JP2008020304A - High-speed imaging apparatus for electromagnetic-field - Google Patents

High-speed imaging apparatus for electromagnetic-field Download PDF

Info

Publication number
JP2008020304A
JP2008020304A JP2006192008A JP2006192008A JP2008020304A JP 2008020304 A JP2008020304 A JP 2008020304A JP 2006192008 A JP2006192008 A JP 2006192008A JP 2006192008 A JP2006192008 A JP 2006192008A JP 2008020304 A JP2008020304 A JP 2008020304A
Authority
JP
Japan
Prior art keywords
light
frequency
electromagnetic field
probe
imaging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006192008A
Other languages
Japanese (ja)
Other versions
JP5084006B2 (en
Inventor
Kiyotaka Sasagawa
清隆 笹川
Masahiro Tsuchiya
昌弘 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Information and Communications Technology
Original Assignee
National Institute of Information and Communications Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Information and Communications Technology filed Critical National Institute of Information and Communications Technology
Priority to JP2006192008A priority Critical patent/JP5084006B2/en
Publication of JP2008020304A publication Critical patent/JP2008020304A/en
Application granted granted Critical
Publication of JP5084006B2 publication Critical patent/JP5084006B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To speedily acquire electromagnetic near-field distributions radiated from a specimen. <P>SOLUTION: When an illumination device 11 irradiates a probe 12 with light amplitude-modulated at a frequency f<SB>LO</SB>, an electromagnetic field of a frequency f<SB>RF</SB>radiated from a specimen α locally changes birefringence characteristics of the probe 12 to generate a state of local polarization in the illumination light. The sate of local polarization in detecting light containing a difference frequency component Δf(¾f<SB>LO</SB>-f<SB>RF</SB>¾) between a modulation frequency f<SB>LO</SB>of the illumination light and the frequency f<SB>RF</SB>of the electromagnetic field radiated from the specimen α is converted into local intensity of light and imaged by an image sensor 13c of an imaging apparatus 13. An image processing device 14 performs arithmetic processing on pixel signals extracted by the image sensor 13c for every pixel to generate a two-dimensional image of an electromagnetic near-field distribution radiated from the specimen α and display it on an image display device 15. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、検体から放射される電界・磁界の分布情報を高速に取得し、二次元像として可視化する電磁界高速撮像装置に関するものである。   The present invention relates to an electromagnetic field high-speed imaging apparatus that acquires electric field / magnetic field distribution information radiated from a specimen at high speed and visualizes it as a two-dimensional image.

近来は、電子機器の高度化、小型化、および高速化に伴い、プリント基板回路の細密化が進むと同時に、対象となる電気信号の高速化、広帯域化も著しい。たとえば、1GHzを超える非常に高い周波数で動作する集積回路や携帯機器などが開発されているが、このような高周波で駆動する回路技術の問題として、回路間の電磁干渉による設計の難しさが顕著になっている。このような高周波回路の駆動時に発生する電磁界の分布を把握することで、問題点を回避する再設計等を効率良く行うことができるので、様々な近傍電磁界測定装置が提案されている。   In recent years, along with the advancement, miniaturization, and speeding up of electronic devices, the density of printed circuit boards has increased, and at the same time, the speed of electric signals and the increase in bandwidth have become significant. For example, integrated circuits and portable devices that operate at a very high frequency exceeding 1 GHz have been developed. However, as a problem of circuit technology that drives at such a high frequency, the difficulty in designing due to electromagnetic interference between circuits is remarkable. It has become. By grasping the distribution of the electromagnetic field generated when driving such a high-frequency circuit, it is possible to efficiently perform a redesign or the like that avoids the problem, and various proximity electromagnetic field measuring apparatuses have been proposed.

このような近傍電磁界測定装置として、測定用電磁界プローブを近傍電磁界中に置くことで、プローブに発生した検知電流をケーブルで取り出すものがある。しかし、検体に近づけたプローブとそれに接続するケーブルを流れる検知電流が、検体の近傍電磁界に影響を与えるために、高精度の計測を行うには適していない。   As such a near electromagnetic field measuring apparatus, there is one that takes out a detection current generated in a probe with a cable by placing a measuring electromagnetic field probe in the near electromagnetic field. However, since the detection current flowing through the probe close to the sample and the cable connected to the probe affects the near electromagnetic field of the sample, it is not suitable for performing highly accurate measurement.

そこで、光ファイバの先端に磁気光学結晶を取り付けて磁気光学プローブとし、検体からの電磁界中に配置した磁気光学プローブ先端の磁気光学結晶へ光ファイバで光を伝搬させ、この近傍電磁界の影響を受ける磁気光学結晶に照射されて変調された反射光をスペクトラムアナライザで分析することにより、磁気光学プローブの先端位置における電磁界を測定する光ファイバ端磁気光学プローブシステムが提案されている(例えば、非特許文献1を参照)。   Therefore, a magneto-optic probe is attached to the tip of the optical fiber to make a magneto-optic probe, and light is propagated by the optical fiber to the magneto-optic crystal at the tip of the magneto-optic probe placed in the electromagnetic field from the specimen. An optical fiber end magneto-optic probe system that measures an electromagnetic field at the tip position of the magneto-optic probe by analyzing reflected light that has been irradiated and modulated on the magneto-optic crystal that is received by a spectrum analyzer has been proposed (for example, (Refer nonpatent literature 1).

土屋昌弘・山崎悦史・若菜伸一・岸眞人,「光ファイバ端磁気光学(FEMO)プローブによる微小領域マイクロ波帯磁界分布測定」,日本応用磁気学会,Vol.26,No.3,2002,p.128−134Masahiro Tsuchiya, Atsushi Yamazaki, Shinichi Wakana, Hayato Kishi, “Microwave Microwave Magnetic Field Distribution Measurement Using Optical Fiber Edge Magnetooptic (FEMO) Probe”, Japan Society of Applied Magnetics, Vol. 26, no. 3, 2002, p. 128-134

しかしながら、前記特許文献1に記載された発明では、検体から放射される近傍電磁界の分布を一括して計測できないため、測定系もしくは試料位置を制御することによって、プローブの測定点を順次ずらし、検体の電磁界放射面を走査し、電磁界分布計測を行わなければならなかった。そのため、分布像を得るためには、数十秒から数時間といった非常に長い計測時間が必要となってしまう。   However, in the invention described in Patent Document 1, since the distribution of the near electromagnetic field radiated from the specimen cannot be measured collectively, the measurement point of the probe is sequentially shifted by controlling the measurement system or the sample position, The electromagnetic field radiation surface of the specimen had to be scanned to measure the electromagnetic field distribution. Therefore, in order to obtain a distribution image, a very long measurement time such as several tens of seconds to several hours is required.

そこで、本発明は、検体から放射される近傍電磁界の分布を高速に取得できる電磁界高速撮像装置の提供を目的とする。   Therefore, an object of the present invention is to provide an electromagnetic field high-speed imaging device that can acquire the distribution of the near electromagnetic field radiated from the specimen at high speed.

前記課題を解決するために、請求項1に係る発明は、周波数fLOで振幅変調された光を出力可能な照明装置と、測定対象である検体から発せられる周波数fRFの電界又は磁界により複屈折特性が局所的に変化することで、前記照明装置から照射された光に局所的な偏光状態を生ぜしめ、周波数fRFの近傍電磁界で照明装置からの照明光を更に変調して周波数混合し、照明装置から照射された光の変調周波数fLOと検体から放射される電界又は磁界の周波数fRFとの差周波成分Δf(|fLO−fRF|)を含む検出光を発生可能な電気光学素子または磁気光学素子を備えたプローブと、前記プローブからの検出光における局所的偏光状態を光の局所的強度に変換し、複数の画素を有するイメージセンサの撮像面に結像させる光電変換する撮像装置と、前記撮像装置のイメージセンサより画素毎に取り出した画素信号に含まれる差周波成分Δfを用いて検体から放射される近傍電磁界の分布情報を解析し、二次元像を生成する画像処理装置と、を備えることを特徴とする。 In order to solve the above-mentioned problem, the invention according to claim 1 includes a lighting device capable of outputting light modulated in amplitude by the frequency f LO and an electric field or magnetic field of the frequency f RF emitted from the specimen to be measured. By locally changing the refraction characteristics, a local polarization state is generated in the light emitted from the illumination device, and the illumination light from the illumination device is further modulated by an electromagnetic field in the vicinity of the frequency f RF to mix the frequencies. Thus, it is possible to generate detection light including a difference frequency component Δf (| f LO −f RF |) between the modulation frequency f LO of the light emitted from the illumination device and the frequency f RF of the electric field or magnetic field radiated from the specimen. A probe including an electro-optic element or a magneto-optic element, and photoelectric conversion for converting a local polarization state in detection light from the probe into a local intensity of light and forming an image on an imaging surface of an image sensor having a plurality of pixels Imaging device And an image processing device that analyzes the distribution information of the near electromagnetic field radiated from the specimen using the difference frequency component Δf included in the pixel signal extracted for each pixel from the image sensor of the imaging device and generates a two-dimensional image And.

また、請求項2に係る発明は、前記請求項1に記載の電磁界高速撮像装置において、前記照明装置の光源には、レーザ光源を用いることを特徴とする。   The invention according to claim 2 is the electromagnetic field high-speed imaging device according to claim 1, wherein a laser light source is used as a light source of the illumination device.

また、請求項3に係る発明は、前記請求項1又は請求項2に記載の電磁界高速撮像装置において、検体の動作周波数fRFと照明装置の周波数fLOと処理装置の参照周波数ΔfRは同一の発信器信号より供給するようにしたことを特徴とする。 In the invention, in the electromagnetic field high speed imaging apparatus according to claim 1 or claim 2, reference frequency ΔfR frequency f LO and the processing unit of the operating frequency f RF and illumination device of the sample are the same according to claim 3 It is characterized in that it is supplied from the transmitter signal.

また、請求項4に係る発明は、前記請求項2〜請求項3の何れか1項に記載の電磁界高速撮像装置において、前記画像処理装置は、前記撮像装置のイメージセンサより画素毎に出力される画素信号から、差周波成分Δfを含む帯域を通過させる濾波手段と、前記濾波手段より出力された濾波出力信号の解析を行う測定装置と、を備え、前記測定装置は、前記照明装置の変調信号源より供給された参照信号に基づいて参照正弦波と参照余弦波を生成し、前記濾波出力信号と参照正弦波とを積算した正弦成分積算信号と、前記濾波出力信号と参照余弦波とを積算した余弦成分積算信号とを各々演算し、正弦成分積算信号と余弦成分積算信号との二乗和を算出することで振幅情報を、前記正弦成分積算信号と余弦成分積算信号との比を算出することで位相情報を、各々求めるようにしたことを特徴とする。   According to a fourth aspect of the present invention, in the electromagnetic field high-speed imaging device according to any one of the second to third aspects, the image processing device outputs pixel by pixel from an image sensor of the imaging device. Filtering means for passing a band including the difference frequency component Δf from the pixel signal to be processed, and a measuring device for analyzing the filtered output signal output from the filtering means, the measuring device comprising: A reference sine wave and a reference cosine wave are generated based on a reference signal supplied from a modulation signal source, the sine component integration signal obtained by integrating the filtered output signal and the reference sine wave, the filtered output signal and the reference cosine wave, The cosine component integrated signal is calculated and the sum of squares of the sine component integrated signal and the cosine component integrated signal is calculated to calculate the amplitude information and the ratio between the sine component integrated signal and the cosine component integrated signal. To do Phase information, characterized in that so as to obtain respectively.

また、請求項5に係る発明は、前記請求項4に記載の電磁界高速撮像装置において、前記測定装置が生成する参照正弦波および参照余弦波は、矩形波で代用した疑似参照正弦波と疑似参照余弦波であることを特徴とする。   Further, the invention according to claim 5 is the electromagnetic high-speed imaging device according to claim 4, wherein the reference sine wave and the reference cosine wave generated by the measurement device are a pseudo reference sine wave and a pseudo wave that are substituted with a rectangular wave. It is a reference cosine wave.

また、請求項6に係る発明は、前記請求項1〜請求項5の何れか1項に記載の電磁界高速撮像装置において、前記撮像装置は、前記プローブの実像をイメージセンサの撮像面に結像させる結像光学系を備え、該結像光学系のイメージセンサ側における無限遠焦点位置の開口中央部に微細な光吸収体を配したことを特徴とする。   The invention according to claim 6 is the electromagnetic field high-speed imaging device according to any one of claims 1 to 5, wherein the imaging device connects the real image of the probe to an imaging surface of an image sensor. An imaging optical system for imaging is provided, and a fine light absorber is arranged at the center of the aperture at the infinity focal position on the image sensor side of the imaging optical system.

また、請求項7に係る発明は、請求項1〜請求項6の何れか1項に記載の電磁界高速撮像装置において、イメージセンサの飽和光強度に対して、高い光出力が可能な照明光源と、検光子と、偏光状態制御素子を備え、偏光状態制御素子の調整を行うことにより、検光子へ入射する直前における偏光状態を制御し、検光子を透過した検出光に含まれる成分のうち、検出光の前記プローブにおいて発生した変調光成分とその他の成分の強度比を調整できるようにしたことを特徴とする。   According to a seventh aspect of the present invention, in the electromagnetic field high-speed imaging device according to any one of the first to sixth aspects, an illumination light source capable of high light output with respect to the saturation light intensity of the image sensor. And an analyzer and a polarization state control element, and by adjusting the polarization state control element, the polarization state immediately before entering the analyzer is controlled, and among the components included in the detection light transmitted through the analyzer The intensity ratio between the modulated light component generated in the probe of the detection light and the other components can be adjusted.

請求項1に係る発明によれば、測定対象である検体の発する周波数fRFの電磁界中に配したプローブによって、照明装置から照射された光の変調周波数fLOと検体から発する電磁界の周波数fRFとの差周波成分Δf(|fLO−fRF|)を含む検出光を取得できるので、周波数fRFの挙動が周波数変換された差周波成分Δfに着目した二次元像を撮像装置のイメージセンサで撮像し、イメージセンサから画素毎に取り出した画素信号に基づいて画像処理装置が電磁界の分布情報を生成することが可能となり、極めて短時間で近傍電磁界の分布画像を取得することができる。 According to the first aspect of the present invention, the modulation frequency f LO of the light emitted from the illuminating device and the frequency of the electromagnetic field emitted from the specimen by the probe disposed in the electromagnetic field of the frequency f RF emitted from the specimen to be measured. the difference frequency component Δf and f RF (| f LO -f RF |) because the detection light can be obtained including, the imaging device a two-dimensional image the behavior of the frequency f RF is focused on frequency-converted difference frequency component Δf An image processing apparatus can generate electromagnetic field distribution information based on pixel signals captured by the image sensor and extracted for each pixel from the image sensor, and can acquire a distribution image of nearby electromagnetic fields in a very short time. Can do.

しかも、変調周波数fLOを適宜に選定することにより検体から発せられる電磁界の周波数fRFよりも低い中間周波である差周波成分Δfを得ることができ、差周波成分Δfを取り扱う撮像装置および画像処理装置には、検体の周波数fRFに追随できる高速動作が要求されないので、装置構成の低廉化を期せるという利点もある。 Moreover, by appropriately selecting the modulation frequency f LO , a difference frequency component Δf that is an intermediate frequency lower than the frequency f RF of the electromagnetic field emitted from the specimen can be obtained, and an imaging apparatus and an image that handle the difference frequency component Δf the processing apparatus, the high speed operation can follow the frequency f RF of the sample is not required, there is an advantage that Kisel the cost reduction of the apparatus configuration.

また、請求項2に係る電磁界高速撮像装置によれば、前記照明装置の光源には、レーザ光源を用いるので、単色性・指向性・偏光性に優れたレーザ光による低雑音の電磁界分布検出が可能となる。   According to the electromagnetic field high-speed imaging device according to claim 2, since a laser light source is used as the light source of the illuminating device, low noise electromagnetic field distribution by laser light having excellent monochromaticity, directivity, and polarization property. Detection is possible.

請求項3に係る発明は、検体の動作周波数fRFと照明装置の周波数fLOと処理装置の参照周波数ΔfRは同一の発信器信号より供給するようにしたので、周波数の相対的な揺らぎである位相雑音を無くすることができる。 The invention according to claim 3, since the reference frequency ΔfR frequency f LO and the processing unit of the operating frequency f RF and illumination device of the sample was then supplied from the same oscillator signal is the relative fluctuations of the frequency Phase noise can be eliminated.

また、請求項4に係る電磁界高速撮像装置によれば、前記画像処理装置は、前記撮像装置のイメージセンサより画素毎に出力される画素信号から、差周波成分Δfを通過させる濾波手段と、前記濾波手段より出力された濾波出力信号の解析を行う測定装置と、を備え、前記測定装置は、前記照明装置の変調信号源より供給された参照信号ΔfRに基づいて参照正弦波と参照余弦波を生成し、前記濾波出力信号と参照正弦波とを積算した正弦成分積算信号と、前記濾波出力信号と参照余弦波とを積算した余弦成分積算信号とを各々演算し、正弦成分積算信号と余弦成分積算信号との二乗和を算出することで振幅情報を、前記正弦成分積算信号と余弦成分積算信号との比を算出することで位相情報を、各々求めることができる。   According to the electromagnetic field high-speed imaging device according to claim 4, the image processing device includes a filtering unit that passes the difference frequency component Δf from the pixel signal output for each pixel from the image sensor of the imaging device; A measurement device for analyzing the filtered output signal output from the filtering means, the measuring device based on a reference signal ΔfR supplied from a modulation signal source of the illumination device, and a reference sine wave and a reference cosine wave And calculating a sine component integrated signal obtained by integrating the filtered output signal and the reference sine wave, and a cosine component integrated signal obtained by integrating the filtered output signal and the reference cosine wave, respectively. The amplitude information can be obtained by calculating the sum of squares with the component integration signal, and the phase information can be obtained by calculating the ratio between the sine component integration signal and the cosine component integration signal.

また、請求項5に係る電磁界高速撮像装置によれば、前記測定装置が生成する参照正弦波および参照余弦波は、矩形波で代用した疑似参照正弦波と疑似参照余弦波であるから、正弦成分積算信号と余弦成分積算信号の演算処理を高速に行わせることができる。   According to the electromagnetic field high-speed imaging device according to claim 5, since the reference sine wave and the reference cosine wave generated by the measurement device are a pseudo reference sine wave and a pseudo reference cosine wave substituted by a rectangular wave, Calculation processing of the component integration signal and the cosine component integration signal can be performed at high speed.

また、請求項6に係る電磁界高速撮像装置によれば、前記撮像装置は、前記プローブの実像をイメージセンサの撮像面に結像させる結像光学系を備え、該結像光学系のイメージセンサ側における無限遠焦点位置の開口中央部に微細な光吸収体を配したので、プローブ出力光のうち、光軸に平行な成分を吸収し、イメージセンサの撮像面に入射するノイズを低減できる。   According to the electromagnetic field high-speed imaging device according to claim 6, the imaging device includes an imaging optical system that forms a real image of the probe on an imaging surface of an image sensor, and the image sensor of the imaging optical system Since the fine light absorber is arranged at the center of the aperture at the infinity focal position on the side, the component parallel to the optical axis of the probe output light can be absorbed, and the noise incident on the imaging surface of the image sensor can be reduced.

また、請求項7に係る電磁界光速撮像装置によれば、イメージセンサの飽和光強度に対して、高い光出力が可能な照明光源と、検光子と、偏光状態制御素子を備え、偏光状態制御素子の調整を行うことにより、検光子へ入射する直前における偏光状態を制御し、検光子を透過した検出光に含まれる成分のうち、検出光の前記プローブにおいて発生した変調光成分とその他の成分の強度比を調整できるようにしたので、照明光源の光強度に応じてイメージセンサの受光強度を調整することにより、検出光の光強度をイメージセンサの飽和光強度以下に保ちつつ、差周波成分Δfでの変調深度を最大化することにより、測定感度を最適化できる。   According to the electromagnetic light velocity imaging apparatus according to claim 7, the illumination light source capable of high light output with respect to the saturation light intensity of the image sensor, the analyzer, and the polarization state control element are provided, and the polarization state control is performed. By adjusting the element, the polarization state immediately before entering the analyzer is controlled, and among the components included in the detection light transmitted through the analyzer, the modulated light component generated in the probe of the detection light and other components Since the intensity ratio of the image sensor can be adjusted, the received light intensity of the image sensor is adjusted according to the light intensity of the illumination light source, so that the light intensity of the detection light is kept below the saturation light intensity of the image sensor and the difference frequency component By maximizing the modulation depth at Δf, the measurement sensitivity can be optimized.

次に、添付図面に基づいて、本発明に係る電磁界高速撮像装置に最適な実施形態を添付図面に基づいて説明する。   Next, based on the attached drawings, a preferred embodiment of the electromagnetic field high-speed imaging device according to the present invention will be described based on the attached drawings.

図1は、電磁界高速撮像装置10の概略構成図である。この電磁界高速撮像装置10は、周波数fLOで振幅変調された光を出力する照明装置11と、測定対象である検体αから放射される周波数fRFの電界又は磁界により複屈折特性が局所的に変化することで、照明装置11から照射された光に局所的な偏光状態を生ぜしめ、周波数fRFで照明装置11からの照明光を更に混合させ、照明装置11から照射された光の変調周波数fLOと検体αから放射される電磁界の周波数fRFとの差周波成分Δf(|fLO−fRF|)を含む検出光を発生可能なプローブ12と、プローブ12からの検出光における局所的偏光状態を光の局所的強度に変換し、複数の画素を有するイメージセンサの撮像面に結像させて光電変換する撮像装置13と、撮像装置13のイメージセンサより画素毎に取り出した画素信号に含まれる差周波成分Δfを用いて検体αの発する近傍電磁界の二次元像を生成する画像処理装置14と、画像処理装置14より出力される二次元像を可視表示する画像表示装置15と、画像処理装置14で生成した二次元像を記憶保存しておく記録装置16と、を備える。 FIG. 1 is a schematic configuration diagram of an electromagnetic field high-speed imaging device 10. The electromagnetic field high-speed imaging device 10 has local birefringence characteristics due to an illuminating device 11 that outputs light amplitude-modulated at a frequency f LO and an electric field or magnetic field of a frequency f RF radiated from a subject α to be measured. To cause a local polarization state in the light emitted from the illuminating device 11, further mixing the illuminating light from the illuminating device 11 at the frequency f RF , and modulating the light emitted from the illuminating device 11. In the probe 12 capable of generating detection light including a difference frequency component Δf (| f LO −f RF |) between the frequency f LO and the frequency f RF of the electromagnetic field radiated from the specimen α, and the detection light from the probe 12 An imaging device 13 that converts a local polarization state into a local intensity of light, forms an image on an imaging surface of an image sensor having a plurality of pixels, and performs photoelectric conversion, and a pixel extracted from the image sensor of the imaging device 13 for each pixel Signal An image processing device 14 that generates a two-dimensional image of a near electromagnetic field emitted by the specimen α using the difference frequency component Δf, an image display device 15 that visually displays the two-dimensional image output from the image processing device 14, And a recording device 16 for storing and storing the two-dimensional image generated by the image processing device 14.

本実施形態に示す照明装置11は、光源11aと、光源11aからの光を変調するための変調器11bと、変調器11bを制御する周波数fLOの変調信号を発生するための変調信号源11cと、変調器11bの出力光の波面をプローブ12の光照射面に整合させるための波面整合光学系11dと、を備える。なお、光源11aとしては、単色性・指向性・偏光性に優れたレーザ光を出力できるレーザ光源を用いることが望ましい。また、レーザ光源に印加する電流値などを制御することにより、レーザ光自体を直接変調する構成とすれば、光源11aから変調光を得ることができるので、変調器11bを別途設ける必要がない。 The illumination device 11 shown in the present embodiment includes a light source 11a, a modulator 11b for modulating light from the light source 11a, and a modulation signal source 11c for generating a modulation signal having a frequency f LO for controlling the modulator 11b. And a wavefront matching optical system 11d for matching the wavefront of the output light of the modulator 11b with the light irradiation surface of the probe 12. As the light source 11a, it is desirable to use a laser light source that can output laser light having excellent monochromaticity, directivity, and polarization. Further, if the configuration is such that the laser light itself is directly modulated by controlling the value of the current applied to the laser light source and the like, the modulated light can be obtained from the light source 11a, so that it is not necessary to provide the modulator 11b separately.

照明装置11の波面整合光学系11dからの照明光を受けるプローブ12は、検体αから放射される動作周波数fRFの電磁界の影響を受けるべく前記検体のα近傍に配置した電気光学素子又は磁気光学素子にて構成する。プローブ12の具備する電気光学素子または磁気光学素子は、検体αの発する電界もしくは磁界(近傍電磁界)によって複屈折特性が変化するため、結果として透過または反射する光束に対して電磁界分布に応じた偏光分布を与える。また、電気光学素子および磁気光学素子の時間応答は極めて高速であり、検体αの発する近傍電磁界の周波数fRFに比して高い周波数応答性を有し、偏光の分布は検体αの近傍電磁界の動作周波数fRFにも応答することから、照明装置11からプローブ12に照射された照明光は動作周波数fRFの近傍電磁界で変調された後出力する。 The probe 12 that receives illumination light from the wavefront matching optical system 11d of the illuminating device 11 is an electro-optic element or a magnet arranged in the vicinity of α of the sample so as to be affected by the electromagnetic field of the operating frequency f RF radiated from the sample α. An optical element is used. Since the birefringence characteristic of the electro-optical element or the magneto-optical element included in the probe 12 changes depending on the electric field or magnetic field (near electromagnetic field) emitted by the specimen α, the resultant light beam that is transmitted or reflected depends on the electromagnetic field distribution. Gives the polarization distribution. In addition, the time response of the electro-optic element and the magneto-optic element is extremely high, has a high frequency response compared to the frequency f RF of the near electromagnetic field emitted by the specimen α, and the distribution of polarization is an electromagnetic field near the specimen α. since the response to the operation frequency f RF of the field, the illumination light irradiated to the probe 12 from the illumination device 11 outputs after being modulated by the near electromagnetic field of the operating frequency f RF.

このように、周波数fLOで予め変調されている照明装置11からの照明光はプローブ12に照射されると、検体αから放射される電磁界の影響下に置かれたプローブ12により、周波数fRFの近傍電磁界で更に変調が加えられる。すなわち、プローブ12はヘテロダイン無線受信機における混合器、照明装置11は同局部発振器、近傍電磁界は同受信信号とみなせば、プローブ12の出力光は同混合器出力、すなわち中間周波信号とみなすことが出来る。 In this way, when the illumination light from the illumination device 11 that is pre-modulated with the frequency f LO is irradiated to the probe 12, the probe 12 placed under the influence of the electromagnetic field radiated from the specimen α causes the frequency f Further modulation is applied in the vicinity of the RF field. That is, if the probe 12 is regarded as a mixer in the heterodyne radio receiver, the illumination device 11 is regarded as the same local oscillator, and the near electromagnetic field is regarded as the received signal, the output light of the probe 12 is regarded as the mixer output, that is, an intermediate frequency signal. I can do it.

図2はプローブ12からの検出光に重畳する振幅変調周波数の関係を示す(横軸は周波数、縦軸は検出光に重畳する変調周波数成分)。プローブ12からの検出光には、周波数fRFおよびfLOの成分に加えて、前記両周波数成分の積によって和成周波分(fLO+fRF)と差周波成分Δf(|fLO−fRF|)が生じる。 FIG. 2 shows the relationship of the amplitude modulation frequency superimposed on the detection light from the probe 12 (the horizontal axis is the frequency, and the vertical axis is the modulation frequency component superimposed on the detection light). In addition to the components of the frequencies f RF and f LO , the detection light from the probe 12 includes a sum frequency (f LO + f RF ) and a difference frequency component Δf (| f LO −f RF ) by the product of both frequency components. |) Occurs.

なお、本実施形態で示す電磁界高速撮像装置10においては、検体αが動作する動作周波数fRFの信号を照明装置11の変調信号源11cを元に生成し、これを検体αに供給するものとしてある。斯く構成すれば、動作周波数fRFに応じて、中間周波数Δfが得られる周波数fLOの光変調用信号を変調信号源11cで生成できるので、既存の機器で取り扱いが容易な400kHz〜500kHz或いは10MHz〜12MHzの中間周波数Δfが得られるような周波数fLOの光変調用信号を自動的に変調器11bへ供給させることも可能である。また、検体αから動作周波数fRFの動作信号の供給を変調信号源11cが受けるように構成した場合(図1において、破線で示す)、この動作周波数fRFに所望の中間周波数Δfを加減算した周波数fLOの光変調用信号を変調器11bへ供給しても良い。 In the electromagnetic field high-speed imaging apparatus 10 shown in the present embodiment, a signal having an operating frequency f RF at which the specimen α operates is generated based on the modulation signal source 11c of the illumination apparatus 11 and supplied to the specimen α. It is as. With this configuration, since the modulation signal source 11c can generate an optical modulation signal having a frequency f LO that provides an intermediate frequency Δf according to the operating frequency f RF , 400 kHz to 500 kHz or 10 MHz that can be easily handled by existing equipment. It is also possible to automatically supply the modulator 11b with an optical modulation signal having a frequency f LO so as to obtain an intermediate frequency Δf of ˜12 MHz. Further, when constituting a supply of the operating frequency f RF of the operation signal from the specimen α as the modulation signal source 11c is subjected (in FIG. 1, indicated by a broken line), and adding or subtracting a desired intermediate frequency Δf to the operating frequency f RF An optical modulation signal having the frequency f LO may be supplied to the modulator 11b.

検体αが集積度の高いICチップや複数のICを有する回路基板等であった場合、部分的に異なる周波数で動作することもある。このように動作周波数fRFが複数ある検体αに対しては、着目する動作周波数fRFに応じた周波数fLOで変調した照明光をプローブ12へ照射し、着目する差周波成分Δfのみから電磁界分布解析を行うようにしても良い。 When the sample α is an IC chip with a high degree of integration, a circuit board having a plurality of ICs, or the like, it may operate at partially different frequencies. For thus operating frequency f RF is plural analytes alpha, and irradiates illumination light modulated at frequency f LO according to the operation frequency f RF of the focused to the probe 12, the electromagnetic from only the target difference frequency component Δf You may make it perform a field distribution analysis.

また、本実施形態の電磁界高速撮像装置10においては、複数の周波数で動作する電磁界の挙動を同時に観察することも可能である。検体αの複数の動作周波数fRFn(n=1,2,…)に対応した複数の周波数fLOn(n=1,2,…)によって同時に照明光を変調し、複数の中間周波数Δfn(n=1,2,..)を抽出して処理すれば、複数の動作周波数fRFnにおける近傍電磁界の挙動を観察することができる。 Moreover, in the electromagnetic field high-speed imaging device 10 of this embodiment, it is also possible to observe simultaneously the behavior of the electromagnetic field that operates at a plurality of frequencies. A plurality of operating frequencies f RFn analyte α of the plurality corresponding to (n = 1,2, ...) the frequency f LOn (n = 1,2, ...) by modulating the illumination light at the same time, a plurality of intermediate frequency Delta] f n ( If n = 1, 2,... are extracted and processed, the behavior of the near electromagnetic field at a plurality of operating frequencies f RFn can be observed.

上述したプローブ12から取得した検出光(中間周波成分Δfを含む)を受ける撮像装置13は、プローブ12からの検出光における局所的偏光状態を光の局所的強度に変換して取り出す検波光学系13aと、検波光学系13aを介して入力された検出光を結像させるための結像光学系13bと、結像光学系13bによる結像位置に撮像面が配置されるイメージセンサ13cと、からなる。   The imaging device 13 that receives the detection light (including the intermediate frequency component Δf) acquired from the probe 12 described above converts the local polarization state in the detection light from the probe 12 into a local intensity of light and extracts it. And an image forming optical system 13b for forming an image of detection light input via the detection optical system 13a, and an image sensor 13c in which an image pickup surface is arranged at an image forming position by the image forming optical system 13b. .

イメージセンサ13cは、撮像面上に複数(実用的には、100×100ピクセル程度以上)の光電検出器を備え画素信号を発生すもので、撮像面に投影されたプローブ12上の電界又は磁界の分布に対応した光の強度分布を光電変換するものである。イメージセンサ13cの撮像面に投影された電磁界分布像は、プローブ12の作用によって中間差周波Δfに周波数変換された画像となる。   The image sensor 13c includes a plurality of (practically about 100 × 100 pixels or more) photoelectric detectors on the imaging surface to generate pixel signals, and an electric field or magnetic field on the probe 12 projected onto the imaging surface. The light intensity distribution corresponding to this distribution is photoelectrically converted. The electromagnetic field distribution image projected on the imaging surface of the image sensor 13 c is an image that is frequency-converted to the intermediate difference frequency Δf by the action of the probe 12.

測定装置14bは、変調信号源11cから供給される周波数ΔfRの参照信号を用いて濾波手段14aからの画素信号の加工処理を行い、中間周波数ΔfRにおける振幅と位相差を測定する。ΔfRはΔfに等しい値を持つ。一般に、独立した発振器は互いに周波数の揺らぎがあり、この揺らぎは位相雑音として知られている。電磁界高速撮像装置10においては、中間周波数Δfの近傍にこの位相雑音が発生する。しかし、本実施形態に係る電磁界高速撮像装置10のように、検体αの動作周波数fRFと照明装置11の周波数fLOと画像処理装置14の参照周波数ΔfRを、変調信号源11cから供給すれば、周波数の相対的な揺らぎである位相雑音を無くすることができる。 The measuring device 14b processes the pixel signal from the filtering unit 14a using the reference signal having the frequency ΔfR supplied from the modulation signal source 11c, and measures the amplitude and phase difference at the intermediate frequency ΔfR. ΔfR has a value equal to Δf. In general, independent oscillators have frequency fluctuations, which are known as phase noise. In the electromagnetic field high-speed imaging device 10, this phase noise is generated in the vicinity of the intermediate frequency Δf. However, as in the electromagnetic field high-speed imaging apparatus 10 according to the present embodiment, the reference frequency ΔfR frequency f LO and the image processing apparatus 14 of the operating frequency f RF and lighting device 11 of the specimen alpha, be supplied from a modulation signal source 11c For example, phase noise, which is a relative fluctuation in frequency, can be eliminated.

測定装置14bの具体的構成例を図3に示した。画素毎の出力である画素信号中の中間周波数Δf成分は、帯域通過フィルタ141を選択的に通過し、次にA/D変換手段142によってディジタル値に変換され、正弦成分積算手段143aと余弦成分積算手段143bに各々供給される。正弦成分積算手段143aは、変調信号源11cより供給された参照信号に基づき生成した参照正弦波(周波数ΔfRの正弦波)と前記A/D変換器142出力の積を累積加算して正弦成分積算信号を出力し、余弦成分積算手段143bは、変調信号源11cより供給された参照信号に基づき生成した参照余弦波(周波数ΔfRの余弦波)を前記A/D変換器142出力の積を累積加算して余弦成分積算信号を出力する。   A specific configuration example of the measuring device 14b is shown in FIG. The intermediate frequency Δf component in the pixel signal, which is the output for each pixel, selectively passes through the band-pass filter 141 and is then converted into a digital value by the A / D conversion unit 142, and the sine component integration unit 143a and the cosine component Each is supplied to the integrating means 143b. The sine component integrating means 143a accumulates and adds the product of the reference sine wave (sine wave of frequency ΔfR) generated based on the reference signal supplied from the modulation signal source 11c and the output of the A / D converter 142, and accumulates the sine component. The signal is output, and the cosine component integrating means 143b cumulatively adds the product of the output of the A / D converter 142 to the reference cosine wave (cosine wave of frequency ΔfR) generated based on the reference signal supplied from the modulation signal source 11c. Then, the cosine component integration signal is output.

なお、参照正弦波、参照余弦波は1ビットデータとすると正弦成分積算手段143aおよび余弦成分積算手段143bにおける演算を高速に行うことができる。1ビットの正弦・余弦波は振幅プラスマイナス1である。正弦・余弦波の振幅データを多値のビット数とすると誤差すなわち雑音成分の少ない結果が得られる反面演算時間を消費して応答性を損なう。希望する性能に応じて任意の選択が可能である。   If the reference sine wave and the reference cosine wave are 1-bit data, the sine component integrating means 143a and the cosine component integrating means 143b can perform calculations at high speed. A 1-bit sine / cosine wave has an amplitude plus or minus one. If the amplitude data of the sine / cosine wave is a multi-valued bit number, an error, that is, a result with a small noise component can be obtained, but the operation time is consumed and the response is impaired. Any selection can be made according to the desired performance.

上記のようにして、正弦成分積算手段143aから出力される正弦成分積算信号と余弦成分積算手段143bから出力される余弦成分積算信号は、第1演算手段144および第2演算手段145へ各々供給される。第1演算手段144は正弦成分積算信号と余弦成分積算信号の二乗和を算出し振幅情報を生成する。同様に第2演算手段145は正弦成分積算信号と余弦成分積算信号との比を算出して位相情報を生成する。このようにして、画素毎に得られる振幅情報と位相情報を、色相や濃度に対応付けることで、電磁界分布を示す二次元画像が得られる。   As described above, the sine component integration signal output from the sine component integration unit 143a and the cosine component integration signal output from the cosine component integration unit 143b are supplied to the first calculation unit 144 and the second calculation unit 145, respectively. The The first computing means 144 calculates the sum of squares of the sine component integrated signal and the cosine component integrated signal and generates amplitude information. Similarly, the second calculation means 145 calculates the ratio of the sine component integrated signal and the cosine component integrated signal to generate phase information. In this way, a two-dimensional image showing an electromagnetic field distribution can be obtained by associating the amplitude information and phase information obtained for each pixel with the hue and density.

なお、測定装置14bから画像情報を受ける画像表示装置15は、画素毎に時々刻々と変化する位相情報や振幅情報を色相・濃度の変化として表示し、検体αより放射される近傍電磁界の変化を動画像として見ることができる。また、測定装置14bからの画像情報を随時記録する記録装置16には、記録した画像あるいは動作の再生機能を持たせ、画像表示装置15に表示させるようにしても良い。   The image display device 15 that receives image information from the measurement device 14b displays phase information and amplitude information that change every pixel as a change in hue and density, and changes in the near electromagnetic field radiated from the specimen α. Can be viewed as a moving image. Further, the recording device 16 that records image information from the measuring device 14b as needed may be provided with a reproduction function of the recorded image or operation and displayed on the image display device 15.

図4に示す電磁界高速撮像装置20の装置構成図は、波面整合光学系、検波光学系、結像光学系の詳細構造の一構成例を示すものである。   The apparatus configuration diagram of the electromagnetic field high-speed imaging apparatus 20 shown in FIG. 4 shows an example of the detailed structure of the wavefront matching optical system, the detection optical system, and the imaging optical system.

図4において、ファイバ端21d、コリメータレンズ22a、1/4波長板22b、1/2波長板22c、偏光ビームスプリッタ22d、1/4波長板22e、1/2波長板22f、誘電体ミラー22gは波面整合光学系として作用する。電気光学結晶(EO結晶)23はプローブとして作用する。偏光ビームスプリッタ22d、1/4波長板22e、1/2波長板22fは検波光学系として作用する。結像レンズ22は結像光学系として作用する。イメージセンサ13c、および、画像処理装置14の濾波手段14a、測定装置14bは計測処理装置24に含まれている。本構成例では、偏光ビームスプリッタ22d、1/4波長板22e、1/2波長板22fは、図面において光が右に進む場合は波面整合光学系、左に進む場合は検波光学系の構成要素として複数の作用を行っている。   In FIG. 4, the fiber end 21d, the collimator lens 22a, the quarter wavelength plate 22b, the half wavelength plate 22c, the polarization beam splitter 22d, the quarter wavelength plate 22e, the half wavelength plate 22f, and the dielectric mirror 22g Acts as a wavefront matching optical system. The electro-optic crystal (EO crystal) 23 functions as a probe. The polarization beam splitter 22d, the quarter wavelength plate 22e, and the half wavelength plate 22f function as a detection optical system. The imaging lens 22 functions as an imaging optical system. The image sensor 13 c, the filtering means 14 a of the image processing device 14, and the measuring device 14 b are included in the measurement processing device 24. In this configuration example, the polarization beam splitter 22d, the quarter wavelength plate 22e, and the half wavelength plate 22f are components of the wavefront matching optical system when the light travels to the right and the detection optical system when the light travels to the left in the drawing. It has multiple actions.

図5は、図4における光学系の波面整合光学系と検波光学系の作用を説明する模式図である。51a、51b、51cは波面整合光によって偏波面を順次整合してゆく過程を示す。52c、52b、52aは検波光学系によって波面中の偏向状態が光りの強度に変換されてゆく過程を示す。53a、54bは偏光ビームスプリッタ22dを光軸上で電界に対して相対的に回転させることによってその出力の変化する様子を示した物である。54a、54bは前記偏光ビームスプリッタ22d出力の時間変化例を示す。   FIG. 5 is a schematic diagram for explaining the operation of the wavefront matching optical system and the detection optical system of the optical system in FIG. Reference numerals 51a, 51b and 51c denote processes in which the polarization planes are sequentially matched by the wavefront matching light. Reference numerals 52c, 52b, and 52a denote processes in which the state of deflection in the wavefront is converted into light intensity by the detection optical system. Reference numerals 53a and 54b show how the output of the polarizing beam splitter 22d is changed by rotating it relative to the electric field on the optical axis. Reference numerals 54a and 54b show examples of temporal changes in the output of the polarizing beam splitter 22d.

図4において、レーザ光源21aから発したレーザ光は光ファイバにて、高周波発振器21cからの発信周波数fLOにて制御された光変調器21bへ導入され、振幅変調された照明光がファイバ端21dより拡散放射され、コリメータレンズ22aにより平行光束となる。更に、前記レーザ光は1/4波長板22bおよび1/2波長板22cよりなる波面整合光学系を経て円偏光となり、偏光ビームスプリッタ22dを直進し、1/4波長板22eおよび1/2波長板22fを経た後、反射板22gにて光軸が曲げられ、電気光学結晶(EO−Crystal)を板状に形成した電気光学素子を保持機構部により所定位置に配置したプローブ23の光照射面へ垂直に入射する。すなわち、本構成例においては、1/4波長板22b,1/2波長板22c,偏光ビームスプリッタ22d,1/4波長板22e,1/2波長板22fが波面整合光学系として機能する。 In FIG. 4, laser light emitted from a laser light source 21a is introduced into an optical modulator 21b controlled by a transmission frequency f LO from a high-frequency oscillator 21c through an optical fiber, and illumination light that has been amplitude-modulated is introduced into a fiber end 21d. It is more diffusely radiated and becomes a parallel light beam by the collimator lens 22a. Further, the laser beam passes through a wavefront matching optical system composed of a quarter-wave plate 22b and a half-wave plate 22c, becomes circularly polarized light, travels straight through the polarization beam splitter 22d, and travels through the quarter-wave plate 22e and the half-wave plate. After passing through the plate 22f, the light irradiating surface of the probe 23 in which the optical axis is bent by the reflecting plate 22g and the electro-optic element in which the electro-optic crystal (EO-Crystal) is formed in a plate shape is arranged at a predetermined position by the holding mechanism. Incident vertically. That is, in the present configuration example, the quarter wavelength plate 22b, the half wavelength plate 22c, the polarization beam splitter 22d, the quarter wavelength plate 22e, and the half wavelength plate 22f function as a wavefront matching optical system.

一方、プローブ23の光照射面に照射された照明光は、動作周波数fRFで動作する検体αが発する電界により局所的な偏光状態の変調を受け、前述したように中間周波数Δfを含む検出光として反射し、照射時の光路を遡行する。但し、検出光は照明光と異なり、検光子たる偏光ビームスプリッタ22dで偏光状態の変調が強度変調に変換されて図面上方へ反射誘導され、結像レンズ22hにより計測処理装置24が備えるイメージセンサの撮像面に結像する。 On the other hand, the illumination light irradiated on the light irradiation surface of the probe 23 receives the modulation of the local polarization state by an electric field analyte operating at operating frequency f RF alpha emitted, detection light containing a intermediate frequency Δf as described above And then go back through the light path at the time of irradiation. However, unlike the illumination light, the detection light is converted into intensity modulation by the polarization beam splitter 22d, which is an analyzer, and reflected and guided upward in the drawing, and the image sensor 22h includes an image sensor provided in the measurement processing device 24h. An image is formed on the imaging surface.

また、本構成例の計測処理装置24は、撮像装置のイメージセンサや画像処理装置の機能を一体に有するもので、前述した諸演算処理により求めた電界分布画像を画像表示装置25へ出力する。なお、画像表示装置25は、観察用カメラ26からの映像を切り替えて表示できるようにしてあり、検体αと電気光学素子23とが適切な配置になっているか、簡易に確認できる。   Further, the measurement processing device 24 of this configuration example integrally has the functions of the image sensor and the image processing device of the imaging device, and outputs the electric field distribution image obtained by the above-described various arithmetic processes to the image display device 25. Note that the image display device 25 can switch and display the video from the observation camera 26, and can easily confirm whether the specimen α and the electro-optic element 23 are appropriately arranged.

上述した電磁界高速撮像装置20により得た電界分布画像の一例を図6に示す。(a)は検体αから放射される電界強度分布を示した二次元画像で、(b)は位相分布を示した二次元画像である。そして、電磁界高速撮像装置20においては、中間周波数Δfをイメージセンサの応答周波数よりも低く設定しておくことにより、検体αの動作周波数fRFが数GHzと高い周波数であっても、その挙動が転写された中間周波数Δfはイメージセンサの応答する周波数帯に設定できる。 An example of the electric field distribution image obtained by the electromagnetic field high-speed imaging device 20 described above is shown in FIG. (A) is a two-dimensional image showing the electric field intensity distribution radiated from the specimen α, and (b) is a two-dimensional image showing the phase distribution. In the electromagnetic field high-speed imaging device 20, by setting the intermediate frequency Δf lower than the response frequency of the image sensor, even if the operating frequency f RF of the specimen α is as high as several GHz, the behavior thereof The intermediate frequency Δf to which is transferred can be set to a frequency band to which the image sensor responds.

次に、上述した電磁界高速撮像装置10,20において、より好適な電磁界分布像を取得するための要素技術について説明する。   Next, elemental techniques for acquiring a more suitable electromagnetic field distribution image in the above-described electromagnetic field high-speed imaging devices 10 and 20 will be described.

イメージセンサ13cの各画素において検出される差周波成分Δfの強度(振幅の自乗)は、照明光と同じ変調周波数の成分と周波数fRFの電磁界による変調により発生した成分の光強度の積に比例する。一方、検出光の光強度は、これらの和となる。一般にイメージセンサは飽和光強度を超えると画像取得が不可能となる。そのため、光強度を飽和強度以下に保ちつつ、光強度の積を高くすることにより、検出感度を向上させることができる。具体的には、反射光が偏光ビームスプリッタ22eに入射する直前において、上述の二種の周波数成分を有する変調光の偏光状態が互いに直交することを利用し、1/4波長板22eおよび1/2波長板22fの調整により、両者の比を最適化する。更に、光源からの照明光の強度を調整し、イメージセンサ13cによって検出される光強度を飽和光強度以下の最適な強度とすることにより、イメージセンサ13cの最大感度で画像を得ることができる。 Magnitude of the difference frequency component Δf detected at each pixel of the image sensor 13c (square of amplitude), the product of the light intensity of the component generated by modulation by component and the frequency f RF of the electromagnetic field of the same modulation frequency as the illuminating light Proportional. On the other hand, the light intensity of the detection light is the sum of these. In general, an image sensor cannot acquire an image when the intensity of saturated light is exceeded. Therefore, the detection sensitivity can be improved by increasing the product of the light intensity while keeping the light intensity below the saturation intensity. Specifically, using the fact that the polarization states of the modulated light having the two types of frequency components described above are orthogonal to each other immediately before the reflected light enters the polarizing beam splitter 22e, the quarter-wave plates 22e and 1 / By adjusting the two-wave plate 22f, the ratio between the two is optimized. Furthermore, by adjusting the intensity of illumination light from the light source and setting the light intensity detected by the image sensor 13c to an optimum intensity equal to or lower than the saturation light intensity, an image can be obtained with the maximum sensitivity of the image sensor 13c.

図7に示す光学系配置図のように、検体αに近接して配置したプローブ31からイメージセンサ32に至る光軸に、波面整合光学系33、偏光子と検光子を兼ねるビームスプリッタ34、結像光学系35を配した場合、プローブ31側から結像光学系35に入射した光軸に平行な平行光がイメージセンサ32側で集光する点、すなわち、結像光学系35のイメージセンサ32側における無限遠焦点位置の開口中央部に、微細な光吸収体36を配しておけば、プローブ31からの反射光のうち、光軸に平行な成分37を光吸収体36により吸収し、イメージセンサ32の撮像面に入射するノイズを低減できる。光吸収体36は微小であるため、イメージセンサ32に結像するプローブ31からの光線38を吸収する量は僅かであるから、イメージセンサ32の出力への影響も少なくてS/N比の増加をもたらす。   As shown in the optical system arrangement diagram of FIG. 7, a wavefront matching optical system 33, a beam splitter 34 serving as both a polarizer and an analyzer, a connection are formed on the optical axis from the probe 31 arranged close to the specimen α to the image sensor 32. When the image optical system 35 is provided, parallel light parallel to the optical axis incident on the imaging optical system 35 from the probe 31 side is collected on the image sensor 32 side, that is, the image sensor 32 of the imaging optical system 35. If a fine light absorber 36 is arranged at the center of the opening at the infinity focal position on the side, a component 37 parallel to the optical axis of the reflected light from the probe 31 is absorbed by the light absorber 36. Noise incident on the imaging surface of the image sensor 32 can be reduced. Since the light absorber 36 is very small, the amount of the light beam 38 from the probe 31 that forms an image on the image sensor 32 is so small that the influence on the output of the image sensor 32 is small and the S / N ratio is increased. Bring.

また、図8に示す光学系配置図のように、検体αに近接して配置したプローブ41からイメージセンサ42に至る光軸に、波面整合光学系43、偏光子と検光子を兼ねるビームスプリッタ44、結像光学系45を配した場合、プローブ41側から結像光学系45に入射した光軸に平行な平行光がイメージセンサ42側で集光する位置、すなわち、結像光学系46から無限遠焦点位置にイメージセンサ42を配置すると共に、結像光学系45の他方の無限遠焦点位置にプローブ41を配置しておけば、プローブ41の反射光のフーリエ変換像がイメージセンサ42に結像する。前記フーリエ変換像はプローブ面の電磁界分布のフーリエ変換像すなわち遠方電磁界像である。本構成を用いれば検体αの発する電磁界の遠方電磁界像を直接取得できる。   Further, as shown in the optical system arrangement diagram shown in FIG. 8, a wavefront matching optical system 43 and a beam splitter 44 serving as both a polarizer and an analyzer are arranged on the optical axis from the probe 41 arranged close to the specimen α to the image sensor 42. When the imaging optical system 45 is arranged, the parallel light parallel to the optical axis incident on the imaging optical system 45 from the probe 41 side is condensed on the image sensor 42 side, that is, infinite from the imaging optical system 46. If the image sensor 42 is disposed at the far focal position and the probe 41 is disposed at the other infinite focal position of the imaging optical system 45, a Fourier transform image of the reflected light of the probe 41 is formed on the image sensor 42. To do. The Fourier transform image is a Fourier transform image of the electromagnetic field distribution on the probe surface, that is, a far electromagnetic field image. If this configuration is used, a far electromagnetic field image of the electromagnetic field generated by the specimen α can be directly acquired.

電磁界高速撮像装置の概略機能ブロック図である。It is a schematic functional block diagram of an electromagnetic field high-speed imaging device. プローブからの検出光における周波数分布特性図である。It is a frequency distribution characteristic figure in the detection light from a probe. 画像処理装置の機能ブロック図である。It is a functional block diagram of an image processing apparatus. 電磁界高速撮像装置の装置構成図である。It is an apparatus block diagram of an electromagnetic field high-speed imaging device. 図4における光学系の波面整合光学系と検波光学系の作用を説明する模式図である。It is a schematic diagram explaining the effect | action of the wave front matching optical system and detection optical system of the optical system in FIG. (a)は検体から放射される電界強度分布を示す二次元像である。(b)は検体から放射される電界の位相分布を示す二次元像である。(A) is a two-dimensional image showing the electric field intensity distribution radiated from the specimen. (B) is a two-dimensional image showing the phase distribution of the electric field radiated from the specimen. 光吸収体を設けた電磁界高速撮像装置における光学系配置図である。It is an optical system layout diagram in an electromagnetic field high-speed imaging device provided with a light absorber. 遠方電磁界像を取得可能な電磁界高速撮像装置における光学系配置図である。It is an optical system layout diagram in an electromagnetic field high-speed imaging device capable of acquiring a far electromagnetic field image.

符号の説明Explanation of symbols

10 電磁界高速撮像装置
11 照明装置
12 プローブ
13 撮像装置
13c イメージセンサ
14 画像処理装置
α 検体
DESCRIPTION OF SYMBOLS 10 Electromagnetic field high-speed imaging device 11 Illumination device 12 Probe 13 Imaging device 13c Image sensor 14 Image processing apparatus (alpha) Sample

Claims (7)

周波数fLOで振幅変調された光を出力可能な照明装置と、
測定対象である検体から発せられる周波数fRFの電界又は磁界により複屈折特性が局所的に変化することで、前記照明装置から照射された光に局所的な偏光状態を生ぜしめ、周波数fRFの近傍電磁界で照明装置からの照明光を更に変調して周波数混合し、照明装置から照射された光の変調周波数fLOと検体から放射される電界又は磁界の周波数fRFとの差周波成分Δf(|fLO−fRF|)を含む検出光を発生可能な電気光学素子または磁気光学素子を備えたプローブと、
前記プローブからの検出光における局所的偏光状態を光の局所的強度に変換し、複数の画素を有するイメージセンサの撮像面に結像させる光電変換する撮像装置と、
前記撮像装置のイメージセンサより画素毎に取り出した画素信号に含まれる差周波成分Δfを用いて検体から放射される近傍電磁界の分布情報を解析し、二次元像を生成する画像処理装置と、
を備えることを特徴とする電磁界高速撮像装置。
A lighting device capable of outputting light modulated in amplitude at a frequency f LO ;
The birefringence characteristic is locally changed by the electric field or magnetic field of the frequency f RF emitted from the specimen to be measured, thereby causing a local polarization state in the light irradiated from the illumination device, and the frequency f RF The illumination light from the illuminating device is further modulated by the near electromagnetic field and frequency-mixed, and the difference frequency component Δf between the modulation frequency f LO of the light emitted from the illuminating device and the frequency f RF of the electric field or magnetic field radiated from the specimen. A probe including an electro-optical element or a magneto-optical element capable of generating detection light including (| f LO −f RF |);
An imaging device that converts a local polarization state in the detection light from the probe into a local intensity of light and photoelectrically converts it to an imaging surface of an image sensor having a plurality of pixels; and
An image processing device that analyzes the distribution information of the near electromagnetic field radiated from the specimen using the difference frequency component Δf included in the pixel signal extracted for each pixel from the image sensor of the imaging device, and generates a two-dimensional image;
An electromagnetic field high-speed imaging device comprising:
前記照明装置の光源には、レーザ光源を用いることを特徴とする請求項1に記載の電磁界高速撮像装置。   The electromagnetic field high-speed imaging device according to claim 1, wherein a laser light source is used as a light source of the illumination device. 検体の動作周波数fRFと照明装置の周波数fLOと処理装置の参照周波数ΔfRは同一の発信器信号より供給するようにしたことを特徴とする請求項1又は請求項2に記載の電磁界高速撮像装置。 Field fast according to claim 1 or claim 2 the reference frequency ΔfR frequency f LO and the processing unit of the operating frequency f RF and illumination device of the specimen is characterized in that so as to supply from the same oscillator signal Imaging device. 前記画像処理装置は、
前記撮像装置のイメージセンサより画素毎に出力される画素信号から、差周波成分Δfを含む帯域を通過させる濾波手段と、
前記濾波手段より出力された濾波出力信号の解析を行う測定装置と、
を備え、
前記測定装置は、前記照明装置の変調信号源より供給された参照信号に基づいて参照正弦波と参照余弦波を生成し、前記濾波出力信号と参照正弦波とを積算した正弦成分積算信号と、前記濾波出力信号と参照余弦波とを積算した余弦成分積算信号とを各々演算し、正弦成分積算信号と余弦成分積算信号との二乗和を算出することで振幅情報を、前記正弦成分積算信号と余弦成分積算信号との比を算出することで位相情報を、各々求めるようにしたことを特徴とする請求項1〜請求項3の何れか1項に記載の電磁界高速撮像装置。
The image processing apparatus includes:
Filtering means for passing a band including the difference frequency component Δf from the pixel signal output for each pixel from the image sensor of the imaging device;
A measuring device for analyzing the filtered output signal output from the filtering means;
With
The measuring device generates a reference sine wave and a reference cosine wave based on a reference signal supplied from a modulation signal source of the lighting device, and integrates the filtered output signal and the reference sine wave, Each of the filtered output signal and the cosine component integrated signal obtained by integrating the reference cosine wave is calculated, and amplitude information is calculated by calculating a sum of squares of the sine component integrated signal and the cosine component integrated signal. The electromagnetic field high-speed imaging device according to any one of claims 1 to 3, wherein the phase information is obtained by calculating a ratio with a cosine component integration signal.
前記測定装置が生成する参照正弦波および参照余弦波は、矩形波で代用した疑似参照正弦波と疑似参照余弦波であることを特徴とする請求項4に記載の電磁界高速撮像装置。   5. The electromagnetic field high-speed imaging device according to claim 4, wherein the reference sine wave and the reference cosine wave generated by the measurement device are a pseudo reference sine wave and a pseudo reference cosine wave substituted by a rectangular wave. 前記撮像装置は、前記プローブの実像をイメージセンサの撮像面に結像させる結像光学系を備え、該結像光学系のイメージセンサ側における無限遠焦点位置の開口中央部に微細な光吸収体を配したことを特徴とする請求項1〜請求項5の何れか1項に記載の電磁界高速撮像装置。   The imaging apparatus includes an imaging optical system that forms a real image of the probe on an imaging surface of an image sensor, and a fine light absorber at the center of the aperture at the infinity focal position on the image sensor side of the imaging optical system The electromagnetic field high-speed imaging device according to claim 1, wherein the electromagnetic field high-speed imaging device is provided. イメージセンサの飽和光強度に対して、高い光出力が可能な照明光源と、検光子と、偏光状態制御素子を備え、偏光状態制御素子の調整を行うことにより、検光子へ入射する直前における偏光状態を制御し、検光子を透過した検出光に含まれる成分のうち、検出光の前記プローブにおいて発生した変調光成分とその他の成分の強度比を調整できるようにしたことを特徴とする請求項1〜請求項6の何れか1項に記載の電磁界高速撮像装置。
Polarized light just before entering the analyzer by adjusting the polarization state control element with an illumination light source capable of high light output, analyzer and polarization state control element for the saturation light intensity of the image sensor The state is controlled, and the intensity ratio between the modulated light component generated in the probe of the detection light and the other components among the components included in the detection light transmitted through the analyzer can be adjusted. The electromagnetic field high-speed imaging device according to any one of claims 1 to 6.
JP2006192008A 2006-07-12 2006-07-12 Electromagnetic high-speed imaging device Expired - Fee Related JP5084006B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006192008A JP5084006B2 (en) 2006-07-12 2006-07-12 Electromagnetic high-speed imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006192008A JP5084006B2 (en) 2006-07-12 2006-07-12 Electromagnetic high-speed imaging device

Publications (2)

Publication Number Publication Date
JP2008020304A true JP2008020304A (en) 2008-01-31
JP5084006B2 JP5084006B2 (en) 2012-11-28

Family

ID=39076355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006192008A Expired - Fee Related JP5084006B2 (en) 2006-07-12 2006-07-12 Electromagnetic high-speed imaging device

Country Status (1)

Country Link
JP (1) JP5084006B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011004536A1 (en) * 2009-07-10 2011-01-13 日本電気株式会社 Electromagnetic field measuring device, electromagnetic field measuring method used for the measuring device, and non-transitory computer-readable medium in which electromagnetic field measurement control program is stored
GB2472907A (en) * 2009-08-20 2011-02-23 Stanley Electric Co Ltd High speed electromagnetic field imaging apparatus
US20110043653A1 (en) * 2009-08-20 2011-02-24 Stanley Electric Co., Ltd. Electromagnetic field high speed imaging apparatus
JP2011106943A (en) * 2009-11-17 2011-06-02 Nec Corp Measurement apparatus
DE112017001109T5 (en) 2016-03-02 2019-01-10 National Institute Of Information And Communications Technology Imaging device for electric fields

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6040973A (en) * 1983-08-15 1985-03-04 Nec Corp Azimuth measuring apparatus
JPH0353174A (en) * 1989-07-20 1991-03-07 Nec Corp Selective level meter
JPH08211132A (en) * 1995-02-07 1996-08-20 Hamamatsu Photonics Kk Voltage measuring apparatus
JPH08262117A (en) * 1994-08-04 1996-10-11 Nippon Telegr & Teleph Corp <Ntt> Electric signal measuring instrument
JPH0943285A (en) * 1995-07-26 1997-02-14 Aloka Co Ltd Orthogonal converter for vibration capacity type potentiometer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6040973A (en) * 1983-08-15 1985-03-04 Nec Corp Azimuth measuring apparatus
JPH0353174A (en) * 1989-07-20 1991-03-07 Nec Corp Selective level meter
JPH08262117A (en) * 1994-08-04 1996-10-11 Nippon Telegr & Teleph Corp <Ntt> Electric signal measuring instrument
JPH08211132A (en) * 1995-02-07 1996-08-20 Hamamatsu Photonics Kk Voltage measuring apparatus
JPH0943285A (en) * 1995-07-26 1997-02-14 Aloka Co Ltd Orthogonal converter for vibration capacity type potentiometer

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011004536A1 (en) * 2009-07-10 2011-01-13 日本電気株式会社 Electromagnetic field measuring device, electromagnetic field measuring method used for the measuring device, and non-transitory computer-readable medium in which electromagnetic field measurement control program is stored
CN102472786A (en) * 2009-07-10 2012-05-23 日本电气株式会社 Electromagnetic field measuring device, electromagnetic field measuring method used for the measuring device, and non-transitory computer-readable medium in which electromagnetic field measurement control program is stored
JP5626210B2 (en) * 2009-07-10 2014-11-19 日本電気株式会社 Electromagnetic field measurement apparatus, electromagnetic field measurement method used in the measurement apparatus, and electromagnetic field measurement control program
US8941402B2 (en) 2009-07-10 2015-01-27 Nec Corporation Electromagnetic field measuring apparatus, electromagnetic field measuring method used for the same, and non-transitory computer readable medium storing electromagnetic field measurement control program
GB2472907A (en) * 2009-08-20 2011-02-23 Stanley Electric Co Ltd High speed electromagnetic field imaging apparatus
US20110043653A1 (en) * 2009-08-20 2011-02-24 Stanley Electric Co., Ltd. Electromagnetic field high speed imaging apparatus
JP2011043375A (en) * 2009-08-20 2011-03-03 Stanley Electric Co Ltd High-speed imaging device for electromagnetic field
GB2472907B (en) * 2009-08-20 2011-09-14 Stanley Electric Co Ltd Electromagnetic field high speed imaging apparatus
US8294782B2 (en) 2009-08-20 2012-10-23 Stanley Electric Co., Ltd. Electromagnetic field high speed imaging apparatus
JP2011106943A (en) * 2009-11-17 2011-06-02 Nec Corp Measurement apparatus
DE112017001109T5 (en) 2016-03-02 2019-01-10 National Institute Of Information And Communications Technology Imaging device for electric fields
US10600837B2 (en) 2016-03-02 2020-03-24 National Institute Of Information And Communications Technology Electric field imaging device

Also Published As

Publication number Publication date
JP5084006B2 (en) 2012-11-28

Similar Documents

Publication Publication Date Title
JP5329449B2 (en) How to perform microscopic imaging
US5457536A (en) Polarization modulation laser scanning microscopy
US8654331B2 (en) Electromagnetic field measurement apparatus
JP5084006B2 (en) Electromagnetic high-speed imaging device
US6018391A (en) Method and apparatus for inspecting foreign matter by examining frequency differences between probing light beam and reference light beam
WO2003095991A1 (en) Tera-hertz ray microscope
US8488118B2 (en) Apparatus and method for multi-modal imaging in nonlinear raman microscopy
US5767688A (en) Electro-optic voltage measurement apparatus
JP2013032933A (en) Homodyne detection-type electromagnetic wave spectroscopic measurement system
US8294782B2 (en) Electromagnetic field high speed imaging apparatus
JP2006520893A (en) Acoustooptic imaging method and acoustooptic imaging apparatus
CN110383086A (en) Electromagnetic wave measuring device and electromagnetic wave measurement method
US8665434B2 (en) Integrated Raman spectroscopy detector
CN107219191B (en) Oblique incidence light reflection difference device based on Fourier transform
JP4107603B2 (en) Laser radar equipment
JP2008020305A (en) High-speed imaging apparatus for electromagnetic-field
US11105737B2 (en) Spectroscopic analysis device
US10600837B2 (en) Electric field imaging device
Sasagawa et al. Instantaneous visualization of K-band electric near-fields by a live electrooptic imaging system based on double sideband suppressed carrier modulation
US5625296A (en) Electro-optic voltage measurement apparatus
CN115032224B (en) Pulsed high field magnetic resonance system
JPH06331321A (en) Fine structure measuring device
JP3795657B2 (en) Foreign matter inspection method using heterodyne polarization and apparatus for carrying out this method
JPH06273386A (en) Ultrasonic detector
WO2024142073A1 (en) System and method for optical range doppler detection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120903

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5084006

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees