOH calculation unit 150, it is determined whether the required discharge capacity COD_need can be satisfied by improving the stratification degree. In this case, a request signal is output to the generator control unit 4 so as to perform gassing.

判定部170における判定処理方法を、図8を用いて以下に説明する。ステップS1では、まずCOD算出部160で算出されたCOD_nowと要求放電容量であるCOD_needに安全率C_dethをかけたものとを比較し、COD_nowがCOD_need*C_dethより小さい場合には、放電容量が不足していると判定してステップS2に進む。一方、COD_nowがCOD_need*C_deth以上の場合には、通常の車両運行制御を継続させて蓄電池1の監視を続行する。   A determination processing method in the determination unit 170 will be described below with reference to FIG. In step S1, COD_now calculated by the COD calculation unit 160 is first compared with COD_need which is the required discharge capacity multiplied by the safety factor C_deth. If COD_now is smaller than COD_need * C_deth, the discharge capacity is insufficient. The process proceeds to step S2. On the other hand, when COD_now is equal to or greater than COD_need * C_deth, normal vehicle operation control is continued and monitoring of the storage battery 1 is continued.

ステップS2では、SOH算出部150で算出された成層化による放電容量の低下量ΔSOH1から、成層化の改善余地があるかを判定する。ΔSOH1の値が大きく、改善の余地があると判定した場合には、次のステップS3の判定に進む。一方、成層化の改善余地小さいと判定された場合には、放電容量が低下してCOD_needを満足できない可能性があることを示す信号を車両運行用メインECU(電気制御基板)3に送信する。車両運行用メインECU3がこの信号を受信すると、例えば蓄電池1の交換要求又は運行停止要求等の情報をユーザーに通知するようにすることができる。   In step S <b> 2, it is determined from the amount of decrease ΔSOH <b> 1 in discharge capacity due to stratification calculated by the SOH calculator 150 whether there is room for improvement in stratification. If it is determined that ΔSOH1 is large and there is room for improvement, the process proceeds to the next step S3. On the other hand, if it is determined that there is little room for improvement in stratification, a signal indicating that there is a possibility that the discharge capacity is reduced and COD_need cannot be satisfied is transmitted to the vehicle operation main ECU (electric control board) 3. When the vehicle operation main ECU 3 receives this signal, it is possible to notify the user of information such as a request for replacing the storage battery 1 or a request for stopping operation.

ステップS3では、成層化を改善するためのガッシングが可能なだけの電解液が確保されているかを、SOH算出部150で算出されたΔSOH2から判定する。その結果、電解液が確保されていると判定された場合には、次のステップS4に進む。一方、電解液が不足していると判定された場合には、補液または蓄電池の交換が必要であることを示す信号を車両運行用メインECU3に送信する。車両運行用メインECU3がこの信号を受信すると、電解液の補充または蓄電池1の交換を要求する情報をユーザーに通知するようにすることができる。   In step S3, it is determined from ΔSOH2 calculated by the SOH calculation unit 150 whether or not an electrolyte solution capable of gassing for improving stratification is secured. As a result, when it is determined that the electrolytic solution is secured, the process proceeds to the next step S4. On the other hand, when it is determined that the electrolyte is insufficient, a signal indicating that replacement of the replacement fluid or the storage battery is necessary is transmitted to the main ECU 3 for vehicle operation. When the vehicle operation main ECU 3 receives this signal, it is possible to notify the user of information requesting replenishment of the electrolyte or replacement of the storage battery 1.

ステップS4では、成層化を解消(ΔSOH1=0)したときの劣化容量ΔSOHを予測してCOD_nowを推定し、推定したCOD_nowが要求放電容量COD_needより大きくなるかを判定する。COD_nowが要求放電容量COD_need以上になると判定されると、次のステップS5の判定に進む一方、COD_nowが要求放電容量COD_needに達しないと判定された場合には、成層化を解消しても要求放電容量COD_needを満たせないことを示す信号を車両運行用メインECU3に送信する。車両運行用メインECU3がこの信号を受信すると、蓄電池1の交換又は運行停止要求などの情報をユーザーに通知するようにすることができる。   In step S4, COD_now is estimated by predicting the degradation capacity ΔSOH when stratification is eliminated (ΔSOH1 = 0), and it is determined whether the estimated COD_now is larger than the required discharge capacity COD_need. If it is determined that COD_now is equal to or greater than the required discharge capacity COD_need, the process proceeds to the determination in the next step S5. On the other hand, if it is determined that COD_now does not reach the required discharge capacity COD_need, A signal indicating that the capacity COD_need cannot be satisfied is transmitted to the main ECU 3 for vehicle operation. When the vehicle operation main ECU 3 receives this signal, it is possible to notify the user of information such as replacement of the storage battery 1 or operation stop request.

ステップS5では、現在の車両運行条件のもとで蓄電池1の過充電が可能かを車両運行用メインECU3に問い合わせる。その結果、蓄電池1の過充電が可能な場合には次のステップS6の処理を行う一方、蓄電池1の過充電が行えない状態の場合には、送信ログを残して過充電が可能となるまで、通常の蓄電池の状態監視を継続する。   In step S5, the vehicle operation main ECU 3 is inquired whether the storage battery 1 can be overcharged under the current vehicle operation conditions. As a result, if the storage battery 1 can be overcharged, the process of the next step S6 is performed. On the other hand, if the storage battery 1 cannot be overcharged, the transmission log is left until overcharge is possible. Continue to monitor the status of the normal storage battery.

ステップS6では、成層化を解消するのに要する充電時間(Guss_out量)を算出し、これを車両運行用メインECU3に送信して充電を要求する。   In step S6, the charging time (Guss_out amount) required to eliminate stratification is calculated, and this is transmitted to the main ECU 3 for vehicle operation to request charging.

またステップS7では、成層化の解消の度合いをΔSOH1の改善度から判定し、ΔSOH1が十分改善されたと判定すると、通常の運行制御への復帰を要求する信号を車両運行用メインECU3に送信する。これにより、従来は必要以上に過充電状態が継続されていたのに対し、本実施例によれば、成層化が十分改善されて過充電の必要性がなくなればこれを止めて通常運行状態に戻すことができる。   In step S7, the degree of stratification cancellation is determined from the degree of improvement of ΔSOH1, and if it is determined that ΔSOH1 has been sufficiently improved, a signal requesting return to normal operation control is transmitted to the main ECU 3 for vehicle operation. As a result, the overcharge state has been continued more than necessary in the past, but according to this embodiment, when the stratification is sufficiently improved and the need for overcharge disappears, this is stopped and the normal operation state is reached. Can be returned.

上記の通り、本発明の蓄電池の制御方法及び制御装置によれば、蓄電池の状態を把握することによって、必要なタイミングでガッシングを行わせるとともに、必要がなくなれば過充電やガッシングを終了させるようにすることができる。これにより、蓄電池の短寿命化を回避して車両運行の安全性に関して電源面からの信頼性を確保するだけでなく、発電機の駆動に必要なガソリン等の燃料消費量を低減でき、燃費改善に寄与して環境負荷を低減することができる。
なお、本実施の形態における記述は、本発明に係る蓄電池の制御方法及び制御装置の一例を示すものであり、これに限定されるものではない。本実施の形態における蓄電池の制御方法及び制御装置の細部構成及び詳細な動作等に関しては、本発明の趣旨を逸脱しない範囲で適宜変更可能である。
As described above, according to the storage battery control method and the control device of the present invention, by grasping the state of the storage battery, the gashing is performed at a necessary timing, and the overcharge and the gashing are terminated when it is not necessary. can do. This not only shortens the life of the storage battery and ensures reliability from the power supply side regarding the safety of vehicle operation, but also reduces fuel consumption such as gasoline required to drive the generator, improving fuel economy This contributes to reducing the environmental burden.
In addition, the description in this Embodiment shows an example of the control method and control apparatus of the storage battery which concern on this invention, and is not limited to this. The detailed configuration and detailed operation of the storage battery control method and the control device in the present embodiment can be changed as appropriate without departing from the spirit of the present invention.

本発明の実施形態に係る蓄電池の制御装置のブロック図である。It is a block diagram of the control apparatus of the storage battery which concerns on embodiment of this invention. 極板電圧の温度係数に係る参照データを説明するグラフである。It is a graph explaining the reference data which concern on the temperature coefficient of an electrode plate voltage. 極板電圧の分極係数に係る参照データを説明するグラフである。It is a graph explaining the reference data which concern on the polarization coefficient of an electrode plate voltage. ΔSOCの算出方法を説明する図である。It is a figure explaining the calculation method of (DELTA) SOC. 電解液の成層化プロセスにおける放電容量、成層化度、及びガッシング量の変化を示すグラフである。It is a graph which shows the change of the discharge capacity in the stratification process of electrolyte solution, the stratification degree, and the amount of gassing. 蓄電池の成層化度に係る参照データを説明するグラフである。It is a graph explaining the reference data which concern on the stratification degree of a storage battery. 蓄電池の充放電パターンの一実施例を示すグラフである。It is a graph which shows one Example of the charging / discharging pattern of a storage battery. 判定部における判定処理方法を説明する流れ図である。It is a flowchart explaining the determination processing method in a determination part.

符号の説明Explanation of symbols

1 蓄電池
2 発電機
3 車両運行用メインECU
4 発電機制御部
100 蓄電池の制御装置
110 センサー 120 入力部
130 極板電圧算出部
140 SOC算出部
150 SOH算出部
160 COD算出部
170 判定部
DESCRIPTION OF SYMBOLS 1 Storage battery 2 Generator 3 Main ECU for vehicle operation
4 generator control unit 100 storage battery control device 110 sensor 120 input unit 130 electrode plate voltage calculation unit 140 SOC calculation unit 150 SOH calculation unit 160 COD calculation unit 170 determination unit

Claims (11)

発電機で充電可能に構成された蓄電池の制御方法であって、
前記蓄電池の状態量を測定し、
前記状態量から前記蓄電池の充放電履歴を求めて記憶し、
前記充放電履歴から所定の相関データに基づいて前記蓄電池の成層化度を推定し、
前記成層化度が所定の基準値に達したとき、前記蓄電池が成層化による劣化状態であると判定する
ことを特徴とする蓄電池の制御方法。
A method for controlling a storage battery configured to be rechargeable by a generator,
Measuring the state quantity of the storage battery,
Obtaining and storing a charge / discharge history of the storage battery from the state quantity,
Estimating the stratification degree of the storage battery based on predetermined correlation data from the charge / discharge history,
When the degree of stratification reaches a predetermined reference value, it is determined that the storage battery is in a deteriorated state due to stratification.
前記状態量として前記蓄電池の電流を測定し、
前記電流の充放電パターンを前記電流の大きさ及び時間に応じて1以上の放電深度パターンに分類し、前記放電深度パターン毎に充放電繰返しサイクル数を算出し、
前記充放電履歴として、前記放電深度パターン毎の前記充放電繰返しサイクル数の総和を算出する
ことを特徴とする請求項1に記載の蓄電池の制御方法。
Measure the current of the storage battery as the state quantity,
Classifying the charge / discharge pattern of the current into one or more discharge depth patterns according to the magnitude and time of the current, calculating the number of charge / discharge cycle cycles for each discharge depth pattern,
The storage battery control method according to claim 1, wherein the charge / discharge history is calculated by summing up the number of repeated charge / discharge cycles for each of the discharge depth patterns.
前記状態量として前記蓄電池の電圧を測定し、
前記充放電履歴として、前記電圧から所定幅以上の電圧変動繰返しサイクル数を算出する
ことを特徴とする請求項1に記載の蓄電池の制御方法。
Measure the voltage of the storage battery as the state quantity,
The method for controlling a storage battery according to claim 1, wherein a voltage fluctuation repetition cycle number of a predetermined width or more is calculated from the voltage as the charge / discharge history.
前記成層化による劣化状態を判定すると、さらに前記発電機の発電量を調整してガッシングを発生させる
ことを特徴とする請求項1から請求項3のいずれか1項に記載の蓄電池の制御方法。
The method for controlling a storage battery according to any one of claims 1 to 3, wherein when the deterioration state due to the stratification is determined, the amount of power generated by the generator is further adjusted to generate gassing.
前記状態量から所定の等価回路モデルに基づいて前記蓄電池の放電能力を推定し、
前記放電能力が所定の要求値未満となり、かつ前記成層化による劣化状態を判定すると、前記発電機の発電量を調整してガッシングを発生させる
ことを特徴とする請求項1から請求項3のいずれか1項に記載の蓄電池の制御方法。
Estimating the discharge capacity of the storage battery based on a predetermined equivalent circuit model from the state quantity,
4. The gassing is generated by adjusting the power generation amount of the generator when the discharge capacity is less than a predetermined required value and the deterioration state due to the stratification is determined. 5. The storage battery control method according to claim 1.
前記放電能力が所定の要求値未満となり、かつ前記成層化による劣化状態を判定するとともに、前記成層化による劣化状態を解消することで前記放電能力が前記要求値以上確保できると判定すると、前記発電機の発電量を調整してガッシングを発生させる
ことを特徴とする請求項5に記載の蓄電池の制御方法。
When the discharge capacity is less than a predetermined required value and the deterioration state due to stratification is determined, and it is determined that the discharge capacity can be secured above the required value by eliminating the deterioration state due to stratification, the power generation The method for controlling a storage battery according to claim 5, wherein gassing is generated by adjusting a power generation amount of the machine.
発電機で充電可能に構成された蓄電池の制御装置であって、
前記蓄電池の状態量を測定するセンサーと、
前記センサーで測定された前記状態量から前記蓄電池の充放電履歴を求めて記憶し、前記充放電履歴から所定の相関データに基づいて前記蓄電池の成層化度を推定し、前記成層化度が所定の基準値に達したとき前記蓄電池が成層化による劣化状態であると判定する制御部と、を備える
ことを特徴とする蓄電池の制御装置。
A storage battery control device configured to be rechargeable by a generator,
A sensor for measuring a state quantity of the storage battery;
A charge / discharge history of the storage battery is obtained from the state quantity measured by the sensor and stored, and a stratification degree of the storage battery is estimated based on predetermined correlation data from the charge / discharge history, and the stratification degree is predetermined. A control unit that determines that the storage battery is in a deteriorated state due to stratification when the reference value is reached.
前記センサーは前記蓄電池の電流を測定する電流センサーであって、
前記制御部は、前記電流センサーから電流測定値を入力し、入力した前記電流測定値を積算して充電量及び放電量を算出し、前記充放電履歴として、前記充電量及び放電量から充放電繰返しサイクル数を算出するよう構成されている
ことを特徴とする請求項7に記載の蓄電池の制御装置。
The sensor is a current sensor that measures the current of the storage battery,
The control unit inputs a current measurement value from the current sensor, calculates a charge amount and a discharge amount by integrating the input current measurement value, and charges / discharges from the charge amount and the discharge amount as the charge / discharge history. The storage battery control device according to claim 7, wherein the storage battery control device is configured to calculate a repetitive cycle number.
前記センサーは前記蓄電池の電圧を測定する電圧センサーであって、
前記制御部は、前記電圧センサーから電圧測定値を入力し、前記充放電履歴として、入力した前記電圧測定値から所定幅以上の電圧変動繰返しサイクル数を算出するよう構成されている
ことを特徴とする請求項7に記載の蓄電池の制御装置。
The sensor is a voltage sensor that measures the voltage of the storage battery,
The control unit is configured to input a voltage measurement value from the voltage sensor, and calculate, as the charge / discharge history, a voltage fluctuation repetition cycle number of a predetermined width or more from the input voltage measurement value. The storage battery control device according to claim 7.
前記制御部は、前記成層化による劣化状態を判定すると、前記発電機の制御部にガッシングを発生させるための発電要求信号を出力するよう構成されている
ことを特徴とする請求項7から請求項9のいずれか1項に記載の蓄電池の制御装置。
The control unit is configured to output a power generation request signal for causing gassing to occur in the control unit of the generator when the deterioration state due to the stratification is determined. The storage battery control device according to any one of 9.
前記制御部は、前記状態量から所定の等価回路モデルに基づいて前記蓄電池の放電能力を推定し、前記放電能力が所定の要求値未満となり、かつ前記成層化による劣化状態を判定すると、前記発電機の制御部に前記発電要求信号を出力するよう構成されている
ことを特徴とする請求項10に記載の蓄電池の制御装置。
The control unit estimates the discharge capacity of the storage battery from the state quantity based on a predetermined equivalent circuit model, and determines the deterioration state due to the stratification when the discharge capacity is less than a predetermined required value. The storage battery control device according to claim 10, wherein the power generation request signal is output to a control unit of a machine.
JP2006189833A 2006-07-10 2006-07-10 Storage battery control method and control device Active JP4413893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006189833A JP4413893B2 (en) 2006-07-10 2006-07-10 Storage battery control method and control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006189833A JP4413893B2 (en) 2006-07-10 2006-07-10 Storage battery control method and control device

Publications (2)

Publication Number Publication Date
JP2008022596A true JP2008022596A (en) 2008-01-31
JP4413893B2 JP4413893B2 (en) 2010-02-10

Family

ID=39078154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006189833A Active JP4413893B2 (en) 2006-07-10 2006-07-10 Storage battery control method and control device

Country Status (1)

Country Link
JP (1) JP4413893B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010281723A (en) * 2009-06-05 2010-12-16 Furukawa Electric Co Ltd:The Method and instrument for detecting state of electricity storage device
WO2012023215A1 (en) * 2010-08-18 2012-02-23 古河電気工業株式会社 State detection method for electric storage device, and apparatus therefor
JP2014105995A (en) * 2012-11-22 2014-06-09 Furukawa Electric Co Ltd:The Device and method for estimating state of secondary battery
US8803482B2 (en) 2009-01-08 2014-08-12 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolyte type secondary battery system and vehicle
JPWO2013140781A1 (en) * 2012-03-19 2015-08-03 パナソニックIpマネジメント株式会社 Storage battery monitoring method, storage battery monitoring system, and storage battery system
US9356548B2 (en) 2012-05-10 2016-05-31 Denso Corporation Vibration damping control apparatus for vehicle, vibration damping control system for vehicle, and vehicle motion control apparatus
WO2023062894A1 (en) * 2021-10-14 2023-04-20 株式会社Gsユアサ Lead storage device, information processing method, and computer program

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8803482B2 (en) 2009-01-08 2014-08-12 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolyte type secondary battery system and vehicle
JP2010281723A (en) * 2009-06-05 2010-12-16 Furukawa Electric Co Ltd:The Method and instrument for detecting state of electricity storage device
WO2012023215A1 (en) * 2010-08-18 2012-02-23 古河電気工業株式会社 State detection method for electric storage device, and apparatus therefor
JP2012042312A (en) * 2010-08-18 2012-03-01 Furukawa Electric Co Ltd:The State detection method for power storage device and apparatus therefor
CN102428379A (en) * 2010-08-18 2012-04-25 古河电气工业株式会社 State detection method for electric storage device, and apparatus therefor
JPWO2013140781A1 (en) * 2012-03-19 2015-08-03 パナソニックIpマネジメント株式会社 Storage battery monitoring method, storage battery monitoring system, and storage battery system
US9356548B2 (en) 2012-05-10 2016-05-31 Denso Corporation Vibration damping control apparatus for vehicle, vibration damping control system for vehicle, and vehicle motion control apparatus
JP2014105995A (en) * 2012-11-22 2014-06-09 Furukawa Electric Co Ltd:The Device and method for estimating state of secondary battery
WO2023062894A1 (en) * 2021-10-14 2023-04-20 株式会社Gsユアサ Lead storage device, information processing method, and computer program

Also Published As

Publication number Publication date
JP4413893B2 (en) 2010-02-10

Similar Documents

Publication Publication Date Title
JP5248764B2 (en) Storage element abnormality detection device, storage element abnormality detection method, and abnormality detection program thereof
JP5179047B2 (en) Storage device abnormality detection device, storage device abnormality detection method, and abnormality detection program thereof
JP7057882B2 (en) Estimator, power storage device, estimation method
CN108474824B (en) Power storage element management device, power storage element module, vehicle, and power storage element management method
EP2629109B1 (en) Electrical storage device
US7327147B2 (en) Device and method for determining characteristic variables for batteries
US8288995B2 (en) Assembled battery charging method and battery charging system
JP4042475B2 (en) Battery deterioration degree calculating device and deterioration degree calculating method
US8649988B2 (en) Service life estimation method for lead storage battery and power source system
JP5862836B2 (en) Battery system
JP5840116B2 (en) Secondary battery state estimation apparatus and method
JP4413893B2 (en) Storage battery control method and control device
US11624787B2 (en) Rechargeable battery short circuit early detection device and rechargeable battery short circuit early detection method
US20120112700A1 (en) Circuit for counting number of cycles, battery pack and battery system
JP5623629B2 (en) Remaining life judgment method
JP5503318B2 (en) Secondary battery charge acceptance limit detection method and apparatus
JP2007057433A (en) Degradation estimation system for electricity accumulation device
US20220349941A1 (en) Estimation device, estimation method, and computer program
JP4331473B2 (en) Charge / discharge control device and charge / discharge control method for lead-acid battery
WO2023062894A1 (en) Lead storage device, information processing method, and computer program
WO2022254900A1 (en) State determination device, secondary battery system, and state determination method
JP7169917B2 (en) SECONDARY BATTERY CONTROL DEVICE AND SECONDARY BATTERY CONTROL METHOD
JP2004254365A (en) Method and apparatus for charging battery
CN115706444A (en) Method for controlling a charging current limit value for a battery management system, and battery management system
JP2020048312A (en) Electric vehicle battery control device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091002

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091118

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4413893

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350