JP2008022465A - Radio communication method in radio communication program and its base station equipment and reception program - Google Patents

Radio communication method in radio communication program and its base station equipment and reception program Download PDF

Info

Publication number
JP2008022465A
JP2008022465A JP2006194443A JP2006194443A JP2008022465A JP 2008022465 A JP2008022465 A JP 2008022465A JP 2006194443 A JP2006194443 A JP 2006194443A JP 2006194443 A JP2006194443 A JP 2006194443A JP 2008022465 A JP2008022465 A JP 2008022465A
Authority
JP
Japan
Prior art keywords
signal
transmission
reception system
wireless communication
reception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006194443A
Other languages
Japanese (ja)
Other versions
JP4805044B2 (en
Inventor
Tetsuhiko Miyatani
宮谷 徹彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to JP2006194443A priority Critical patent/JP4805044B2/en
Priority to KR20060101572A priority patent/KR100829568B1/en
Publication of JP2008022465A publication Critical patent/JP2008022465A/en
Application granted granted Critical
Publication of JP4805044B2 publication Critical patent/JP4805044B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination

Abstract

<P>PROBLEM TO BE SOLVED: To provide a radio communication method in a radio communication system combined with the use of Hybrid ARQ for improving communication equality by achieving the signal processing of a frequency region for reducing multi-path interference and Co-channel interference and its base station device and a reception program. <P>SOLUTION: Base station devices 1A and 1B are provided with a virtual reception system created by using reception data when a decision error is caused and a plurality of reception systems, and when receiving an output from a radio communication terminal MS whose AC identifier is the same in the other communication cell different from the communication cell, it is subtracted from the plurality of reception systems, and an interference signal for removal is created by using a desired signal to be generated as the result of the composition of the signals of the virtual reception system and the plurality of reception systems, and removed from the reception signal of each reception system. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えばCIBS−CDMA方式やIFDMA方式等の送信信号の繰り返し送信を基本とした、同一セル内信号の直交性が保証されるMUI(Multi-User Interference)フリーアクセス方式等の無線通信方式、誤り訂正符号化及び、複合自動再送方式(Hybrid ARQ)を併用した多重セル干渉を削減するための無線通信システムにおける無線通信方法及びその基地局装置並びに受信プログラムに関する。   The present invention is a wireless communication system such as a MUI (Multi-User Interference) free access system in which orthogonality of signals in the same cell is guaranteed, for example, based on repetitive transmission of transmission signals such as CIBS-CDMA system and IFDMA system. The present invention relates to a radio communication method in a radio communication system, a base station apparatus thereof, and a reception program for reducing multi-cell interference using both error correction coding and hybrid automatic retransmission (Hybrid ARQ).

近年、CIBS−CDMA(Chip-Interleaved Block Spread- Code Division Multiple Access)方式やIFDMA(Interleaved Frequency Division Multiple Access)方式など、送信情報データの繰り返し送信を基本としたMUIフリーアクセスの無線通信方式の提案が数多くなされている。これらは、拡散処理時に使用する直交符号間の完全直交性が満たされる通信方式であり、マルチユーザ環境においてDS−CDMA(Direct Sequence-CDMA)方式などの既存の多元接続方式よりも優れた通信品質が可能である。   In recent years, there have been proposals for MUI-free access wireless communication schemes based on repeated transmission of transmission information data, such as CIBS-CDMA (Chip-Interleaved Block Spread-Code Division Multiple Access) scheme and IFDMA (Interleaved Frequency Division Multiple Access) scheme. Many have been made. These are communication systems that satisfy the complete orthogonality between orthogonal codes used during spreading processing, and have better communication quality than existing multiple access systems such as the DS-CDMA (Direct Sequence-CDMA) system in a multi-user environment. Is possible.

従来のCIBS−CDMA方式によると、ユーザ間の干渉は生じないものの、マルチパス干渉の影響を受け易いという問題がある。これは、送信側において送信データをインタリーブ処理し、受信側において受信データをデインタリーブ処理することによって、原理的に、ユーザ間干渉を個別ユーザのマルチパス干渉に置き換えたためである。   According to the conventional CIBS-CDMA system, although there is no interference between users, there is a problem that it is easily affected by multipath interference. This is because inter-user interference is replaced with multi-path interference of individual users in principle by interleaving transmission data on the transmission side and deinterleaving reception data on the reception side.

この問題に対処するため、周波数領域等化(FDE:Frequency Domain Equalization)という技術が用いられる。FDEでは、マルチパスを合成可能なパスダイバーシチ効果を持ちつつ、マルチパス干渉除去も実施できるため、その効果は非常に大きく、3.5世代移動通信では採用される可能性が高い。   In order to cope with this problem, a technique called frequency domain equalization (FDE) is used. In FDE, multipath interference can be removed while having a path diversity effect capable of synthesizing multipaths. Therefore, the effect is very large, and is likely to be adopted in 3.5 generation mobile communication.

米国特許出願公開第2005/249269号明細書US Patent Application Publication No. 2005/249269 論文:StefanoTomasin, Nevio Benvenuto, “Frequency-DomainInterference Cancellation and Nonlinear Equalization for CDMA Systems,” IEEE Transactions on Wireless Communications, Vol.4, No.5,September 2005Paper: StefanoTomasin, Nevio Benvenuto, “Frequency-DomainInterference Cancellation and Nonlinear Equalization for CDMA Systems,” IEEE Transactions on Wireless Communications, Vol.4, No.5, September 2005

しかし、CIBS−CDMA方式において、ユーザ間の干渉が存在しないのは、予め全てのユーザを認識し、その認識したユーザに対して直交符号を割り当てる場合に限定される。つまり、セルラー環境のように、他セルもしくはセクタのユーザが把握できておらず、同一ユーザ識別子が隣接セル、セクタにて使用された場合には、非常に大きな干渉を受ける。したがってこの問題回避のために、隣接周辺のセル、セクタのユーザアクセス状況を常時把握し、瞬時的、適応的に拡散率を変化させ、常時あらゆるユーザ間を直交化させれば、この問題は解消する。   However, in the CIBS-CDMA system, there is no interference between users only when all users are recognized in advance and orthogonal codes are assigned to the recognized users. That is, unlike a cellular environment, users of other cells or sectors cannot be grasped, and when the same user identifier is used in an adjacent cell or sector, very large interference is received. Therefore, in order to avoid this problem, always grasp the user access status of neighboring cells and sectors, change the spreading factor instantaneously and adaptively, and always orthogonalize between all users, this problem can be solved. To do.

しかし、それでは無線アクセスを管理する上位局の負荷が増大する上、せっかくユーザ識別子を割り当てても、伝搬距離が希望波と干渉波とで異なり、大きく減衰して受信され、干渉とはみなされず実質的には、過分な拡散率を割り当てる必要のない場合もある。したがって、無駄が多い割に、効果が疑問であった。   However, this increases the load on the host station that manages the radio access, and even if a user identifier is assigned, the propagation distance differs between the desired wave and the interference wave, and it is received with a large attenuation. In some cases, it may not be necessary to assign an excessive spreading factor. Therefore, the effect was questionable despite the wastefulness.

これらのセル・セクタ間干渉を除去するために、従来から、MUD(Multi-User Detection)や干渉キャンセラが提案されている。MUDや干渉キャンセラは実質複雑すぎて、具現化が非現実的であるため、詳細な説明は割愛するが、以下概説する。MUDや干渉キャンセラの核心技術は、一旦、全ユーザ(もしくは電力の大きいユーザ)を受信・仮復号してみて、再変調し、その間、遅延させておいた受信信号から差し引くものである。これら1回の処理を“ステージ”と呼び、マルチステージでは、特性が向上するのが確認されている。   Conventionally, MUD (Multi-User Detection) and interference cancellers have been proposed in order to eliminate these inter-cell / sector interferences. MUDs and interference cancellers are so complex that they are unrealistic to implement and will not be described in detail, but will be outlined below. The core technology of MUD and interference canceller is to temporarily receive and provisionally decode all users (or users with high power), remodulate them, and subtract them from the received signal that has been delayed during that time. These one-time processes are called “stages”, and it has been confirmed that the characteristics are improved in multistage.

また、シリアル処理やパラレル処理の検討も行われている。上記内容から容易に類推できるが、“一旦復調して、再変調して受信信号から差し引く”というのは、収容する全ユーザ数分の端末相当を1ステージ内に具備する事になり、ハードウェア規模、処理時間から鑑みて、いくら受信性能が向上すると言っても実施には相当の難度が伴う。   Also, serial processing and parallel processing are being studied. Although it can be easily analogized from the above contents, “demodulate once, remodulate and subtract from the received signal” means that terminals corresponding to the total number of accommodated users are provided in one stage. Considering the scale and processing time, even if the reception performance is improved, the implementation involves considerable difficulty.

この難度を軽減するために、これらの干渉キャンセラ、MUDを周波数領域で実施するという提案が行われている。一例として、論文では上記の[非特許文献1]があり、特許では上記の[特許文献1]がある。しかしながら、これらの論文/特許では、単に従来複雑であった時間領域の干渉除去を周波数軸上に変換しただけであり、仮判定を実施したり、再変調したりする複雑さに関しては改善は無かった。したがって、ハードウェア規模も大きくなり、実現に関しては、未だ疑問が残る内容となっている。   In order to reduce this difficulty, a proposal has been made to implement these interference cancellers and MUDs in the frequency domain. As an example, there is [Non-Patent Document 1] in the paper, and [Patent Document 1] in the patent. However, in these papers / patents, the time domain interference cancellation, which has been complicated in the past, is simply converted onto the frequency axis, and there is no improvement with respect to the complexity of performing a tentative decision or remodulating. It was. Therefore, the hardware scale is also increased, and there are still questions about its implementation.

以上、要約すれば、FDE(周波数領域等化器)はマルチパス対策として効果的であるものの、実現可能な干渉除去を与えるものではなく、干渉除去とマルチパス対策を併用する小回路規模のものは存在しない、という問題があった。   In summary, although FDE (frequency domain equalizer) is effective as a multipath countermeasure, it does not provide feasible interference cancellation, but has a small circuit scale that uses both interference cancellation and multipath countermeasures. There was a problem that there was no.

また、実現的な回路規模を与える干渉除去方式として、線形処理を活用し、実現可能なレベルにまでハードウェア規模を削減しており、干渉ユーザ数が少ない場合に有効である線形干渉キャンセラが考えられている。しかしながら、このような線形干渉キャンセラ方式は、独立なアンテナ数(受信系統数)により、その干渉除去性能が決定されてしまう、という問題もあった。   In addition, as an interference cancellation method that gives a practical circuit scale, linear processing is used to reduce the hardware scale to a level that can be realized, and a linear interference canceller that is effective when the number of interfering users is small is considered. It has been. However, such a linear interference canceller system has a problem that its interference removal performance is determined by the number of independent antennas (the number of receiving systems).

本発明は以上の点を考慮してなされたもので、マルチパス干渉及び他セル・セクタからのユーザ間干渉(Co-channel Interference: コチャネル干渉、同一チャネル間干渉)を共に低減可能な周波数領域の信号処理を実現しつつ、受信系統数を超える次数の干渉除去性能にて通信品質を向上させ得る無線通信システムにおける無線通信方法及びその基地局装置並びに受信プログラムを提供しようとするものである。   The present invention has been made in consideration of the above points. In the frequency domain, multipath interference and inter-user interference from other cells and sectors (Co-channel interference) can be reduced. An object of the present invention is to provide a wireless communication method, a base station apparatus, and a reception program in a wireless communication system capable of improving communication quality with interference removal performance of orders exceeding the number of reception systems while realizing signal processing.

