JP2008020279A - Thickness measuring apparatus for water-bottom earth and sand and drift sand observation system - Google Patents

Thickness measuring apparatus for water-bottom earth and sand and drift sand observation system Download PDF

Info

Publication number
JP2008020279A
JP2008020279A JP2006191392A JP2006191392A JP2008020279A JP 2008020279 A JP2008020279 A JP 2008020279A JP 2006191392 A JP2006191392 A JP 2006191392A JP 2006191392 A JP2006191392 A JP 2006191392A JP 2008020279 A JP2008020279 A JP 2008020279A
Authority
JP
Japan
Prior art keywords
sand
water
sediment
earth
pressure gauge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006191392A
Other languages
Japanese (ja)
Inventor
Hiromichi Tanaka
博通 田中
Minosuke Yodogawa
巳之助 淀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
METIC KK
Tokai University
Original Assignee
METIC KK
Tokai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by METIC KK, Tokai University filed Critical METIC KK
Priority to JP2006191392A priority Critical patent/JP2008020279A/en
Publication of JP2008020279A publication Critical patent/JP2008020279A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thickness measuring apparatus for water-bottom earth and sand and a drift sand observation system which can measure the thickness of earth and sand accumulated on the bottom of the sea, rivers, lakes and marshes, dam lakes, or the like and the thickness of earth and sand reduced by erosion at all times regardless of weather. <P>SOLUTION: The measuring apparatus 1 for water-bottom earth and sand is an apparatus for measuring the thickness of earth and sand accumulated on the water-bottom. The measuring apparatus 1 comprises a fine-particle earth and sand pressure gauge 5 which is buried horizontally at a predetermined depth position from the bottom to measure pressure by fine-particle earth and sand in the earth and sand accumulated on the water-bottom and by water, a soil material pressure gauge 6 which is placed horizontally at a position which is the same depth position from the bottom as the fine-particle earth and sand pressure gauge 5 and is in the vicinity thereof to measure pressure by soil material earth and sand in the earth and sand accumulated on the water-bottom and by water, and a calculation apparatus 21 which calculates the thickness of the earth and sound accumulated on the water-bottom on the basis of the difference between a first output signal indicating the pressure measured by the fine-particle earth and sand pressure gauge 5 and a second output signal indicating the pressure measured by the soil material pressure gauge 6. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、海や河川や湖沼やダム湖等の水底面に堆積される土砂の厚さ、および浸食された水底面の土砂の厚さを計測する水底土砂厚計測装置および漂砂観測システムに関する。   The present invention relates to a bottom sediment thickness measurement apparatus and a drift sand observation system that measure the thickness of sediment deposited on the bottom of a sea, a river, a lake, a dam lake, or the like, and the thickness of eroded sediment.

一般に、山腹の斜面等に雨が降って洪水になったときには、山腹の土砂が土石流(固液混相流ともいう)となって河川に流れ込み、やがて、その土砂が河川やダム湖の水底面に堆積したり、水の流れによって海まで流れて海底に堆積したりすることがある。このようにして、河川やダム湖や海では、水底面に土砂が堆積することによって水底面の土砂の厚さが変化したり、水底面や沿岸の地形が変化したりしている。   In general, when it rains on the slopes of a mountainside and becomes flooded, the sediment on the mountainside flows into the river as a debris flow (also called a solid-liquid mixed phase flow), and eventually the sediment reaches the bottom of the river or dam lake. It may accumulate, or it may flow to the sea by water flow and accumulate on the seabed. In this way, in rivers, dam lakes, and the sea, the sediment thickness on the bottom surface changes due to sediment accumulation on the bottom surface, and the bottom surface and coastal topography change.

近年、ダムや砂防堰堤の建設等に伴って、土砂の海への流入量が減少し、海岸は、波や潮の流れを受けて浸食し、遠浅の海岸が減少したり、海岸の水際の位置が後退したりする等の現象が現れている。このため、沿岸の海底に堆積した土砂の厚さは、堆積や浸食によって時系列的に大きく変化している。   In recent years, with the construction of dams and sabo dams, the inflow of earth and sand into the sea has decreased, and the coast has been eroded by the flow of waves and tides, and shallow coasts have decreased, Phenomenon such as position retreating has appeared. For this reason, the thickness of the sediment deposited on the coastal seafloor changes greatly in time series due to deposition and erosion.

このような水底面に堆積した土砂の厚さを計測する手段としては、幾つかの水底土砂厚計測装置が開発されている。例えば、ダム湖等の底面に堆積した土砂の厚さを計測する計測装置としては、センサ棒に数[cm]のピッチで対向させて配置した発光器および受光器における受光器の作動によって、湖底の砂面の位置を計測する砂面計が知られている(例えば、特許文献1参照)。   As means for measuring the thickness of sediment deposited on the bottom of the water, several bottom sediment thickness measuring devices have been developed. For example, as a measuring device for measuring the thickness of sediment deposited on the bottom surface of a dam lake, etc., the bottom of the lake is obtained by the operation of a light emitter disposed opposite to a sensor rod with a pitch of several [cm] and a light receiver in the light receiver. There is known a sand level meter that measures the position of the sand surface (see, for example, Patent Document 1).

また、砂撒船から海底に散布した砂の厚さを計測する装置としては、砂撒船から海底にロープによって降ろされた一方の水深計と、その砂撒船からばら撒いた砂の上にロープによって降ろされた他方の水深計とで計測した水深の差によって、散布した砂の厚さを計測する砂厚計測装置が知られている(例えば、特許文献2参照)。   In addition, as a device to measure the thickness of the sand spread from the sand dredger to the sea floor, one of the depth gauges lowered from the sand dredger to the sea floor by the rope and the sand scattered from the sand dredger There is known a sand thickness measuring device that measures the thickness of spread sand based on the difference in water depth measured with the other depth gauge lowered by a rope (for example, see Patent Document 2).

そして、海岸および河口域における土砂の堆積や浸食は、作業船に搭載された音響測深器を使って海の深さを毎年定期的に計測した深浅測量データを使用して漂砂量を求めて観測している。
また、堆積した土砂の厚さを音響測深器で測定する場合には、作業船の船上で測定するため、洪水等が発生した後、数日経過してから天候のよい日を選んで人為的に計測している。その他の土砂の厚さの計測方法としては、作業員が物差しを利用して目視によって計測する方法がある。
実公平3−4895号公報(第1図および第2図) 特開昭64−35207号公報(第2図)
Sediment accumulation and erosion in coastal and estuary areas were observed by using sand bathing data obtained by measuring the depth of the sea regularly every year using an acoustic sounding instrument mounted on a work boat. is doing.
In addition, when measuring the thickness of accumulated sediment with an acoustic sounding instrument, it is measured on the ship's ship. Is measured. As another method for measuring the thickness of earth and sand, there is a method in which an operator visually measures using a ruler.
Japanese Utility Model Publication No. 3-4895 (FIGS. 1 and 2) JP-A 64-35207 (FIG. 2)

しかしながら、前記特許文献1,2に記載されたような水底土砂厚計測装置は、河川やダム湖や海等の水底面に堆積した土砂の厚さを計測する場合に、人為的に計測したり、船を利用して計測しているため、土砂の変動が激しい洪水発生時や荒天時に、水底面に堆積した土砂の厚さの計測や土砂動態の観測は困難であった。
このため、波浪時の漂砂の観測や、洪水時に水底面に堆積した土砂の厚さの計測や、日常時に随時に水底面の土砂の観測が可能な方法の開発が求められていた。
However, the bottom sediment thickness measuring device as described in Patent Documents 1 and 2 is artificially measured when measuring the thickness of sediment deposited on the bottom surface of a river, a dam lake or the sea. Because of the measurement using a ship, it was difficult to measure the thickness of sediment deposited on the bottom of the water and to observe sediment dynamics during floods and stormy weather where the sediments were fluctuating.
For this reason, there has been a need for the development of a method that can observe drift sand during waves, measure the thickness of sediment deposited on the bottom of a water during floods, and observe sediment on the bottom of the water at any time during daily life.

また、特許文献1,2に記載の水底土砂厚計測装置で水底面に堆積した土砂の厚さを人為的に測定した場合には、洪水後の天候のよい日に測定した測定値から土砂の厚さを求めなければならないので、波浪時の土砂の厚さの変化の観測や、流砂および漂砂による水底の地形の変化の観測や、所定区域全体の広域的な土砂の厚さの測定や、土砂の動態の観測等は事実上難しかった。   In addition, when the thickness of sediment deposited on the bottom of the water is artificially measured with the bottom sediment thickness measuring device described in Patent Documents 1 and 2, the measured value of the sediment is measured from the measured value on a sunny day after the flood. Since the thickness must be obtained, observation of changes in sediment thickness during waves, observation of changes in the topography of the bottom due to liquid sand and drift sand, measurement of wide-area sediment thickness over a given area, Observing the dynamics of sediment was virtually difficult.

このような河川やダム湖や湖沼や海においては、河川からの供給土砂量や、沿岸線の砂浜の形状や、水底面の形状を把握するために、水底面に堆積した土砂の厚さや水底面の浸食された土砂の厚さを測定したり、洪水時や波浪時の水底面の土砂の分布状態等を広範囲に総合的に観測したりすることが望まれている。   In such rivers, dam lakes, lakes, and seas, in order to understand the amount of sediment supplied from the river, the shape of sandy beaches along the coastline, and the shape of the bottom of the water, It is desired to measure the thickness of the eroded earth and sand on the bottom, and to comprehensively observe the distribution of the earth and sand on the bottom of the water during floods and waves.

そこで、本発明は、前記実情に鑑み創案されたものであり、海や河川や湖沼やダム湖等の水底面に堆積される土砂の厚さや、浸食されて減少した土砂の厚さを天候に左右されることなく常時計測することができる水底土砂厚計測装置および漂砂観測システムを提供することを課題とする。   Therefore, the present invention was devised in view of the above circumstances, and the thickness of the earth and sand deposited on the bottom surface of the sea, rivers, lakes, and dam lakes, and the thickness of the earth and sand reduced by erosion are taken into account in the weather. It is an object of the present invention to provide a bottom sediment thickness measuring device and a drift sand observation system that can always measure without being influenced.

前記課題を解決するために、請求項1に記載の水底土砂厚計測装置は、水底面に堆積した土砂の厚さを計測する水底土砂厚計測装置において、前記水底面から所定の深さの位置に水平に埋設され、前記水底面に堆積した土砂中の細粒分土砂と水とによる圧力を計測する細粒分圧力計と、この細粒分圧力計が埋設された前記水底面から同じ深さの位置の近傍に水平に埋設され、前記水底面に堆積した土砂中の土質材料土砂と水とによる圧力を計測する土質材料圧力計と、前記細粒分圧力計で計測された圧力を示す第1出力信号と前記土質材料圧力計で計測された圧力を示す第2出力信号との差に基づいて演算により前記水底面に堆積した土砂の厚さを求める演算装置と、を備えたことを特徴とする。   In order to solve the above-mentioned problem, the bottom sediment thickness measuring device according to claim 1 is a bottom sediment thickness measuring device that measures the thickness of sediment deposited on the bottom surface, and a position at a predetermined depth from the bottom surface. A fine-grained pressure gauge that measures pressure due to fine-grained sediment and water in the sediment deposited horizontally on the bottom of the water, and the same depth from the bottom of the water where the fine-grained pressure gauge is embedded Soil material pressure gauge that is buried horizontally in the vicinity of the position and measures the pressure due to the soil material and sand in the sediment deposited on the bottom of the water, and the pressure measured by the fine grain pressure gauge An arithmetic unit that calculates the thickness of the sediment deposited on the bottom of the water by calculation based on a difference between the first output signal and the second output signal indicating the pressure measured by the soil material pressure gauge. Features.

ここで、水底面から所定の深さとは、例えば、海底や、河川の川底や、湖沼およびダム湖の湖底等の水底面から地中内への任意に設定した深さであり、例えば、水底面が土質材料土砂からなる場合には水底面が深さ0.5〜1[m]である。なお、水底面が岩盤の場合には、土砂厚計測器を直接アンカ等で水底面に固定するようにし、所定の深さが0[m]であっても堆積する土砂の厚さを計測することが可能である。
また、細粒分土砂とは、粒径が約74[μm]以下の砂をいう。粗粒分土砂とは、粒径が約74[μm]以下の砂礫であり、土質材料土砂は、細粒分土砂と粗粒分土砂とを含めたものをいう。
Here, the predetermined depth from the bottom of the water is, for example, an arbitrarily set depth from the bottom of the sea, the riverbed of a river, the bottom of a lake, a lake of a dam lake, etc. into the ground. When the bottom surface is made of a soil material earth and sand, the water bottom surface has a depth of 0.5 to 1 [m]. In addition, when the bottom of the water is bedrock, the sediment thickness measuring instrument is directly fixed to the bottom of the water with an anchor or the like, and the thickness of sediment deposited is measured even if the predetermined depth is 0 [m]. It is possible.
Further, the fine grained sand means sand having a particle size of about 74 [μm] or less. The coarse-grained sediment is a gravel having a particle size of about 74 [μm] or less, and the soil material earth and sand includes a fine-grained and coarse-grained sediment.

かかる構成によれば、細粒分圧力計および土質材料圧力計は、水底面から所定の深さの土砂中に埋設される。この細粒分圧力計および土質材料圧力計を埋めた土砂とこの土砂中の水とは、水圧等によって土砂(固相)と水(液相)との所謂固液混相部における土砂粒子の間隙比が密な状態になって、細粒分圧力計および土質材料圧力計の上に積載される。例えば、水の流れ等によって運ばれて来た土砂は、水圧等によって固液混相部を形成した状態で細粒分圧力計および土質材料圧力計の上方の水底面に堆積する。その土砂中の細粒分土砂と水との固液混相部による圧力が、細粒分圧力計によって計測される。また、前記土砂中の土質材料土砂と水との固液混相部による圧力が、土質材料圧力計によって計測される。細粒分圧力計および土質材料圧力計からは、それぞれ演算装置へ圧力を示す第1出力信号および第2出力信号が出力される。演算装置は、細粒分圧力計からの第1出力信号と土質材料圧力計からの第2出力信号との差に基づいて、計測開始から水底面に堆積した土砂の厚さを算出する。
また、水底土砂厚計測装置は、水底面から所定の深さの位置に埋設した細粒分圧力計および土質材料圧力計によってそれぞれ計測した圧力に基づいて演算装置で演算した土砂の厚さの値が基準値(初期値)を超えたときには、水底面に堆積した土砂の厚さを計測し、また、その値が基準値(初期値)を下回ったときには、水底面の浸食された土砂の厚さを計測することができる。
According to this configuration, the fine grain pressure gauge and the soil material pressure gauge are embedded in the earth and sand having a predetermined depth from the bottom of the water. The earth and sand filled with the fine-grain pressure gauge and the soil material pressure gauge and the water in the earth and sand are the gap between the earth and sand particles in the so-called solid-liquid mixed phase part of the earth and sand (solid phase) and water (liquid phase) due to water pressure and the like. The ratio becomes dense and is loaded onto the fine grain pressure gauge and the soil material pressure gauge. For example, the earth and sand carried by the flow of water or the like is deposited on the bottom of the water above the fine particle pressure gauge and the soil material pressure gauge in a state where a solid-liquid mixed phase portion is formed by water pressure or the like. The pressure by the solid-liquid mixed phase part of fine-grained sediment and water in the sediment is measured by a fine-grained pressure gauge. Moreover, the pressure by the solid-liquid mixed phase part of the earth material earth and water in the earth and sand is measured by the earth material pressure gauge. From the fine grain pressure gauge and the soil material pressure gauge, a first output signal and a second output signal indicating the pressure are output to the arithmetic unit, respectively. The computing device calculates the thickness of the sediment deposited on the bottom of the water from the start of measurement based on the difference between the first output signal from the fine grain pressure gauge and the second output signal from the soil material pressure gauge.
In addition, the bottom sediment thickness measuring device is a value of sediment thickness calculated by the arithmetic unit based on the pressure measured by the fine particle pressure gauge and soil material pressure gauge embedded at a predetermined depth from the bottom of the water. When the value exceeds the reference value (initial value), the thickness of the sediment deposited on the bottom of the water is measured. When the value falls below the reference value (initial value), the thickness of the eroded sediment on the bottom of the water Can be measured.

請求項2に記載の水底土砂厚計測装置は、請求項1に記載の水底土砂厚計測装置であって、前記細粒分圧力計は、この細粒分圧力計が埋設された位置に存在する土砂中の細粒分土砂とこの土砂中の水とが流入する流入口を有する中空状の細粒分センサ筐体と、この細粒分センサ筐体に内設され、当該細粒分センサ筐体内に流入した土砂中の前記細粒分土砂と前記水とを通過させるフィルタと、このフィルタの下方に設置され、当該フィルタを通過した前記細粒分土砂と前記水とによる圧力を検出して前記第1出力信号を生成する細粒分センサ部と、この細粒分センサ部と前記細粒分センサ筐体とを載設した基板と、を備えたことを特徴とする。   The underwater sediment thickness measuring device according to claim 2 is the underwater sediment thickness measuring device according to claim 1, wherein the fine particle pressure gauge is present at a position where the fine particle pressure gauge is embedded. A hollow fine-grain sensor housing having an inflow port through which fine-grained sediment in the sediment and water in the sediment flows, and the fine-grain sensor housing are installed in the fine-grain sensor housing. A filter that allows the fine-grained sediment and water in the sediment flowing into the body to pass therethrough, and a pressure that is installed below the filter and that passes through the filter to detect pressure due to the fine-grained sediment and the water. A fine particle sensor unit that generates the first output signal, and a substrate on which the fine particle sensor unit and the fine particle sensor housing are mounted.

かかる構成によれば、細粒分圧力計は、水底の土砂中に埋設される。細粒分圧力計を埋めた土砂とこの土砂中の水とは、水圧等によって土砂と水との固液混相部における土砂粒子の間隙比が密な状態に形成される。細粒分圧力計が埋設された位置に存在する固液混相部の土砂は、細粒分センサ筐体の流入口から中空状の細粒分センサ筐体内に流入する。この流入した土砂中の細粒分土砂および水は、固液混相部の状態でフィルタを通過して細粒分センサ部まで流れ込んで細粒分センサ部を押圧する。そして、水の流れ等によって細粒分圧力計の上方に運ばれて堆積した土砂は、水圧等によって固液混相部を形成した状態で細粒分圧力計の上方の水底面に堆積する。その土砂中の細粒分土砂と水との固液混相部による圧力は、細粒分圧力計によって計測される。   According to this configuration, the fine grain pressure gauge is embedded in the bottom sediment. The earth and sand filled with the fine particle pressure gauge and the water in the earth and sand are formed in a state where the pore ratio of the earth and sand particles in the solid-liquid mixed phase portion of the earth and water is dense due to water pressure or the like. Sediment in the solid-liquid mixed phase portion existing at the position where the fine particle pressure gauge is embedded flows into the hollow fine particle sensor housing from the inlet of the fine particle sensor housing. The fine-grained sediment and water in the infused earth-and-sand flow through the filter in the state of the solid-liquid mixed phase part, flow into the fine-grain part sensor part, and press the fine-grain part sensor part. And the earth and sand which were carried and accumulated above the fine particle pressure gauge by the flow of water etc. are deposited on the bottom of the water above the fine particle pressure gauge in a state where a solid-liquid mixed phase portion is formed by water pressure or the like. The pressure by the solid-liquid mixed phase part of fine-grained sediment and water in the sediment is measured by a fine-grained pressure gauge.

請求項3に記載の水底土砂厚計測装置は、請求項1または請求項2に記載の水底土砂厚計測装置であって、前記土質材料圧力計は、前記水底面に堆積した土砂中の土質材料土砂と前記水とによる圧力を検出して前記第2出力信号を生成する土質材料センサ部と、この土質材料センサ部の上に、この土質材料圧力計が埋設された位置に存在する土砂中の土質材料土砂とこの土質材料土砂中の水とが流入する隙間を介在させて設置されたカバー体と、前記土質材料センサ部を載設した基板と、この基板と前記カバー体との間に介設されて前記土質材料土砂と前記水とが前記隙間へ流入する空間を形成するための複数の支柱と、を備えたことを特徴とする。   The bottom sediment thickness measuring device according to claim 3 is the bottom sediment thickness measuring device according to claim 1 or 2, wherein the soil material pressure gauge is a soil material in the sediment deposited on the bottom of the water. A soil material sensor unit that detects the pressure of the soil and the water and generates the second output signal, and the soil material pressure gauge in the soil where the soil material pressure gauge is embedded on the soil material sensor unit A cover body installed with a gap through which the soil material soil and water in the soil material soil flow in, a substrate on which the soil material sensor unit is placed, and an intervening space between the substrate and the cover body And a plurality of struts for forming a space through which the soil material earth and sand and the water flow into the gap.

かかる構成によれば、土質材料圧力計を水底の土砂中に埋設される。この土質材料圧力計を埋めた土砂とこの土砂中の水とは、水圧等によって土砂と水との固液混相部における土砂粒子の間隙比が密な状態に形成される。土質材料圧力計が埋設された位置に存在する固液混相部の土砂は、カバー体の下の空間から土質材料センサ筐体内に流入する。この流入した土砂中の土質材料土砂および水は、カバー体と土質材料センサ部との隙間に入って、土質材料センサ部を押圧する。そして、水の流れ等によって土質材料圧力計の上方に運ばれて来た土砂は、水圧等によって固液混相部を形成した状態で土質材料圧力計の上方の水底面に堆積する。その土砂中の土質材料土砂と水との固液混相部による圧力は、土質材料圧力計によって計測される。   According to such a configuration, the soil material pressure gauge is embedded in the bottom sediment. The earth and sand filled with the soil material pressure gauge and the water in the earth and sand are formed in a state where the pore ratio of the earth and sand particles in the solid-liquid mixed phase portion of the earth and sand is dense due to the water pressure or the like. Sediment in the solid-liquid mixed phase portion existing at the position where the soil material pressure gauge is embedded flows into the soil material sensor casing from the space below the cover body. The soil material and sand in the inflowed soil enter the gap between the cover body and the soil material sensor unit, and press the soil material sensor unit. And the earth and sand which were conveyed above the soil material pressure gauge by the flow of water etc. accumulates on the water bottom above the soil material pressure gauge in the state which formed the solid-liquid mixed phase part by the water pressure. The pressure by the solid-liquid mixed phase part of the soil material earth and water in the soil is measured by a soil material pressure gauge.

請求項4に記載の水底土砂厚計測装置は、請求項1ないし請求項3のいずれか1項に記載の水底土砂厚計測装置であって、前記細粒分圧力計および前記土質材料圧力計は、前記水底面から所定の深さの位置に埋設される台座に載設されたことを特徴とする。   The bottom sediment thickness measuring device according to claim 4 is the bottom sediment thickness measuring device according to any one of claims 1 to 3, wherein the fine particle pressure gauge and the soil material pressure gauge are And mounted on a pedestal embedded at a predetermined depth from the water bottom.

かかる構成によると、細粒分圧力計と土質材料圧力計とが、水底面から所定の深さの位置に埋設された同じ台座に載設されているので、水底の近傍で細粒分圧力計と土質材料圧力計とによる圧力がそれぞれ検出される。このため、細粒分圧力計で計測した圧力値と土質材料圧力計で計測した圧力値との差に基づいて水底土砂厚計測装置の上方の水底面に堆積した土砂の厚さや、浸食された土砂の厚さを算出することが可能となる。   According to such a configuration, the fine-grain pressure gauge and the soil material pressure gauge are mounted on the same pedestal embedded at a predetermined depth from the water bottom, so that the fine-grain pressure gauge near the bottom of the water And the pressure by the soil material pressure gauge are respectively detected. Therefore, based on the difference between the pressure value measured with the fine-grained pressure gauge and the pressure value measured with the soil material pressure gauge, the thickness of the sediment deposited on the bottom of the bottom of the bottom sediment thickness measuring device or eroded It becomes possible to calculate the thickness of earth and sand.

請求項5に記載の水底土砂厚計測装置は、請求項1ないし請求項4のいずれか1項に記載の水底土砂厚計測装置であって、前記演算装置は、前記第2出力信号と前記第1出力信号との差を、土砂と水とからなる固液混相部の予め設定した定率補正係数と水の単位体積当たりの重量との差で除した結果として前記水底面に堆積した土砂の厚さを求めることを特徴とする。   The underwater sediment thickness measuring apparatus according to claim 5 is the underwater sediment thickness measuring apparatus according to any one of claims 1 to 4, wherein the arithmetic unit is configured to output the second output signal and the second output signal. The thickness of the sediment deposited on the bottom of the water as a result of dividing the difference from one output signal by the difference between the preset constant rate correction coefficient of the solid-liquid mixed phase composed of sediment and water and the weight per unit volume of water It is characterized by seeking the thickness.

かかる構成によると、演算装置では、第2出力信号と第1出力信号との差を、固液混相部の定率補正係数と水の単位体積当たりの重量との差で除した結果を水底面に堆積した土砂の厚さとしている。
例えば、堆積した土砂の厚さをH1、細粒分圧力計と土質材料圧力計とで計測した圧力の差をΔP、定率補正係数をγとすると、堆積した土砂の厚さH1は、
H1=ΔP/(γ−1)
である。
ここで、「1」は、水の単位体積当たりの重量である。
According to such a configuration, in the arithmetic device, the difference between the second output signal and the first output signal is divided by the difference between the constant rate correction coefficient of the solid-liquid mixed phase portion and the weight per unit volume of water on the bottom surface of the water. The thickness of the accumulated sediment.
For example, the thickness of the deposited sediment H1, the fine fraction manometer and ΔP the difference in pressure measured with a soil material pressure gauge and a fixed-rate correction coefficient and gamma a, the thickness H1 of the deposited sediment,
H1 = ΔP / (γ a −1)
It is.
Here, “1” is the weight per unit volume of water.

請求項6に記載の漂砂観測システムは、水底面に堆積した土砂の厚さを観測する漂砂観測システムにおいて、前記水底面に堆積した土砂中の細粒分土砂と水とによる圧力を計測する細粒分圧力計と、前記水底面に堆積した土砂中の土質材料土砂と水とによる圧力を計測する土質材料圧力計と、前記細粒分圧力計および前記土質材料圧力計を載設した台座と、を備えて、前記水底面から所定の深さの位置に水平に埋設されると共に、前記水底面に沿って所定間隔で設置された複数の土砂厚計測器と、前記細粒分圧力計で計測された圧力を示す第1出力信号と前記土質材料圧力計で計測された圧力を示す第2出力信号との差に基づいて演算により前記水底面に堆積した土砂の厚さを求める演算装置と、前記土砂厚計測器と前記演算装置との間を有線または無線信号で伝送する信号伝達手段と、を備えたことを特徴とする。
ここで、水底面に沿った所定間隔とは、任意な距離間隔であり、例えば、水底面が海底面の場合には5〜20[m]である。
The sand drift observation system according to claim 6 is a sand drift observation system for observing the thickness of the sediment deposited on the bottom of the water, and is a fine sand measurement system for measuring the pressure caused by finely divided sediment and water in the sediment deposited on the bottom of the water. A granule pressure gauge, a soil material pressure gauge for measuring the pressure of the soil material earth and sand in the sediment deposited on the bottom of the water, and a pedestal on which the fine grain pressure gauge and the soil material pressure gauge are mounted A plurality of sediment thickness measuring instruments that are horizontally embedded at a predetermined depth from the bottom surface of the water and installed at predetermined intervals along the bottom surface of the water, and the fine particle pressure gauge An arithmetic device for determining the thickness of the sediment deposited on the bottom of the water by calculation based on a difference between a first output signal indicating the measured pressure and a second output signal indicating the pressure measured by the soil material pressure gauge; Between the earth and sand thickness measuring instrument and the arithmetic unit. Or characterized by comprising a signal transmitting means for transmitting a wireless signal.
Here, the predetermined interval along the bottom surface is an arbitrary distance interval, for example, 5 to 20 [m] when the bottom surface is the sea bottom.

かかる構成によれば、細粒分圧力計および土質材料圧力計を備えた複数の土砂厚計測器が、水底面から所定の深さの位置に埋設されたことにより、各土砂厚計測器で計測された圧力を示す第1出力信号と第2出力信号との差に基づいて演算装置を使用して、計測開始時から各土砂厚計測器の上方に堆積した土砂の厚さや、あるいは浸食された土砂の厚さが算出される。土砂厚計測器が水底面に沿って所定間隔で複数設置されていることによって、所望時に所定区域における水底面の堆積または浸食された土砂の厚さの計測が可能となる。   According to such a configuration, a plurality of earth and sand thickness measuring instruments equipped with fine grain pressure gauges and soil material pressure gauges are embedded at a predetermined depth from the bottom of the water, and are thus measured with each earth and sand thickness measuring instrument. Based on the difference between the first output signal indicating the generated pressure and the second output signal, the thickness of the sediment deposited above each sediment thickness measuring instrument from the start of measurement or eroded The thickness of the earth and sand is calculated. By installing a plurality of earth and sand thickness measuring instruments at predetermined intervals along the water bottom surface, it becomes possible to measure the thickness of sediment or eroded earth and sand on the water bottom surface in a predetermined area when desired.

請求項7に記載の漂砂観測システムは、請求項6に記載の漂砂観測システムであって、
前記土砂厚計測器は、沿岸から沖側に向かって第1の間隔で複数設置されると共に、前記沿岸に沿って第2の間隔で複数設置され、前記演算装置は、陸地に設置された観測局に設けられていることを特徴とする。
ここで、沿岸から沖側に向かう第1の間隔とは、任意の距離間隔であって、例えば、海岸の場合は5〜10[m]である。また、沿岸に沿った第2の間隔とは、任意の距離間隔であって、例えば、海岸の場合は10〜20[m]である。
The sand drift observation system according to claim 7 is the sand drift observation system according to claim 6,
A plurality of the earth and sand thickness measuring devices are installed at a first interval from the coast toward the offshore side, and a plurality of the sand and sand thickness measuring devices are installed at a second interval along the coast, and the arithmetic unit is an observation installed on the land. It is provided in the station.
Here, the 1st space | interval which goes to the offshore side from a coast is arbitrary distance intervals, for example, in the case of a coast, it is 5-10 [m]. Moreover, the 2nd space | interval along a coast is arbitrary distance intervals, for example, in the case of a coast, it is 10-20 [m].

かかる構成によれば、複数の土砂厚計測器は、沿岸から沖側に向かって第1の間隔で設置されると共に、沿岸に沿って第2の間隔で設置されているので、土砂厚計測器をそれぞれ配設した区域において、計測開始時から水底面に堆積した土砂の厚さまたは浸食された土砂の厚さを計測して、その区域の水底面の土砂の分布状態を観測することが可能となる。水底の各所に設けられた土砂厚計測器からの出力信号に基づいて演算された演算装置の土砂のデータは、陸地にある観測局で遠隔観測することが可能となる。   According to this configuration, the plurality of sediment thickness measuring instruments are installed at the first interval from the coast to the offshore side, and are installed at the second interval along the coast. It is possible to measure the thickness of sediment deposited on the bottom of the water or the thickness of eroded sediment from the beginning of measurement and observe the distribution of sediment on the bottom of the area. It becomes. Sediment data of the calculation device calculated based on the output signals from the sediment thickness measuring instruments provided at various locations on the bottom of the water can be remotely observed at an observation station on land.

本発明の請求項1に係る水底土砂厚計測装置によれば、細粒分圧力計と土質材料圧力計とが、水底に埋設された状態で計測するので、海や河川や湖沼やダム湖等の水底面に堆積した土砂の厚さを測定したり、洪水発生時や荒天時等の水底面に堆積または浸食された土砂の厚さを計測したり、流動する土砂動態の時系列的な観測等を天候に左右されることなく常時効率的に計測したりすることができる。   According to the bottom sediment thickness measuring apparatus according to claim 1 of the present invention, the fine grain pressure gauge and the soil material pressure gauge are measured in a state where they are buried in the bottom of the water, so that the sea, rivers, lakes, dam lakes, etc. Measure the thickness of sediment deposited on the bottom of the water, measure the thickness of sediment deposited or eroded on the bottom of the water in the event of a flood or stormy weather, etc. Etc. can always be measured efficiently without being influenced by the weather.

本発明の請求項2に係る水底土砂厚計測装置によれば、細粒分圧力計は、土砂中の細粒分土砂と水とを通過させるフィルタを設けたことによって、堆積した土砂中の細粒分土砂および水による圧力を正確に検出することができる。   According to the bottom sediment thickness measuring apparatus according to claim 2 of the present invention, the fine-grain pressure gauge is provided with a filter that allows the fine-grained sediment sand and water in the sediment to pass therethrough, so Pressure due to granulated sediment and water can be accurately detected.

本発明の請求項3に係る水底土砂厚計測装置によれば、土質材料圧力計は、土質材料センサ筐体の上方部位に、隙間を介してカバー体を設置したことにより、その隙間から土質材料センサ筐体内に土砂が流入して、土質材料センサ部を押圧するため、堆積した土砂中の土質材料土砂および水による圧力を正確に検出することができる。   According to the bottom sediment thickness measuring apparatus according to claim 3 of the present invention, the soil material pressure gauge has the soil material from the clearance by installing the cover body through the clearance above the soil material sensor housing. Since the earth and sand flows into the sensor casing and presses the earth material sensor part, the pressure due to the earth material and sand in the accumulated earth and sand can be accurately detected.

本発明の請求項4に係る水底土砂厚計測装置によれば、細粒分圧力計と土質材料圧力計とが、同じ台座によって水底面から所定の深さの位置に埋設されることにより、水底面に堆積した土砂の厚さや、浸食された土砂の厚さを正確に算出することができる。また、水底土砂厚計測装置は、細粒分圧力計と土質材料圧力計とを同じ台座で水底に固定させることにより、一度に水底に設置できるため、設置作業の工数を削減することができる。   According to the bottom sediment thickness measuring apparatus according to claim 4 of the present invention, the fine grain pressure gauge and the soil material pressure gauge are buried at a predetermined depth from the bottom of the water by the same pedestal. It is possible to accurately calculate the thickness of the earth and sand accumulated on the bottom surface and the thickness of the eroded earth and sand. Moreover, since the bottom sediment thickness measuring apparatus can be installed on the bottom of the water by fixing the fine grain pressure gauge and the soil material pressure gauge to the bottom of the water on the same pedestal, the number of installation work steps can be reduced.

本発明の請求項5に係る水底土砂厚計測装置によれば、第2出力信号と第1出力信号との差を、固液混相部の定率補正係数と水の単位体積当たりの重量との差で除した結果を水底面に堆積した土砂の厚さとして正確に算出することができる。   According to the bottom sediment thickness measuring apparatus according to claim 5 of the present invention, the difference between the second output signal and the first output signal is the difference between the constant rate correction coefficient of the solid-liquid mixed phase portion and the weight per unit volume of water. The result of dividing by can be accurately calculated as the thickness of the sediment deposited on the bottom of the water.

本発明の請求項6に係る漂砂観測システムによれば、複数の土砂厚計測器が、水底面から所定の深さの位置に埋設されると共に、水底面に沿って所定間隔で設置されたことにより、所望時に所定区域における水底の土砂の分布状態や動態を把握できるようになる。
その結果、漂砂観測システムは、荒天時中における土砂の厚さの変化や、土砂の厚さが増減していて行く時系列的な変化や、流砂および漂砂による河床および海底地形の変化や、河口および沿岸の地形の変化等を所望時に随時観測することが可能になると共に、変化して行く漂砂の厚さを予測することも可能となる。したがって、水害時の防災対策および波浪時の海岸浸食の対策に効果を発揮させることができる。
According to the sand drift observation system according to claim 6 of the present invention, the plurality of earth and sand thickness measuring instruments are embedded at a predetermined depth from the bottom of the water and installed at predetermined intervals along the bottom of the water. Thus, it becomes possible to grasp the distribution state and dynamics of the bottom sediment in a predetermined area when desired.
As a result, the drift sand observation system is capable of measuring changes in sediment thickness during stormy weather, time-series changes in which the thickness of the sediment increases and decreases, changes in riverbed and seafloor topography due to sediment flow and drift sand, In addition, it is possible to observe changes in coastal topography at any time as desired, and it is also possible to predict the thickness of drifting sand. Therefore, it is possible to exert an effect in disaster prevention measures at the time of flooding and coastal erosion measures at the time of waves.

本発明の請求項7に係る漂砂観測システムによれば、陸地に設置された観測局によって、水底面に堆積した土砂の厚さ、または浸食された土砂の厚さを計測して、土砂厚計測器を配置した区域における水底の土砂の分布状態や、河床地形の変化や、沿岸の浸食および遠浅の形状の状態を遠隔観測することができる。その結果、土砂厚計測器を水底に一度設置してしまえば、天候に左右されることなく、いつでも水底面に堆積した土砂の厚さの測定等が行えるようになる。
また、河川やダム湖や河口や海の沿岸線の形状や、それらの沿岸の水底の形状を随時に観測して監視することが可能なため、洪水時の水害対策に有効である。
According to the sand drift observation system according to claim 7 of the present invention, the thickness of the sediment deposited on the bottom of the water or the thickness of the eroded sediment is measured by the observation station installed on the land, thereby measuring the sediment thickness. It is possible to remotely observe the distribution of sediment on the bottom, changes in river bed topography, coastal erosion and shallow shape in the area where the vessel is located. As a result, once the earth and sand thickness measuring instrument is installed at the bottom of the water, the thickness of the earth and sand deposited on the bottom of the water can be measured at any time without being influenced by the weather.
In addition, it is possible to observe and monitor the shape of rivers, dam lakes, estuaries and sea coastlines, and the shape of the bottoms of those coasts as needed, which is effective for flood damage countermeasures.

次に、本発明の実施形態に係る水底土砂厚計測装置および漂砂観測システムを図1〜図6を参照して説明する。
図1は、水底土砂厚計測装置および漂砂観測システムを示す模式図である。図2は、水底土砂厚計測装置および漂砂観測システムを示す図であり、(a)は海に設置したときの設置状態を示す模式図、(b)はA部拡大図である。
Next, a bottom sediment thickness measuring apparatus and a drift sand observation system according to an embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a schematic diagram showing a bottom sediment thickness measuring apparatus and a drift sand observation system. 2A and 2B are diagrams showing a bottom sediment thickness measuring apparatus and a drift sand observation system, in which FIG. 2A is a schematic diagram showing an installation state when installed in the sea, and FIG.

≪漂砂観測システムの構成≫
図1に示すように、河川の最上流部の山腹斜面から海岸の漂砂域までの間では、土砂が洪水等によって移動し、上流域の砂防堰堤やダム湖や河川や河口や海では、水底の土砂の厚さが変動している。漂砂観測システムSは、このような海や河川や湖沼やダム湖等の各所における所定区域の水底面に堆積した土砂の厚さH1(図2参照)、および、水底面の浸食された土砂の厚さH2(図2参照)等を有線または無線によって総合的に遠隔観測するシステムである。
≪Configuration of sand drift observation system≫
As shown in Fig. 1, earth and sand move from the hillside slope of the uppermost stream of the river to the sand drifting area of the coast due to floods, etc. The thickness of the earth and sand has fluctuated. The drift sand observation system S is used to measure the thickness H1 (see Fig. 2) of the sediment deposited on the bottom of the predetermined area of the sea, rivers, lakes, dam lakes, etc. This is a system for comprehensively remotely observing the thickness H2 (see FIG. 2) or the like by wire or wireless.

漂砂観測システムSは、図1に示すように、浸食または堆積が予想される砂防堰堤、ダム湖、河川、および海等に配設され、前記土砂の厚さH1,H2(図2参照)を観測するそれぞれの水底土砂厚計測装置1と、各水底土砂厚計測装置1のデータを送信する機器等が設置されている各観測局2,2A,2B,2Cと、各観測局2,2A,2B,2Cからのデータを集計する観測基地局3とを備えている。
この漂砂観測システムSにおいて、各所に設置された後記の各水底土砂厚計測装置1によって測定された土砂等のデータは、水底土砂厚計測装置1から観測局2,2A,2B,2Cに送られた後、観測基地局3に送られて管理されて、各地の観測基地局3の土砂(流砂および漂砂)のデータがデータ処理装置31のモニタリングで観測できるように構成されている。この他この漂砂観測システムSには、土砂の堆積または浸食を予想可能にするために、波を計測する波高計(図示せず)や、水の流れる方向を検出する方向計(図示せず)や、水の流れる流速を計測する流速計(図示せず)等も各所に設置して備えている。
As shown in FIG. 1, the drift sand observation system S is disposed on a sabo dam, a dam lake, a river, the sea, or the like where erosion or accumulation is expected, and the thicknesses H1 and H2 of the earth and sand (see FIG. 2) are set. Each observation station 2, 2A, 2B, 2C in which equipment for transmitting data of each bottom sediment thickness measurement apparatus 1 to be observed and data of each bottom sediment thickness measurement apparatus 1 is installed, and each observation station 2, 2A, And an observation base station 3 that aggregates data from 2B and 2C.
In this drift sand observation system S, data such as sediment measured by each bottom sediment thickness measuring device 1 described later installed in various places is sent from the bottom sediment thickness measuring device 1 to the observation stations 2, 2A, 2B, 2C. After that, the data is sent to the observation base station 3 and managed, so that the data of the earth and sand (flowing sand and drifting sand) of the observation base stations 3 in various places can be observed by monitoring of the data processing device 31. In addition to this, the drift sand observation system S includes a wave height meter (not shown) for measuring waves and a direction meter (not shown) for detecting the direction of water flow in order to make it possible to predict sediment accumulation or erosion. In addition, an anemometer (not shown) that measures the flow velocity of water is also installed and provided in various places.

本発明に係る水底土砂厚計測装置1および漂砂観測システムSは、海や河川や湖沼やダム湖等のあらゆる水底における堆積した土砂および浸食された土砂の厚さを計測ができるが、以下、海における場合の一例を挙げて説明する。   The bottom sediment thickness measuring apparatus 1 and the drift sand observation system S according to the present invention can measure the thickness of sediment and eroded sediment on all bottoms of the sea, rivers, lakes and dam lakes. An example will be described.

この漂砂観測システムSは、後記する細粒分圧力計5および土質材料圧力計6と、この細粒分圧力計5および土質材料圧力計6を載設した台座41と、を備えて、海底面(水底面)から所定の深さH0の位置に水平に埋設されると共に、海底面に沿って所定間隔a,b,cで設置された複数の土砂厚計測器4と、細粒分圧力計5で計測された圧力を示す第1出力信号(圧力信号)と土質材料圧力計6で計測された圧力を示す第2出力信号(圧力信号)との差に基づいて海底(水底)面に堆積した土砂の厚さH1または浸食された土砂の厚さH2を演算する演算装置21と、土砂厚計測器4と演算装置21との間を有線信号で伝送するケーブル(信号伝達手段)7と、を備えている。
この漂砂観測システムSにおいて、後記する土砂厚計測器4は、沿岸から沖側に向かって所定間隔(第1の間隔)b、所定間隔cで配置されると共に、沿岸に沿って所定間隔(第2の間隔)aで配置され、演算装置21は、陸地に設置された観測局2に設けられ、土砂厚計測器4と演算装置21とはケーブル7によって電気的に接続されている。
The sand drift observation system S includes a fine grain pressure gauge 5 and a soil material pressure gauge 6 which will be described later, and a pedestal 41 on which the fine grain pressure gauge 5 and the soil material pressure gauge 6 are mounted. A plurality of earth and sand thickness measuring instruments 4 that are buried horizontally at a predetermined depth H0 from the (water bottom) and installed at predetermined intervals a, b, and c along the sea bottom, and fine-grain pressure gauges 5 is deposited on the seabed (bottom) surface based on the difference between the first output signal (pressure signal) indicating the pressure measured at 5 and the second output signal (pressure signal) indicating the pressure measured by the soil material pressure gauge 6. A computing device 21 for computing the thickness H1 of the soil or sand that has been eroded or a thickness H2 of the eroded sediment, a cable (signal transmission means) 7 for transmitting a wired signal between the sediment thickness measuring instrument 4 and the computing device 21; It has.
In the sand drift observation system S, the sediment thickness measuring instrument 4 to be described later is arranged at a predetermined interval (first interval) b and a predetermined interval c from the coast to the offshore side, and at a predetermined interval (first step) along the coast. The computing device 21 is provided in the observation station 2 installed on the land, and the earth and sand thickness measuring instrument 4 and the computing device 21 are electrically connected by a cable 7.

なお、図1に示す海岸(沿岸)に沿った所定間隔aは、例えば、10〜20[m]である。土砂厚計測器4は、海岸の海底における土砂の堆積する進行状況、および土砂の浸食される進行状況等に応じて海岸に沿って所定間隔aで列設される。
沿岸から沖側に向かう所定間隔b,cとは、例えば、5〜10[m]であって、沿岸から沖側に向かって始めの土砂厚計測器4までの距離(所定間隔b)が6[m]で、それ以後の所定間隔cが10[m]である。土砂厚計測器4は、土砂の堆積または浸食の進行が速い海岸や、堆積または浸食が予想される海岸等に、その海岸から沖側に向かって所定間隔b,cで直線に設置される。
In addition, the predetermined space | interval a along the shore (coast) shown in FIG. 1 is 10-20 [m], for example. The earth and sand thickness measuring device 4 is arranged at a predetermined interval a along the coast according to the progress of sediment accumulation on the seabed of the coast and the progress of erosion of the sediment.
The predetermined distances b and c from the coast to the offshore are, for example, 5 to 10 [m], and the distance (predetermined distance b) from the coast to the first sediment thickness measuring instrument 4 toward the offshore is 6 [M], and the predetermined interval c thereafter is 10 [m]. The sediment thickness measuring instrument 4 is installed in a straight line at predetermined intervals b and c from the coast toward the offshore side, such as a coast where sediment or erosion progresses quickly, or a coast where sediment or erosion is expected.

このように漂砂観測システムSでは、土砂厚計測器4が沿岸から沖側に向かって所定間隔b,cでケーブル7によって接続されて数個設置されると共に、海岸線に沿って所定間隔aで所望の距離だけケーブル7によって接続して設置される。その結果、漂砂観測システムSでは、土砂厚計測器4が設置されてから海底区域中に堆積した土砂の厚さH1、および浸食された土砂の厚さH2を所定間隔a,b,cで計測して、その区域内の海底の土砂の分布状態を観測できるように設置されている。   In this way, in the sand drift observation system S, several sediment thickness measuring instruments 4 are connected to the offshore side from the coast by connecting with the cable 7 at predetermined intervals b and c, and desired at a predetermined interval a along the coastline. Are connected by a cable 7 for a distance of. As a result, in the drift sand observation system S, the thickness H1 of the sediment deposited in the seabed area after the sediment thickness measuring instrument 4 is installed and the thickness H2 of the eroded sediment are measured at predetermined intervals a, b, c. It is installed so that the distribution of sediment on the seabed in the area can be observed.

図2に示すように、漂砂観測システムSにおいて、各土砂厚計測器4は、海底面から所定の深さH0に埋設されてセットされる。この所定の深さH0は、例えば、海底面が土質材料土砂の層で形成されている場合、0.5〜1[m]である。岩盤の場合には、0[m]である。   As shown in FIG. 2, in the sand drift observation system S, each sediment thickness measuring instrument 4 is set by being embedded at a predetermined depth H0 from the sea bottom. The predetermined depth H0 is, for example, 0.5 to 1 [m] when the sea bottom is formed of a layer of soil material earth and sand. In the case of bedrock, it is 0 [m].

図3は、日本統一土質分類法による粒径の区分名称を示す表である。
図3に示すように、前記細粒分土砂とは、粒径が74[μm]以下の砂(細粒分)をいう。前記土質材料土砂とは、細粒分土砂を含む粒径が75[mm]以下の砂(土質材料)をいう。
FIG. 3 is a table showing particle size classification names according to the Japanese unified soil classification method.
As shown in FIG. 3, the fine-grained soil is sand (fine-grained) having a particle size of 74 [μm] or less. The soil material earth and sand refers to sand (soil material) having a particle size of 75 [mm] or less including finely divided soil.

≪水底土砂厚計測装置の構成≫
図2に示すように、水底土砂厚計測装置1は、計測を開始したとき(基準時)から海底(水底)面に堆積された土砂の厚さH1、および海底面の浸食された土砂の厚さH2を、水底の互いに近傍に埋設された細粒分圧力計5と土質材料圧力計6とによって計測した圧力差分に、水と土砂との固液混相部の予め設定した定率補正係数と水の単位当たりの重量との差で除して算出する計測装置である。この水底土砂厚計測装置1は、海底面(水底面)から所定の深さH0の位置に水平に埋設され、海底面に堆積した土砂中の細粒分土砂と水との固液混相部による圧力を計測する細粒分圧力計5と、この細粒分圧力計5が埋設された海底面から同じ深さの位置に水平に隣設され、海底面に堆積した土砂中の土質材料土砂と水との固液混相部による圧力を計測する土質材料圧力計6と、細粒分圧力計5で計測された圧力を示す第1出力信号(圧力信号)と土質材料圧力計6で計測された圧力を示す第2出力信号(圧力信号)との差に基づいて海底面に堆積した土砂の厚さH1,H2を演算する演算装置21と、を備えている。
≪Configuration of bottom sediment thickness measuring device≫
As shown in FIG. 2, the bottom sediment thickness measuring apparatus 1 is configured to measure the thickness H1 of sediment deposited on the seabed (water bottom) surface from the start of measurement (reference time), and the thickness of eroded sediment on the bottom of the sea. The pressure difference measured by the fine particle pressure gauge 5 and the soil material pressure gauge 6 embedded in the vicinity of each other on the bottom of the water is added to the constant constant correction coefficient set in advance for the solid-liquid mixed phase portion of water and earth and sand. It is a measuring device which calculates by dividing by the difference with the weight per unit. This bottom sediment thickness measuring apparatus 1 is embedded horizontally at a predetermined depth H0 from the bottom of the sea (bottom of the sea), and is based on a solid-liquid mixed phase portion of fine-grained sediment and water in the sediment deposited on the bottom of the sea. A fine-grained pressure gauge 5 for measuring pressure, and a soil material in the earth and sand deposited horizontally on the bottom of the seabed where the fine-grained pressure gauge 5 is embedded horizontally at the same depth The soil material pressure gauge 6 for measuring the pressure of the solid-liquid mixed phase with water, the first output signal (pressure signal) indicating the pressure measured by the fine particle pressure gauge 5 and the soil material pressure gauge 6 were measured. And an arithmetic unit 21 for calculating the thicknesses H1 and H2 of the earth and sand deposited on the sea bottom based on a difference from a second output signal (pressure signal) indicating pressure.

≪観測局の構成≫
前記観測局2は、図1および図2に示すように、例えば、海岸の所定区域の海底に配列されたそれぞれの土砂厚計測器4にケーブル7によって接続された演算装置21を設置するための観測施設である。この観測局2は、土砂厚計測器4を設置した海底の近隣の陸地に設置されている。この観測局2には、演算装置21と、各土砂厚計測器4等に電力を供給する電源装置(図示せず)と、後記する観測基地局3にデータを発信するための電波送信手段(図示せず)等が設置されて、土砂厚計測器4を遠隔観測することができるようになっている。
また、観測局2では、演算装置21がケーブル7によって各土砂厚計測器4に接続していることにより、観測局2にある電源から土砂厚計測器4に常時電力を供給して、継続的に観測を行えるようにしている。
≪Configuration of observation station≫
As shown in FIGS. 1 and 2, the observation station 2 is provided with, for example, a computing device 21 connected to each earth and sand thickness measuring instrument 4 arranged on the seabed in a predetermined area on the coast by a cable 7. It is an observation facility. This observation station 2 is installed on the land near the seabed where the earth and sand thickness measuring instrument 4 is installed. The observation station 2 includes an arithmetic unit 21, a power supply device (not shown) for supplying power to each sediment thickness measuring instrument 4 and the like, and radio wave transmission means for transmitting data to the observation base station 3 described later ( (Not shown) etc. are installed so that the earth and sand thickness measuring instrument 4 can be remotely observed.
In the observation station 2, since the computing device 21 is connected to each sediment thickness measuring instrument 4 by the cable 7, power is constantly supplied from the power source in the observation station 2 to the sediment thickness measuring instrument 4 and continuously. Can be observed.

<演算装置の構成>
前記演算装置21は、各土砂厚計測器4の細粒分圧力計5からの第1出力信号と、土質材料圧力計6からの第2出力信号との差に基づいて堆積した土砂の厚さH1または浸食された土砂の厚さH2を演算し、算出した土砂の厚さを表示装置(図示せず)に出力する装置である。この演算装置21では、第2出力信号と第1出力信号との差を、固液混相部の定率補正係数と水の単位体積当たりの重量との差で除した結果を海底面に堆積した土砂の厚さとする。この演算装置21で算出した土砂のデータは、観測基地局3に送信されるようになっている。
例えば、堆積した土砂の厚さをH1、細粒分圧力計5と土質材料圧力計6とで計測した圧力の差をΔP、定率補正係数をγとすると、堆積した土砂の厚さH1は、
H1=ΔP/(γ−1)
である。
<Configuration of arithmetic unit>
The arithmetic unit 21 calculates the thickness of sediment deposited based on the difference between the first output signal from the fine grain pressure gauge 5 of each sediment thickness measuring instrument 4 and the second output signal from the soil material pressure gauge 6. This is a device that calculates H1 or the thickness H2 of the eroded earth and sand and outputs the calculated thickness of the earth and sand to a display device (not shown). In this computing device 21, the result of dividing the difference between the second output signal and the first output signal by the difference between the constant rate correction coefficient of the solid-liquid mixed phase portion and the weight per unit volume of water is sediment deposited on the sea floor. Of thickness. The earth and sand data calculated by the arithmetic unit 21 is transmitted to the observation base station 3.
For example, the thickness of the deposited sediment H1, fine fraction manometer 5 and ΔP the difference in pressure measured with a soil material pressure gauge 6, when a fixed-rate correction coefficient and gamma a, the thickness H1 of the deposited sediment ,
H1 = ΔP / (γ a −1)
It is.

<観測基地局の構成>
観測基地局3は、図1に示すように、各地に設けられたそれぞれの観測局2,2A,2B,2Cから電波送信手段等によって送られたデータを集計したり、デジタル記録したり、モニタリングしたりするデータ処理装置(パーソナルコンピュータ)31を備えて土砂厚を観測する施設である。この観測基地局3では、海底の堆積または浸食された土砂の厚さ以外に、高波の観測、波の方向の観測、海水の流れる方向の観測、および海水の流れる流速の観測等も行っている。
<Configuration of observation base station>
As shown in FIG. 1, the observation base station 3 aggregates, digitally records, and monitors data sent from the observation stations 2, 2A, 2B, and 2C provided in various places by means of radio wave transmission means. It is a facility that includes a data processing device (personal computer) 31 that observes the sediment thickness. In this observation base station 3, in addition to the thickness of the seabed sediment or eroded earth and sand, high wave observation, wave direction observation, seawater flow direction, seawater flow velocity observation, etc. .

図4は、土砂厚計測器を示す図であり、(a)は斜視図、(b)は台座を離脱したときの状態を示す平面図である。   4A and 4B are diagrams showing the earth and sand thickness measuring instrument, in which FIG. 4A is a perspective view and FIG. 4B is a plan view showing a state when the base is removed.

≪土砂厚計測器の構成≫
図4(a)、(b)に示すように、前記土砂厚計測器4は、前記細粒分圧力計5と、前記土質材料圧力計6と、細粒分圧力計5および土質材料圧力計6を載設し、両者を共に海底面から所定の深さH0(図2参照)の位置に埋設させるための台座41と、を備えている。この土砂厚計測器4は、海底に設置する場合、細粒分圧力計5と土質材料圧力計6とを同じ部材からなる台座41上に一対の状態で設置して、この台座41を海底面から所定の深さH0の穴を掘って、同じ穴の底に水平に埋設してセットされる(図2参照)。
≪Configuration of earth and sand thickness measuring instrument≫
As shown in FIGS. 4 (a) and 4 (b), the earth and sand thickness measuring instrument 4 includes the fine particle pressure gauge 5, the earth material pressure gauge 6, the fine particle pressure gauge 5, and the earth material pressure gauge. 6 and a pedestal 41 for embedding both of them at a predetermined depth H0 (see FIG. 2) from the sea bottom. When this earth and sand thickness measuring instrument 4 is installed on the seabed, a fine particle pressure gauge 5 and a soil material pressure gauge 6 are installed in a pair on a pedestal 41 made of the same member, and the pedestal 41 is placed on the seabed. Then, a hole having a predetermined depth H0 is dug, and is embedded horizontally in the bottom of the same hole (see FIG. 2).

台座41は、細粒分圧力計5と土質材料圧力計6とを海底面から同じ深さH0の位置に固定するための板部材であり、細粒分圧力計5および土質材料圧力計6を保持している。この台座41は、例えば、ステンレス鋼等の耐食性を有する金属製平板部材からなり、直径が120[mm]で、厚さが2[mm]程度の大きさの円板状のものからなる。   The pedestal 41 is a plate member for fixing the fine grain pressure gauge 5 and the soil material pressure gauge 6 at the same depth H0 from the sea bottom. keeping. The pedestal 41 is made of, for example, a metal plate member having corrosion resistance such as stainless steel, and is made of a disk-shaped member having a diameter of 120 [mm] and a thickness of about 2 [mm].

なお、本実施形態では、この台座41と、細粒分圧力計5および土質材料圧力計6との間には、1枚の共用の基板42を介在して基板42によって細粒分圧力計5および土質材料圧力計6を保持している場合の例を挙げたが、基板42は、細粒分圧力計5と土質材料圧力計6との下面に別々に設けたそれぞれ専用の基板としてもよく、台座41で基板42の役割を共用させてもよい。
また、台座41は、土砂厚計測器4を埋設する海底の土砂の状況に応じて適宜にアンカ等を用いて海底の地中内に固定してもよい。なお、海底が岩盤の場合には、アンカ等を岩盤に打ち込んで台座41を固定する。
In the present embodiment, a single common substrate 42 is interposed between the pedestal 41 and the fine particle pressure gauge 5 and the soil material pressure gauge 6. Although the example in the case of holding the soil material pressure gauge 6 has been given, the substrate 42 may be a dedicated substrate separately provided on the lower surface of the fine particle pressure gauge 5 and the soil material pressure gauge 6. The base 41 may share the role of the substrate 42.
Further, the pedestal 41 may be fixed in the seabed using an anchor or the like as appropriate according to the condition of the seabed sediment where the sediment thickness measuring instrument 4 is embedded. When the seabed is bedrock, anchors or the like are driven into the bedrock and the pedestal 41 is fixed.

図4(a)、(b)に示すように、基板42は、細粒分圧力計5の細粒分センサ筐体51と、土質材料圧力計6の支柱63とを載設する底板部材の役目と、細粒分センサ部53および土質材料センサ部61を載設してケーブル7(図2参照)に接続するための配線基板の役目とを果す部材である。この基板42は、細粒分センサ部53と土質材料センサ部61とを接着する上面に絶縁層を配設したほうろう基板等の金属製絶縁配線基板からなる。その基板42の絶縁層の上には、細粒分センサ部53および土質材料センサ部61とケーブル7に電気的に接続するための導電箔(図示せず)が固着されている。この基板42は、例えば、縦50[mm]、横100[mm]、厚さ2[mm]の長方形の平板材からなる。基板42の上面上には、細粒分センサ部53と土質材料センサ部61とが65[mm]の間隔で配置されている。基板42は、例えば、ねじ部材によって台座41に固定されている。   As shown in FIGS. 4A and 4B, the substrate 42 is a bottom plate member on which the fine particle sensor housing 51 of the fine particle pressure gauge 5 and the column 63 of the soil material pressure gauge 6 are mounted. It is a member that fulfills the role and the role of the wiring board for mounting the fine grain sensor unit 53 and the soil material sensor unit 61 to connect to the cable 7 (see FIG. 2). The substrate 42 is made of a metal insulated wiring substrate such as an enamel substrate having an insulating layer disposed on the upper surface to which the fine grain sensor unit 53 and the soil material sensor unit 61 are bonded. On the insulating layer of the substrate 42, a fine particle sensor unit 53, a soil material sensor unit 61, and a conductive foil (not shown) for electrical connection to the cable 7 are fixed. The substrate 42 is made of, for example, a rectangular flat plate material having a length of 50 [mm], a width of 100 [mm], and a thickness of 2 [mm]. On the upper surface of the substrate 42, the fine particle sensor unit 53 and the soil material sensor unit 61 are arranged at an interval of 65 [mm]. The board | substrate 42 is being fixed to the base 41 with the screw member, for example.

≪細粒分圧力計の構成≫
図5は、図4の矢視線X−X方向の拡大縦断面図である。
図5に示すように、細粒分圧力計5は、この細粒分圧力計5が埋設された位置に存在する土砂とこの土砂中の水とが出入りする流入口51aを有する中空状の細粒分センサ筐体51と、この細粒分センサ筐体51に内設され、細粒分センサ筐体51内に流入した水と土砂中の細粒分土砂とを通過させるフィルタ52と、細粒分センサ筐体51内のフィルタ52の下方に設置され、このフィルタ52を通過した水と細粒分土砂とによる圧力を検出する細粒分センサ部53と、この細粒分センサ部53と細粒分センサ筐体51とを載設した基板42と、を備えている。
≪Configuration of fine grain pressure gauge≫
FIG. 5 is an enlarged longitudinal sectional view in the direction of arrow XX in FIG.
As shown in FIG. 5, the fine particle pressure gauge 5 is a hollow fine pressure gauge having an inlet 51a through which the earth and sand present at the position where the fine particle pressure gauge 5 is embedded and water in the earth and sand. A fine particle sensor housing 51, a filter 52 provided in the fine particle sensor housing 51, for passing water flowing into the fine particle sensor housing 51 and fine fine particle sediment in the earth and sand, A fine particle sensor unit 53 that is installed below the filter 52 in the particle sensor housing 51 and detects the pressure due to the water and fine particle soil that has passed through the filter 52, and the fine particle sensor unit 53, And a substrate 42 on which a fine particle sensor housing 51 is mounted.

図4(a)、(b)および図5に示すように、細粒分センサ筐体51は、フィルタ52および細粒分センサ部53を内設するための中空部51bを有するハウジングであり、例えば、ステンレス鋼等の耐食性を有する金属によって形成されている。細粒分センサ筐体51は、下面に中空部51bの開口部を有し、上面を閉塞した状態に形成され、上部側面の前後左右の4箇所に、中空部51bに連通する流入口51aを穿設している。
流入口51aは、細粒分土砂と水とが通過できるように穿設された孔であり、例えば、口径が1.0[mm]である。
中空部51bの開口部は、細粒分センサ部53を中心として、この細粒分センサ部53を覆い被せるようにして基板42で閉塞される。細粒分センサ筐体51は、下端面の複数個所を基板42にねじ止めすることで、基板42に固定される。
As shown in FIGS. 4 (a), 4 (b) and 5, the fine particle sensor housing 51 is a housing having a hollow portion 51b for installing a filter 52 and a fine particle sensor portion 53. For example, it is made of a metal having corrosion resistance such as stainless steel. The fine particle sensor housing 51 has an opening of a hollow portion 51b on the lower surface and is formed in a state in which the upper surface is closed, and has inlets 51a communicating with the hollow portion 51b at four positions on the upper side, front, rear, left and right. It is drilled.
The inflow port 51a is a hole drilled so that fine-grained sediment and water can pass through, and has a diameter of 1.0 [mm], for example.
The opening of the hollow portion 51b is blocked by the substrate 42 so as to cover the fine particle sensor portion 53 with the fine particle sensor portion 53 as the center. The fine particle sensor housing 51 is fixed to the substrate 42 by screwing a plurality of locations on the lower end surface to the substrate 42.

図5に示すように、フィルタ52は、例えば、網目が0.05[mm]のメッシュ状の金属製フィルタからなり、中空部51b内の流入口51aと細粒分センサ部53との間に固定される。   As shown in FIG. 5, the filter 52 is made of, for example, a mesh-like metal filter having a mesh of 0.05 [mm], and between the inlet 51 a in the hollow portion 51 b and the fine particle sensor unit 53. Fixed.

細粒分センサ部53は、フィルタ52を通過した水と細粒分土砂とに押圧されて機械的な寸法の微小な変化(ひずみ)によって変化する電気抵抗値を出力するセンサであり、例えば、基板42上に固着されたひずみゲージからなる。細粒分センサ部53は、金属材料の抵抗体からなる。なお、細粒分センサ部53を形成する金属材料は、その金属固有の抵抗値を持ち、外部からの引張力(圧縮力)を加えられると伸び(縮む)て抵抗値が増加(減少)するようになっている。   The fine grain sensor unit 53 is a sensor that outputs an electric resistance value that is changed by a minute change (strain) in mechanical dimensions by being pressed by the water and fine granule sand that have passed through the filter 52. The strain gauge is fixed on the substrate 42. The fine particle sensor unit 53 is made of a metal material resistor. The metal material forming the fine particle sensor unit 53 has a resistance value unique to the metal, and when an external tensile force (compression force) is applied, the metal material expands (shrinks) and the resistance value increases (decreases). It is like that.

例えば、金属材料の固有の抵抗値をR、その金属材料にひずみが加えられたときに変化した抵抗値をΔR、ひずみケージの感度を表すケージ率をKsとすると、
ΔR/R=Ks
の関係がある。
For example, when R is a specific resistance value of a metal material, ΔR is a resistance value changed when strain is applied to the metal material, and Ks is a cage rate representing sensitivity of the strain cage.
ΔR / R = Ks
There is a relationship.

≪土質材料圧力計の構成≫
図6は、図4の矢視線Y−Y方向の拡大縦断面図である。
図4(a)、(b)、および図6に示すように、土質材料圧力計6は、水と土砂中の土質材料土砂とによる圧力を検出する土質材料センサ部61と、この土質材料センサ部61の上に、この土質材料圧力計6が埋設された位置に存在する土砂中の土質材料土砂とこの土質材料土砂中の水とが出入りする隙間64を介在させて配設されたカバー体62と、土質材料センサ部61を載設した基板42と、この基板42とカバー体62との間に介設されて土質材料土砂と水とが外部から出入り可能な空間65を形成するための複数の支柱63と、を備えている。
≪Configuration of soil material pressure gauge≫
FIG. 6 is an enlarged longitudinal sectional view in the direction of arrow YY of FIG.
As shown in FIGS. 4 (a), 4 (b), and 6, the soil material pressure gauge 6 includes a soil material sensor unit 61 that detects pressure caused by water and the soil material soil in the soil, and the soil material sensor. A cover body disposed on the portion 61 with a gap 64 through which the soil material earth and sand in the earth and sand existing at the position where the soil material pressure gauge 6 is embedded and the water in the soil material earth and sand are interposed. 62, a substrate 42 on which the soil material sensor unit 61 is mounted, and a space 65 that is interposed between the substrate 42 and the cover body 62 so that the soil material soil and water can enter and exit from the outside. And a plurality of columns 63.

前記土質材料センサ部61は、カバー体62内に流入した水と土質材料土砂とに押圧されて機械的な寸法の微小な変化(ひずみ)によって変化する電気抵抗値を出力するセンサであり、例えば、基板42上に固着されたひずみゲージからなる。   The soil material sensor unit 61 is a sensor that outputs an electrical resistance value that is changed by a minute change (strain) in mechanical dimensions when pressed by the water flowing into the cover body 62 and the soil material earth and sand. The strain gauge is fixed on the substrate 42.

カバー体62は、岩石等による不要な荷重が土質材料センサ部61に負荷されないように隙間64を介して土質材料センサ部61の上部を覆うための保護部材であり、例えば、4本の支柱63によって支えられている。このカバー体62は、例えば、径が25[mm]で厚さが2[mm]の円板状のステンレス鋼板からなる。   The cover body 62 is a protective member for covering the upper portion of the soil material sensor unit 61 through the gap 64 so that unnecessary load due to rocks or the like is not applied to the soil material sensor unit 61. For example, the cover body 62 includes four support columns 63. Is supported by. The cover body 62 is made of, for example, a disk-shaped stainless steel plate having a diameter of 25 [mm] and a thickness of 2 [mm].

基板42上には、土質材料センサ部61が接着され、土質材料センサ部61の周囲の前後左右にそれぞれ支柱63が立設されている。   A soil material sensor 61 is bonded onto the substrate 42, and columns 63 are erected on the front, rear, left and right sides around the soil material sensor 61.

前記複数の支柱63は、土質材料センサ部61の高さより長く形成されて、カバー体62が土質材料センサ部61に当接しないように、基板42とカバー体62との間の空間65を一定に保っている。支柱63は、例えば、ステンレス鋼製の円柱状の部材からなる。   The plurality of struts 63 are formed longer than the height of the soil material sensor unit 61, and a space 65 between the substrate 42 and the cover body 62 is constant so that the cover body 62 does not contact the soil material sensor unit 61. It keeps in. The support | pillar 63 consists of a cylindrical member made from stainless steel, for example.

≪作用≫
次に、図1〜図6を参照して、本発明の実施形態に係る水底土砂厚計測装置1および漂砂観測システムSの作用を作業手順と共に説明する。
≪Action≫
Next, with reference to FIGS. 1-6, the effect | action of the bottom sediment thickness measuring apparatus 1 and the sand drift observation system S which concern on embodiment of this invention is demonstrated with a work procedure.

<土砂厚計測器のセッティング>
海底面(水底面)に堆積する土砂の厚さH1または浸食された土砂の厚さH2を測定する場合には、図2に示すように、まず初めに、土砂の堆積や浸食によって海底の地形や海岸線の地形が変形するおそれがある区域の海底に、それぞれ所定の深さH0の穴を掘って土砂厚計測器4とケーブル7とをセットして、元の状態に埋め戻す。
<Setting of earth and sand thickness measuring instrument>
When measuring the thickness H1 of the sediment deposited on the bottom of the sea (the bottom of the sea) or the thickness H2 of the eroded sediment, as shown in FIG. Or digging a hole with a predetermined depth H0 on the seabed in an area where the terrain of the coastline may be deformed, and setting the earth and sand thickness measuring instrument 4 and the cable 7 back to the original state.

この場合、図1に示すように、海岸に沿って所定間隔(第2の間隔)aで、海岸から沖側に所定間隔bを開けた後、一定の所定間隔(第1の間隔)cで適宜な個数の土砂厚計測器4を沖に向かって直線状に配列する。このように多数の土砂厚計測器4を碁盤目状に配列することによって、海岸近くの海底を広い範囲にわたって、計測開始時からの変化した土砂の厚さH1,H2と、変化した海底面の形状と、を把握することが可能となる。それぞれの土砂厚計測器4は、海底の地中および陸地に配線されたケーブル7によって観測局2の演算装置21に接続する。   In this case, as shown in FIG. 1, after a predetermined interval (second interval) a along the coast and a predetermined interval b from the coast to the offshore side, a constant predetermined interval (first interval) c. An appropriate number of sediment thickness measuring instruments 4 are arranged linearly toward the offing. By arranging a large number of earth and sand thickness measuring instruments 4 in a grid pattern in this way, the thicknesses H1 and H2 of the changed earth and sand from the start of measurement over a wide range of the sea floor near the coast and the changed sea bottom It becomes possible to grasp the shape. Each earth and sand thickness measuring instrument 4 is connected to the computing device 21 of the observation station 2 by a cable 7 wired in the seabed and on the land.

セットしたときの細粒分圧力計5は、図5に示すように海底の地中内に埋設したことにより、細粒分センサ筐体51上に土砂が堆積した状態になると共に、流入口51aから土砂中の細粒分土砂と海水とが中空部51b内に入り込み、今までこの中空部51b内にあった土砂が流入して来た土砂によって他の流入口51aから外部に押し出されると共に、粒径が50[μm]以下の細粒分土砂と海水がフィルタ52を通過して細粒分センサ部53を押圧した状態になっている。このセット時の細粒分圧力計5で計測された圧力の第1出力信号は、ケーブル7を介して演算装置21へ送信されて、細粒分圧力計5の基準の圧力信号とされる。   As shown in FIG. 5, the fine-grain pressure gauge 5 when it is set is buried in the ground of the seabed, so that sediment is deposited on the fine-grain sensor housing 51 and the inlet 51a. The fine-grained sediment and seawater in the earth and sand enter the hollow part 51b, and the earth and sand that have been in the hollow part 51b until now are pushed out from the other inflow port 51a by the earth and sand, Fine-grained sediment and seawater having a particle size of 50 [μm] or less pass through the filter 52 and press the fine-grain sensor unit 53. The first output signal of the pressure measured by the fine particle pressure gauge 5 at the time of setting is transmitted to the computing device 21 via the cable 7 and is used as a reference pressure signal of the fine particle pressure gauge 5.

セットしたときの土質材料圧力計6は、図6に示すように海底の地中内の埋設したことにより、カバー体62上に土砂が堆積した状態になると共に、空間65から土砂中の土質材料土砂と海水とが土質材料センサ部61上に流れ込み、今までこの空間65内にあった土砂が流入して来た土砂によって外部に押し出されると共に、土質材料土砂と海水が土質材料センサ部61を押圧した状態になっている。このセット時の土質材料圧力計6で計測された圧力の第2出力信号は、ケーブル7を介して演算装置21へ送信されて、土質材料圧力計6の基準の圧力信号とされる。
このようにしてすべての土砂厚計測器4の埋設およびケーブル7による接続が終了して、細粒分圧力計5および土質材料圧力計6が初期設定されると、土砂の厚さの計測や監視が可能となる。海底に土砂厚計測器4、ケーブル7を一度設置すれば、天候に左右されず、所望時に何度でも計測が可能となる。
As shown in FIG. 6, when the soil material pressure gauge 6 is set, the soil material is deposited on the cover body 62 by being buried in the ground of the seabed, and the soil material in the soil from the space 65. Sediment and seawater flow into the soil material sensor unit 61, and the soil and sand that have been in the space 65 until now are pushed out by the soil that has flowed in, and the soil material and sand and seawater pass through the soil material sensor unit 61. It is in a pressed state. The second output signal of the pressure measured by the soil material pressure gauge 6 at the time of setting is transmitted to the computing device 21 via the cable 7 and used as a reference pressure signal of the soil material pressure gauge 6.
Thus, when the embedding of all the earth and sand thickness measuring instruments 4 and the connection by the cables 7 are completed, and the fine particle pressure gauge 5 and the soil material pressure gauge 6 are initially set, the thickness and thickness of the earth and sand are measured and monitored. Is possible. Once the earth and sand thickness measuring instrument 4 and the cable 7 are installed on the seabed, the measurement can be performed as many times as desired without depending on the weather.

<水底土砂厚計測装置および漂砂観測システムによる土砂の厚さの測定>
続いて、本発明の実施形態に係る水底土砂厚計測装置1および漂砂観測システムSによる土砂の厚さの測定について説明する。
土砂厚計測器4の埋設終了後、波や海流によって海底面の土砂が流されて、海底の地中内に設置した土砂厚計測器4上の海底面に土砂が堆積したり浸食されたりして移動する。また、海岸では、海岸に寄せる波によって波打ち際の5〜10[m]の地点での土砂の変動が大きく、波で土砂が沖に流されることがある。
<Measurement of sediment thickness using a submarine sediment thickness measurement system and drift sand observation system>
Then, the measurement of the thickness of the sediment by the bottom sediment thickness measuring apparatus 1 and the drift sand observation system S which concern on embodiment of this invention is demonstrated.
After the embedding of the sediment thickness measuring instrument 4, the sediment on the sea floor is washed away by waves and ocean currents, and sediment is deposited or eroded on the sea floor on the sediment thickness measuring instrument 4 installed in the seabed. Move. Moreover, on the coast, the fluctuation of the earth and sand at a point of 5 to 10 [m] on the beach is large due to the waves approaching the coast, and the earth and sand may be washed off by the waves.

例えば、図2に仮想線で示すように、計測を開始してから土砂厚計測器4上の海底面に厚さH1の土砂が堆積された場合、細粒分圧力計5の細粒分センサ部53には、流入口51a(図5(a)参照)およびフィルタ52を通過した細粒分土砂と海水による圧力が負荷され、この圧力が電気抵抗値を示す出力信号(第1出力信号)に変換されて演算装置21へ出力される。
一方、土質材料圧力計6の土質材料センサ部61には、空間65(図5(b)参照)から隙間64に流入した土質材料土砂と海水による圧力が負荷され、この圧力が電気抵抗値を示す出力信号(第2出力信号)に変換されて演算装置21へ出力される。
For example, as shown by phantom lines in FIG. 2, when sediment H1 having a thickness H1 is deposited on the sea bottom on the sediment thickness measuring instrument 4 after the start of measurement, the fine grain sensor of the fine grain pressure gauge 5 The part 53 is loaded with pressure by finely divided sediment and seawater that has passed through the inlet 51a (see FIG. 5A) and the filter 52, and this pressure indicates an output signal (first output signal) indicating an electric resistance value. Is output to the arithmetic unit 21.
On the other hand, the soil material sensor 61 of the soil material pressure gauge 6 is loaded with the pressure of the soil material earth and sand flowing into the gap 64 from the space 65 (see FIG. 5B), and this pressure has an electrical resistance value. To the output signal (second output signal) shown in FIG.

演算装置21では、細粒分圧力計5からの第1出力信号と土質材料圧力計6からの第2出力信号から圧力の計測値の差を求め、この差に基づく演算により土砂厚計測器4の上方の海底面に堆積した土砂の厚さH1を算出する。そして、図2に示すように土砂の厚さH0がH2に減少して浸食された場合には、セッティングした計測開始時の圧力値(初期値)に基づいて算出することができる。   In the arithmetic unit 21, the difference between the measured pressure values is obtained from the first output signal from the fine grain pressure gauge 5 and the second output signal from the soil material pressure gauge 6, and the sediment thickness measuring instrument 4 is calculated based on this difference. The thickness H1 of the earth and sand deposited on the sea bottom above is calculated. Then, as shown in FIG. 2, when the earth and sand thickness H0 is reduced to H2 and eroded, it can be calculated based on the set pressure value (initial value) at the start of measurement.

このように土砂厚計測器4は、堆積した土砂の厚さH1、および浸食された土砂の厚さH2を時系列的に連続して測定することにより、平常時や洪水時等における土砂厚計測器4の上方の海底面に堆積した土砂および浸食された土砂の厚さH1,H2の変動を観測することができる。
そして、この土砂の厚さのデータと、海流のデータとを時系列的に集計してコンピュータで分析することにより、土砂の移動の予想や、海底の地形の変動する予想や、浸食される海岸の地形の予想をすることが可能となる。
In this way, the sediment thickness measuring instrument 4 measures the sediment thickness H1 during normal times or during floods by continuously measuring the accumulated sediment thickness H1 and the eroded sediment thickness H2 in time series. It is possible to observe fluctuations in the thicknesses H1 and H2 of the earth and sand deposited on the sea bottom above the vessel 4 and the eroded earth and sand.
The sediment thickness data and ocean current data are aggregated in time series and analyzed by computer to predict sediment movement, prediction of seafloor topography fluctuations, and eroded beaches. It is possible to predict the topography of the terrain.

≪変形例≫
なお、本発明は、前記実施形態に限定されるものではなく、その技術的思想の範囲内で種々の改造および変更が可能であり、本発明はこれら改造および変更された発明にも及ぶことは勿論である。
≪Modification≫
The present invention is not limited to the above-described embodiment, and various modifications and changes can be made within the scope of the technical idea. The present invention extends to these modifications and changes. Of course.

図12は、本発明の実施形態に係る水底土砂厚計測装置および漂砂観測システムを河川や湖沼に使用した場合を示す模式図である。
例えば、前記した実施形態では、水底土砂厚計測装置1および漂砂観測システムSを海底面に堆積または浸食される土砂の厚さを計測・観測する場合を説明したが、水底土砂厚計測装置1および漂砂観測システムSは、これに限定されず、図12に示すように、河川や湖沼等の水底面に堆積する土砂の厚さや浸食される土砂の厚さを測定・観測する装置としても使用できる。
FIG. 12 is a schematic diagram illustrating a case where the bottom sediment thickness measuring apparatus and the drift sand observation system according to the embodiment of the present invention are used for a river or a lake.
For example, in the above-described embodiment, the case has been described in which the bottom sediment thickness measuring apparatus 1 and the drift sand observation system S measure and observe the thickness of sediment deposited or eroded on the sea bottom. The drift sand observation system S is not limited to this, and as shown in FIG. 12, it can also be used as an apparatus for measuring and observing the thickness of sediment deposited on the bottom surface of a river or a lake or the thickness of eroded sediment. .

この場合、土砂厚計測器4は、図12に示すように、水底に堆積している粘土やシルトからなるヘドロと、岩石質材料(または岩盤)との間の土質材料土砂が存在する所定の深さの位置に埋設する。このようにしても、前記実施形態と同じように水底面に堆積する土砂の厚さH1や、浸食される土砂の厚さ(H2)を計測することができる。   In this case, as shown in FIG. 12, the earth and sand thickness measuring instrument 4 has a predetermined soil material earth and sand between the sludge made of clay or silt deposited on the bottom of the water and the rocky material (or rock mass). Embed in the depth position. Even in this way, the thickness H1 of the earth and sand deposited on the water bottom and the thickness (H2) of the eroded earth and sand can be measured in the same manner as in the above embodiment.

また、前記した実施形態では、各土砂厚計測器4と演算装置21とをケーブル7によって接続した場合を説明したが、水底土砂厚計測装置1および漂砂観測システムSは、これに限定されず、土砂厚計測器4に発信機を設置して細粒分圧力計5および土質材料圧力計6で計測した圧力の出力信号を無線で演算装置21へ送信してもよい。   Moreover, in the above-described embodiment, the case where each sediment thickness measuring instrument 4 and the computing device 21 are connected by the cable 7 has been described. However, the bottom sediment thickness measuring apparatus 1 and the sand drift observation system S are not limited to this, A transmitter may be installed in the earth and sand thickness measuring instrument 4, and an output signal of the pressure measured by the fine particle pressure gauge 5 and the soil material pressure gauge 6 may be transmitted to the arithmetic device 21 wirelessly.

前記した実施形態では、図4に示す細粒分圧力計5の細粒分センサ部53と、土質材料圧力計6の土質材料センサ部61とが圧力を測定するセンサであることを説明したが、これに限定されるものではなく、例えば、荷重を検出するセンサであってもよい。   In the above-described embodiment, the fine particle sensor unit 53 of the fine particle pressure gauge 5 and the soil material sensor unit 61 of the soil material pressure gauge 6 illustrated in FIG. 4 are sensors that measure pressure. For example, a sensor for detecting a load may be used.

次に、図7〜図11を参照して本発明に係る水底土砂厚計測装置の実施例を説明する。
図7は、試験器具を示す斜視図である。
Next, an embodiment of the bottom sediment thickness measuring apparatus according to the present invention will be described with reference to FIGS.
FIG. 7 is a perspective view showing a test instrument.

≪試験機器の構成≫
図7に示す試験器具8は、アクリル製の透明な底付円筒柱形状の容器81と、前記実施形態で説明した土砂厚計測器4Aを備えてなる。容器81の内底には、細粒分圧力計5と土質材料圧力計6とを載設した土砂厚計測器4Aが固定されている。
≪Test equipment configuration≫
A test instrument 8 shown in FIG. 7 includes an acrylic transparent bottomed cylindrical column shaped container 81 and the earth and sand thickness measuring instrument 4A described in the above embodiment. On the inner bottom of the container 81, a sediment thickness measuring instrument 4A on which a fine particle pressure gauge 5 and a soil material pressure gauge 6 are mounted is fixed.

実験では、高さが3250[mm]、内径が119.2[mm]、外径が127.0[mm]の塩化ビニール製の管を容器81として使用し、その容器81に水と土砂を順次投入し、土質材料圧力計6の計測値(W)と細粒分圧力計5の計測値(W)との計測値の差(圧力差)を求めた。そして、実験では、その計測値の差分(W−W)と、堆積した土砂の厚さ(h)、つまり、水と土砂とによる固液混相部Cの厚さとの相関を、容器81の目盛板82による実験値Bと、後記する計算による計算値Jと、によって求めた。 In the experiment, a vinyl chloride tube having a height of 3250 [mm], an inner diameter of 119.2 [mm], and an outer diameter of 127.0 [mm] is used as the container 81, and water and earth and sand are put into the container 81. successively introduced to obtain the difference between the measured value of the measurement values of soil material pressure gauge 6 (W 2) and the fine fraction manometer 5 of the measuring value (W 1) (pressure difference). In the experiment, the correlation between the difference between the measured values (W 2 −W 1 ) and the thickness of the accumulated earth and sand (h 3 ), that is, the thickness of the solid-liquid mixed phase portion C due to water and earth and sand, The value was obtained from the experimental value B by 81 scale plate 82 and the calculated value J by calculation described later.

この実験では、土砂として、2号珪砂(平均粒径(d50)が2.2[mm])と、3号珪砂(平均粒径(d50)が1.3[mm])と、4号珪砂(平均粒径(d50)が1.1[mm])と、6号珪砂(平均粒径(d50)が0.49[mm])と、を使用して、それぞれ行った。
そのうちの6号珪砂で実験を行ったときの1つを説明する。そのときの実験は、実験時の気温が11.9℃、水温が11.0℃で重さ158.83[g]の水を容器81に投入し、さらに、投入前の重さが250.74[g]の珪砂を容器81に投入して、容器81を25回振って土砂の粒子の配列(間隙比)を密の状態にした後、堆積した土砂の高さhを計測した。このとき、目盛板82で計測した堆積した土砂の高さh(実験値B)は、18.9[cm]で、水の水位の変化は、9.2[cm]であった。実験では、このようにして珪砂の量と、珪砂の平均粒径(d50)とを変えて、堆積した土砂の高さhの実験値Bと計算値Jとを求めた。
In this experiment, No. 2 silica sand (average particle size (d 50 ) is 2.2 [mm]), No. 3 silica sand (average particle size (d 50 ) is 1.3 [mm]), 4 No. silica sand (average particle size (d 50 ) was 1.1 [mm]) and No. 6 silica sand (average particle size (d 50 ) was 0.49 [mm]), respectively.
I will explain one of the experiments with No. 6 silica sand. In the experiment at that time, water having a temperature of 11.9 ° C., a water temperature of 11.0 ° C., and a weight of 158.83 [g] was poured into the container 81, and the weight before charging was 250. 74 was charged with silica sand of [g] in the container 81, after the sequence of sediment particles containers 81 shake 25 times (void ratio) was dense state, the height h 3 of the deposited sediment was measured. At this time, the height h 3 (experimental value B) of the accumulated earth and sand measured with the scale plate 82 was 18.9 [cm], and the change in the water level was 9.2 [cm]. In the experiment, the experimental value B and the calculated value J of the height h 3 of the deposited earth and sand were obtained by changing the amount of the silica sand and the average particle diameter (d 50 ) of the silica sand in this way.

≪定率補正係数の説明≫
例えば、細粒分圧力計5の計測値(水と細粒分土砂との混合の圧力信号)をW、土質材料圧力計6の計測値(水と土質材料土砂(細粒分土砂と粗粒分土砂とを含めたもの)との混合の圧力)をW、水面から細粒分圧力計5および土質材料圧力計6までの深さ[mm]をh、水の上澄みBの深さ[mm]をh、堆積した土砂つまり水と土砂との固液混相部Cの深さ[mm]をh、水の単位体積当たりの重量をγ、水と土砂とによる固液混相部Cの定率補正係数をγとすると次の式が成り立つ。
≪Explanation of constant rate correction coefficient≫
For example, the measured value of the fine grain pressure gauge 5 (pressure signal of mixing of water and fine grained sediment) is W 1 , and the measured value of the soil material pressure gauge 6 (water and soil material earth and sand (fine grained sand and coarse sand and coarse sand) W 2 ), the depth [mm] from the water surface to the fine-grain pressure gauge 5 and the soil material pressure gauge 6, h 1 , the depth of the water supernatant B The depth [mm] is h 2 , the depth [mm] of the solid-liquid mixed phase portion C of the accumulated earth and sand, that is, water and earth and sand is h 3 , the weight per unit volume of water is γ W , and the solid and liquid by water and earth and sand If the fixed-rate correction coefficient of the mixed phase portion C and gamma a following equation holds.

=hγ
=hγ+hγ
そして、細粒分圧力計5の計測値Wと土質材料圧力計6の計測値Wとの計測値の差分(圧力差分)W−Wは、
−W=hγ+hγ−hγ
=hγ+hγ−(h+h)γ
=hγ+hγ−hγ−hγ
=hγ−hγ
=h(γ−γ
ここでγ=1.0であり、これを代入すると、
−W=h(γ−1.0)
となり、したがって、堆積した土砂の厚さhは、
=(W−W)/(γ−1.0)
W 1 = h 1 γ W
W 2 = h 2 γ W + h 3 γ a
The fine fraction manometer 5 measured value W 1 and the difference between the measured value and the measured value W 2 of the soil material the pressure gauge 6 (pressure difference) W 2 -W 1 is
W 2 −W 1 = h 2 γ W + h 3 γ a −h 1 γ W
= H 2 γ W + h 3 γ a − (h 2 + h 3 ) γ W
= H 2 γ W + h 3 γ a -h 2 γ W -h 3 γ W
= H 3 γ a -h 3 γ W
= H 3a −γ W )
Here, γ w = 1.0, and if this is substituted,
W 2 −W 1 = h 3a −1.0)
Therefore, the thickness h 3 of the accumulated earth and sand is
h 3 = (W 2 −W 1 ) / (γ a −1.0)

つまり、水と土砂とによる固液混相部Cの深さhは、土質材料圧力計6の計測値Wと細粒分圧力計5の計測値Wとの差分W−Wと、水と土砂とによる固液混相部Cの定率補正係数γとによって算出できる。 In other words, the depth h 3 of the solid-liquid mixed phase portion C by water and sediments, the difference W 2 -W 1 between the measured value W 1 of the measured value W 2 and the fine fraction manometer 5 of soil material manometer 6 It can be calculated by the constant rate correction coefficient γ a of the solid-liquid mixed phase portion C due to water and earth and sand.

定率補正係数γを求めると、
γ=(W−W)/h+1
となる。つまり、水と土砂とによる固液混相部Cの定率補正係数γは、土質材料圧力計6の計測値Wと細粒分圧力計5の計測値Wとの差分W−Wと、水と土砂とによる固液混相部Cの深さhを計測することで算出できる。
When the constant rate correction coefficient γ a is obtained,
γ a = (W 2 −W 1 ) / h 3 +1
It becomes. That is, fixed-rate correction coefficient gamma a solid-liquid mixed phase portion C by water and sediment, the difference W 2 -W 1 between the measured value W 1 of the measured value W 2 and the fine fraction manometer 5 of soil material manometer 6 And by calculating the depth h 3 of the solid-liquid mixed phase portion C due to water and earth and sand.

図8は、6号珪砂による実験のデータを示すもので、(a)は土質材料圧力計の計測値Wと細粒分圧力計の計測値Wとの差分W−Wと、水と土砂とによる固液混相部の深さhとの関係を示すグラフであり、(b)は(a)の表である。図9は、3号珪砂による実験のデータを示すもので、(a)は土質材料圧力計の計測値Wと細粒分圧力計の計測値Wとの差分W−Wと、水と土砂とによる固液混相部の深さhとの関係を示すグラフであり、(b)は(a)の表である。 Figure 8 shows the data of the experiments with No. 6 silica sand, and the difference W 2 -W 1 with (a) is the measured value W 1 of the measured value W 2 and the fine fraction manometer soil material pressure gauge, is a graph showing the relationship between the depth h 3 of the solid-liquid mixed phase portion by the water and sediment, is a table of (b) is (a). Figure 9 shows the data of the experiments with No. 3 silica sand, and the difference W 2 -W 1 with (a) is the measured value W 1 of the measured value W 2 and the fine fraction manometer soil material pressure gauge, is a graph showing the relationship between the depth h 3 of the solid-liquid mixed phase portion by the water and sediment, is a table of (b) is (a).

試験器具8で6号珪砂を実験したところ、図8(a)、(b)に示すようなデータが得られた。このように、土質材料圧力計6の計測値Wと細粒分圧力計5の計測値Wとの差分W−Wで演算して計測した水と土砂とによる固液混相部Cの深さh(計算値J)と、実験で容器81の目盛板82による目視測定した水と土砂とによる固液混相部Cの深さh(実験値B)とは、略一致している。 When No. 6 silica sand was tested with the test device 8, data as shown in FIGS. 8 (a) and 8 (b) was obtained. Thus, soil material pressure gauge 6 of the measured value W 2 and the fine fraction manometer 5 measured value W 1 and the difference W 2 -W 1 solid-liquid mixed phase portion C by the water was measured by calculating the sediment in The depth h 3 (calculated value J) of the liquid and the depth h 3 (experimental value B) of the solid-liquid mixed phase portion C of water and earth and sand visually measured by the scale plate 82 of the container 81 in the experiment are substantially the same. ing.

これと同じようにして、試験器具8で2号珪砂と、3号珪砂と、4号珪砂とを実験したところ、図8(a)、(b)に示すデータと略同一のデータが得られた。例えば、3号珪砂の場合では、図9(a)、(b)に示すように、固液混相部Cの深さhは、目盛板82による実験値Bと、計算値Jとがほとんど一致している。
このため、土質材料圧力計6の計測値Wと細粒分圧力計5の計測値Wとから水底面に堆積した土砂の厚さH1(図2および図12参照)や浸食された土砂の厚さH2(図2参照)を計測できることになる。
In the same manner, when No. 2 silica sand, No. 3 silica sand and No. 4 silica sand were tested with the test equipment 8, data substantially the same as the data shown in FIGS. 8 (a) and (b) was obtained. It was. For example, in the case of No. 3 silica sand, as shown in FIGS. 9A and 9B, the depth h 3 of the solid-liquid mixed phase portion C is almost equal to the experimental value B by the scale plate 82 and the calculated value J. Match.
Therefore, the soil material pressure gauge 6 of the measured value W 2 and the fine fraction manometer 5 measured value W 1 Metropolitan of sediment deposited on the water bottom thickness H1 (see FIG. 2 and FIG. 12) and eroded soil Thickness H2 (see FIG. 2) can be measured.

図10は、実験で求めた水と土砂とによる固液混相部Cの定率補正係数γと、土質材料圧力計6の計測値Wと細粒分圧力計5の計測値Wとの差分W−Wで演算して計測した水と土砂とによる固液混相部Cの深さhとの関係を示すグラフである。 10, and the fixed-rate correction coefficient gamma a solid-liquid mixed phase portion C by a sand water obtained in experiments, the soil material the pressure gauge 6 measured value W 2 and fine fraction manometer 5 between the measured value W 1 it is a graph showing the relationship between the difference W 2 -W 1 depth h 3 of the solid-liquid mixed phase portion C by and the sediment water measured by calculating at.

そして、水と土砂とによる固液混相部Cの定率補正係数γは、図10に示すように、水と土砂とによる固液混相部Cの深さhが変化しても常に一定し、1.1であった。 As shown in FIG. 10, the constant rate correction coefficient γ a of the solid-liquid mixed phase portion C due to water and earth and sand is always constant even when the depth h 3 of the solid-liquid mixed phase portion C due to water and earth and sand changes. 1.1.

≪細粒分圧力計および土質材料圧力計の説明≫
水の下の土砂中には、土粒子が作る骨格の間隙に間隙水(pore fluid)が存在している。地下水帯の土砂では、土の間隙を間隙水で飽和しており、かつ毛管水現象によって間隙水が連続した状態で存在している。静水は互いに連続していれば、どのような繋がり方をしていても、水が流れていない静水分布を示す。このため、間隙水の働いている水圧を間隙水圧(浸透水圧ともいう)uとし、水の単位体積当たりの重量をγとし、zを深さとすると、間隙水圧uは、
u=γz (z<0)
で、直線分布をなす。
≪Description of fine grain pressure gauge and soil material pressure gauge≫
In the sediment under the water, pore fluid exists in the gaps of the skeleton created by the soil particles. In the earth and sand of the groundwater zone, the soil gap is saturated with pore water, and the pore water exists in a continuous state due to the capillary water phenomenon. As long as the static water is continuous with each other, it shows a static water distribution in which no water flows, regardless of how they are connected. Therefore, when the water pressure at which pore water is working is the pore water pressure (also referred to as osmotic water pressure) u, the weight per unit volume of water is γ W, and z is the depth, the pore water pressure u is
u = γ W z (z <0)
Then, a straight line distribution is formed.

細粒分圧力計5において、水と細粒分土砂(水分子から粒径50[μm]程度)との圧力の計測値と、容器81の目盛板82の目盛りとが合致することが確認された。
土質材料圧力計6は、水と土質材料土砂との固液混相部Cにおける水中重量を測定する。
In the fine-grain pressure gauge 5, it was confirmed that the measured values of the pressure of water and fine-grained sediment (from water molecules to a particle size of about 50 [μm]) match the scale of the scale plate 82 of the container 81. It was.
The soil material pressure gauge 6 measures the weight in water in the solid-liquid mixed phase portion C of water and the soil material soil.

なお、海底においては、海水の水圧や流れや波浪によって海底面に堆積した土砂の間隙比eの値は最も密な状態になっている。
そして、この実験では、容器81に砂と水を混在させ、振動を十分与えると、砂の間隙比eの値は最も密な状態になった。
In the seabed, the value of the gap ratio e of the earth and sand deposited on the bottom of the sea due to seawater pressure, flow and waves is in the most dense state.
In this experiment, when sand and water were mixed in the container 81 and vibration was sufficiently applied, the value of the sand gap ratio e became the most dense.

土粒子の比重Gsは、水の単位体積当たりの重量をγとし、土粒子の重量をγとすると、次の式で定義される。
=γ/γ
The specific gravity Gs of the soil particles is defined by the following equation, where γ W is the weight per unit volume of water and γ S is the weight of the soil particles.
G S = γ S / γ W

図11は、各鉱物粒子および各土粒子の比重の値を示す表である。
海底等の水底には、種々の鉱物からなる土砂が存在している。しかしながら、図11に示すように、各鉱物の比重は、2.3〜2.86で略均一であり、前記土粒子の比重Gsの値は、鉱物の種類によってもほとんど変わらないため、水底面に堆積される土砂や浸食される土砂の厚さの計測にはほとんど影響しない。
FIG. 11 is a table showing specific gravity values of each mineral particle and each soil particle.
There are sediments made of various minerals on the bottom of the sea. However, as shown in FIG. 11, the specific gravity of each mineral is approximately 2.3 to 2.86, and the value of the specific gravity Gs of the soil particles hardly changes depending on the type of mineral. It has little effect on the measurement of the thickness of sediment deposited and eroded sediment.

以上のことから、海底や湖底等の水底面に堆積される種々の土砂の厚さ(水と土砂とによる固液混相部Cの深さh)は、土質材料圧力計6の計測値Wと細粒分圧力計5の計測値Wとの差分(圧力差分)W−Wと、水と土砂とによる固液混相部Cの定率補正係数γによっていずれ場合も正確に算出できることが判る。 From the above, the thickness of various sediments (depth h 3 of the solid-liquid mixed phase C due to water and sediment) deposited on the bottom of the sea such as the seabed and lake bottom is measured by the soil material pressure gauge 6. 2 and the measured value W 1 of the fine particle pressure gauge 5 (pressure difference) W 2 −W 1 and the constant rate correction coefficient γ a of the solid-liquid mixed phase portion C due to water and earth and sand are accurately calculated in any case. I understand that I can do it.

水底土砂厚計測装置および漂砂観測システムを示す模式図である。It is a schematic diagram which shows a bottom sediment thickness measuring apparatus and a drift sand observation system. 水底土砂厚計測装置および漂砂観測システムを示す図であり、(a)は海に設置したときの設置状態を示す模式図、(b)はA部拡大図である。It is a figure which shows a bottom sediment thickness measuring apparatus and a drift sand observation system, (a) is a schematic diagram which shows the installation state when installing in the sea, (b) is the A section enlarged view. 日本統一土質分類法による粒径の区分名称を示す表である。It is a table | surface which shows the classification name of the particle size by Japan unified soil classification method. 土砂厚計測器を示す図であり、(a)は斜視図、(b)は台座を離脱したときの状態を示す平面図である。It is a figure which shows an earth-and-sand thickness measuring device, (a) is a perspective view, (b) is a top view which shows a state when removing a base. 図4の矢視線X−X方向の拡大縦断面図である。FIG. 5 is an enlarged longitudinal sectional view in the direction of the arrow XX in FIG. 4. 図4の矢視線Y−Y方向の拡大縦断面図である。FIG. 5 is an enlarged longitudinal sectional view in the direction of arrow line YY in FIG. 4. 試験器具を示す斜視図である。It is a perspective view which shows a test instrument. 6号珪砂による実験のデータを示すもので、(a)は土質材料圧力計の計測値Wと細粒分圧力計の計測値Wとの差分W−Wと、水と土砂とによる固液混相部の深さhとの関係を示すグラフであり、(b)は(a)の表である。Those due 6 silica sand No. shows the data of the experiment, (a) represents the difference W 2 -W 1 between the measured value W 1 of the measured value W 2 and the fine fraction manometer soil material pressure gauge, water and sediment is a graph showing the relationship between the depth h 3 of the solid-liquid mixed phase portion by a table of (b) is (a). 3珪砂による実験のデータを示すもので、(a)は土質材料圧力計の計測値Wと細粒分圧力計の計測値Wとの差分W−Wと、水と土砂とによる固液混相部の深さhとの関係を示すグラフであり、(b)は(a)の表である。3 shows the data of the experiments with silica sand, and the difference W 2 -W 1 with (a) is the measured value W 1 of the measured value W 2 and the fine fraction manometer soil material pressure gauge, due to the water and sediment is a graph showing the relationship between the depth h 3 of the solid-liquid mixed phase portion, is a table of (b) is (a). 実験で求めた水と土砂とによる固液混相部の定率補正係数と、土質材料圧力計の計測値と細粒分圧力計の計測値との圧力差分で演算して計測した水と土砂とによる固液混相部の深さとの関係を示すグラフである。Based on the constant rate correction coefficient of the solid-liquid mixed phase part obtained by the experiment with water and earth and sand, and the water and earth and sand measured by calculating the pressure difference between the measured value of the soil material pressure gauge and the measured value of the fine grain pressure gauge It is a graph which shows the relationship with the depth of a solid-liquid mixed phase part. 鉱物粒子および土粒子の比重の値を示す表である。It is a table | surface which shows the value of specific gravity of a mineral particle and a soil particle. 本発明の実施形態に係る水底土砂厚計測装置および漂砂観測システムを河川や湖沼に使用した場合を示す模式図である。It is a schematic diagram which shows the case where the bottom sediment thickness measuring apparatus and drift sand observation system which concern on embodiment of this invention are used for a river or a lake.

符号の説明Explanation of symbols

1 水底土砂厚計測装置
2,2A,2B,2C 観測局
4,4A 土砂厚計測器
5 細粒分圧力計
6 土質材料圧力計
7 ケーブル(信号伝達手段)
21 演算装置
41 台座
42 基板
51 細粒分センサ筐体
51a 流入口
52 フィルタ
53 細粒分センサ部
61 土質材料センサ部
62 カバー体
63 支柱
64 空間
65 隙間
a 所定間隔(第2の間隔)
c 所定間隔(第1の間隔)
C 固液混相部
S 漂砂観測システム
H0 所定の深さ
H1 堆積した土砂の厚さ
H2 浸食された土砂の厚さ
1 Underwater sediment thickness measuring device 2, 2A, 2B, 2C Observation station 4, 4A Sediment thickness meter 5 Fine grain pressure gauge 6 Soil material pressure gauge 7 Cable (signal transmission means)
DESCRIPTION OF SYMBOLS 21 Arithmetic unit 41 Base 42 Substrate 51 Fine particle sensor housing 51a Inlet 52 Filter 53 Fine particle sensor unit 61 Soil material sensor unit 62 Cover body 63 Support column 64 Space 65 Clearance a Predetermined interval (second interval)
c Predetermined interval (first interval)
C Solid-liquid mixed phase S Sediment observation system H0 Predetermined depth H1 Thickness of accumulated sediment H2 Thickness of eroded sediment

Claims (7)

水底面に堆積した土砂の厚さを計測する水底土砂厚計測装置において、
前記水底面から所定の深さの位置に水平に埋設され、前記水底面に堆積した土砂中の細粒分土砂と水とによる圧力を計測する細粒分圧力計と、
この細粒分圧力計が埋設された前記水底面から同じ深さの位置の近傍に水平に埋設され、前記水底面に堆積した土砂中の土質材料土砂と水とによる圧力を計測する土質材料圧力計と、
前記細粒分圧力計で計測された圧力を示す第1出力信号と前記土質材料圧力計で計測された圧力を示す第2出力信号との差に基づいて演算により前記水底面に堆積した土砂の厚さを求める演算装置と、
を備えたことを特徴とする水底土砂厚計測装置。
In the bottom sediment thickness measuring device that measures the thickness of sediment deposited on the bottom of the water,
A fine-grain pressure gauge that is buried horizontally at a predetermined depth from the bottom surface of the water and measures the pressure of fine-grained sediment and water in the sediment deposited on the bottom surface of the water;
Soil material pressure that measures the pressure of soil material and sand in the soil buried horizontally in the vicinity of the same depth position from the bottom of the water where the fine grain pressure gauge is embedded, and deposited on the bottom of the water Total
Based on the difference between the first output signal indicating the pressure measured by the fine particle pressure gauge and the second output signal indicating the pressure measured by the soil material pressure gauge, the sediment accumulated on the water bottom is calculated. An arithmetic unit for determining the thickness;
An underwater sediment thickness measuring device comprising:
前記細粒分圧力計は、この細粒分圧力計が埋設された位置に存在する土砂中の細粒分土砂とこの土砂中の水とが流入する流入口を有する中空状の細粒分センサ筐体と、
この細粒分センサ筐体に内設され、当該細粒分センサ筐体内に流入した土砂中の前記細粒分土砂と前記水とを通過させるフィルタと、
このフィルタの下方に設置され、当該フィルタを通過した前記細粒分土砂と前記水とによる圧力を検出して前記第1出力信号を生成する細粒分センサ部と、
この細粒分センサ部と前記細粒分センサ筐体とを載設した基板と、
を備えたことを特徴とする請求項1に記載の水底土砂厚計測装置。
The fine-grain pressure gauge is a hollow fine-grain sensor having an inlet through which fine-grained sediment in the earth and sand present at the position where the fine-grained pressure gauge is embedded and water in the sediment flows in. A housing,
A filter that is installed in the fine particle sensor housing and allows the fine particle sand and the water in the earth and sand flowing into the fine particle sensor housing to pass through,
A fine-grain sensor unit that is installed below the filter and detects the pressure of the fine-grained sediment that has passed through the filter and the water to generate the first output signal;
A substrate on which the fine particle sensor unit and the fine particle sensor housing are mounted;
The underwater sediment thickness measuring device according to claim 1, comprising:
前記土質材料圧力計は、前記水底面に堆積した土砂中の土質材料土砂と前記水とによる圧力を検出して前記第2出力信号を生成する土質材料センサ部と、
この土質材料センサ部の上に、この土質材料圧力計が埋設された位置に存在する土砂中の土質材料土砂とこの土質材料土砂中の水とが流入する隙間を介在させて設置されたカバー体と、
前記土質材料センサ部を載設した基板と、
この基板と前記カバー体との間に介設されて前記土質材料土砂と前記水とが前記隙間へ流入する空間を形成するための複数の支柱と、
を備えたことを特徴とする請求項1または請求項2に記載の水底土砂厚計測装置。
The soil material pressure gauge detects a pressure caused by the soil material earth and sand in the sediment deposited on the bottom surface of the water and the water, and generates a second output signal.
A cover body installed above the soil material sensor section with a gap between the soil material earth and sand in the earth and sand existing at the position where the soil material pressure gauge is buried and the water in the soil material earth and sand flows in. When,
A substrate on which the soil material sensor unit is mounted;
A plurality of struts that are interposed between the substrate and the cover body to form a space through which the soil material soil and water flow into the gap;
The underwater sediment thickness measuring device according to claim 1 or 2, characterized by comprising:
前記細粒分圧力計および前記土質材料圧力計は、前記水底面から所定の深さの位置に埋設される台座に載設されたことを特徴とする請求項1ないし請求項3のいずれか1項に記載の水底土砂厚計測装置。   4. The fine particle pressure gauge and the soil material pressure gauge are mounted on a pedestal embedded at a predetermined depth from the water bottom. The bottom sediment thickness measuring device described in the item 前記演算装置は、前記第2出力信号と前記第1出力信号との差を、土砂と水とからなる固液混相部の予め設定した定率補正係数と水の単位体積当たりの重量との差で除した結果として前記水底面に堆積した土砂の厚さを求めることを特徴とする請求項1ないし請求項4のいずれか1項に記載の水底土砂厚計測装置。   The arithmetic unit calculates a difference between the second output signal and the first output signal by a difference between a preset constant rate correction coefficient of a solid-liquid mixed phase portion made of earth and sand and a weight per unit volume of water. The bottom sediment thickness measuring apparatus according to any one of claims 1 to 4, wherein the thickness of sediment deposited on the bottom surface of the water is obtained as a result of the removal. 水底面に堆積した土砂の厚さを観測する漂砂観測システムにおいて、
前記水底面に堆積した土砂中の細粒分土砂と水とによる圧力を計測する細粒分圧力計と、前記水底面に堆積した土砂中の土質材料土砂と水とによる圧力を計測する土質材料圧力計と、前記細粒分圧力計および前記土質材料圧力計を載設した台座と、を備えて、前記水底面から所定の深さの位置に水平に埋設されると共に、前記水底面に沿って所定間隔で設置された複数の土砂厚計測器と、
前記細粒分圧力計で計測された圧力を示す第1出力信号と前記土質材料圧力計で計測された圧力を示す第2出力信号との差に基づいて演算により前記水底面に堆積した土砂の厚さを求める演算装置と、
前記土砂厚計測器と前記演算装置との間を有線または無線信号で伝送する信号伝達手段と、
を備えたことを特徴とする漂砂観測システム。
In the drift sand observation system that observes the thickness of sediment deposited on the bottom of the water,
Fine granule pressure gauge that measures the pressure due to fine-grained sediment and water in the sediment deposited on the bottom of the water, and soil material that measures the pressure due to soil and sand in the sediment deposited on the bottom of the water A pressure gauge, and a pedestal on which the fine grain pressure gauge and the soil material pressure gauge are mounted, and are embedded horizontally at a predetermined depth from the water bottom, along the water bottom. A plurality of sediment thickness measuring instruments installed at predetermined intervals,
Based on the difference between the first output signal indicating the pressure measured by the fine particle pressure gauge and the second output signal indicating the pressure measured by the soil material pressure gauge, the sediment accumulated on the water bottom is calculated. An arithmetic unit for determining the thickness;
A signal transmission means for transmitting a wired or wireless signal between the earth and sand thickness measuring instrument and the arithmetic unit;
Drift sand observation system characterized by having.
前記土砂厚計測器は、沿岸から沖側に向かって第1の間隔で複数設置されると共に、前記沿岸に沿って第2の間隔で複数設置され、
前記演算装置は、陸地に設置された観測局に設けられていることを特徴とする請求項6記載の漂砂観測システム。
A plurality of the earth and sand thickness measuring devices are installed at a first interval from the coast toward the offshore side, and a plurality of the sand and sand thickness measuring devices are installed at a second interval along the coast,
The sand drift observation system according to claim 6, wherein the arithmetic unit is provided in an observation station installed on land.
JP2006191392A 2006-07-12 2006-07-12 Thickness measuring apparatus for water-bottom earth and sand and drift sand observation system Pending JP2008020279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006191392A JP2008020279A (en) 2006-07-12 2006-07-12 Thickness measuring apparatus for water-bottom earth and sand and drift sand observation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006191392A JP2008020279A (en) 2006-07-12 2006-07-12 Thickness measuring apparatus for water-bottom earth and sand and drift sand observation system

Publications (1)

Publication Number Publication Date
JP2008020279A true JP2008020279A (en) 2008-01-31

Family

ID=39076331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006191392A Pending JP2008020279A (en) 2006-07-12 2006-07-12 Thickness measuring apparatus for water-bottom earth and sand and drift sand observation system

Country Status (1)

Country Link
JP (1) JP2008020279A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110030980A (en) * 2019-05-16 2019-07-19 广州欧纳电子科技有限公司 Coastal erosion and tidal level real-time monitoring device and method
CN110674980A (en) * 2019-09-12 2020-01-10 中交疏浚技术装备国家工程研究中心有限公司 Real-time wave prediction method for engineering ship
CN113091848A (en) * 2021-04-08 2021-07-09 中国电建集团贵阳勘测设计研究院有限公司 Method and device for measuring water level of concrete faced rockfill dam reservoir

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110030980A (en) * 2019-05-16 2019-07-19 广州欧纳电子科技有限公司 Coastal erosion and tidal level real-time monitoring device and method
CN110674980A (en) * 2019-09-12 2020-01-10 中交疏浚技术装备国家工程研究中心有限公司 Real-time wave prediction method for engineering ship
CN110674980B (en) * 2019-09-12 2023-01-03 中交疏浚技术装备国家工程研究中心有限公司 Real-time wave prediction method for engineering ship
CN113091848A (en) * 2021-04-08 2021-07-09 中国电建集团贵阳勘测设计研究院有限公司 Method and device for measuring water level of concrete faced rockfill dam reservoir

Similar Documents

Publication Publication Date Title
CN107631720B (en) Seabed sand waves original position real-time observation device and method
US20120303276A1 (en) Scour monitoring system
Klösch et al. Intra‐event scale bar–bank interactions and their role in channel widening
Harris et al. Marine scour and offshore wind: lessons learnt and future challenges
Troch et al. Instrumentation and prototype measurements at the Zeebrugge rubble mound breakwater
JP2008020279A (en) Thickness measuring apparatus for water-bottom earth and sand and drift sand observation system
Liu et al. The observations of seabed sediment erosion and resuspension processes in the Jiaozhou Bay in China
ZHU et al. Influence of Waves and Currents on Sediment Erosion and Deposition Based on In-situ Observation: Case Study in Baisha Bay, China.
JP4534200B2 (en) Tsunami detector
Azhari et al. Dissolved oxygen sensors for scour monitoring
Song et al. Observation and forecasting of rip current generation in Haeundae Beach, Korea Plan and Experiment
Payo et al. Application of portable streamer traps for obtaining point measurements of total longshore sediment transport rates in mixed sand and gravel beaches
Vasilescu et al. INSTALLATION OF SUBMARINE CABLES IN THE OFFSHORE WIND INDUSTRY AND THEIR IMPACT ON THE MARINE ENVIRONMENT.
Kimiaghalam et al. Wave-current induced erosion of cohesive riverbanks in northern Manitoba, Canada
Yonggang et al. Deposition-monitoring technology in an estuarial environment using an electrical-resistivity method
Jia et al. Sediment Resuspension Process in the Modern Yellow River Delta
Eisenberg et al. San Francisco's Southwest Ocean Outfall
Xu et al. Field observations of seabed scours around a submarine pipeline on cohesive bed
DORVINEN et al. In-situ geotechnical investigation of a confined sediment disposal facility, Sydney Harbour, Nova Scotia
Chillarige Liquefaction and seabed instability in the Fraser River delta
Nunes et al. Monitoring of the Liquefaction of Nazaré’s North Breakwater Foundations
Yan et al. Research on Submarine landslide monitoring and early warning system
Blewett et al. Field measurements of swash on gravel beaches
Layton Design Procedures for Ocean Outfalls
Sundar et al. Submerged Geosynthetic Reef as Shore Protection Measure for Islands