JP2008020727A - Waveguide type optical modulator - Google Patents

Waveguide type optical modulator Download PDF

Info

Publication number
JP2008020727A
JP2008020727A JP2006193007A JP2006193007A JP2008020727A JP 2008020727 A JP2008020727 A JP 2008020727A JP 2006193007 A JP2006193007 A JP 2006193007A JP 2006193007 A JP2006193007 A JP 2006193007A JP 2008020727 A JP2008020727 A JP 2008020727A
Authority
JP
Japan
Prior art keywords
optical waveguide
waveguide
signal transmission
electric field
transmission conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006193007A
Other languages
Japanese (ja)
Inventor
Taichi Hirano
太一 平野
Hiroyuki Fukazawa
博之 深澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2006193007A priority Critical patent/JP2008020727A/en
Publication of JP2008020727A publication Critical patent/JP2008020727A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a waveguide type optical modulator capable of applying a uniform and sufficient electric field to an optical waveguide, even if deviations in current distribution due to skin effect is generated within an electrode, through which modulation signal flows. <P>SOLUTION: In the waveguide type optical modulator 1A, the optical waveguide 2A, through which light is transmitted, is formed on a substrate 5 constituted of a semiconductor material, for example. Furthermore, a signal transmission conductive body 3A, which applies a modulation electric field for modulating the light transmitted through the optical waveguide 2A, is formed on the substrate 5. The signal transmission conductive body 3A is formed at a position, superimposed on the optical waveguide 2A and is inclined, at a prescribed angle with respect to the extending direction of the optical waveguide 2A, whereby the edge surface in the width direction intersects the optical waveguide 2A; and even if the frequency of a modulation signal is increased and the deviation in the current distribution due to skin effect is thus generated, the position at which electric field is applied is moved in the width direction of the optical waveguide 2A; and as the result, a uniform and ample electric field will be applied to the optical waveguide 2A. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、変調信号が流れる信号伝送導体の下方に光導波路を配置し、信号伝送導体から光導波路に電界を印加して光変調を行う導波路型光変調器に関する。詳しくは、光導波路内での光の進行方向に対して、角度を付けて信号伝送導体を配置することで、光導波路内での電界強度分布の偏りを抑制できるようにしたものである。   The present invention relates to a waveguide type optical modulator that performs optical modulation by arranging an optical waveguide below a signal transmission conductor through which a modulation signal flows and applying an electric field from the signal transmission conductor to the optical waveguide. Specifically, by arranging the signal transmission conductors at an angle with respect to the light traveling direction in the optical waveguide, it is possible to suppress the bias of the electric field strength distribution in the optical waveguide.

レーザダイオード(LD)等から出射された光を変調する外部変調器として、従来より、電気光学効果あるいは半導体の電界吸収効果を利用する導波路型光変調器が提案されている。   As an external modulator for modulating light emitted from a laser diode (LD) or the like, a waveguide type optical modulator utilizing an electro-optic effect or a semiconductor electroabsorption effect has been proposed.

図5は、従来の導波路型光変調器の一例を示す構成図である。導波路型光変調器100Aは、図5(a)に示すように、例えば半導体材料で構成される基板101に、信号伝送導体102と光導波路103を備える。   FIG. 5 is a block diagram showing an example of a conventional waveguide type optical modulator. As shown in FIG. 5A, the waveguide type optical modulator 100A includes a signal transmission conductor 102 and an optical waveguide 103 on a substrate 101 made of, for example, a semiconductor material.

従来の導波路型光変調器100Aでは、マイクロストリップライン型の電極構造で信号伝送導体102を形成した構成が主流であり、信号伝送導体102の下方に配置される光導波路103に電界を印加することで、光導波路103の光透過強度を変化させ、光変調を行っている。   In the conventional waveguide-type optical modulator 100A, a configuration in which the signal transmission conductor 102 is formed with a microstrip line type electrode structure is the mainstream, and an electric field is applied to the optical waveguide 103 disposed below the signal transmission conductor 102. Thus, the light transmission intensity of the optical waveguide 103 is changed to perform light modulation.

このようなマイクロストリップライン型の電極構造を有する導波路型光変調器では、通信速度の高速化等に伴って変調信号の周波数が上昇して、変調信号の周波数帯域がマイクロ波〜ミリ波帯となると、表皮効果により電流分布の偏りが発生する。   In a waveguide type optical modulator having such a microstrip line type electrode structure, the frequency of the modulation signal increases with an increase in communication speed, and the frequency band of the modulation signal is in the microwave to millimeter wave band. Then, the current distribution is biased by the skin effect.

表皮効果とは、高周波電流が導体を流れるときに、導体の表面に電流が集中する現象で、導波路型光変調器において、表皮効果により信号伝送導体内で電流分布の偏りが発生すると、信号伝送導体から電界が印加される光導波路内部を進行する被変調光が受ける電界分布が偏ってしまい、一様な変調を実現することはできない。   The skin effect is a phenomenon in which when high-frequency current flows through a conductor, the current concentrates on the surface of the conductor. In the waveguide type optical modulator, if the current distribution is biased in the signal transmission conductor due to the skin effect, The electric field distribution received by the modulated light traveling inside the optical waveguide to which an electric field is applied from the transmission conductor is biased, and uniform modulation cannot be realized.

ここで、表皮効果によって導体内部で電流分布の偏りが発生した場合において、電流の流れる深さを表皮深さと呼び、表皮深さδは、以下に示す(1)式で表される。   Here, when the current distribution is biased inside the conductor due to the skin effect, the depth at which the current flows is called the skin depth, and the skin depth δ is expressed by the following equation (1).

Figure 2008020727
Figure 2008020727

(1)式において、σは誘電率で、本例では金(Au)を例にしている。   In the equation (1), σ is a dielectric constant, and in this example, gold (Au) is taken as an example.

図6は、電極近傍での電磁界の分布のシミュレーション例で、シミュレーションの条件として、金で構成したマイクロストリップライン型の電極104に、周波数が60GHzの電気信号を流した場合を例とし、図6(a)は、電極近傍での電界分布を模式的に示し、図6(b)は、電極近傍での磁界分布を模式的に示す。   FIG. 6 is a simulation example of the electromagnetic field distribution in the vicinity of the electrode. As an example of the simulation conditions, an electric signal having a frequency of 60 GHz is passed through the microstripline electrode 104 made of gold. 6 (a) schematically shows an electric field distribution in the vicinity of the electrode, and FIG. 6 (b) schematically shows a magnetic field distribution in the vicinity of the electrode.

また、図7は、表皮深さと信号周波数の関係を示すグラフで、本例では電極を金で構成した場合を例にしている。   FIG. 7 is a graph showing the relationship between the skin depth and the signal frequency. In this example, the electrode is made of gold.

電極104を流れる電気信号の周波数の上昇に伴って、表皮効果により電極104のエッジ部分等に電流が集中することで、図6(a)に示すように、電極104のエッジ部分から電界が強く分布されることが判る。また、信号周波数の上昇に伴って、図7に示すように、表皮深さが浅くなっていくことが判る。   As the frequency of the electric signal flowing through the electrode 104 increases, the current concentrates on the edge portion of the electrode 104 due to the skin effect, so that the electric field is strong from the edge portion of the electrode 104 as shown in FIG. It can be seen that it is distributed. It can also be seen that as the signal frequency increases, the skin depth becomes shallower as shown in FIG.

図8は、電極直下における表皮効果による電界強度分布の一例を示すグラフである。図8において、表皮効果により電極104内部で電流が集中する領域の大体の範囲を、二点鎖線で囲んだ領域Kで示す。   FIG. 8 is a graph showing an example of the electric field intensity distribution due to the skin effect directly under the electrode. In FIG. 8, an approximate range of a region where current is concentrated inside the electrode 104 due to the skin effect is indicated by a region K surrounded by a two-dot chain line.

グラフG11は、電極104の直下のある深さd1における電界強度分布を示し、グラフG12は、深さd1より深い深さd2における電界強度分布を示し、グラフG13は、深さd2より深い深さd3における電界強度分布を示す。   The graph G11 shows the electric field strength distribution at a certain depth d1 directly below the electrode 104, the graph G12 shows the electric field strength distribution at a depth d2 deeper than the depth d1, and the graph G13 shows a depth deeper than the depth d2. The electric field strength distribution at d3 is shown.

電極104の直下の所定の領域Lに光導波路を設置した場合、図8に示すように、表皮効果により電極104のエッジ部分等の領域Kに電流が集中すると、電極直下の中央部分(x=0付近)では、電界強度が非常に弱くなってしまう。   When an optical waveguide is installed in a predetermined region L immediately below the electrode 104, as shown in FIG. 8, when current concentrates in a region K such as an edge portion of the electrode 104 due to the skin effect, a central portion (x = In the vicinity of 0), the electric field strength becomes very weak.

図9は、電極の幅と電界強度の関係を示すシミュレーション例で、図9(a)は、シミュレーションの条件を示す。本例では、電極104の幅Wを1μm〜4μmまで1μm単位で変えた場合に、電極104の直下の幅6μmの範囲における所定の深さでの電界強度分布を計算したものである。   FIG. 9 is a simulation example showing the relationship between the electrode width and the electric field intensity, and FIG. 9A shows the simulation conditions. In this example, when the width W of the electrode 104 is changed from 1 μm to 4 μm in 1 μm units, the electric field intensity distribution at a predetermined depth in the range of 6 μm width immediately below the electrode 104 is calculated.

電極104を金で構成した場合、信号周波数が60GHzでの表皮深さは、図7に示すように0.35μm程度である。これにより、図9(b)に示すように、電極104の幅Wを1μmとしても、表皮効果による電界強度分布の偏りを回避することは困難である。   When the electrode 104 is made of gold, the skin depth at a signal frequency of 60 GHz is about 0.35 μm as shown in FIG. As a result, as shown in FIG. 9B, it is difficult to avoid the bias of the electric field intensity distribution due to the skin effect even if the width W of the electrode 104 is set to 1 μm.

また、電極104の幅Wを広くすると、図9(b)〜図9(e)に示すように、表皮効果による電界強度分布の偏りが大きくなり、電極直下の中央部分での電界強度が弱くなる。   Further, when the width W of the electrode 104 is widened, as shown in FIGS. 9B to 9E, the bias of the electric field strength distribution due to the skin effect increases, and the electric field strength in the central portion immediately below the electrode becomes weak. Become.

更に、60GHz未満の周波数においても、表皮効果により電極のエッジ部分への電流の集中が発生するので、光導波路の幅が数μmである場合は同様の問題が生じる。   Further, even at a frequency of less than 60 GHz, current concentration occurs at the edge portion of the electrode due to the skin effect, and the same problem occurs when the width of the optical waveguide is several μm.

以上のように、導波路型光変調器では、変調信号としてミリ波帯の電気信号を用いる場合には、表皮深さを考慮した電極形状でなければ、導波路内に均一な電界を印加することはできない。   As described above, in a waveguide type optical modulator, when an electric signal in the millimeter wave band is used as a modulation signal, a uniform electric field is applied in the waveguide unless the electrode shape takes the skin depth into consideration. It is not possible.

また、図5(a)に示すようなマイクロストリップライン型の電極構造を有した信号伝送導体では、図6(a)に示すように、電極周辺の電界は電極のエッジ部分から放射状に拡がって分布するため、光導波路の存在する限られた立体角部分に印加できる電界強度は相対的に弱いものとなる。   In the signal transmission conductor having the microstrip line type electrode structure as shown in FIG. 5A, the electric field around the electrode spreads radially from the edge portion of the electrode as shown in FIG. 6A. Therefore, the electric field strength that can be applied to the limited solid angle portion where the optical waveguide exists is relatively weak.

この他に、従来の導波路型光変調器としては、図5(b)に示すように、信号伝送導体102の両側に接地導体105を形成したコプレーナウェーブガイド型の電極構造を有した導波路型光変調器100Bが提案されている。   In addition, as a conventional waveguide type optical modulator, as shown in FIG. 5B, a waveguide having a coplanar waveguide type electrode structure in which ground conductors 105 are formed on both sides of the signal transmission conductor 102. A type optical modulator 100B has been proposed.

このようなコプレーナウェーブガイド型の電極構造を有した導波路型光変調器100Bでは、インピーダンス整合による透過特性の向上を主な目的としており、信号伝送導体では、信号周波数の上昇に伴って表皮効果による電流分布の集中が発生する。このため、電界強度分布の偏りを解消することはできない。   In the waveguide type optical modulator 100B having such a coplanar waveguide type electrode structure, the main purpose is to improve the transmission characteristics by impedance matching. In the signal transmission conductor, the skin effect is increased as the signal frequency is increased. Concentration of current distribution occurs due to. For this reason, the bias of the electric field strength distribution cannot be eliminated.

更に、コプレーナウェーブガイド型の電極構造を有し、変調信号(マイクロ波)が流れる電極に広幅領域と狭幅領域を形成した導波路型光変調器も提案されている(例えば、特許文献1参照)。   Further, a waveguide type optical modulator having a coplanar waveguide type electrode structure and having a wide region and a narrow region formed on an electrode through which a modulation signal (microwave) flows is proposed (for example, see Patent Document 1). ).

このような導波路型光変調器では、電極に広幅領域と狭幅領域を交互に形成すると共に、対向する電極との間隔を調整することで、電極の電気抵抗を各領域毎に変化させてインピーダンス整合を行い、変調効率を確保している。   In such a waveguide type optical modulator, the wide area and the narrow area are alternately formed on the electrode, and the electric resistance of the electrode is changed for each area by adjusting the distance between the opposing electrodes. Impedance matching is performed to ensure modulation efficiency.

但し、電極に広幅領域と狭幅領域を形成しても、信号周波数の上昇に伴って表皮効果による電流分布の集中が発生する。このため、光導波路の直下に配置した光導波路では、中央部分に印加される電界強度が弱くなり、電界強度分布の偏りを解消することはできない。   However, even if a wide region and a narrow region are formed on the electrode, current distribution is concentrated due to the skin effect as the signal frequency increases. For this reason, in the optical waveguide disposed immediately below the optical waveguide, the electric field strength applied to the central portion becomes weak, and the bias of the electric field strength distribution cannot be eliminated.

特開2003−295141号公報JP 2003-295141 A

上述したように、従来の導波路型光変調器では、信号周波数の上昇に伴って、電極内で表皮効果による電流分布の集中が発生すると、光導波路内での電界強度分布が偏り、均一かつ十分な電界を印加できないという問題があった。   As described above, in the conventional waveguide type optical modulator, when the concentration of the current distribution due to the skin effect occurs in the electrode as the signal frequency increases, the electric field strength distribution in the optical waveguide is biased, uniform and There was a problem that a sufficient electric field could not be applied.

本発明は、このような課題を解決するためになされたもので、変調信号が流れる電極内で表皮効果による電流分布の偏りが発生しても、光導波路に均一かつ十分な電界を印加できるようした導波路型光変調器を提供することを目的とする。   The present invention has been made to solve such a problem, and can apply a uniform and sufficient electric field to an optical waveguide even when a current distribution is biased due to a skin effect in an electrode through which a modulation signal flows. An object of the present invention is to provide a waveguide type optical modulator.

上述した課題を解決するため、本発明の導波路型光変調器は、基板に形成され、光が伝送される光導波路と、光導波路を伝送される光を変調する変調電界を印加する電極とを備えた導波路型光変調器において、電極は、光導波路と重なる位置で基板に形成され、光導波路の延在方向に対して所定の角度で傾斜して、幅方向の端面が光導波路を横切る信号伝送導体を備えたことを特徴とする。   In order to solve the above-described problems, a waveguide type optical modulator of the present invention includes an optical waveguide that is formed on a substrate and transmits light, and an electrode that applies a modulation electric field that modulates light transmitted through the optical waveguide. The electrode is formed on the substrate at a position overlapping the optical waveguide, tilted at a predetermined angle with respect to the extending direction of the optical waveguide, and the end face in the width direction has the optical waveguide It is characterized by having a signal transmission conductor across.

本発明の導波路型光変調器では、信号伝送導体を流れる変調信号の周波数が上昇することで、表皮効果により信号伝送導体のエッジ部分等に電流が集中した場合、光導波路において電界が印加される位置は、光導波路内での光の進行方向に垂直な方向に移動する。   In the waveguide type optical modulator of the present invention, when the frequency of the modulation signal flowing through the signal transmission conductor increases, an electric field is applied to the optical waveguide when current concentrates on the edge of the signal transmission conductor due to the skin effect. This position moves in a direction perpendicular to the traveling direction of light in the optical waveguide.

従って、信号伝送導体内での電流分布が偏っても、光導波路では幅方向の全域に亘って十分な電界が印加される。これにより、信号伝送導体の下方に配置される光導波路で、表皮効果による電界強度分布の偏りが顕著になる周波数帯域であっても、光導波路内を伝送される被変調光に対して均一かつ十分な強度の電界が印加され、被変調光が光導波路内のどの位置に入射しても、確実に変調が行われる。   Therefore, even if the current distribution in the signal transmission conductor is uneven, a sufficient electric field is applied across the entire width in the optical waveguide. As a result, the optical waveguide disposed below the signal transmission conductor is uniform with respect to the modulated light transmitted through the optical waveguide, even in a frequency band in which the bias of the electric field strength distribution due to the skin effect is significant. Even if an electric field having a sufficient strength is applied and the modulated light enters any position in the optical waveguide, the modulation is reliably performed.

なお、信号伝送導体の両側あるいは片側に接地または非接地の導体を所定の形状で配置することで、電界の拡がりを閉じ込める効果が得られ、電界強度を増加させることが可能となる。   By arranging a grounded or non-grounded conductor in a predetermined shape on both sides or one side of the signal transmission conductor, an effect of confining the expansion of the electric field can be obtained, and the electric field strength can be increased.

本発明の導波路型光変調器によれば、信号伝送導体を流れる変調信号の周波数が上昇することで、表皮効果により信号伝送導体のエッジ部分等に電流が集中し、信号伝送導体近傍における電界の強度分布に偏りが生じる場合でも、光導波路では幅方向の全域に亘って十分な電界が印加される。これにより、変調信号の周波数を上昇させても、光信号の確実な変調が可能となる。   According to the waveguide type optical modulator of the present invention, when the frequency of the modulation signal flowing through the signal transmission conductor increases, the current concentrates on the edge of the signal transmission conductor due to the skin effect, and the electric field in the vicinity of the signal transmission conductor. Even when the intensity distribution is biased, a sufficient electric field is applied across the entire width in the optical waveguide. Thereby, even if the frequency of the modulation signal is increased, the optical signal can be reliably modulated.

以下、図面を参照して本発明の導波路型光変調器の実施の形態について説明する。   Hereinafter, embodiments of a waveguide type optical modulator of the present invention will be described with reference to the drawings.

<第1の実施の形態の導波路型光変調器の構成例>
図1及び図2は、第1の実施の形態の導波路型光変調器の一例を示す構成図で、図1(a)は、第1の実施の形態の導波路型光変調器1Aの平面図、図1(b)は、導波路型光変調器1AのA−A断面図、図1(c)は、導波路型光変調器1Aの導波路層を示すB−B断面図である。また、図2は、導波路型光変調器1Aの斜視図である。
<Configuration Example of Waveguide Type Optical Modulator of First Embodiment>
1 and 2 are configuration diagrams showing an example of a waveguide type optical modulator according to the first embodiment, and FIG. 1A shows the waveguide type optical modulator 1A according to the first embodiment. FIG. 1B is a cross-sectional view taken along line AA of the waveguide type optical modulator 1A, and FIG. 1C is a cross-sectional view taken along line BB showing a waveguide layer of the waveguide type optical modulator 1A. is there. FIG. 2 is a perspective view of the waveguide type optical modulator 1A.

第1の実施の形態の導波路型光変調器1Aは、電気光学効果あるいは半導体の電界吸収効果を利用した外部変調器で、光信号が伝送される光導波路2Aと、光導波路2Aに変調電界を印加する信号伝送導体3Aと、信号伝送導体3Aの特性インピーダンスの調整と電界分布の調整を行う面状導体4Aを基板5に備える。   A waveguide type optical modulator 1A according to the first embodiment is an external modulator using an electro-optic effect or a semiconductor electroabsorption effect, and an optical waveguide 2A through which an optical signal is transmitted and a modulated electric field applied to the optical waveguide 2A. The substrate 5 is provided with a signal transmission conductor 3A for applying a voltage and a planar conductor 4A for adjusting the characteristic impedance of the signal transmission conductor 3A and adjusting the electric field distribution.

導波路型光変調器1Aは、本例では半導体の電界吸収効果を利用するために、基板5が半導体材料で構成される。基板5は、例えば半導体多重量子井戸活性層(MQW活性層)により導波路層51aが作製されて、光導波路2Aが形成される。また、基板5は、導波路層51aの上層にクラッド層51bを介して電極層51cが作製されて、信号伝送導体3Aと面状導体4Aが形成される。   In this example, in the waveguide type optical modulator 1A, the substrate 5 is made of a semiconductor material in order to use the electric field absorption effect of a semiconductor. In the substrate 5, for example, a waveguide layer 51a is formed by a semiconductor multiple quantum well active layer (MQW active layer), and an optical waveguide 2A is formed. Further, in the substrate 5, the electrode layer 51c is formed on the waveguide layer 51a via the cladding layer 51b, and the signal transmission conductor 3A and the planar conductor 4A are formed.

光導波路2Aは、クラッド層51bより屈折率が若干高く構成され、光が閉じ込められて伝送される。なお、半導体の電界吸収効果とは、量子井戸構造に電界を印加することにより、伝導帯と価電子帯のエネルギー準位差(バンドギャップ)が変化し、光の吸収量が変化する現象で、光導波路2Aに電界が印加されると、光導波路2Aの光透過強度が変化して光変調が行われる。   The optical waveguide 2A has a refractive index slightly higher than that of the cladding layer 51b, and the light is confined and transmitted. The electroabsorption effect of a semiconductor is a phenomenon in which the energy level difference (band gap) between the conduction band and the valence band changes by applying an electric field to the quantum well structure, and the amount of light absorption changes. When an electric field is applied to the optical waveguide 2A, the light transmission intensity of the optical waveguide 2A changes and light modulation is performed.

ここで、X軸、Y軸及びZ軸を、図1及び図2に示す方向とし、Z軸に沿った基板5の一方の端部を入力側端部52a、他方の端部を出力側端部52bとすると、光導波路2Aは、基板5の入力側端部52aから出力側端部52bまで、X−Z平面に沿ってZ軸方向に直線状に延在する。そして、光導波路2Aは、基板の入力側端部52aに一方の端面が露出して入射部21aが形成され、出力側端部52bに他方の端面が露出して出射部21bが形成される。   Here, the X axis, the Y axis, and the Z axis are the directions shown in FIGS. 1 and 2, and one end of the substrate 5 along the Z axis is the input side end 52a, and the other end is the output side end. If it is set as the part 52b, 2 A of optical waveguides will extend in the Z-axis direction linearly from the input side edge part 52a of the board | substrate 5 to the output side edge part 52b along the XZ plane. In the optical waveguide 2A, one end face is exposed at the input side end 52a of the substrate to form the incident part 21a, and the other end face is exposed to the output side end 52b to form the emission part 21b.

信号伝送導体3Aは電極の一例で、基板5の入力側端部52aから出力側端部52bまで、光導波路2Aの延在方向(Z軸)に対してX−Z平面に沿って斜めに延在し、クラッド層51b(バッファー層)を介して光導波路2Aと重なる。信号伝送導体3Aにおいて、X軸に沿った幅方向の端面31Lと端面31Rは互いに平行な形状で、信号伝送導体3Aの幅は、光導波路2Aの幅より狭く構成される。   The signal transmission conductor 3A is an example of an electrode and extends obliquely along the XZ plane from the input side end 52a to the output side end 52b of the substrate 5 with respect to the extending direction (Z axis) of the optical waveguide 2A. And overlaps the optical waveguide 2A via the cladding layer 51b (buffer layer). In the signal transmission conductor 3A, the end face 31L and the end face 31R in the width direction along the X axis are parallel to each other, and the width of the signal transmission conductor 3A is narrower than the width of the optical waveguide 2A.

信号伝送導体3Aでは、変調信号が高周波になると、表皮効果によって幅方向の端面31Lと端面31Rのエッジ部分に電流が集中する。このため、光導波路2Aと信号伝送導体3Aとの間の角度θは、信号伝送導体3Aの端面31Lと端面31Rが、光導波路2Aを幅方向に横切る角度に設定される。   In the signal transmission conductor 3A, when the modulation signal becomes a high frequency, current concentrates on the edge portions of the end surface 31L and the end surface 31R in the width direction due to the skin effect. Therefore, the angle θ between the optical waveguide 2A and the signal transmission conductor 3A is set to an angle at which the end surface 31L and the end surface 31R of the signal transmission conductor 3A cross the optical waveguide 2A in the width direction.

これにより、信号伝送導体3Aは、基板5の入力側端部52aから出力側端部52bへ向かうに従い、光導波路2Aに対する位置が、光導波路2A内をZ軸に沿って伝送される光の進行方向に垂直なX軸方向に変化する。   As a result, the signal transmission conductor 3A moves from the input side end 52a to the output side end 52b of the substrate 5 so that the position of the signal transmission conductor 3A with respect to the optical waveguide 2A travels along the Z axis in the optical waveguide 2A. It changes in the X-axis direction perpendicular to the direction.

従って、表皮効果によって信号伝送導体3Aのエッジ部分に電流が集中した場合に、光導波路2Aにおいて電界が印加される位置は、光導波路2A内での光の進行方向に垂直なX軸方向に移動することになる。   Accordingly, when current concentrates on the edge portion of the signal transmission conductor 3A due to the skin effect, the position where the electric field is applied in the optical waveguide 2A moves in the X-axis direction perpendicular to the light traveling direction in the optical waveguide 2A. Will do.

よって、信号伝送導体3Aに変調信号を流すと、光導波路2Aでは、信号伝送導体3Aのエッジ部分に電流が集中しても、幅方向の全域に亘って十分な電界が印加され、光信号が光導波路2A内のどの位置に入射しても変調が行われるようになっている。   Therefore, when a modulation signal is passed through the signal transmission conductor 3A, a sufficient electric field is applied across the entire width in the optical waveguide 2A even if current concentrates on the edge portion of the signal transmission conductor 3A. Modulation is performed at any position in the optical waveguide 2A.

なお、信号伝送導体3Aの入力側端部52a側には、図示しない信号線を接続可能とする幅広形状とした入力部32aが形成されると共に、信号伝送導体3Aの出力側端部52b側には、図示しない信号線を接続可能とする幅広形状とした出力部32bが形成される。   A wide input portion 32a is formed on the input side end portion 52a side of the signal transmission conductor 3A so that a signal line (not shown) can be connected to the output side end portion 52b side of the signal transmission conductor 3A. Is formed with an output portion 32b having a wide shape capable of connecting a signal line (not shown).

上述した信号伝送導体3Aの形状と配置は、表皮効果により信号伝送導体3Aのエッジ部分に集中した電流を効率良く利用するために、変調信号で使用する周波数での表皮深さと、信号伝送導体3Aのインピーダンスに応じて決定される。   The shape and arrangement of the signal transmission conductor 3A described above are such that the current concentrated on the edge portion of the signal transmission conductor 3A due to the skin effect is efficiently used, the skin depth at the frequency used for the modulation signal, and the signal transmission conductor 3A. It is determined according to the impedance.

面状導体4Aは電極の一例で、信号伝送導体3Aの一方の端面31Lと対向する側と、他方の端面31Rと対向する側の双方あるいは一方に形成され、面状導体4Aを接地する構成では、コプレーナウェーブガイド型の電極構造となる。なお、面状導体4Aは非接地でも良い。   The planar conductor 4A is an example of an electrode, and is formed on both or one of the side facing the one end surface 31L and the side facing the other end surface 31R of the signal transmission conductor 3A, and in the configuration in which the planar conductor 4A is grounded. It becomes a coplanar waveguide type electrode structure. The planar conductor 4A may be ungrounded.

信号伝送導体3Aと対向する面状導体4Aの端面41は、光導波路2Aの延在方向に対して斜めに延在する信号伝送導体3Aに合わせて傾斜し、面状導体4Aは、信号伝送導体3Aに対して所定の隙間42を開けて対向している。   The end face 41 of the planar conductor 4A facing the signal transmission conductor 3A is inclined in accordance with the signal transmission conductor 3A extending obliquely with respect to the extending direction of the optical waveguide 2A, and the planar conductor 4A is the signal transmission conductor. It is opposed to 3A with a predetermined gap 42 therebetween.

<第1の実施の形態の導波路型光変調器の動作例>
次に、各図を参照して、第1の実施の形態の導波路型光変調器1Aの動作について説明する。
<Operation Example of Waveguide Type Optical Modulator of First Embodiment>
Next, the operation of the waveguide type optical modulator 1A according to the first embodiment will be described with reference to the drawings.

導波路型光変調器1Aは、図示しないレーザダイオード(LD)等から出射したレーザ光が、光導波路2Aの入射部21aに入射する。光導波路2Aに入射部21aから入射した変調前のレーザ光である被変調光は、光導波路2AをZ軸に沿った矢印E1方向に伝送される。   In the waveguide type optical modulator 1A, laser light emitted from a laser diode (LD) (not shown) or the like enters the incident portion 21a of the optical waveguide 2A. Modulated light, which is laser light before modulation, incident on the optical waveguide 2A from the incident portion 21a is transmitted through the optical waveguide 2A in the direction of arrow E1 along the Z axis.

一方、導波路型光変調器1Aは、信号伝送導体3Aの入力部32aに、電気信号である変調信号が入力する。信号伝送導体3Aに入力部32aから入力した変調信号は、信号伝送導体3Aを被変調光と同じ矢印E2方向に進行し、信号伝送導体3Aの下部に位置する光導波路2Aに変調電界を印加して、信号伝送導体3Aの出力部32bで終端される。   On the other hand, in the waveguide type optical modulator 1A, a modulation signal which is an electric signal is input to the input portion 32a of the signal transmission conductor 3A. The modulation signal input from the input unit 32a to the signal transmission conductor 3A travels in the direction of the arrow E2 same as the modulated light through the signal transmission conductor 3A, and applies a modulation electric field to the optical waveguide 2A located below the signal transmission conductor 3A. Thus, it is terminated at the output portion 32b of the signal transmission conductor 3A.

このように、導波路型光変調器1Aでは、光導波路2Aにおける光の進行方向と、信号伝送導体3Aにおける変調信号の進行方向が同じ向きであり、導波路型光変調器1Aは、進行波型の光変調器である。   As described above, in the waveguide type optical modulator 1A, the traveling direction of the light in the optical waveguide 2A and the traveling direction of the modulation signal in the signal transmission conductor 3A are the same direction. Type light modulator.

光導波路2Aは、信号伝送導体3Aから変調電界が印加されると、変調信号に応じて本例では光の吸収量が変化する。これにより、光導波路2Aを伝送される被変調光は変調され、変調光が光導波路2Aの出射部21bから出力される。   When a modulated electric field is applied to the optical waveguide 2A from the signal transmission conductor 3A, the amount of light absorption in this example changes according to the modulated signal. Thereby, the modulated light transmitted through the optical waveguide 2A is modulated, and the modulated light is output from the emitting portion 21b of the optical waveguide 2A.

上述したように、信号伝送導体3Aは、光導波路2Aの延在方向に対して所定の角度θでX−Z平面に沿って斜めに延在しており、光の進行方向(Z軸)と電磁界の進行方向を角度θだけ異ならせている。   As described above, the signal transmission conductor 3A extends obliquely along the XZ plane at a predetermined angle θ with respect to the extending direction of the optical waveguide 2A, and the light traveling direction (Z axis) The traveling direction of the electromagnetic field is varied by an angle θ.

これにより、変調信号が高周波で、表皮効果によって信号伝送導体3Aのエッジ部分に電流が集中した場合でも、光導波路2Aにおいて電界が印加される位置は、光導波路2A内での光の進行方向に垂直なX軸方向に移動する。従って、信号伝送導体3Aのエッジ部分に電流が集中しても、光導波路2Aでは幅方向の全域に亘って十分な電界が印加され、被変調光が光導波路2A内のどの位置に入射しても、確実に変調が行われる。   Thereby, even when the modulation signal has a high frequency and current concentrates on the edge portion of the signal transmission conductor 3A due to the skin effect, the position where the electric field is applied in the optical waveguide 2A is in the traveling direction of the light in the optical waveguide 2A. Move in the vertical X-axis direction. Therefore, even if the current is concentrated on the edge portion of the signal transmission conductor 3A, a sufficient electric field is applied across the entire width in the optical waveguide 2A, and the modulated light is incident on any position in the optical waveguide 2A. However, the modulation is reliably performed.

また、信号伝送導体3Aの両側に、所定の隙間42を開けて配置した面状導体4Aにより、信号伝送導体3Aから光導波路2Aに印加される電界が、光導波路2Aが存在する狭い範囲に閉じ込められ、光導波路2Aに印加される電界強度が高められる。   Further, the electric field applied from the signal transmission conductor 3A to the optical waveguide 2A is confined in a narrow range where the optical waveguide 2A exists by the planar conductor 4A disposed on both sides of the signal transmission conductor 3A with a predetermined gap 42 therebetween. Thus, the strength of the electric field applied to the optical waveguide 2A is increased.

更に、信号伝送導体3Aの両側に配置される面状導体4Aが、所望のインピーダンスを有する形状とすることで、信号伝送導体3Aの特性インピーダンスが調整される。これにより、信号伝送導体3Aに入力部32aや出力部32bが形成されることで、信号伝送導体3Aの幅が異なる等、電極形状や電極位置に変化があっても、インピーダンスが整合される。   Further, the planar conductor 4A disposed on both sides of the signal transmission conductor 3A has a shape having a desired impedance, so that the characteristic impedance of the signal transmission conductor 3A is adjusted. As a result, the input portion 32a and the output portion 32b are formed in the signal transmission conductor 3A, so that the impedance is matched even if there is a change in the electrode shape or electrode position, such as the width of the signal transmission conductor 3A being different.

図3は、光導波路中心部分での電界強度の時間変化を示すグラフで、実線で示すグラフG1は、本発明を適用した電極(信号伝送導体)による電界強度の変化を示し、一点鎖線で示すグラフG2は、比較例として、従来形状の電極による電界強度の変化を示す。   FIG. 3 is a graph showing the change over time of the electric field strength at the central portion of the optical waveguide. A graph G1 shown by a solid line shows the change in the electric field strength due to the electrode (signal transmission conductor) to which the present invention is applied, and is shown by a one-dot chain line. Graph G2 shows a change in electric field strength due to a conventional shape electrode as a comparative example.

図5に示すような従来形状の電極を使用した導波路型光変調器では、変調信号が高周波になって、表皮効果でエッジ部分に電流が集中すると、光導波路の中心部分では、十分な電界強度を得ることができていない。   In the waveguide type optical modulator using the conventional electrode as shown in FIG. 5, when the modulation signal becomes a high frequency and current is concentrated on the edge portion due to the skin effect, a sufficient electric field is generated in the central portion of the optical waveguide. The strength has not been obtained.

これに対して、本発明が適用された信号伝送導体3Aを使用した導波路型光変調器1Aでは、表皮効果で信号伝送導体3Aのエッジ部分に電流が集中しても、光導波路2Aにおいて電界が印加される位置は、光導波路2A内での光の進行方向に対して垂直なX軸方向に移動するので、光導波路2Aの中心(x=0)付近での電界強度が大幅に向上していることが判る。   On the other hand, in the waveguide type optical modulator 1A using the signal transmission conductor 3A to which the present invention is applied, even if current is concentrated on the edge portion of the signal transmission conductor 3A due to the skin effect, an electric field is generated in the optical waveguide 2A. Is moved in the X-axis direction perpendicular to the light traveling direction in the optical waveguide 2A, the electric field strength in the vicinity of the center (x = 0) of the optical waveguide 2A is greatly improved. You can see that

このように、本発明が適用された信号伝送導体3Aを使用した導波路型光変調器1Aでは、電界を印加させる領域を、光導波路2Aの幅に合わせて広い範囲で変化させることで、表皮効果を利用した効率の良い電界供給が可能となる。また、信号伝送導体3Aの両側に設置された面状導体4Aによる電界の閉じ込め効果によって、大幅に電界強度を増加することが可能となる。   As described above, in the waveguide type optical modulator 1A using the signal transmission conductor 3A to which the present invention is applied, the region to which the electric field is applied is changed in a wide range in accordance with the width of the optical waveguide 2A. Efficient electric field supply utilizing the effect is possible. In addition, the electric field strength can be greatly increased by the electric field confinement effect by the planar conductors 4A installed on both sides of the signal transmission conductor 3A.

これにより、変調信号が信号伝送導体3Aを通過する際に発生する損失が軽減できるため、高周波及び広帯域化が実現でき、更に、短い伝送距離で十分な電界を印加できるため、光変調器としての素子サイズの小型化も実現できる。   As a result, loss generated when the modulated signal passes through the signal transmission conductor 3A can be reduced, so that high frequency and wide band can be realized, and furthermore, a sufficient electric field can be applied with a short transmission distance. The element size can also be reduced.

<第1の実施の形態の導波路型光変調器の変形例>
図4は、第1の実施の形態の導波路型光変調器の変形例を示す構成図である。信号伝送導体である電極が、光の進行方向に対して有する角度によって決定される電磁界の進行方向と、光導波路による光進行方向の角度差は単一である必要はなく、図4(a)に示す導波路型光変調器1Bのように、光導波路2Aを幅方向に横切って直線状に蛇行した形状の信号伝送導体3Bとしても良い。
<Modification of Waveguide Type Optical Modulator of First Embodiment>
FIG. 4 is a configuration diagram illustrating a modification of the waveguide type optical modulator according to the first embodiment. The angle difference between the traveling direction of the electromagnetic field determined by the angle that the electrode that is the signal transmission conductor has with respect to the traveling direction of the light and the traveling direction of the light by the optical waveguide does not have to be single, and FIG. A signal transmission conductor 3B having a shape meandering in a straight line across the optical waveguide 2A in the width direction as in the waveguide type optical modulator 1B shown in FIG.

また、図4(b)に示す導波路型光変調器1Cのように、光導波路2Aを幅方向に横切って曲線状に蛇行した形状の信号伝送導体3Cとしても良い。このように、信号伝送導体を蛇行した形状とすることで、エッジ部分に集中した電流を、光導波路2Aに対して効果的に印加することができる。   Moreover, it is good also as the signal transmission conductor 3C of the shape which meandered in the curve shape across the optical waveguide 2A across the width direction like the waveguide type optical modulator 1C shown in FIG.4 (b). Thus, by making the signal transmission conductor meander, current concentrated on the edge portion can be effectively applied to the optical waveguide 2A.

また、図4(a)に示すように、信号伝送導体3Cを直線状に蛇行させることで、面状電極4Bとの隙間を変化させ、インピーダンス整合を行う。これに対して、図4(b)に示すように、信号伝送導体3Cを曲線状に蛇行させることで、面状電極4Cとの隙間を一定として、インピーダンス整合を行うと共に、電界の閉じ込め効果を強くする。   Further, as shown in FIG. 4A, the signal transmission conductor 3C meanders linearly, thereby changing the gap with the planar electrode 4B and performing impedance matching. On the other hand, as shown in FIG. 4 (b), the signal transmission conductor 3C meanders in a curved shape to make the gap between the planar electrode 4C constant and to perform impedance matching, and to confine the electric field. Strengthen.

更に、図4(c)に示す導波路型光変調器1Dのように、信号伝送導体3Dの両側に面状導体4Dを形成する構成でも良いし、図4(d)に示す導波路型光変調器1Eのように、信号伝送導体3Eの両側に面状導体を形成しない構成、図示しないが、信号伝送導体の片側に面状導体を形成する構成としても良い。また、図示しないが、信号伝送導体の幅を全長に亘って一定とした構成でも良い。   Further, as in the waveguide type optical modulator 1D shown in FIG. 4 (c), the planar conductor 4D may be formed on both sides of the signal transmission conductor 3D, or the waveguide type light shown in FIG. 4 (d). Like the modulator 1E, a configuration in which the planar conductor is not formed on both sides of the signal transmission conductor 3E, or a configuration in which the planar conductor is formed on one side of the signal transmission conductor, although not shown, may be employed. Further, although not shown, a configuration in which the width of the signal transmission conductor is constant over the entire length may be employed.

このように、光と電磁界の進行方向を変化させることで、表皮効果によって電極の表皮に集中した電流を光の進行方向と垂直な軸上(X軸上)で移動させる形態であれば、本発明の範疇である。   In this way, by changing the traveling direction of the light and the electromagnetic field, the current concentrated on the skin of the electrode due to the skin effect is moved on the axis perpendicular to the traveling direction of the light (on the X axis). This is within the scope of the present invention.

本発明は、光ファイバ通信等で使用される外部変調器に適用される。   The present invention is applied to an external modulator used in optical fiber communication or the like.

第1の実施の形態の導波路型光変調器の一例を示す構成図である。It is a block diagram which shows an example of the waveguide type optical modulator of 1st Embodiment. 第1の実施の形態の導波路型光変調器の一例を示す構成図である。It is a block diagram which shows an example of the waveguide type optical modulator of 1st Embodiment. 光導波路中心部分での電界強度の時間変化を示すグラフである。It is a graph which shows the time change of the electric field strength in the optical waveguide center part. 第1の実施の形態の導波路型光変調器の変形例を示す構成図である。It is a block diagram which shows the modification of the waveguide type optical modulator of 1st Embodiment. 従来の導波路型光変調器の一例を示す構成図である。It is a block diagram which shows an example of the conventional waveguide type optical modulator. 電極近傍での電磁界の分布のシミュレーション例である。It is an example of a simulation of electromagnetic field distribution in the vicinity of an electrode. 表皮深さと信号周波数の関係を示すグラフである。It is a graph which shows the relationship between skin depth and a signal frequency. 電極直下における表皮効果による電界強度分布の一例を示すグラフである。It is a graph which shows an example of the electric field strength distribution by the skin effect just under an electrode. 電極の幅と電界強度の関係を示すシミュレーション例である。It is a simulation example which shows the relationship between the width | variety of an electrode, and electric field strength.

符号の説明Explanation of symbols

1A・・・導波路型光変調器、2A・・・光導波路、21a・・・入射部、21b・・・出射部、3A・・・信号伝送導体、31L・・・端面、31R・・・端面、32a・・・入力部、32b・・・出力部、4A・・・面状導体、5・・・基板、51a・・・導波路層、51b・・・クラッド層、51c・・・電極層、52a・・・入力側端部、52b・・・出力側端部   DESCRIPTION OF SYMBOLS 1A ... Waveguide type optical modulator, 2A ... Optical waveguide, 21a ... Incident part, 21b ... Output part, 3A ... Signal transmission conductor, 31L ... End face, 31R ... End face, 32a ... input part, 32b ... output part, 4A ... planar conductor, 5 ... substrate, 51a ... waveguide layer, 51b ... clad layer, 51c ... electrode Layer, 52a ... Input side end, 52b ... Output side end

Claims (5)

基板に形成され、光が伝送される光導波路と、
前記光導波路を伝送される光を変調する変調電界を印加する電極とを備えた導波路型光変調器において、
前記電極は、前記光導波路と重なる位置で前記基板に形成され、前記光導波路の延在方向に対して所定の角度で傾斜して、幅方向の端面が前記光導波路を横切る信号伝送導体を備えた
ことを特徴とする導波路型光変調器。
An optical waveguide formed on a substrate and through which light is transmitted;
In a waveguide type optical modulator comprising an electrode for applying a modulation electric field for modulating light transmitted through the optical waveguide,
The electrode includes a signal transmission conductor formed on the substrate at a position overlapping the optical waveguide, inclined at a predetermined angle with respect to the extending direction of the optical waveguide, and having an end face in the width direction crossing the optical waveguide. A waveguide type optical modulator characterized by that.
前記信号伝送導体と同一面で、前記信号伝送導体の両側もしくは片側に、前記信号伝送導体に対して所定の隙間を開けて対向する導体を配置した
ことを特徴とする請求項1記載の導波路型光変調器。
The waveguide according to claim 1, wherein a conductor facing the signal transmission conductor with a predetermined gap is disposed on both sides or one side of the signal transmission conductor on the same surface as the signal transmission conductor. Type optical modulator.
前記導体が接地導体である
ことを特徴とする請求項2記載の導波路型光変調器。
The waveguide type optical modulator according to claim 2, wherein the conductor is a ground conductor.
前記信号伝送導体は、前記光導波路を伝送される光の進行方向と同じ方向に電気信号が供給される進行波型電極である
ことを特徴とする請求項1記載の導波路型光変調器。
The waveguide type optical modulator according to claim 1, wherein the signal transmission conductor is a traveling wave electrode to which an electric signal is supplied in the same direction as the traveling direction of light transmitted through the optical waveguide.
前記信号伝送導体は、前記光導波路に対して蛇行して延在する
ことを特徴とする請求項1記載の導波路型光変調器。
The waveguide-type optical modulator according to claim 1, wherein the signal transmission conductor extends meandering with respect to the optical waveguide.
JP2006193007A 2006-07-13 2006-07-13 Waveguide type optical modulator Pending JP2008020727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006193007A JP2008020727A (en) 2006-07-13 2006-07-13 Waveguide type optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006193007A JP2008020727A (en) 2006-07-13 2006-07-13 Waveguide type optical modulator

Publications (1)

Publication Number Publication Date
JP2008020727A true JP2008020727A (en) 2008-01-31

Family

ID=39076686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006193007A Pending JP2008020727A (en) 2006-07-13 2006-07-13 Waveguide type optical modulator

Country Status (1)

Country Link
JP (1) JP2008020727A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000507718A (en) * 1996-03-29 2000-06-20 クリスタル テクノロジー インコーポレイテッド Linear light modulator with segmented electrodes.
JP2001021849A (en) * 1999-07-12 2001-01-26 Nippon Telegr & Teleph Corp <Ntt> Wavelength variable optical filter device and its production
JP2004053872A (en) * 2002-07-19 2004-02-19 Nippon Sheet Glass Co Ltd Waveguide type liquid crystal variable optical attenuator
JP2004214226A (en) * 2002-12-26 2004-07-29 Toshiba Corp Semiconductor laser device
JP2005221999A (en) * 2004-02-09 2005-08-18 Fuji Xerox Co Ltd Optical modulator and optical modulator array

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000507718A (en) * 1996-03-29 2000-06-20 クリスタル テクノロジー インコーポレイテッド Linear light modulator with segmented electrodes.
JP2001021849A (en) * 1999-07-12 2001-01-26 Nippon Telegr & Teleph Corp <Ntt> Wavelength variable optical filter device and its production
JP2004053872A (en) * 2002-07-19 2004-02-19 Nippon Sheet Glass Co Ltd Waveguide type liquid crystal variable optical attenuator
JP2004214226A (en) * 2002-12-26 2004-07-29 Toshiba Corp Semiconductor laser device
JP2005221999A (en) * 2004-02-09 2005-08-18 Fuji Xerox Co Ltd Optical modulator and optical modulator array

Similar Documents

Publication Publication Date Title
US9939577B2 (en) Diffraction structure, diffraction grating, diffraction grating array, optical phased array, optical modulator, optical filter, laser source
KR102286421B1 (en) Nanoscale plasmonic field-effect modulator
JP3936256B2 (en) Optical semiconductor device
US20180039104A1 (en) Optical waveguide device
KR102037813B1 (en) optical modulator and optical module used the same
JP2006065085A (en) Semiconductor mach-zehnder optical modulator and method for manufacturing the same
JP6348880B2 (en) Semiconductor Mach-Zehnder optical modulator
US20030016896A1 (en) Electro-optic waveguide devices
US11275287B2 (en) Semiconductor Mach-Zehnder optical modulator and IQ optical modulator using same
JP3279210B2 (en) Light modulator
JP5945213B2 (en) Optical semiconductor device
JP2008020727A (en) Waveguide type optical modulator
JPH05173099A (en) Optical control element
JP2007510953A (en) Slow-wave optical waveguide for rate-matched semiconductor modulators.
JPH06308437A (en) Optical control element
US6882757B2 (en) Velocity matched waveguide for traveling-wave optical modulators
JPH11295675A (en) High-rate optical modulator
JP3719563B2 (en) Light modulator
KR100438891B1 (en) Semiconductor optical modulator
EP1342300B1 (en) Distributed-feedback-laser with varying electrical resistance for uniform gain inside the optical waveguide
JP2013210568A (en) Optical modulator
JP2001326413A (en) Semiconductor laser
Den Besten et al. Simulation and design of a 40 GHz Mach? Zehnder modulator on InP
KR100315419B1 (en) Fabrication method of traveling wave type coplanar electrode for high speed polymeric mach-zehnder optical modulator
CN115718345A (en) Core layer waveguide with curved array coplanar electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081229

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090904

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110915

A131 Notification of reasons for refusal

Effective date: 20110920

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120131