かかる課題を解決するため本発明では、複数の無線通信端末及び当該各無線通信端末を収容する基地局装置からなる通信セルが複数配置され、当該各通信セル内での通信状態を通信制御装置が制御するようにして、各通信セル内の各無線通信端末が、通信制御装置により割り当てられた固有の直交識別子を用いて送信信号を変調して送信し、複数の当該送信信号を同一の当該通信セル内の基地局装置にて、所望の直交識別子を有する送信信号のみを抽出し受信する無線通信方法において、各通信セル内の基地局装置は、複数の無線通信端末からの送信信号を受信して時間領域から周波数領域に信号変換する複数の受信系統を有し、当該各受信系統で受信した信号変換後の送信信号の復号時にビット誤りを検出したときには、当該ビット誤りを含む送信信号を一時的に保持すると共に、各無線通信端末に対し再送を要求する第1のステップと、再送の根拠となった復号後のビット誤りを含む送信信号を再度変調した後、時間領域から周波数領域に信号変換する仮想受信系統を、各受信系統に並列して構築する第2のステップと、各受信系統及び仮想受信系統が、自己の通信セルと異なる他の通信セル内で直交識別子が同一である無線通信端末からの送信信号を受信した際に、各受信系統及び仮想受信系統で合成した結果生ずる干渉信号を用いて除去用干渉信号を作成し、各受信系統での送信信号からそれぞれ除去する第3のステップと、各受信系統及び仮想受信系統での送信信号に対して伝送路変動等化を行う第4のステップとを備えることを特徴とする。   In order to solve such a problem, in the present invention, a plurality of communication cells including a plurality of radio communication terminals and a base station apparatus accommodating each radio communication terminal are arranged, and the communication control apparatus determines the communication state in each communication cell. In such a manner, each wireless communication terminal in each communication cell modulates and transmits a transmission signal using a unique orthogonal identifier assigned by the communication control apparatus, and transmits a plurality of the transmission signals to the same communication. In a wireless communication method in which only a transmission signal having a desired orthogonal identifier is extracted and received by a base station apparatus in a cell, the base station apparatus in each communication cell receives transmission signals from a plurality of wireless communication terminals. A plurality of receiving systems that perform signal conversion from the time domain to the frequency domain, and when a bit error is detected when decoding a transmission signal after signal conversion received by each receiving system, the bit error is A first step of requesting retransmission to each wireless communication terminal, and re-modulating the transmission signal including a decoded bit error that is the basis of retransmission, A second step of constructing a virtual reception system for signal conversion from to the frequency domain in parallel with each reception system, and orthogonal identifiers in other communication cells in which each reception system and virtual reception system are different from their own communication cells When a transmission signal from a wireless communication terminal having the same signal is received, an interference signal for removal is created using the interference signal generated as a result of synthesis in each reception system and virtual reception system, and the transmission signal in each reception system is used. It is characterized by comprising a third step for removing each and a fourth step for performing transmission path fluctuation equalization on the transmission signals in each reception system and virtual reception system.

請求項2に記載された発明は、第2のステップでは、仮想受信系統において、復号後のビット誤りを含む送信信号を再変調する際に、当該送信信号に含まれる送信情報ビット以外の冗長ビットが、再送前後で異なることが事前に判明している場合、仮想受信系統で再度変調した送信信号から、冗長ビットに相当する信号を除去しておくことを特徴とする。   According to the second aspect of the present invention, in the second step, when the transmission signal including a bit error after decoding is remodulated in the virtual reception system, redundant bits other than the transmission information bits included in the transmission signal However, when it is known in advance that there is a difference between before and after retransmission, a signal corresponding to redundant bits is removed from a transmission signal modulated again by the virtual reception system.

請求項3に記載された発明は、第3のステップでは、仮想受信系統及び各受信系統において、それぞれ受信信号品質に対する信頼度に応じて、仮想受信系統及び各受信系統にそれぞれ異なる重み付け処理を実行することを特徴とする。   According to a third aspect of the present invention, in the third step, in the virtual reception system and each reception system, different weighting processes are executed for the virtual reception system and each reception system according to the reliability of the received signal quality. It is characterized by doing.

請求項4に記載された発明は、複数の無線通信端末及び当該各無線通信端末を収容する基地局装置からなる通信セルが複数配置され、当該各通信セル内での通信状態を通信制御装置が制御するようにして、各通信セル内の各無線通信端末が、通信制御装置により割り当てられた固有の直交識別子を用いて送信信号を変調して送信し、複数の当該送信信号を同一の当該通信セル内の基地局装置にて、所望の直交識別子を有する送信信号のみを抽出し受信する無線通信方法における当該各通信セル内の基地局装置において、複数の無線通信端末からの送信信号を受信して時間領域から周波数領域に信号変換する複数の受信系統と、各受信系統で信号変換された送信信号の復号時にビット誤りを検出したときには、当該ビット誤りを含む送信信号を一時的に保持すると共に、各無線通信端末に対し再送を要求する再送要求手段と、各受信系統に並列して構築され、再送要求手段による再送の根拠となった復号後のビット誤りを含む送信信号を再度変調した後、時間領域から周波数領域に信号変換する仮想受信系統と、各受信系統及び仮想受信系統が、自己の通信セルと異なる他の通信セル内で直交識別子が同一である無線通信端末からの送信信号を受信した際に、各受信系統及び仮想受信系統で合成した結果生ずる干渉信号を用いて除去用干渉信号を作成し、各受信系統での送信信号からそれぞれ除去する直交化処理手段と、各受信系統及び仮想受信系統での送信信号に対して伝送路変動等化を行う周波数領域補償手段とを備えることを特徴とする。   In the invention described in claim 4, a plurality of communication cells including a plurality of radio communication terminals and a base station apparatus accommodating each radio communication terminal are arranged, and the communication control apparatus determines a communication state in each communication cell. In such a manner, each wireless communication terminal in each communication cell modulates and transmits a transmission signal using a unique orthogonal identifier assigned by the communication control apparatus, and transmits a plurality of the transmission signals to the same communication. In the base station device in each cell in the wireless communication method in which only the transmission signal having a desired orthogonal identifier is extracted and received by the base station device in the cell, the transmission signals from a plurality of wireless communication terminals are received. When a bit error is detected at the time of decoding a plurality of reception systems that perform signal conversion from the time domain to the frequency domain and transmission signals that are signal-converted in each reception system, a transmission signal that includes the bit error is Retransmission request means for requesting retransmission to each wireless communication terminal, and transmission including a bit error after decoding that is constructed in parallel with each receiving system and is the basis for retransmission by the retransmission request means. A radio reception system that performs signal conversion from the time domain to the frequency domain after modulating the signal again, and wireless communication in which each reception system and virtual reception system have the same orthogonal identifier in another communication cell different from its own communication cell When receiving a transmission signal from a terminal, an orthogonalization process is performed in which an interference signal for removal is generated using an interference signal generated as a result of synthesis in each reception system and virtual reception system, and is removed from each transmission signal in each reception system And frequency domain compensation means for performing transmission path fluctuation equalization on transmission signals in each reception system and virtual reception system.

請求項5に記載された発明は、直交化処理手段及び周波数領域補償手段における各処理を、周波数領域において同一構成の回路処理で実行可能とすることを特徴とする。   The invention described in claim 5 is characterized in that each process in the orthogonalization processing means and the frequency domain compensation means can be executed by a circuit process having the same configuration in the frequency domain.

請求項6に記載された発明は、仮想受信系統において、復号後のビット誤りを含む送信信号を再変調する際に、当該送信信号に含まれる送信情報ビット以外の冗長ビットが、再送前後で異なることが事前に判明している場合、仮想受信系統で再度変調した送信信号から、冗長ビットに相当する信号を除去しておくことを特徴とする。   According to the sixth aspect of the present invention, in a virtual reception system, when a transmission signal including a bit error after decoding is remodulated, redundant bits other than transmission information bits included in the transmission signal are different before and after retransmission. If this is known in advance, a signal corresponding to redundant bits is removed from the transmission signal modulated again by the virtual reception system.

請求項7に記載された発明は、直交化処理手段は、仮想受信系統及び各受信系統において、それぞれ受信信号品質に対する信頼度に応じて、仮想受信系統及び各受信系統にそれぞれ異なる重み付け処理を実行することを特徴とする。   According to the seventh aspect of the present invention, the orthogonalization processing unit executes different weighting processes for the virtual reception system and each reception system in the virtual reception system and each reception system according to the reliability of the received signal quality. It is characterized by doing.

請求項8に記載された発明は、複数の無線通信端末及び当該各無線通信端末を収容する基地局装置からなる通信セルが複数配置され、当該各通信セル内での通信状態を通信制御装置が制御するようにして、各通信セル内の各無線通信端末が、通信制御装置により割り当てられた固有の直交識別子を用いて送信信号を変調して送信し、複数の当該送信信号を同一の当該通信セル内の基地局装置にて、所望の直交識別子を有する送信信号のみを抽出し受信する無線通信方法における当該各通信セル内の基地局装置に対して、複数の無線通信端末からの送信信号を受信して時間領域から周波数領域に信号変換する複数の受信系統を有し、当該各受信系統で受信した信号変換後の送信信号の復号時にビット誤りを検出したときには、当該ビット誤りを含む送信信号を一時的に保持すると共に、各無線通信端末に対し再送を要求する第1のステップと、再送の根拠となった復号後のビット誤りを含む送信信号を再度変調した後、時間領域から周波数領域に信号変換する仮想受信系統を、各受信系統に並列して構築する第2のステップと、各受信系統及び仮想受信系統が、自己の通信セルと異なる他の通信セル内で直交識別子が同一である無線通信端末からの送信信号を受信した際に、各受信系統及び仮想受信系統で合成した結果生ずる干渉信号を用いて除去用干渉信号を作成し、各受信系統での送信信号からそれぞれ除去する第3のステップと、各受信系統及び仮想受信系統での送信信号に対して伝送路変動等化を行う第4のステップとから成る一連の処理において、第3及び第4のステップの処理に相当する乗算係数を演算処理装置にて求めるための受信プログラムを特徴とする。   In the invention described in claim 8, a plurality of communication cells including a plurality of radio communication terminals and a base station apparatus accommodating each radio communication terminal are arranged, and the communication control apparatus determines a communication state in each communication cell. In such a manner, each wireless communication terminal in each communication cell modulates and transmits a transmission signal using a unique orthogonal identifier assigned by the communication control apparatus, and transmits a plurality of the transmission signals to the same communication. Transmission signals from a plurality of wireless communication terminals are transmitted to the base station device in each communication cell in the wireless communication method in which only the transmission signal having a desired orthogonal identifier is extracted and received by the base station device in the cell. It has a plurality of receiving systems that receive and convert signals from the time domain to the frequency domain, and when a bit error is detected when decoding a transmission signal after signal conversion received by each receiving system, the bit error is detected. A first step of requesting retransmission to each wireless communication terminal, and re-modulating the transmission signal including a decoded bit error that is the basis of retransmission, A second step of constructing a virtual reception system for signal conversion from to the frequency domain in parallel with each reception system, and orthogonal identifiers in other communication cells in which each reception system and virtual reception system are different from their own communication cells When a transmission signal from a wireless communication terminal having the same signal is received, an interference signal for removal is created using the interference signal generated as a result of synthesis in each reception system and virtual reception system, and the transmission signal in each reception system is used. In a series of processes consisting of a third step for removing each and a fourth step for performing transmission path fluctuation equalization for transmission signals in each reception system and virtual reception system, the third and fourth steps Wherein the receiving program for determining a multiplication coefficient corresponding to the processing by the processing unit.

請求項9に記載された発明は、第3のステップでは、仮想受信系統及び各受信系統において、それぞれ受信信号品質に対する信頼度に応じて、仮想受信系統及び各受信系統にそれぞれ異なる重み付け処理を実行することを特徴とする。   According to the ninth aspect of the present invention, in the third step, in the virtual reception system and each reception system, a different weighting process is executed for each of the virtual reception system and each reception system according to the reliability of the received signal quality. It is characterized by doing.

本発明によれば、Co-channel干渉及びマルチパス干渉を共に低減させて通信品質を向上させることができる。また、本発明によれば、電波が受信側に到達するまでに必要な所要送信電力を低減することが可能となり、システム全体としての省電力化を図ることもできる。さらに、本発明によれば、予め他セル/セクタのユーザの存在を見込んで拡散率を上昇、つまり、伝送レートの低下を招くことなく通信を実施する事も可能となる。   According to the present invention, it is possible to improve both communication quality by reducing both Co-channel interference and multipath interference. Further, according to the present invention, it is possible to reduce the required transmission power required until the radio wave reaches the receiving side, and it is possible to save power as the entire system. Furthermore, according to the present invention, it is possible to increase the spreading factor in anticipation of the presence of users in other cells / sectors in advance, that is, to perform communication without causing a decrease in transmission rate.

以下図面について、本発明の一実施の形態を詳述する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

次に添付図面を参照して本発明における無線通信システムにおける無線通信方法及びその基地局装置の実施の形態を詳細に説明するが、その前に本発明の要点を明確にするために、本発明が適用される運用例を述べ、次に従来技術との差異を述べる。   Next, embodiments of a radio communication method and its base station apparatus in a radio communication system according to the present invention will be described in detail with reference to the accompanying drawings. Before the description, the present invention will be clarified. An example of operation in which is applied will be described, and then the difference from the prior art will be described.

(1)従来のCIBS−CDMA方式によるシステム運用例
図1は従来技術におけるCIBS−CDMA方式によるシステム運用例である。すなわち図1では、2つのセル(Cell-A, Cell-B)が記載さており、Cell-Aには携帯端末等の無線通信端末MSである2ユーザ(MS#0-A, MS#1-A)が、またCell-Bには1ユーザ(MS#0-B)がそれぞれ接続されており、基地局装置1A、1Bと通信を行っている。Cell-Aに限定してみると、User#0(MS#0-A)とUser#1(MS#1-A)とは、異なる直交符号が割り当てられているため、基地局装置1A(2〜9)ではこれらユーザの直交化は問題なく実現できる。
(1) Example of system operation by conventional CIBS-CDMA system FIG. 1 shows an example of system operation by CIBS-CDMA system in the prior art. That is, in FIG. 1, two cells (Cell-A, Cell-B) are described, and Cell-A includes two users (MS # 0-A, MS # 1-) that are wireless communication terminals MS such as mobile terminals. A) is connected to Cell-B, and one user (MS # 0-B) is connected to each other, and is communicating with the base station apparatuses 1A and 1B. When limited to Cell-A, since User # 0 (MS # 0-A) and User # 1 (MS # 1-A) are assigned different orthogonal codes, base station apparatus 1A (2 ~ 9), these users can be orthogonalized without any problem.

ここで、無線通信端末MSは、送信データ生成部10、乗算器11、インタリーバ12、ガードインターバル付与部13及び送受信無線部(TRX)14により構成されている。送信データ生成部10は、それぞれ独立な音声や画像などのデータを生成するブロックである。乗算器11は、現行の第3世代無線通信でも使用されている直交識別子(以後、ユーザ識別子とも称す)である直交可変拡散率OVSF(Orthogonal Variable Spreading Factor)符号を与えるスペクトル拡散部である。   Here, the radio communication terminal MS includes a transmission data generation unit 10, a multiplier 11, an interleaver 12, a guard interval adding unit 13, and a transmission / reception radio unit (TRX) 14. The transmission data generation unit 10 is a block that generates data such as independent sounds and images. The multiplier 11 is a spread spectrum unit that provides an orthogonal variable spreading factor OVSF (Orthogonal Variable Spreading Factor) code that is an orthogonal identifier (hereinafter also referred to as a user identifier) that is also used in the current third generation wireless communication.

インタリーバ12は、CIBS−CDMA通信方式特有の送信信号の送信順位を変更するものである。ガードインターバル付与部13は、周波数領域にて不連続な時間信号を周波数領域に変換する際に生じるアパーチャ効果を削減するためのガードインターバル(GI)付与部である。送受信無線部(TRX)14は、D/A、A/Dコンバータや周波数変換部、直交変復調部などアナログ部を有する送受信無線部である。なお、実際には基地局装置1A、1Bと無線通信端末MSでは送受信無線部(TRX)の構成は若干異なるが、ほぼ同じ機能なのでここでは無線通信端末MSと基地局装置1A、1Bとで同一符号を付与している。   The interleaver 12 changes the transmission order of transmission signals specific to the CIBS-CDMA communication system. The guard interval giving unit 13 is a guard interval (GI) giving unit for reducing an aperture effect generated when a time signal discontinuous in the frequency domain is converted into the frequency domain. The transmission / reception radio unit (TRX) 14 is a transmission / reception radio unit having an analog unit such as a D / A, an A / D converter, a frequency conversion unit, and a quadrature modulation / demodulation unit. Actually, although the base station apparatuses 1A and 1B and the radio communication terminal MS have slightly different configurations of the transmission / reception radio unit (TRX), the radio communication terminal MS and the base station apparatuses 1A and 1B are identical here because they have almost the same function The code | symbol is provided.

基地局装置1A、1Bは、ガードインターバル除去部3、デインタリーバ4、乗算器5、積分器6、FFT7、複素乗算器8及びiFFT9により構成されている。ガードインターバル除去部3は、ガードインターバル付与部13で挿入されたガードインターバルを取り出す回路である。デインタリーバ4は、送信側のインタリーバ12の逆処理を行い、元通りの信号順序に変換する回路である。   The base station apparatuses 1A and 1B include a guard interval removing unit 3, a deinterleaver 4, a multiplier 5, an integrator 6, an FFT 7, a complex multiplier 8 and an iFFT 9. The guard interval removing unit 3 is a circuit that extracts the guard interval inserted by the guard interval providing unit 13. The deinterleaver 4 is a circuit that performs reverse processing of the transmission side interleaver 12 and converts it to the original signal order.

乗算器5は、スペクトル逆拡散を行う乗算器であり、無線通信端末MSの乗算器11で付与されたユーザ識別子により所望信号を識別するユーザ直交化処理部である。積分器6は、スペクトル逆拡散を行う積分器であり、OVSFの一周期(拡散率)の区間積分を行う。FFT7及びiFFT9はそれぞれ、周波数領域へ変換する時間・周波数変換部と時間領域へ変換する周波数・時間変換部である。   The multiplier 5 is a multiplier that performs spectrum despreading, and is a user orthogonalization processing unit that identifies a desired signal based on the user identifier assigned by the multiplier 11 of the radio communication terminal MS. The integrator 6 is an integrator that performs spectrum despreading, and performs interval integration of one cycle (diffusion rate) of OVSF. FFT7 and iFFT9 are a time / frequency converter for converting to the frequency domain and a frequency / time converter for converting to the time domain, respectively.

図1では、Cell-Bの無線通信端末MS#0-Bには、Cell-Aにて使用しているユーザ識別子OVSF#0が付与されている。したがって、無線通信端末MS#0-Bは、基地局装置1Bへ通信を行っているものの、その電波は基地局装置1Aにも到来すれば(=到来しない場合もある)、干渉源となる。一方、CIBS−CDMAやIFDMAなどの一般的なMUIフリーアクセス方式では、ユーザ識別子が異なると直交化原理によって干渉が発生しない。したがって、無線通信端末MS#0-Aに対してはMS#0-Bは干渉源となるものの、MS#1-Aに対しては、MS#0-Bはユーザ識別子が直交しているため干渉源とはならない。   In FIG. 1, the user identifier OVSF # 0 used in Cell-A is assigned to the radio communication terminal MS # 0-B of Cell-B. Therefore, although the radio communication terminal MS # 0-B is communicating with the base station apparatus 1B, if the radio wave also arrives at the base station apparatus 1A (= may not arrive), it becomes an interference source. On the other hand, in a general MUI free access scheme such as CIBS-CDMA and IFDMA, interference does not occur due to the orthogonalization principle if the user identifier is different. Therefore, although MS # 0-B is an interference source for radio communication terminal MS # 0-A, MS # 0-B has an orthogonal user identifier for MS # 1-A. It will not be a source of interference.

この原理を利用し、MUI-Freeアクセスに適用する事を前提として、等化・干渉除去の前段階で総ユーザ数を限定する手法が考えられる。しかし、等化・干渉除去の前段階でユーザ直交化を実施すると、希望ユーザと同じユーザ識別子(例えばOVSF符号)を持つ干渉ユーザのみが干渉として残留する。この構成によると、想定される全ユーザの信号を取り扱う場合と比較して、大きく回路規模の削減が可能となり、実現可能な回路規模となる。   Based on the assumption that this principle is applied to MUI-Free access, a method of limiting the total number of users in the previous stage of equalization / interference removal can be considered. However, if user orthogonalization is performed in the previous stage of equalization / interference removal, only interfering users having the same user identifier (for example, OVSF code) as the desired user remain as interference. According to this configuration, it is possible to greatly reduce the circuit scale as compared with the case of handling signals of all assumed users, and the circuit scale can be realized.

因みに、想定される全ユーザの信号を取り扱う場合には、ユーザ干渉の影響を除去するため基地局装置は1台の無線通信端末と送受信するのにUser#0〜User#Nの大規模な回路構成が必要であり、膨大な仮想端末を1ステージ内に包含する必要があった。   Incidentally, when handling the signals of all assumed users, the base station device is a large-scale circuit of User # 0 to User # N to transmit / receive to / from one wireless communication terminal in order to eliminate the influence of user interference. A configuration is necessary, and it is necessary to include a large number of virtual terminals in one stage.

しかしながら等化・干渉除去の前段階でユーザ直交化を実施する方法では、図2(A)及び(B)に示した様に、独立受信系統数によって、その干渉除去性能が左右される。図2(A)では、2アンテナ受信系統、図2(B)は、4受信系統である。干渉が無い場合の受信誤り率特性と比べ、明らかに、2アンテナ受信時の方が特性が悪い。これは、空間分割多元接続(SDMA:Space Division Multiple Access)に代表される様な、空間(伝送路)の違いによって収容ユーザを識別する場合には、独立なアンテナ系統数(次元)が多いほど、干渉除去能力が向上する為である。   However, in the method of performing user orthogonalization in the previous stage of equalization / interference cancellation, as shown in FIGS. 2A and 2B, the interference cancellation performance depends on the number of independent reception systems. 2A shows a two-antenna reception system, and FIG. 2B shows a four-reception system. Obviously, the reception error rate characteristic is worse when receiving two antennas than the reception error rate characteristic when there is no interference. This is because, as the number of independent antenna systems (dimensions) increases, the accommodating user is identified by the difference in space (transmission path), as represented by space division multiple access (SDMA). This is because the interference removal capability is improved.

本発明では、この次元の拡大に着目し、無線通信システムで用いられる自動再送要求(Hybrid ARQ: Automatic Repeat reQuest)を拡大使用し、次元を拡大するものである。   In the present invention, paying attention to the expansion of the dimension, the automatic repeat request (Hybrid ARQ: Automatic Repeat reQuest) used in the wireless communication system is expanded and the dimension is expanded.

Hybrid-ARQ技術は、公知の技術である為、詳細には触れないが、概説すると、図3のように示される。図3では、送信機20(22〜25)と受信機21(26〜30)が描かれている。送信機20では、送信情報を一旦バッファ22に取り込み、誤り訂正符号化を行う。ここでは、ターボ符号化器を用いている。ターボ符号化では、一般には、1ビットの送信情報につき、2ビットのパリティビットが出力される。1ビットの送信情報に対して、2倍の非情報信号を送信する(Rate=1/3)のは、非効率であるため、一般には、パリティビットを交互に間引き、Rate=1/2、つまり、情報信号対パリティビットが1対1で出力する(システムによってはもっとRateを低下させたり、上昇させる場合もある)。   The Hybrid-ARQ technique is a known technique and will not be described in detail, but is outlined as shown in FIG. In FIG. 3, a transmitter 20 (22 to 25) and a receiver 21 (26 to 30) are depicted. In the transmitter 20, the transmission information is once taken into the buffer 22, and error correction coding is performed. Here, a turbo encoder is used. In turbo coding, in general, two parity bits are output for one bit of transmission information. Since it is inefficient to transmit twice the non-information signal (Rate = 1/3) with respect to 1-bit transmission information, in general, parity bits are thinned out alternately, Rate = 1/2, That is, the information signal to the parity bit is output on a one-to-one basis (the rate may be further lowered or increased depending on the system).

受信機21側では、ユーザ直交化を行い、2ブランチ受信にて、周波数領域等化・干渉キャンセル部27にて周波数領域等化及び干渉キャンセルを実施する。周波数領域等化・干渉キャンセル部27は、FFT31、乗算器32、加算器33及びiFFT34からなり、このうちFFT31及びiFFT34はそれぞれ、周波数領域へ変換する時間・周波数変換部と時間領域へ変換する周波数・時間変換部である。   On the receiver 21 side, user orthogonalization is performed, and frequency domain equalization / interference cancellation is performed by the frequency domain equalization / interference cancellation unit 27 in two-branch reception. The frequency domain equalization / interference cancellation unit 27 includes an FFT 31, a multiplier 32, an adder 33, and an iFFT 34. Of these, the FFT 31 and the iFFT 34 are a time / frequency conversion unit for converting to the frequency domain and a frequency for conversion to the time domain, respectively. -It is a time conversion part.

この後ターボ復号器29においてターボ復号を実施したとき、誤り有無判定部30にて運悪くターボ復号結果に誤りが生じている(例えば、CRC:Cyclic Redundancy Check符号にて検出する)と、送信機20に対して、再度情報を送信する様、指示を行う(NACK:Non ACKnoledgement)。NACKを受信した送信機20は、HARQのモード、例えば、Chase-Combiningであれば、再送前と全く同一の信号の送信を行う。また、Incremental
Redundancyでは、図3に示されている様に、初回送信時と再送時にて、パリティビットの切り替え初期位相を変える。この結果、インクリメンタルリダンダンシーでは、再送時には、R=1/3と同等の復号が行える事になり、誤り訂正能力が向上することが知られている。
Thereafter, when turbo decoding is performed in the turbo decoder 29, if there is an error in the turbo decoding result unfortunately in the error presence / absence determination unit 30 (for example, detection by CRC: Cyclic Redundancy Check code), the transmitter 20 is instructed to transmit information again (NACK: Non ACKnoledgement). In the case of HARQ mode, for example, Chase-Combining, the transmitter 20 that has received NACK transmits exactly the same signal as before retransmission. Incremental
In Redundancy, as shown in FIG. 3, the parity bit switching initial phase is changed between the initial transmission and the retransmission. As a result, it is known that the incremental redundancy can perform decoding equivalent to R = 1/3 at the time of retransmission and improve the error correction capability.

(2)本実施の形態による周波数領域等化・干渉キャンセル部の構成
次に図4及び図5を用いて本実施の形態の第1の要点を説明するが、同図はあくまで第1の要点を説明するためのものであり、本実施の形態の構成を示すものではない。図3との対応部分に同一符号を付した図4は、1干渉ユーザがキャンセルされる様子を周波数領域等化・干渉キャンセル部40を用いて示したものである。
(2) Configuration of Frequency Domain Equalization / Interference Canceling Unit According to this Embodiment Next, the first main point of the present embodiment will be described with reference to FIGS. 4 and 5, but this figure is only the first main point. Is not intended to illustrate the configuration of the present embodiment. FIG. 4, in which the same reference numerals are assigned to the parts corresponding to those in FIG. 3, shows how one interference user is canceled using the frequency domain equalization / interference cancellation unit 40.

この周波数領域等化・干渉キャンセル部40における、前述した等化・干渉除去の前段階で総ユーザ数を限定する手法との差異は、明らかに仮想受信系統の追加である。これは、図4の上段における、FFT41の出力Yにて表現されており、その出力は、乗算器42、43、44に供給されると共に、乗算器42、43、44を経て、最終的に加算器45にて合成される。 The difference between the frequency domain equalization / interference cancellation unit 40 and the method of limiting the total number of users in the previous stage of equalization / interference removal described above is clearly the addition of a virtual reception system. This, in the upper part of FIG. 4 are represented by the output Y V of FFT41, with its output is supplied to the multiplier 42, 43, 44, through the multiplier 42, 43 and 44, finally Is synthesized by an adder 45.

この構成により、干渉除去能力が向上する。仮想受信系の信号は、再送要求の根拠となった、誤りが発生した情報系列を用いた再生シンボルデータではあるものの、誤り訂正復号を経たものであり、大部分の受信ビットは正常に受信されている。例えば、音声信号の送受では、ビット誤り率が10-2が基準であるが、これは、100ビット中、1ビットが誤る事を意味する。したがって、大部分の信号部分に関しては、干渉信号を抽出・再生するための、希望波除去信号として用いることが可能である。 This configuration improves interference removal capability. The signal of the virtual reception system is the reproduced symbol data using the information sequence in which an error has occurred, which is the basis for the retransmission request, but has undergone error correction decoding, and most of the received bits are received normally. ing. For example, in the transmission / reception of an audio signal, a bit error rate of 10 −2 is the standard, which means that 1 bit out of 100 bits is incorrect. Therefore, most of the signal portion can be used as a desired wave removal signal for extracting and reproducing the interference signal.

また、本発明の周波数領域等化・干渉キャンセル部40は線形干渉キャンセラであるが、線形干渉キャンセラ特有の雑音軽減能力に乏しい劣化要素を、仮想受信系統の導入によって改善することができる。   Further, although the frequency domain equalization / interference cancellation unit 40 of the present invention is a linear interference canceller, it is possible to improve a degradation factor lacking in noise reduction capability specific to the linear interference canceller by introducing a virtual reception system.

次に、図4に示す周波数領域等化・干渉キャンセル部40の信号の流れを説明する。図4では、希望波抽出・再生ステージ、干渉波抽出・再生ステージを交互に繰り返す構成となっている。ここで、乗算係数WDV、WD1、WD2とは、仮想受信系統と2通常受信系統の各希望ユーザに対する、干渉信号が存在しない場合のMMSE(最小平均二乗誤差)重みであるとすると、あるn番目の受信系統における受信信号は、次の式の様に表すことができる。
=HDn+HIn+Nn
Dn=HDn*/(Σ|HDi+SNR −1
In=HIn*/(Σ|HIi+SNR −1) … (1)
Next, the signal flow of the frequency domain equalization / interference cancellation unit 40 shown in FIG. 4 will be described. In FIG. 4, the desired wave extraction / reproduction stage and the interference wave extraction / reproduction stage are alternately repeated. Here, the multiplication coefficients W DV , W D1 , and W D2 are MMSE (minimum mean square error) weights when there is no interference signal for each desired user of the virtual reception system and the two normal reception systems. A received signal in an n-th receiving system can be expressed as the following equation.
Y n = H Dn X D + H In X I + Nn
W Dn = H Dn * / (Σ | H Di | 2 + SNR D −1 )
W In = H In * / (Σ | H Ii | 2 + SNR I −1 ) (1)

ここで、*とは、複素共役を意味し、Σとは、関係する全ての受信系統間の和を取る意味であり、希望ユーザの信号をX、干渉ユーザの信号をXとし、それぞれ伝送路の伝達関数をH、Hとする。また、干渉信号に対するMMSE重みをWとする。希望信号対雑音電力比をSNR、干渉信号対雑音電力比をSNRとし、雑音電力はNとしている。なお、X、Xは、アンテナ番号に依存せず、同一情報であるため、サフィックスnは存在しない。 Here, * means a complex conjugate, and Σ means the sum between all related receiving systems, and the desired user signal is X D and the interference user signal is X I , respectively. Let the transfer function of the transmission line be H D and H I. Also, the MMSE weight for interfering signals and W I. The desired signal-to-noise power ratio is SNR D , the interference signal-to-noise power ratio is SNR I , and the noise power is N. Note that X D and X I do not depend on the antenna number and are the same information, so there is no suffix n.

図4において、希望信号に対し、乗算器42、46,47にて上記乗算係数WDV、WD1、WD2にて合成を行うと、加算器48の出力は、干渉信号を含むものの、希望信号レベルが上昇した信号が抽出される。この後、乗算器49、50にて、各受信系統に合致する希望信号用の伝送路の伝達関数を付与し、加算器(減算器)51、52にて、受信系統から減算を行えば、理想的には、干渉信号のみが抽出される。 In FIG. 4, when the desired signal is synthesized by the multipliers 42, 46 and 47 with the multiplication coefficients W DV , W D1 and W D2 , the output of the adder 48 includes the interference signal, A signal having an increased signal level is extracted. Thereafter, a transfer function of a transmission path for a desired signal that matches each receiving system is given by multipliers 49 and 50, and subtraction is performed from the receiving system by adders (subtracters) 51 and 52. Ideally, only the interference signal is extracted.

乗算器53、54にて、干渉波用のMMSE受信係数WI1、WI2を用いて受信合成すると、加算器55の出力は、希望信号がある程度削除された干渉信号成分が出力される。この干渉信号成分を用いて、乗算器56、57にて干渉波用の伝達関数を付与し、各通常受信系統から減算を実施すれば、希望波信号に対する干渉レベルを低減させることができる。 When the multipliers 53 and 54 receive and synthesize using the MMSE reception coefficients W I1 and W I2 for interference waves, the output of the adder 55 outputs an interference signal component from which a desired signal is deleted to some extent. By using this interference signal component and adding a transfer function for an interference wave in the multipliers 56 and 57 and performing subtraction from each normal reception system, the interference level for the desired wave signal can be reduced.

これらの操作を繰り返し、最終的に得られた干渉信号を減算器72、73にて減算すれば、干渉信号が除去された通常受信系統を得ることができる。   By repeating these operations and subtracting the finally obtained interference signal by the subtracters 72 and 73, a normal reception system from which the interference signal is removed can be obtained.

この後に、乗算器44、74、75にて、各受信系統に対するMMSE乗算係数を用いて、加算器45にて合成を行えば、干渉除去が実施された信号を得ることができる。   Thereafter, if the multipliers 44, 74, and 75 use the MMSE multiplication coefficient for each reception system and perform synthesis in the adder 45, a signal from which interference has been removed can be obtained.

これらは全て線形処理である為、簡略化を行えば、図5に示される様な、好適な実施例としては、複素乗算器80、81、82が各一個ずつで、干渉除去ならびにMMSE受信ができる。   Since these are all linear processes, if simplified, as shown in FIG. 5, as a preferred embodiment, each of the complex multipliers 80, 81, and 82 has one interference multiplier and MMSE reception. it can.

図4及び図5が同一である事を証明する。図4におけるFDE‐IC出力つまり、加算器45の出力は、
FDE出力=
DV[Y
+WD1[Y−HI1{WI1(Y−HD1)+WI2(Y−HD2)}]
+WD2[Y−HI2{WI1(Y−HD1AD)+WI2(Y−HD2)}]
… (2)
と現せる。ここで、Aとは、
=WDV+WD1(Y−HI1)+WD2(Y−HI2) … (3)
であり、Bとは、
=WI1{Y−HD1(WDV+WD1+WD2)}+WI2{Y−HD2(WDV+WD1+WD2)}
にて表現される。
It proves that FIG.4 and FIG.5 is the same. The FDE-IC output in FIG. 4, that is, the output of the adder 45 is
FDE output =
W DV [Y V ]
+ W D1 [Y 1 -HI 1 {WI 1 (Y 1 -HD 1 AD ) + WI 2 (Y 2 -HD 2 AD )}]
+ W D2 [Y 2 −HI 2 {W I1 (Y 1 −HD 1 AD) + W I2 (Y 2 −HD 2 AD )}]
(2)
It can appear. Here, AD is
A D = W DV Y V + W D1 (Y 1 -H I1 B I) + W D2 (Y 2 -H I2 B I) ... (3)
And BI is
B I = W I1 {Y 1 -H D1 (W DV Y V + W D1 Y 1 + W D2 Y 2)} + W I2 {Y 2 -H D2 (W DV Y V + W D1 Y 1 + W D2 Y 2)}
It is expressed in

これらを、Y、Y、Yそれぞれについてまとめるため、Bより先にまとめていく。

{−WI1D1DV−WI2D2DV
+Y{WI1−WI1D1D1−WI2D2D1
+Y{WI2−WI1D1D2−WI2D2D2
ここで、B=WI1D1+WI2D2とすると、さらに簡潔に表現されて、

{−WDVB}
+Y{WI1−WD1B}
+Y{WI2−WD2B} … (4)
となる。
These, to put together the Y V, Y 1, Y 2, respectively, will together before the B I.
B I =
Y V {-W I1 H D1 W DV -W I2 H D2 W DV }
+ Y 1 {W I1 −W I1 H D1 W D1 −W I2 H D2 W D1 }
+ Y 2 {W I2 −W I1 H D1 W D2 −W I2 H D2 W D2 }
Here, if B = W I1 H D1 + W I2 H D2 ,
B I =
Y V {−W DV B}
+ Y 1 {W I1 −W D1 B}
+ Y 2 {W I2 −W D2 B} (4)
It becomes.

についても、同様にY、Y、Yそれぞれについてまとめると、
=WDV+WD1(Y−HI1)+WD2(Y−HI2
=WDV+WD1+WD2−B(WD1I1+WD2I2
ここで、A=WD1I1+WD2I2とおくと、
=WDV+WD1+WD2−B
Similarly for A D , Y V , Y 1 , and Y 2 are summarized as follows:
A D = W DV Y V + W D1 (Y 1 -H I1 B I) + W D2 (Y 2 -H I2 B I)
= W DV Y V + W D1 Y 1 + W D2 Y 2 -B I (W D1 H I1 + W D2 H I2)
Here, A = W D1 H I1 + W D2 H I2
A D = W DV Y V + W D1 Y 1 + W D2 Y 2 −B I A

この結果に、(4)式結果を代入して、
=WDV+WD1+WD2−A{−YDVB+Y(WI1−WD1B)+Y(WI2−WD2B)}
=Y{WDV+AWDVB }+Y{WD1−A(WI1−WD1B)}+Y{WD2−A(WI2−WD2B)} … (5)
Substituting the result of equation (4) into this result,
A D = W DV Y V + W D1 Y 1 + W D2 Y 2 -A {-Y V W DV B + Y 1 (W I1 -W D1 B) + Y 2 (W I2 -W D2 B)}
= Y V {W DV + AW DV B} + Y 1 {W D1 -A (W I1 -W D1 B)} + Y 2 {W D2 -A (W I2 -W D2 B)} ... (5)

(2)式についても、同様にY、Y、Yそれぞれについてまとめると、
FDE出力=
DV+WD1+WD2
−Y{WD1I1I1+WD2I2I1
−Y{WD1I1I2+WD2I2I2
+A{WD1I1I1D1+WD1I1I2D2+WD2I2I1D1+WD2I2I2D2
=WDV+WD1+WD2
−Y{WI1A}
−Y{WI2A}
+A{WI1D1A+WI2D2A}
=WDV+WD1+WD2
−Y{WI1A}
−Y{WI2A}
+A{AB}
=WDV
+Y{WD1−WI1A}
+Y{WD2−WI2A}
+A{AB}
Similarly, for formula (2), Y V , Y 1 and Y 2 are summarized as follows:
FDE output =
W DV Y V + W D1 Y 1 + W D2 Y 2
-Y 1 {W D1 H I1 W I1 + W D2 H I2 W I1 }
-Y 2 {W D1 H I1 W I2 + W D2 H I2 W I2 }
+ A D {W D1 H I1 W I1 H D1 + W D1 H I1 W I2 H D2 + W D2 H I2 W I1 H D1 + W D2 H I2 W I2 H D2 }
= W DV Y V + W D1 Y 1 + W D2 Y 2
-Y 1 {W I1 A}
-Y 2 {W I2 A}
+ A D {W I1 H D1 A + W I2 H D2 A}
= W DV Y V + W D1 Y 1 + W D2 Y 2
-Y 1 {W I1 A}
-Y 2 {W I2 A}
+ AD {AB}
= W DV Y V
+ Y 1 {W D1 −W I1 A}
+ Y 2 {W D2 −W I2 A}
+ AD {AB}

この結果に、(5)式の結果を代入して、
FDE出力=
DV
+Y{WD1−WI1A}
+Y{WD2−WI2A}
+AB{Y[WDV+AWDVB]+Y[WD1−A(WI1−WD1B)]+Y[WD2−A(WI2−WD2B)]}
=WDV
+Y{WD1−WI1A}
+Y{WD2−WI2A}
+AB{WDV[1+AB]+Y[WD1−A(WI1−WD1B)]+Y[WD2−A(WI2−WD2B)]}
=Y{WDV[1+AB+A]}
+Y{WD1−WI1A+AB[WD1−A(WI1−WD1B)]}
+Y{WD2−WI2A+AB[WD2−A(WI2−WD2B)]}
=Y{WDV[1+AB+A]}
+Y{WD1−A[WI1−B[WD1−A(WI1−WD1B)]]}
+Y{WD2−A[WI2−B[WD2−A(WI2−WD2B)]]}

… (6)
Substituting the result of equation (5) into this result,
FDE output =
W DV Y V
+ Y 1 {W D1 −W I1 A}
+ Y 2 {W D2 −W I2 A}
+ AB {Y V [W DV + AW DV B] + Y 1 [W D1 -A (W I1 -W D1 B)] + Y 2 [W D2 -A (W I2 -W D2 B)]}
= W DV Y V
+ Y 1 {W D1 −W I1 A}
+ Y 2 {W D2 −W I2 A}
+ AB {W DV Y V [ 1 + AB] + Y 1 [W D1 -A (W I1 -W D1 B)] + Y 2 [W D2 -A (W I2 -W D2 B)]}
= Y V {W DV [1 + AB + A 2 B 2 ]}
+ Y 1 {W D1 −W I1 A + AB [W D1 −A (W I1 −W D1 B)]}
+ Y 2 {W D2 −W I2 A + AB [W D2 −A (W I2 −W D2 B)]}
= Y V {W DV [1 + AB + A 2 B 2 ]}
+ Y 1 {W D1 −A [W I1 −B [W D1 −A (W I1 −W D1 B)]]}
+ Y 2 {W D2 −A [W I2 −B [W D2 −A (W I2 −W D2 B)]]}

(6)

この結果は、図5における係数と一致する。すなわち、図4にて示された、多段の干渉キャンセルプロセスは、仮想受信系統も含めて、乗算器(複素信号を扱う場合は、複素乗算器)1個で表現できることが示された。   This result is consistent with the coefficients in FIG. That is, it was shown that the multistage interference cancellation process shown in FIG. 4 can be expressed by a single multiplier (a complex multiplier in the case of handling complex signals) including the virtual reception system.

以上から、本実施の形態にて開示する様に、再送要求の根拠となる復号信号を用いた仮想受信系統と、複数の受信系とのそれぞれにて希望信号を抽出・キャンセルし、その上で複数の受信系から干渉信号を生成し、遅延させた受信信号から各々減算する事で、干渉除去と伝送路等化とを行う周波数領域補償部をそれぞれ1個の複素乗算器80、81、82にて実現できることが示された。   From the above, as disclosed in the present embodiment, the desired signal is extracted and canceled in each of the virtual reception system using the decoded signal that is the basis of the retransmission request and the plurality of reception systems, and then By generating interference signals from a plurality of reception systems and subtracting each from the delayed reception signals, frequency domain compensation units that perform interference removal and transmission path equalization are each provided with one complex multiplier 80, 81, 82. It was shown that can be realized.

(3)仮想受信系統におけるパリティ除去処理
次に本発明請求項2の動作を、図6を用いて説明する。なお図6において、乗算係数は、本発明請求項3にて詳説する。また、これまで各図において「ユーザ直交化」と称されていたブロック25、26は、今回は具体的な例を挙げ、IFDMAと表現する。
(3) Parity Removal Processing in Virtual Reception System Next, the operation of claim 2 of the present invention will be described with reference to FIG. In FIG. 6, the multiplication coefficient will be described in detail in claim 3 of the present invention. In addition, the blocks 25 and 26, which have been referred to as “user orthogonalization” in the drawings so far, will be expressed as IFDMA by giving a specific example.

本実施の形態では、仮想受信系統は、QPSK/16QAM等変調部90、FFT41及び乗算器80から構成される。後述するように乗算器80及び加算器45間に重み付け乗算部91を設け、重み付け係数αを変化させることにより、通常受信系統との差別化を図るようにしても良い。   In the present embodiment, the virtual reception system includes a QPSK / 16QAM modulation unit 90, an FFT 41, and a multiplier 80. As will be described later, a weighting multiplication unit 91 may be provided between the multiplier 80 and the adder 45, and the weighting coefficient α may be changed to differentiate from the normal reception system.

請求項1のHARQの説明にて述べた様に、HARQには、Incremental Redundancyと称される、初回送信時と再送時とで、送信するパリティビットを変化させるモードがある。また、例えChase-Combiningでも、仮想受信系統に使用される情報系列は、あくまで間違いの生じている情報系列であり、この間違った情報に基づいて、受信機側でターボ符号化を行うと、結果的に得られる仮想受信系統の信号は、再送時に受信した信号とは、全く異なるパリティビットが生成され、通常受信系統からの減算時に、反って干渉を増加させてしまう(異なる信号を減算するので、干渉信号抽出の為に希望信号を削除している事にならない)可能性が高い。   As described in the explanation of HARQ in claim 1, HARQ has a mode called “Incremental Redundancy” in which a parity bit to be transmitted is changed between initial transmission and retransmission. Also, even in Chase-Combining, the information sequence used for the virtual reception system is an information sequence in which an error has occurred, and when the turbo coding is performed on the receiver side based on this incorrect information, the result is The signal of the virtual reception system that is obtained automatically generates a completely different parity bit from the signal received at the time of retransmission, and when subtracting from the normal reception system, it causes an increase in interference (because a different signal is subtracted). It is highly possible that the desired signal is not deleted to extract the interference signal).

したがって、本発明請求項2では、前記パリティビットを干渉信号生成の際に、希望信号として組み入れないことを特徴とする。   Therefore, the second aspect of the present invention is characterized in that the parity bit is not incorporated as a desired signal when generating an interference signal.

具体的には、例えばQPSK(Quadrature Phase Shift Keying:4相位相変調)を例にする。Rate=1/2でターボ符号化されていて、送信情報ビットと、パリティビットが交互にシンボルマッピングされる場合、I,Q平面(Inphase, Quadrature phase)上では、ある時刻tのQPSKシンボルは、次の様に示される。
シンボルX(t)=D(t)+jP(t)
ここで、jとは虚数演算子であり、D(t)は、±1の値、P(t)は、±1の値を取る。
Specifically, for example, QPSK (Quadrature Phase Shift Keying) is taken as an example. When turbo encoding is performed at Rate = 1/2, and transmission information bits and parity bits are symbol-mapped alternately, on the I and Q planes (Inphase, Quadrature phase), the QPSK symbol at a certain time t is It is shown as follows.
Symbol X (t) = D (t) + jP (t)
Here, j is an imaginary operator, D (t) takes a value of ± 1, and P (t) takes a value of ± 1.

したがって、X(t)は「1+j」、「−1+j」、「+1−j」、「−1−j」の4種類のうちのいずれかをとる。通常受信系では、これらのマッピング規則にしたがって、情報とパリティがマッピングされることになる。一方、仮想系では、送信情報しか用いない為、
再生シンボルX’(t)=D’(t)
となる。D’(t)とは、ターボ復号が終了し、誤りが発生した(どこで発生しているかは不明な状態)、再生情報系列である。
Therefore, X (t) takes one of four types of “1 + j”, “−1 + j”, “+ 1−j”, and “−1−j”. In a normal reception system, information and parity are mapped according to these mapping rules. On the other hand, the virtual system uses only transmission information,
Playback symbol X ′ (t) = D ′ (t)
It becomes. D ′ (t) is a reproduction information sequence in which turbo decoding has been completed and an error has occurred (where it is unknown where).

この再生シンボルを用いて、仮想受信系統の情報信号とする。明らかに、通常受信系とは信号が異なるものの、情報信号領域に関しては、干渉キャンセルを実施することができ、パリティ領域に関しては、少なくとも干渉増加の可能性は無いという特徴を得ることができる。   The reproduced symbol is used as an information signal of the virtual reception system. Obviously, although the signal is different from that of the normal reception system, interference cancellation can be performed for the information signal region, and at least the possibility of an increase in interference can be obtained for the parity region.

16QAMや64QAM(QAM:Quadrature Amplitude Modulation)という多値変調方式の場合でも、この考えの拡張で対応可能である。単純な拡張で実現できる為詳説しないが、マッピングルールに従い、パリティ部分が与える信号電力を0とすれば、同様の処理が可能である。   Even in the case of a multi-level modulation system such as 16QAM or 64QAM (QAM: Quadrature Amplitude Modulation), it is possible to cope with this extension of the idea. Although it is not described in detail because it can be realized by simple extension, the same processing is possible if the signal power given by the parity part is set to 0 according to the mapping rule.

以上から、本実施の形態にて開示する様に、再生シンボルのパリティビット部分を強制的に削除することで、HARQにおける、再送時の信号が、初回送信時と異なる場合でも、本発明が適用可能であることが示された。   From the above, as disclosed in the present embodiment, by forcibly deleting the parity bit part of the reproduced symbol, the present invention can be applied even when the signal at the time of retransmission in HARQ is different from that at the first transmission. It was shown to be possible.

(4) 仮想受信系と通常の受信系との差別化方法
次に、本発明請求項3を説明する。本発明請求項3では、仮想受信系と通常受信系との信頼度の違いに基づき、重み付け係数αを変化させるものである。処理イメージとしては、図6に示されている重み付け乗算部91による乗算処理となる。なお、この乗算処理の存在は、あくまで仮想のものであり、厳密には本箇所に実装するのではなく、前記請求項1の説明にて述べた、各受信系統の伝達関数HDV、HD1、HD2に含まれるべきである。
(4) Differentiation method between virtual reception system and normal reception system Next, claim 3 of the present invention will be described. According to the third aspect of the present invention, the weighting coefficient α is changed based on the difference in reliability between the virtual reception system and the normal reception system. The processing image is a multiplication process by the weighting multiplication unit 91 shown in FIG. Note that the existence of this multiplication process is only a virtual one, and strictly speaking, it is not implemented in this place, but the transfer functions H DV and H D1 of each receiving system described in the description of claim 1 above. , Should be included in HD2 .

仮想受信系に用いられる誤りを含む送信情報系列は、誤りは存在するものの、誤り訂正処理がなされたものであり、通常受信系よりも信頼度が高い場合がある。例えば、受信信号レベルが雑音電力と比較して非常に低い場合は、通常受信系で得られる受信信号よりも、誤り訂正(ターボ復号)処理がなされたものの方が、情報信号系列の品質が高い場合がある。この場合は、誤り訂正処理がなされた仮想受信系の重みを大きくし、仮想受信系と通常受信系との合成結果にて、仮想受信系への依存度を大きくすべきである。   A transmission information sequence including an error used in a virtual reception system has been subjected to error correction processing although an error exists, and may have higher reliability than a normal reception system. For example, when the received signal level is very low compared to the noise power, the quality of the information signal sequence is higher when the error correction (turbo decoding) processing is performed than the received signal obtained in the normal receiving system. There is a case. In this case, the weight of the virtual reception system that has been subjected to the error correction process should be increased, and the dependence on the virtual reception system should be increased in the combined result of the virtual reception system and the normal reception system.

一方、受信信号レベルが高いものの、干渉レベルによって運悪く誤りが発生してしまった場合もある。この場合は、仮想受信系に大きな重みを与える必要が無く、通常受信系と同等以下なレベルの重みが必要となる。通常系がよりよい品質にもかかわらず、仮想受信系に大きな重み付けを行うと、通常受信系が軽視され、最適な受信特性を得ることができない。   On the other hand, although the received signal level is high, an error may occur unfortunately due to the interference level. In this case, it is not necessary to give a large weight to the virtual reception system, and a weight having a level equal to or lower than that of the normal reception system is required. Despite the better quality of the normal system, if the virtual reception system is heavily weighted, the normal reception system is neglected and optimal reception characteristics cannot be obtained.

したがって、仮想受信系と通常受信系とでは、その経路/処理の違いから、異なる重み付けを実施することが有効な場合がある。この重み付けを考慮することが、本発明請求項3の大きなポイントである。   Therefore, it may be effective to perform different weighting between the virtual reception system and the normal reception system due to the difference in path / processing. Considering this weighting is a major point of claim 3 of the present invention.

具体的な重み付け付与方法としては、前記各伝達関数に与える事で実現できる。仮想受信系の伝達関数は、次の様に表せる。
DV=G+j0
ここで、Gは、実数定数であり、この結果、仮想受信系の伝達関数は単なるゲインGを与える定数倍の伝達関数であることがわかる。仮想受信系は、再度変調しただけであり、伝送路を通過していない為、単なるゲイン倍される事を意味する。ここで、希望信号のMMSE受信における、各周波数領域等化・干渉除去係数は、次の様に表せる。
A specific weighting method can be realized by giving each transfer function. The transfer function of the virtual reception system can be expressed as follows.
H DV = G + j0
Here, G is a real constant, and as a result, it can be seen that the transfer function of the virtual reception system is a transfer function of a constant multiple giving a simple gain G. Since the virtual reception system is only modulated again and does not pass through the transmission line, it means that it is simply multiplied by a gain. Here, each frequency domain equalization / interference cancellation coefficient in MMSE reception of a desired signal can be expressed as follows.

仮想受信系であれば、

DV=HDV /(Σ|Hi|+|HDV+SNR−1

通常受信系であれば、

DX=HDX /(Σ|Hi|+|HDV+SNR−1

と現される。上式から、前記Gによって、仮想受信系と通常受信系の重み付けを変更できることがわかる。
If it is a virtual reception system,
N
W DV = H DV * / (Σ | Hi | 2 + | H DV | 2 + SNR −1 )
i
If it is a normal receiving system,
N
W DX = H DX * / (Σ | Hi | 2 + | H DV | 2 + SNR −1 )
i
It is expressed. From the above equation, it can be seen that the weight of the virtual reception system and the normal reception system can be changed by G.

このGの最適値は、使用される変調方式がQPSK、16QAM、64QAM等に依存し、また、初回送信時と再送時の伝送路変動の様子によっても変化する為、システムを構築する場合に、想定される範囲での最適値を事前に調査することが望ましい。   The optimum value of G depends on the modulation scheme used, such as QPSK, 16QAM, 64QAM, etc., and also changes depending on the state of transmission path fluctuation at the time of initial transmission and retransmission, so when constructing a system, It is desirable to investigate the optimum value in the expected range in advance.

本実施の形態によるIFDMA方式による効果を計算機シミュレーションにて確認した。図7(A)及び(B)にその平均パケット誤り率(PER:Packet Error Rate)特性と平均スループット特性とを示す。いずれも通常受信系統は2系統である。伝送路のモデルは6パス指数減衰静的環境である。希望ユーザが1、干渉ユーザが1ずつ、セルもしくはセクタ境界近辺に存在し、各ユーザ間での伝送路は独立であるものの、等電力にて基地局装置に受信されるものとした。   The effect of the IFDMA method according to this embodiment was confirmed by computer simulation. FIGS. 7A and 7B show the average packet error rate (PER) characteristics and the average throughput characteristics. In either case, there are usually two receiving systems. The transmission line model is a 6-pass exponentially damped static environment. It is assumed that one desired user and one interfering user exist near the cell or sector boundary, and the transmission path between the users is independent, but is received by the base station apparatus with equal power.

また、測定対象とした基地局は、拡散率4で、4ユーザを収容しており、所謂Fully Loadedな状態である。図中FDE‐MMSEとは、干渉除去を実施しない場合を指し、FDE−IC1〜FDE−IC4とは、各ステージの干渉除去・等化を実施した場合のBER特性である。Incremental Redundancyを採用し、最大再送回数を4回までとした。これは4回送信しても誤りが残留する場合は、そのパケットは受信不能とすることを意味する。   The base station to be measured has a spreading factor of 4 and accommodates 4 users, and is in a so-called Fully Loaded state. In the figure, FDE-MMSE indicates a case where interference removal is not performed, and FDE-IC1 to FDE-IC4 are BER characteristics when interference removal / equalization of each stage is performed. Incremental redundancy was adopted, and the maximum number of retransmissions was set to 4 times. This means that if an error remains after four transmissions, the packet cannot be received.

前記請求項1〜3までの開示技術を用いた特性が、FDE‐IC4 with Virtual Branch Addition (VBA)と記載されている。横軸のEb/N0(送信情報1ビットあたりの信号エネルギー対雑音電力密度比)は、アンテナ4本採用時の1本あたりのEb/N0を示し、相互に比較し易いように3〔dB〕左シフトの加工がなされている。   The characteristic using the disclosed technology of claims 1 to 3 is described as FDE-IC4 with Virtual Branch Addition (VBA). Eb / N0 (signal energy to noise power density ratio per bit of transmission information) on the horizontal axis indicates Eb / N0 per one when four antennas are employed, and is 3 [dB] so that they can be easily compared with each other. The left shift is processed.

図7(A)から明らかな様に、音声品質相当のPER=0.1において、FDE‐IC4と比較して、本発明においては約1.8〔dB〕の特性改善がなされている。   As is clear from FIG. 7A, the characteristic improvement of about 1.8 [dB] is made in the present invention compared with the FDE-IC4 at PER = 0.1 corresponding to the voice quality.

また、平均スループット特性を示す図7(B)では、セル(通信エリア)の境界付近で、端末からの送信電力が不足し、再送を4回行って漸く受信可能となる場所を意味するスループット0.25において、約1.2〔dB〕の改善が確認できる。   Further, in FIG. 7B showing the average throughput characteristics, a throughput of 0.25 means a place where transmission power from the terminal is insufficient near the boundary of the cell (communication area), and retransmission is performed four times and reception is gradually possible. The improvement of about 1.2 [dB] can be confirmed.

以上、詳細に説明したように、本発明の受信機における周波数領域での等化・干渉除去方法では、上位通信制御装置により各送信装置へ割り当てられた当該無線通信装置に固有の直交識別子を用いて変調処理して送信し、受信側で誤りが発生した場合は、再送要求を行う無線通信システムにおいて、受信装置は、誤りが発生した復号系列を用いて仮想的な受信系統を作成し、また、複数の通常受信系統を有し、周波数領域等化の前段階においてユーザ直交化を行うユーザ直交化手段を有することにより不特定多数の干渉源を同一ユーザ識別子を有するが異なる送信機から発せられた信号(Co-channel干渉)と希望信号とに限定し、Co-channel干渉及び希望信号のそれぞれの伝達関数を求め、総受信信号から異ユーザ信号を減算される様に考慮した、希望信号に最適な復調用係数を得る手段と、総受信信号を周波数領域に変換する周波数領域変換手段と、前記復調対象となる受信信号に最適な係数を、少なくとも1つの複素乗算器にて付与する周波数領域補償手段とを備え、Co-channel干渉除去と希望信号のマルチパス干渉除去とを同時に実行することを特徴とする。   As described above in detail, in the frequency domain equalization / interference removal method in the receiver of the present invention, the orthogonal identifier unique to the wireless communication device assigned to each transmission device by the upper communication control device is used. In the wireless communication system that makes a retransmission request, the receiving apparatus creates a virtual reception system using the decoded sequence in which the error occurs, By having user orthogonalization means to perform user orthogonalization in the previous stage of frequency domain equalization, it has a plurality of normal reception systems, and unspecified many interference sources are emitted from different transmitters with the same user identifier The transfer function of the co-channel interference and the desired signal is obtained by taking into account that the different user signal is subtracted from the total received signal. A means for obtaining a demodulation coefficient optimum for the desired signal, a frequency domain conversion means for converting the total received signal into the frequency domain, and a coefficient optimum for the received signal to be demodulated are provided by at least one complex multiplier. Frequency domain compensation means for performing co-channel interference cancellation and multi-path interference cancellation of a desired signal at the same time.

この結果、この受信機構成によれば、各受信系統につき(最適な構成ではただ1つの)複素乗算器を有する周波数領域等化にて復号対象ユーザのマルチパス等化を実施する際に、Co-channel干渉の軽減が同時実行されると共に、受信系統数が少ない状態でも仮想的な受信系統の追加によって、受信特性を向上させることが出来る。   As a result, according to this receiver configuration, when performing multipath equalization of a user to be decoded in frequency domain equalization having a complex multiplier (only one in the optimal configuration) for each reception system, Co -Channel interference is reduced simultaneously, and reception characteristics can be improved by adding a virtual reception system even when the number of reception systems is small.

また、本発明の等化・干渉除去方法は、HARQ実施時のモードにて、初回送信時と再送時で不一致が事前に予測される、送信情報以外の冗長な情報領域を干渉除去やMMSE合成の対象除外とする。   Also, the equalization / interference removal method of the present invention eliminates interference or MMSE combining of redundant information areas other than transmission information in which mismatch is predicted in advance between the initial transmission and the retransmission in the HARQ mode. Is excluded.

この結果、この等化・干渉除去方法によれば、冗長な情報領域に対しては、干渉レベルの増加を招くことなく、かつ、送信情報については干渉除去性能を向上させることを特徴とする。   As a result, this equalization / interference removal method is characterized in that an interference level is not increased for a redundant information region and the interference removal performance is improved for transmission information.

さらに、本発明の等化・干渉除去方法は、再送時と前回送信時とで、仮想受信系と通常受信系に生じる信頼度の差異を係数調整によって付与している。
この結果、この等化・干渉除去方法によれば、各受信系が内包する経路や処理に依存して受信品質が異なる場合に、最適な合成結果が得られることを特徴とする。
Furthermore, the equalization / interference elimination method of the present invention gives a difference in reliability between the virtual reception system and the normal reception system by coefficient adjustment between retransmission and the previous transmission.
As a result, this equalization / interference removal method is characterized in that an optimum synthesis result is obtained when the reception quality differs depending on the path and processing included in each reception system.

また、本発明の等化・干渉除去方法は、従来技術のマルチステージ処理の概念をも包括可能であり、マルチステージ処理の際には、受信電力が大きい信号より干渉除去を実行する事で、干渉除去性能の向上が実施できるよう工夫されている。この結果、この受信装置によれば、干渉除去の性能の更なる向上が可能となる事を特徴とする。   In addition, the equalization / interference removal method of the present invention can also include the concept of multi-stage processing of the prior art, and in multi-stage processing, by performing interference removal from a signal having a large received power, It is devised to improve the interference removal performance. As a result, this receiving apparatus is characterized in that the interference removal performance can be further improved.

従来技術におけるCIBS−CDMA方式による無線通信システムの運用例を示す略線図である。It is a basic diagram which shows the operation example of the radio | wireless communications system by the CIBS-CDMA system in a prior art. 従来技術による2受信系統及び4受信系統の平均誤り率特性を示すグラフである。It is a graph which shows the average error rate characteristic of 2 receiving systems and 4 receiving systems by a prior art. Hybrid ARQを導入した場合のシステム動作の説明に供するブロック図である。It is a block diagram with which it uses for description of system operation | movement at the time of introduce | transducing Hybrid ARQ. 本発明による無線通信システムにおける基地局装置に適用した受信機の実施の形態を示すブロック図である。It is a block diagram which shows embodiment of the receiver applied to the base station apparatus in the radio | wireless communications system by this invention. 本発明による無線通信システムにおける基地局装置に適用した受信機の実施の形態を示すブロック図である。It is a block diagram which shows embodiment of the receiver applied to the base station apparatus in the radio | wireless communications system by this invention. 本発明をHARQ環境へ導入した場合のシステム動作の説明に供するブロック図である。It is a block diagram with which it uses for description of system operation | movement at the time of introducing this invention to a HARQ environment. 本発明による平均パケット誤り率特性及び平均スループット特性を示すグラフである。4 is a graph illustrating average packet error rate characteristics and average throughput characteristics according to the present invention.

符号の説明Explanation of symbols

1A、2A……基地局装置、20……送信機、21……受信機、27、40……周波数領域等化・干渉キャンセル部、29……ターボ復号器、30……誤り有無判定部、31……FET、32、42〜44、46、47、49、50、53、54、56、57、60、61、63、64、67、68、70、71、74、75……乗算器、33、45、48、51、52、55、58、59、62、65、66、69、72、73……加算器(減算器)、34……iFET、80-82……複素乗算器、90……QPSK/16QAM等変調部、91……重み付け乗算部。   1A, 2A ...... Base station apparatus, 20 ... Transmitter, 21 ... Receiver, 27, 40 ... Frequency domain equalization / interference canceling unit, 29 ... Turbo decoder, 30 ... Error presence / absence determining unit, 31... FET, 32, 42 to 44, 46, 47, 49, 50, 53, 54, 56, 57, 60, 61, 63, 64, 67, 68, 70, 71, 74, 75. 33, 45, 48, 51, 52, 55, 58, 59, 62, 65, 66, 69, 72, 73 ... adder (subtractor), 34 ... iFET, 80-82 ... complex multiplier , 90... QPSK / 16QAM modulation unit, 91... Weighting multiplication unit.

Claims (9)

複数の無線通信端末及び当該各無線通信端末を収容する基地局装置からなる通信セルが複数配置され、当該各通信セル内での通信状態を通信制御装置が制御するようにして、各前記通信セル内の各前記無線通信端末が、前記通信制御装置により割り当てられた固有の直交識別子を用いて送信信号を変調して送信し、複数の当該送信信号を同一の当該通信セル内の前記基地局装置にて、所望の前記直交識別子を有する送信信号のみを抽出し受信する無線通信方法において、
各前記通信セル内の前記基地局装置は、
複数の前記無線通信端末からの送信信号を受信して時間領域から周波数領域に信号変換する複数の受信系統を有し、当該各受信系統で受信した信号変換後の送信信号の復号時にビット誤りを検出したときには、当該ビット誤りを含む送信信号を一時的に保持すると共に、各前記無線通信端末に対し再送を要求する第1のステップと、
前記再送の根拠となった復号後のビット誤りを含む送信信号を再度変調した後、時間領域から周波数領域に信号変換する仮想受信系統を、各前記受信系統に並列して構築する第2のステップと、
各前記受信系統及び前記仮想受信系統が、自己の通信セルと異なる他の前記通信セル内で前記直交識別子が同一である前記無線通信端末からの送信信号を受信した際に、各前記受信系統及び前記仮想受信系統で合成した結果生ずる干渉信号を用いて除去用干渉信号を作成し、各前記受信系統での送信信号からそれぞれ除去する第3のステップと、
各前記受信系統及び前記仮想受信系統での送信信号に対して伝送路変動等化を行う第4のステップと
を備えることを特徴とする無線通信方法。
A plurality of communication cells each including a plurality of wireless communication terminals and a base station device that accommodates each wireless communication terminal are arranged, and the communication control device controls a communication state in each communication cell, so that each communication cell Each of the wireless communication terminals in the network modulates and transmits a transmission signal using a unique orthogonal identifier assigned by the communication control apparatus, and the base station apparatus in the same communication cell transmits a plurality of the transmission signals. In the wireless communication method for extracting and receiving only the transmission signal having the desired orthogonal identifier,
The base station device in each of the communication cells is
It has a plurality of reception systems for receiving transmission signals from a plurality of the wireless communication terminals and converting the signals from the time domain to the frequency domain, and bit errors are generated when decoding the transmission signals after signal conversion received by the respective reception systems. When detected, a first step of temporarily holding a transmission signal including the bit error and requesting retransmission to each wireless communication terminal;
Second step of constructing a virtual reception system for performing signal conversion from the time domain to the frequency domain in parallel with each of the reception systems after re-modulating the transmission signal including the bit error after decoding that is the basis of the retransmission When,
When each of the reception systems and the virtual reception system receives a transmission signal from the wireless communication terminal having the same orthogonal identifier in another communication cell different from its own communication cell, each of the reception systems and A third step of creating an interference signal for cancellation using an interference signal generated as a result of combining in the virtual reception system, and removing each interference signal from a transmission signal in each of the reception systems;
And a fourth step of performing transmission path fluctuation equalization on transmission signals in each of the reception systems and the virtual reception system.
前記第2のステップでは、
前記仮想受信系統において、復号後のビット誤りを含む送信信号を再変調する際に、当該送信信号に含まれる送信情報ビット以外の冗長ビットが、再送前後で異なることが事前に判明している場合、前記仮想受信系統で再度変調した送信信号から、前記冗長ビットに相当する信号を除去しておく
ことを特徴とする請求項1に記載の無線通信方法。
In the second step,
In the virtual reception system, when remodulating a transmission signal including a bit error after decoding, it is known in advance that redundant bits other than transmission information bits included in the transmission signal are different before and after retransmission. The radio communication method according to claim 1, wherein a signal corresponding to the redundant bit is removed from a transmission signal modulated again by the virtual reception system.
前記第3のステップでは、
前記仮想受信系統及び各前記受信系統において、それぞれ受信信号品質に対する信頼度に応じて、前記仮想受信系統及び各前記受信系統にそれぞれ異なる重み付け処理を実行する
ことを特徴とする前記請求項1又は2に記載の無線通信方法。
In the third step,
In the virtual reception system and each of the reception systems, different weighting processes are executed for the virtual reception system and each of the reception systems, respectively, according to the reliability of received signal quality. The wireless communication method described in 1.
複数の無線通信端末及び当該各無線通信端末を収容する基地局装置からなる通信セルが複数配置され、当該各通信セル内での通信状態を通信制御装置が制御するようにして、各前記通信セル内の各前記無線通信端末が、前記通信制御装置により割り当てられた固有の直交識別子を用いて送信信号を変調して送信し、複数の当該送信信号を同一の当該通信セル内の前記基地局装置にて、所望の前記直交識別子を有する送信信号のみを抽出し受信する無線通信方法における当該各通信セル内の前記基地局装置において、
複数の前記無線通信端末からの送信信号を受信して時間領域から周波数領域に信号変換する複数の受信系統と、
各前記受信系統で信号変換された送信信号の復号時にビット誤りを検出したときには、当該ビット誤りを含む送信信号を一時的に保持すると共に、各前記無線通信端末に対し再送を要求する再送要求手段と、
各前記受信系統に並列して構築され、前記再送要求手段による再送の根拠となった復号後のビット誤りを含む送信信号を再度変調した後、時間領域から周波数領域に信号変換する仮想受信系統と、
各前記受信系統及び前記仮想受信系統が、自己の通信セルと異なる他の前記通信セル内で前記直交識別子が同一である前記無線通信端末からの送信信号を受信した際に、各前記受信系統及び前記仮想受信系統で合成した結果生ずる干渉信号を用いて除去用干渉信号を作成し、各前記受信系統での送信信号からそれぞれ除去する直交化処理手段と、
各前記受信系統及び前記仮想受信系統での送信信号に対して伝送路変動等化を行う周波数領域補償手段と
を備えることを特徴とする基地局装置。
A plurality of communication cells each including a plurality of wireless communication terminals and a base station device that accommodates each wireless communication terminal are arranged, and the communication control device controls a communication state in each communication cell, so that each communication cell Each of the wireless communication terminals in the network modulates and transmits a transmission signal using a unique orthogonal identifier assigned by the communication control apparatus, and the base station apparatus in the same communication cell transmits a plurality of the transmission signals. In the base station apparatus in each communication cell in the wireless communication method for extracting and receiving only the transmission signal having the desired orthogonal identifier,
A plurality of reception systems that receive transmission signals from a plurality of the wireless communication terminals and perform signal conversion from the time domain to the frequency domain;
When a bit error is detected at the time of decoding of a transmission signal that has been signal-converted in each reception system, a retransmission request means that temporarily holds a transmission signal including the bit error and requests retransmission to each wireless communication terminal When,
A virtual reception system that is constructed in parallel with each of the reception systems, re-modulates a transmission signal including a bit error after decoding that is a basis for retransmission by the retransmission request unit, and then performs signal conversion from the time domain to the frequency domain; ,
When each of the reception systems and the virtual reception system receives a transmission signal from the wireless communication terminal having the same orthogonal identifier in another communication cell different from its own communication cell, each of the reception systems and An orthogonalization processing means for creating an interference signal for removal using an interference signal generated as a result of combining in the virtual reception system, and removing each interference signal from a transmission signal in each of the reception systems;
A base station apparatus comprising: frequency domain compensation means for performing transmission path fluctuation equalization on transmission signals in each of the reception systems and the virtual reception system.
前記直交化処理手段及び前記周波数領域補償手段における各処理を、周波数領域において同一構成の回路処理で実行可能とした
ことを特徴とする請求項4に記載の基地局装置。
5. The base station apparatus according to claim 4, wherein each process in the orthogonalization processing unit and the frequency domain compensation unit can be executed by a circuit process having the same configuration in the frequency domain.
前記仮想受信系統において、
復号後のビット誤りを含む送信信号を再変調する際に、当該送信信号に含まれる送信情報ビット以外の冗長ビットが、再送前後で異なることが事前に判明している場合、前記仮想受信系統で再度変調した送信信号から、前記冗長ビットに相当する信号を除去しておく
ことを特徴とする請求項4又は5に記載の基地局装置。
In the virtual reception system,
When re-modulating a transmission signal including a bit error after decoding, it is known in advance that redundant bits other than transmission information bits included in the transmission signal are different before and after retransmission. The base station apparatus according to claim 4 or 5, wherein a signal corresponding to the redundant bit is removed from the re-modulated transmission signal.
前記直交化処理手段は、
前記仮想受信系統及び各前記受信系統において、それぞれ受信信号品質に対する信頼度に応じて、前記仮想受信系統及び各前記受信系統にそれぞれ異なる重み付け処理を実行する
ことを特徴とする前記請求項4、5又は6のいずれかに記載の基地局装置。
The orthogonalization processing means includes:
The said virtual receiving system and each said receiving system perform a different weighting process to said virtual receiving system and each said receiving system, respectively according to the reliability with respect to received signal quality, respectively. Or the base station apparatus in any one of 6.
複数の無線通信端末及び当該各無線通信端末を収容する基地局装置からなる通信セルが複数配置され、当該各通信セル内での通信状態を通信制御装置が制御するようにして、各前記通信セル内の各前記無線通信端末が、前記通信制御装置により割り当てられた固有の直交識別子を用いて送信信号を変調して送信し、複数の当該送信信号を同一の当該通信セル内の前記基地局装置にて、所望の前記直交識別子を有する送信信号のみを抽出し受信する無線通信方法における当該各通信セル内の基地局装置に対して、
複数の前記無線通信端末からの送信信号を受信して時間領域から周波数領域に信号変換する複数の受信系統を有し、当該各受信系統で受信した信号変換後の送信信号の復号時にビット誤りを検出したときには、当該ビット誤りを含む送信信号を一時的に保持すると共に、各前記無線通信端末に対し再送を要求する第1のステップと、
前記再送の根拠となった復号後のビット誤りを含む送信信号を再度変調した後、時間領域から周波数領域に信号変換する仮想受信系統を、各前記受信系統に並列して構築する第2のステップと、
各前記受信系統及び前記仮想受信系統が、自己の通信セルと異なる他の前記通信セル内で前記直交識別子が同一である前記無線通信端末からの送信信号を受信した際に、各前記受信系統及び前記仮想受信系統で合成した結果生ずる干渉信号を用いて除去用干渉信号を作成し、各前記受信系統での送信信号からそれぞれ除去する第3のステップと、
各前記受信系統及び前記仮想受信系統での送信信号に対して伝送路変動等化を行う第4のステップとから成る一連の処理において、
前記第3及び第4のステップの処理に相当する乗算係数を演算処理装置にて求めるための受信プログラム。
A plurality of communication cells each including a plurality of wireless communication terminals and a base station device that accommodates each wireless communication terminal are arranged, and the communication control device controls a communication state in each communication cell, so that each communication cell Each of the wireless communication terminals in the network modulates and transmits a transmission signal using a unique orthogonal identifier assigned by the communication control apparatus, and the base station apparatus in the same communication cell transmits a plurality of the transmission signals. Then, for the base station device in each communication cell in the wireless communication method for extracting and receiving only the transmission signal having the desired orthogonal identifier,
It has a plurality of reception systems for receiving transmission signals from a plurality of the wireless communication terminals and converting the signals from the time domain to the frequency domain, and bit errors are generated when decoding the transmission signals after signal conversion received by the respective reception systems. When detected, a first step of temporarily holding a transmission signal including the bit error and requesting retransmission to each wireless communication terminal;
Second step of constructing a virtual reception system for performing signal conversion from the time domain to the frequency domain in parallel with each of the reception systems after re-modulating the transmission signal including the bit error after decoding that is the basis of the retransmission When,
When each of the reception systems and the virtual reception system receives a transmission signal from the wireless communication terminal having the same orthogonal identifier in another communication cell different from its own communication cell, each of the reception systems and A third step of creating an interference signal for cancellation using an interference signal generated as a result of combining in the virtual reception system, and removing each interference signal from a transmission signal in each of the reception systems;
In a series of processes consisting of a fourth step of performing transmission path fluctuation equalization for transmission signals in each of the reception systems and the virtual reception system,
A receiving program for obtaining a multiplication coefficient corresponding to the processing of the third and fourth steps by an arithmetic processing unit.
前記第3のステップでは、
前記仮想受信系統及び各前記受信系統において、それぞれ受信信号品質に対する信頼度に応じて、前記仮想受信系統及び各前記受信系統にそれぞれ異なる重み付け処理を実行する
ことを特徴とする前記請求項8に記載の受信プログラム。
In the third step,
9. The virtual reception system and each of the reception systems execute different weighting processes for the virtual reception system and each of the reception systems, respectively, according to the reliability of received signal quality. Receiving program.
JP2006194443A 2006-07-14 2006-07-14 Wireless communication method in wireless communication system, base station apparatus and reception program thereof Expired - Fee Related JP4805044B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006194443A JP4805044B2 (en) 2006-07-14 2006-07-14 Wireless communication method in wireless communication system, base station apparatus and reception program thereof
KR20060101572A KR100829568B1 (en) 2006-07-14 2006-10-18 Wireless communication method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006194443A JP4805044B2 (en) 2006-07-14 2006-07-14 Wireless communication method in wireless communication system, base station apparatus and reception program thereof

Publications (2)

Publication Number Publication Date
JP2008022465A true JP2008022465A (en) 2008-01-31
JP4805044B2 JP4805044B2 (en) 2011-11-02

Family

ID=39078072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006194443A Expired - Fee Related JP4805044B2 (en) 2006-07-14 2006-07-14 Wireless communication method in wireless communication system, base station apparatus and reception program thereof

Country Status (2)

Country Link
JP (1) JP4805044B2 (en)
KR (1) KR100829568B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009131094A1 (en) * 2008-04-22 2009-10-29 シャープ株式会社 Communication device, communication system, reception method, and program
WO2021250887A1 (en) * 2020-06-12 2021-12-16 日本電信電話株式会社 Communication environment analysis method, communication environment analysis system, and communication environment analysis program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004166218A (en) * 2002-09-27 2004-06-10 Ntt Docomo Inc Adaptive equalizer and program therefor
JP2004363721A (en) * 2003-06-02 2004-12-24 Matsushita Electric Ind Co Ltd Wireless communication system and wireless communication method
JP2005198223A (en) * 2004-01-07 2005-07-21 Satoshi Suyama Multi-user detection receiver for packet transmission in multi-carrier

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030081744A (en) * 2002-04-12 2003-10-22 엘지전자 주식회사 Transmission method of mobile communication system for multi chip rate
JP4048530B2 (en) 2002-08-16 2008-02-20 富士通株式会社 Interference suppression CDMA receiver
AU2003284708A1 (en) * 2003-11-24 2005-06-08 Broad Mobile Co., Ltd Multicarrier cdma transmitting device and method using frequency hopping method
DE602004012702T2 (en) 2004-01-22 2009-04-16 Matsushita Electric Industrial Co., Ltd., Kadoma-shi Method for HARQ repetition time control
KR20050100549A (en) * 2004-04-14 2005-10-19 삼성전자주식회사 Spreading code selecting method for reduce iui

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004166218A (en) * 2002-09-27 2004-06-10 Ntt Docomo Inc Adaptive equalizer and program therefor
JP2004363721A (en) * 2003-06-02 2004-12-24 Matsushita Electric Ind Co Ltd Wireless communication system and wireless communication method
JP2005198223A (en) * 2004-01-07 2005-07-21 Satoshi Suyama Multi-user detection receiver for packet transmission in multi-carrier

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009131094A1 (en) * 2008-04-22 2009-10-29 シャープ株式会社 Communication device, communication system, reception method, and program
JPWO2009131094A1 (en) * 2008-04-22 2011-08-18 シャープ株式会社 COMMUNICATION DEVICE, COMMUNICATION SYSTEM, RECEPTION METHOD, AND PROGRAM
WO2021250887A1 (en) * 2020-06-12 2021-12-16 日本電信電話株式会社 Communication environment analysis method, communication environment analysis system, and communication environment analysis program
JP7364075B2 (en) 2020-06-12 2023-10-18 日本電信電話株式会社 Communication environment analysis method, communication environment analysis system, and communication environment analysis program

Also Published As

Publication number Publication date
JP4805044B2 (en) 2011-11-02
KR20080007066A (en) 2008-01-17
KR100829568B1 (en) 2008-05-14

Similar Documents

Publication Publication Date Title
KR100922938B1 (en) Method and apparatus for receiving data in a communication system
JP3241739B2 (en) Adaptive despreader
US8391414B2 (en) Method and apparatus for transmitting and receiving space block coding signal through iterative multi-user detection
US7428261B2 (en) Cross-system interference cancellation for multicarrier CDMA and OFDM
KR100843253B1 (en) Iterative reception method and Iterative receiver
JP3697521B2 (en) Receiving device, receiving method, and program
JP4459227B2 (en) Apparatus and method for receiving data in a mobile communication system using an adaptive antenna array system
CN1358355A (en) Multisep RAKE combining method and apparatus
JP2002064467A (en) Method and device for cancelling multiple access interference in code division multiple access(cdma) communication system
KR20080008404A (en) Method and system for adaptive control of sub-carriers
WO2001054306A1 (en) Radio base station device and radio communication method
JP2006067070A (en) Mimo system receiving method and receiver
JPWO2007136056A1 (en) Receiver and receiving method
JP5487090B2 (en) Radio signal processing method and radio communication apparatus
JP4805044B2 (en) Wireless communication method in wireless communication system, base station apparatus and reception program thereof
JP5557644B2 (en) COMMUNICATION DEVICE, COMMUNICATION METHOD, AND PROGRAM
JP2008258899A (en) Receiver and receiving method
WO2012026246A1 (en) Wireless communication system, communication control apparatus, communication terminal apparatus and control program
JP5143533B2 (en) Reception device and signal processing method
TWI252636B (en) Adaptive turbo multiuser detection for HSDPA/TDD CDMA with unknown interferers
CN114374585A (en) Wireless communication control method, receiving station, and non-volatile storage medium
KR100851975B1 (en) Method and apparatus for wireless receiving
WO2004107601A1 (en) Reception device and reception method
JP5241437B2 (en) Reception device and signal processing method
JP4683480B2 (en) Wireless communication system, wireless communication method, and wireless communication apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110810

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees