JP2008019245A - Intranasal agent for prevention and treatment of alzheimer's disease containing humanin derivative or fused peptide composed of humanin derivative and neurotropic peptide as active component - Google Patents
Intranasal agent for prevention and treatment of alzheimer's disease containing humanin derivative or fused peptide composed of humanin derivative and neurotropic peptide as active component Download PDFInfo
- Publication number
- JP2008019245A JP2008019245A JP2007152376A JP2007152376A JP2008019245A JP 2008019245 A JP2008019245 A JP 2008019245A JP 2007152376 A JP2007152376 A JP 2007152376A JP 2007152376 A JP2007152376 A JP 2007152376A JP 2008019245 A JP2008019245 A JP 2008019245A
- Authority
- JP
- Japan
- Prior art keywords
- peptide
- alzheimer
- disease
- derivative
- humanin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Description
本発明は、ヒューマニン誘導体又は該誘導体と神経向性ペプチドとの融合ペプチドを有効成分として含有する、アルツハイマー病予防・治療又はアルツハイマー病関連傷害改善用の経鼻投与剤、及び該治療剤を投与することから成るアルツハイマー病等の予防・治療方法等に関する。 The present invention administers a nasal administration agent for preventing or treating Alzheimer's disease or improving Alzheimer's disease-related injury, which contains a humanin derivative or a fusion peptide of the derivative and a neurotropic peptide as an active ingredient, and the therapeutic agent. The present invention relates to methods for preventing and treating Alzheimer's disease.
現在のアルツハイマー病(AD)治療への効果が非常に限られているために、効果的な新たな抗AD治療の開発が強く望まれている。ドネペジルのようなアセチルコリンエステラーゼ阻害剤、ビタミンEのような抗酸化剤、及びNMDA興奮性毒性阻害剤のような現在AD治療に臨床的に使用されているものはADの病状進行をわずかに遅らせるにすぎない(Sano et al., 1997; Reisberg et al., 2003; Lane et al., 2004)。従って、このような薬剤の開発とは別なAD治療を開発するために幾つかの有力な戦略が考えられている。 The development of effective new anti-AD treatments is strongly desired due to the very limited effects on current Alzheimer's disease (AD) treatment. Current clinically used treatments for AD, such as acetylcholinesterase inhibitors such as donepezil, antioxidants such as vitamin E, and NMDA excitotoxicity inhibitors, can slightly slow the progression of AD pathology. (Sano et al., 1997; Reisberg et al., 2003; Lane et al., 2004). Therefore, several promising strategies have been considered to develop AD treatments separate from the development of such drugs.
神経脱落、それはADの主な病理学的又は神経学的徴候あるいは症状発現と直接関連していると考えられ(Mattson et al., 2004)、このような神経死阻害剤が新たなAD治療の最も有力な候補と考えられる。 Nerve loss, which is thought to be directly related to the main pathological or neurological signs or symptoms of AD (Mattson et al., 2004) It is considered the most promising candidate.
本発明者は、AD患者死亡後の剖検脳における後頭葉から作成したcDNAライブラリーを使用して細胞死を防ぐ化合物をバイアスをかけない機能的なスクリーニング方法、「デストラップスリーニング法」を実施することにより、ヒューマニン(HN)と名付けた24アミノ酸ペプチドMAPRGFSCLLLLTSEIDLPVKRRAをコードするcDNAを同定した(特許文献1)。HNは種々のFAD遺伝子や抗APP抗体、さらにベータアミロイドペプチド(Aβ)等のすべてのAD関連傷害によリ引き起こされる神経細胞死に対し拮抗作用をしめす(Hashimoto et al., 2001a and b; Nishimoto et al., 2005)。 The present inventor has implemented a functional screening method that does not bias a compound that prevents cell death using a cDNA library prepared from the occipital lobe in the autopsy brain after death of an AD patient, the “Destrap Screening Method” Thus, a cDNA encoding a 24-amino acid peptide MAPRGFSCLLLLTSEIDLPVKRRA named humanin (HN) was identified (Patent Document 1). HN antagonizes various FAD genes, anti-APP antibodies, and neuronal cell death caused by all AD-related injuries such as beta amyloid peptide (Aβ) (Hashimoto et al., 2001a and b; Nishimoto et al., 2005).
コリベリン(Colivelin)は、活性依存性神経向性因子(ADNF)のC末端に、強力な活性(EC50<100 femtomolar)を有するヒューマニン(NH)誘導体の一種である、アミノ酸配列:PAGASRLLLLTGEIDLPを有するペプチド(AGA-(C8R)HNG17)が結合した融合ペプチドである(Chiba et al., 2005)。コリベリンはインビトロにおいて、NH 受容体を介するJAK2/STAT3生存促進(prosurvival axis)の活性化及びADNF受容体を介するCa2+/カルモデュリン依存性プロテインキナーゼIV(CaMKIV)の活性化によって、AD関連傷害を含む様々な型の神経毒性にも拮抗する神経保護作用を示す。更に、コリベリンはAβ誘発性海馬神経損失をインビボで抑制することも示されている。
Collivelin is a humanin (NH) derivative that has a strong activity (EC50 <100 femtomolar) at the C-terminus of activity-dependent neurotrophic factor (ADNF), a peptide having the amino acid sequence: PAGASRLLLLTGEIDLP ( AGA- (C8R) HNG17) is a fused peptide (Chiba et al., 2005). In vitro, corivelin is associated with various AD-related injuries by activating JAK2 / STAT3 prosurvival axis via
このように、コリベリンは脳室内(intracerebroventicular; i.c.v.)投与により脳脊髄液に直接運搬されたときに、毒性Aβのi.c.v.投与、及び、3−キヌクリニジル ベンジレート(3-QNB)のような様々なコリン作動系阻害剤の腹腔内投与により誘導される空間ワーキングメモリ(spatial working memory)の障害を阻害する(Chiba et al., 2005)ことから、コリベリンはAD関連記憶喪失又は記憶障害(amnesia)をインビボで抑制すると考えられる。
AD治療用薬剤は安全かつ長期間に亘り使用する必要があるので、コリベリンのようなヒューマニン誘導体を臨床的に適用するためには、より侵襲性の低い、且つ、副作用を考慮して出来るだけ少量でも有効な投与方法を開発することが望まれている。 Since AD therapeutic agents must be used safely and for a long period of time, in order to clinically apply humanin derivatives such as colivelin, they are less invasive and as small as possible in view of side effects. However, it is desired to develop an effective administration method.
従って、本発明の目的は、コリベリンのようなヒューマニン誘導体を用いて、非侵襲性で効果的なアルツハイマー病予防・治療用の薬剤及び予防・治療方法を提供することである。 Accordingly, an object of the present invention is to provide a noninvasive and effective drug for preventing and treating Alzheimer's disease and a method for preventing and treating using a humanin derivative such as colivelin.
即ち、本発明は、以下の各態様に係る。
[態様1]ヒューマニン誘導体又は該誘導体と神経向性ペプチドとの融合ペプチドを有効成分として含有する、アルツハイマー病予防・治療用の経鼻投与剤。
[態様2]ヒューマニン誘導体又は該誘導体と神経向性ペプチドとの融合ペプチドを有効成分として含有する、アルツハイマー病関連傷害の保護・改善用の経鼻投与剤。
[態様3]アルツハイマー病関連障害が記憶傷害である、態様2記載の経鼻投与剤。
[態様4]アルツハイマー病関連障害が神経変性である、態様2記載の経鼻投与剤。[態様5]アルツハイマー病関連傷害がコリンアセチルトランスフェラーゼ免疫応答性ニューロン数の減少である、態様2記載の経鼻投与剤。
[態様6]ヒューマニン誘導体が、アミノ酸配列:PAGASRLLLLTGEIDLPを有するペプチド(AGA-(C8R)HNG17)である、態様1ないし5のいずれか一項に記載の経鼻投与剤。
[態様7]神経向性ペプチドが血管活性腸管ペプチド(VIP)、活性依存性神経向性因子(ADNF)又はインシュリン様成長因子(IGF-1)である、態様6に記載の経鼻投与剤。
[態様8]融合ペプチドがADNFのC末端にAGA-(C8R)HNG17が結合した26個のアミノ酸から成るペプチドである、態様1ないし7のいずれか一項に記載の経鼻投与剤。
[態様9]態様1ないし8のいずれか一項に記載の経鼻投与剤を経鼻的に投与することから成る、アルツハイマー病又はアルツハイマー病関連傷害の予防・治療方法。
[態様10]アルツハイマー病予防・治療用の経鼻投与剤を製造するための、ヒューマニン誘導体又は該誘導体と神経向性ペプチドとの融合ペプチドの使用。
[態様11]融合ペプチドがADNFのC末端にアミノ酸配列:PAGASRLLLLTGEIDLPを有するペプチド(AGA-(C8R)HNG17)が結合した26個のアミノ酸から成るペプチドである、態様10記載の使用。
That is, the present invention relates to the following aspects.
[Aspect 1] A nasal administration agent for prevention and treatment of Alzheimer's disease containing a humanin derivative or a fusion peptide of the derivative and a neurotropic peptide as an active ingredient.
[Aspect 2] A nasal administration agent for protecting / ameliorating Alzheimer's disease-related injury, comprising as an active ingredient a humanin derivative or a fusion peptide of the derivative and a neurotropic peptide.
[Aspect 3] The nasal administration agent according to
[Aspect 4] The nasal administration agent according to
[Aspect 6] The nasal administration agent according to any one of
[Aspect 7] The nasal administration agent according to Aspect 6, wherein the neurotrophic peptide is vasoactive intestinal peptide (VIP), activity-dependent neurotrophic factor (ADNF) or insulin-like growth factor (IGF-1).
[Aspect 8] The nasal administration agent according to any one of
[Aspect 9] A method for preventing or treating Alzheimer's disease or Alzheimer's disease-related injury, which comprises nasally administering the nasal administration agent according to any one of
[Aspect 10] Use of a humanin derivative or a fusion peptide of the derivative and a neurotrophic peptide for the production of a nasal administration agent for preventing or treating Alzheimer's disease.
[Aspect 11] The use according to
本発明によって、非侵襲的でかつ従来の腹腔内投与等と比べてより少量の投与で優れた効果を示す、有効性の高いAD予防・治療用の薬剤及び予防・治療方法が提供され、AD治療を長期間に亘り安全に実施することが可能となった。 The present invention provides a highly effective drug for preventing and treating AD and a method for preventing and treating AD that are non-invasive and exhibit superior effects in a smaller dose compared to conventional intraperitoneal administration, etc. It became possible to carry out treatment safely for a long period of time.
本明細書において、「ヒューマニン誘導体」とは、国際公開WO01/021787号パンフレットに開示された、上記の24アミノ酸から成るポリペプチド(ヒューマニン)と同等又はそれ以上のAD関連傷害により起こる神経細胞死に対して拮抗作用又は抑制作用を有するポリペプチド及びその誘導体を含むものである。 In the present specification, “humanin derivative” refers to neuronal cell death caused by AD-related injury equal to or higher than that of the above-mentioned polypeptide consisting of 24 amino acids (humanin) disclosed in WO01 / 021787. A polypeptide having an antagonistic action or an inhibitory action and derivatives thereof.
従って、ヒューマニン誘導体の具体的としては、例えば、国際公開WO01/021787号パンフレットに記載された式(I)
Pro−Xn1−(Cys/bXaa)−(Leu/Arg)−Xn2−Leu−Thr−(Gly/Ser)−Xn3−Pro (I)
(式中、「Cys/bXaa」はCysまたは塩基性アミノ酸、「(Leu/Arg)」はLeuまたはArg、「(Gly/Ser)」はGlyまたはSerであり、Xn1、Xn2、およびXn3はそれぞれ独立に10残基以下の任意のアミノ酸を表す)
で示されるアミノ酸配列を有するポリペプチド(以下、単に「ポリペプチド」ともいう)である。
Accordingly, specific examples of humanin derivatives include, for example, the formula (I) described in International Publication WO01 / 021787 pamphlet.
Pro-Xn 1 - (Cys / bXaa) - (Leu / Arg) -Xn 2 -Leu-Thr- (Gly / Ser) -Xn 3 -Pro (I)
(Wherein “Cys / bXaa” is Cys or a basic amino acid, “(Leu / Arg)” is Leu or Arg, “(Gly / Ser)” is Gly or Ser, and Xn 1 , Xn 2 , and Xn 3 each independently represents any amino acid of 10 residues or less)
A polypeptide having the amino acid sequence shown below (hereinafter also simply referred to as “polypeptide”).
更に、より具体的な例として、国際公開WO01/021787号パンフレットに記載された配列番号:5〜8、10、12、13、21〜24、26〜29、32、33、37〜40、46、48、54、および60からなる群より選択されるアミノ酸配列において、1又は複数のアミノ酸が置換、欠失、挿入、および/または付加したアミノ酸配列を含み、AD関連傷害により起こる神経細胞死に対して拮抗作用又は抑制作用を有するポリペプチドを挙げることが出来る。アミノ酸配列:PAGASRLLLLTGEIDLPを有するペプチド(AGA-(C8R)HNG17)は、その好適一具体例である。 Furthermore, as a more specific example, SEQ ID NOs: 5 to 8, 10, 12, 13, 21 to 24, 26 to 29, 32, 33, 37 to 40, 46 described in the pamphlet of International Publication No. WO01 / 021787 An amino acid sequence selected from the group consisting of 48, 54, and 60, wherein one or more amino acids comprise an amino acid sequence substituted, deleted, inserted and / or added, and against neuronal cell death caused by AD-related injury And a polypeptide having an antagonistic action or an inhibitory action. A peptide having the amino acid sequence: PAGASRLLLLTGEIDLP (AGA- (C8R) HNG17) is a preferred specific example.
本発明の有効成分としては、ヒューマニン誘導体と神経向性ペプチドとの融合ペプチド、例えば、血管活性腸管ペプチド(VIP)、活性依存性神経向性因子(ADNF)又はインシュリン様成長因子(IGF-1)のような神経向性ペプチドのC末端にヒューマニン誘導体が結合して成る融合ペプチドが薬効の点で好ましい。 The active ingredient of the present invention includes a fusion peptide of a humanin derivative and a neurotrophic peptide, such as a vasoactive intestinal peptide (VIP), an activity-dependent neurotrophic factor (ADNF), or an insulin-like growth factor (IGF-1). A fusion peptide formed by binding a humanin derivative to the C-terminus of a neurotropic peptide such as
ヒューマニン誘導体及び該誘導体と神経向性ペプチドとの融合ペプチドは、当業者に公知の任意の方法で容易に合成することができる。 A humanin derivative and a fusion peptide of the derivative and a neurotropic peptide can be easily synthesized by any method known to those skilled in the art.
更に、上記本発明のヒューマニン誘導体には、上記のポリペプチドの官能基を既知の方法により修飾、付加、変異、置換、または削除などにより改変された形態を持つ化合物も含まれる。このような官能基の改変は、当業者に公知の任意の方法を用いて、例えば、ポリペプチドに存在する官能基の保護、ポリペプチドの安定性または組織移行性の制御、あるいはポリペプチドの活性の制御等を目的として行なうことが出来る。 Furthermore, the humanin derivative of the present invention includes a compound having a form in which the functional group of the above polypeptide is modified by a known method by modification, addition, mutation, substitution, or deletion. Such modification of the functional group can be performed using any method known to those skilled in the art, for example, protection of the functional group present in the polypeptide, control of polypeptide stability or tissue migration, or activity of the polypeptide. It can be performed for the purpose of control.
即ち、ポリペプチドは翻訳後修飾などにより天然に修飾されていてもよい。また人工的に修飾されていてもよい。修飾には、ペプチドのバックボーン、アミノ酸側鎖、アミノ末端、またはカルボキシル末端などの修飾が含まれる。また、ポリペプチドは分岐していてもよく、環状でもよい。修飾には、アセチル化、アシル化、ADPリボシル化、アミド化、[フラビン(flavin)、ヌクレオチド、ヌクレオチド誘導体、脂質、脂質誘導体、またはホスファチジルイノシトール]等の共有結合、クロスリンク形成、環状化、ジスルフィド結合形成、脱メチル化、ピログルタミン酸化、カルボキシル化、グリコシル化、ヒドロキシル化、ヨード化、メチル化、ミリストイル化、酸化、リン酸化、ユビキチン化などが含まれるが、これらに制限されない。更に、上記ポリペプチドは当業者に公知の任意の塩及びエステル体とすることも可能である。本発明のポリペプチドは、公知のペプチド合成技術により製造することが可能であり、また、これらポリペプチドをコードするDNAを発現させることによっても製造することが可能である。 That is, the polypeptide may be naturally modified by post-translational modification or the like. It may be artificially modified. Modifications include modifications such as peptide backbone, amino acid side chain, amino terminus, or carboxyl terminus. The polypeptide may be branched or cyclic. Modifications include acetylation, acylation, ADP ribosylation, amidation, covalent bonds such as [flavin, nucleotides, nucleotide derivatives, lipids, lipid derivatives, or phosphatidylinositol], cross-linking, cyclization, disulfides Examples include, but are not limited to, bond formation, demethylation, pyroglutamine oxidation, carboxylation, glycosylation, hydroxylation, iodination, methylation, myristoylation, oxidation, phosphorylation, ubiquitination and the like. Furthermore, the polypeptide may be any salt and ester known to those skilled in the art. The polypeptide of the present invention can be produced by known peptide synthesis techniques, and can also be produced by expressing DNA encoding these polypeptides.
尚、本発明において「AD関連傷害により起こる神経細胞死に対して拮抗作用又は抑制作用を有する」とは、上記のADに関連する神経細胞死の少なくとも1つを拮抗又は抑制することを指す。すなわち上記のヒューマニン様ポリペプチドには、これらのADに関連する神経細胞死の少なくともいずれかを抑制する活性を有しているものが含まれる。細胞死の抑制は、完全な抑制ではなくても、有意に抑制されればよい。神経細胞死の抑制活性は、以下の実施例に記載された方法または他に記載の方法(例えば国際公開番号 WO00/14204参照)に従って検定することができる。 In the present invention, “having an antagonizing action or an inhibitory action on nerve cell death caused by AD-related injury” refers to antagonizing or inhibiting at least one of the above-mentioned nerve cell deaths related to AD. That is, the above-mentioned humanin-like polypeptides include those having an activity of suppressing at least one of these neuronal cell deaths related to AD. Even if the suppression of cell death is not complete suppression, it may be suppressed significantly. The inhibitory activity of neuronal cell death can be assayed according to the method described in the following examples or other methods (see, for example, International Publication No. WO00 / 14204).
既に述べたように、これまでの研究からアルツハイマー病において神経細胞の細胞死が起こることが明らかにされている。このため、本発明の薬剤(経鼻投与剤)は、アルツハイマー病における神経変性を保護する薬剤としても用いられることが可能である。また、本発明の薬剤を用いて、アルツハイマー病以外にも、例えば脳虚血による神経細胞の細胞死に起因する疾患を予防することも可能である(T.Kirino,1982,Brain Res.,239:57−69)。その他、痴呆を伴うパーキンソン病(M.H.Polymeropoulos et al.,1997,Science,276:2045−2047)、びまん性レービー小体(Lewy bodies)病(M.G.Spillantini et al.,1998,Proc.Natl.Acad.Sci.USA,95:6469−6473)、ダウン症に伴う痴呆なども、治療や予防の対象となる。また、APPの類縁分子であるAPLP1が、先天性ネフローゼ症候群の原因遺伝子といわれている(Lenkkeri,U.et al.,1998,Hum.Genet.102:192−196)ことから、ネフローゼ症候群などの腎疾患も治療や予防の対象となる。 As already mentioned, previous studies have revealed that neuronal cell death occurs in Alzheimer's disease. For this reason, the agent (nasal administration agent) of the present invention can also be used as an agent for protecting neurodegeneration in Alzheimer's disease. In addition to Alzheimer's disease, it is also possible to prevent diseases caused by neuronal cell death due to cerebral ischemia (T. Kirino, 1982, Brain Res., 239) using the agent of the present invention. 57-69). In addition, Parkinson's disease with dementia (MH Polymeropoulos et al., 1997, Science, 276: 2045-2047), diffuse Lewy body disease (MG Spillantini et al., 1998, Proc. Natl. Acad. Sci. USA, 95: 6469-6473), dementia associated with Down's syndrome and the like are also targets for treatment and prevention. In addition, APLP1, which is a related molecule of APP, is said to be a causative gene of congenital nephrotic syndrome (Lenkkeri, U. et al., 1998, Hum. Genet. 102: 192-196). Renal diseases are also subject to treatment and prevention.
本発明の薬剤はヒューマニン誘導体又は該誘導体と神経向性ペプチドとの融合ペプチドを有効成分として含有し、公知の製剤学的方法により製剤化することが可能である。例えば、薬理学上許容される担体もしくは媒体、具体的には、滅菌水や生理食塩水、イソプロパノール等の適当な有機溶剤と生理食塩水との混合物、植物油、乳化剤、懸濁剤、界面活性剤、安定剤、徐放剤などと適宜組み合わせて製剤化して投与することが考えられる。本発明の薬剤は、点鼻液、吸入液、及び噴霧剤等の経鼻投与経路に適した、当業者に公知の任意の形態であり得る。 The drug of the present invention contains a humanin derivative or a fusion peptide of the derivative and a neurotropic peptide as an active ingredient, and can be formulated by a known pharmaceutical method. For example, a pharmacologically acceptable carrier or medium, specifically, sterile water, physiological saline, a mixture of an appropriate organic solvent such as isopropanol and physiological saline, vegetable oil, emulsifier, suspending agent, surfactant In addition, it is conceivable to formulate and administer it in appropriate combination with a stabilizer, sustained-release agent and the like. The agents of the present invention can be in any form known to those skilled in the art suitable for nasal administration routes such as nasal drops, inhalants, and sprays.
本発明の薬剤は当業者に公知の任意の方法及び手段を用いて、患者へ経鼻(鼻腔内)投与することができる。例えば、本発明薬剤中の有効成分の組織移行性、治療目的、患者の体重や年齢、症状等に応じて、1日1回〜数回、1回の処置当り数十μl程度の薬剤を適当な期間に亘り投与することができる。このような経鼻投与によって、細胞外及び細胞内の両輸送系から成る嗅覚ニューロンの樹状輸送プロセス機構の働きで、血流から中枢神経への物質の進入を制限している血液脳関門を迂回し(Illum et al., 2000; Throne et al., 2004)、薬剤が脳又は中枢神経に達することが出来る。特に、血管活性腸管ペプチド(VIP)、活性依存性神経向性因子(ADNF)又はインシュリン様成長因子(IGF-1)のような神経向性ペプチドは経鼻投与によって、脳又は脳脊髄液に運搬されることが確認されている(Gozes et al., 1996, 2000; Throne et al., 1997; Throne et al., 2004)。 The agents of the present invention can be administered nasally (in the nasal cavity) to a patient using any method and means known to those skilled in the art. For example, depending on the tissue transferability of the active ingredient in the drug of the present invention, therapeutic purpose, patient weight, age, symptoms, etc., a drug of about several tens of μl per treatment once to several times a day is appropriate Can be administered over a period of time. By such nasal administration, the blood-brain barrier that restricts the entry of substances from the bloodstream to the central nerve by the action of the dendritic transport process mechanism of olfactory neurons consisting of both extracellular and intracellular transport systems Bypass (Illum et al., 2000; Throne et al., 2004), drugs can reach the brain or central nervous system. In particular, neurotropic peptides such as vasoactive intestinal peptide (VIP), activity-dependent neurotropic factor (ADNF) or insulin-like growth factor (IGF-1) are delivered to the brain or cerebrospinal fluid by nasal administration (Gozes et al., 1996, 2000; Throne et al., 1997; Throne et al., 2004).
当業者であれば、本発明薬剤中の有効成分の組織移行性、治療目的、患者の体重や年齢、症状等に応じて、薬剤中の有効成分の量を適宜選択することが可能である。例えば、アルツハイマー病治療などにおいて、脳神経細胞の変性保護を目的とした投与を行う場合には、上記化合物が標的とする細胞周囲において神経変性を有効に抑制する濃度となるように投与されることが好ましい。すなわち、有効成分は、例えば、数百pmol 〜数十nmol程度の範囲の濃度とすることができる。 A person skilled in the art can appropriately select the amount of the active ingredient in the drug according to the tissue transferability of the active ingredient in the drug of the present invention, the purpose of treatment, the patient's weight, age, symptoms and the like. For example, in the treatment of Alzheimer's disease or the like, when administration is performed for the purpose of protecting neuronal degeneration, the compound may be administered at a concentration that effectively suppresses neurodegeneration around the target cell. preferable. That is, the active ingredient can have a concentration in the range of several hundred pmol to several tens nmol, for example.
以下、実施例に則して本発明を更に詳しく説明する。尚、本発明の技術的範囲はこれらの記載によって何等制限されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. The technical scope of the present invention is not limited by these descriptions.
実験材料と実験方法
ペプチド
コリベリン(アミノ酸配列:SALLRSIPAPAGASRLLLLTGEIDLP)、ADNF(SALLRSIPA)、及び、AGA-(C8R)HNG17(アミノ酸配列:PAGASRLLLLTGEIDLP)はアサヒテクノガラス会社(船橋、日本)によって合成された。
Experimental materials and methods
Peptide colibellin (amino acid sequence: SALLRSIPAPAGASRLLLLTGEIDLP), ADNF (SALLRSIPA) and AGA- (C8R) HNG17 (amino acid sequence: PAGASRLLLLTGEIDLP) were synthesized by Asahi Techno Glass Company (Funabashi, Japan).
動物及び治療
神経学会による神経科学研究における動物及びヒトの使用に関するポリシー、及び、慶応大学医学部の実験動物の管理及び使用のためにガイドラインに従い実施した。全ての実験は、慶応大学における動物実験委員会により承認されたものである。7週令のCD−1(ICR)はチャールズリバージャパンから購入した。従来文献(Kawasaki et al., 2004; Yamada et al., 2005)に記載されているように、この動物は特殊な病原のない動物施設内で、12時間の昼・夜サイクル(7:00 AM-7:00 PM)で飼育した(温度:23+1℃, 湿度:50+5%)。
The policy on the use of animals and humans in neuroscience research by the Society for Animal and Treatment Neurology and guidelines for the management and use of laboratory animals at Keio University School of Medicine were conducted. All experiments were approved by the Animal Experiment Committee at Keio University. Seven-week-old CD-1 (ICR) was purchased from Charles River Japan. As described in the previous literature (Kawasaki et al., 2004; Yamada et al., 2005), this animal is a 12-hour day / night cycle (7:00 AM) in an animal facility free of special pathogens. -7: 00 PM) (temperature: 23 + 1 ° C, humidity: 50 + 5%).
ADマウスモデルはAβのi.c.v.投与を繰り返すことによって作製した(Yamada et al., 2005)。簡潔に記述べると、8週令のCD-1マウスの左脳室(前後:+0.3mm、側部:1.0mm、水平方向:ブレグマから3.0mm)に、10%ネンブタール麻酔下での定位固定外科装置を用いてカニュール(C315GS-4, plastic One Inc., Roanoke, VA)を植え込んだ。カニュール植え込み10日後に、モデル動物をコントロール群、Aβ投与群、又はAβ投与+コリベリン処理群に割り当て、3μl滅菌蒸留水(DDW)、又は3μlのDDW中のAβ25-35ペプチド(1nmol)をi.c.v.で3週間隔日(10回)で投与し、それと共に、溶剤(5%セフゾール(sefsol) 及び20%イソプロパノール含有滅菌生理食塩水)10μl、又は同溶剤10μlに溶解させたの所定量の合成コリベリンペプチドを、1日1回で3週間経鼻投与した(図4)。行動テストは最後のi.c.v.投与の2日後、又は最後のコリベリン投与の1日後に実施した。 The AD mouse model was generated by repeated i.c.v. administration of Aβ (Yamada et al., 2005). Briefly, stereotaxy was performed in the left ventricle (front and rear: +0.3 mm, side: 1.0 mm, horizontal direction: 3.0 mm from bregma) of 8-week-old CD-1 mice under 10% Nembutal anesthesia. Cannule (C315GS-4, plastic One Inc., Roanoke, VA) was implanted using a fixed surgical device. 10 days after cannula implantation, model animals were assigned to control group, Aβ administration group, or Aβ administration + colivelin treatment group, 3 μl sterile distilled water (DDW), or 3 μl Aβ25-35 peptide (1 nmol) in DDW at icv A given amount of synthetic colibellin peptide administered every 3 weeks (10 times) and dissolved in 10 μl of solvent (sterile saline containing 5% sefsol and 20% isopropanol) or 10 μl of the same solvent Was administered nasally once a day for 3 weeks (FIG. 4). Behavioral tests were performed 2 days after the last i.c.v. administration or 1 day after the last administration of colivelin.
コリン作動性薬剤誘発記憶喪失モデルは文献(Chiba et al., 2005)に記載されたよう作製した。簡潔に述べると、Y-mazeテスト(YM)の24時間及び30分前に、8週令のCD-1マウスに、所定量のコリベリン含有又は非含有溶剤(5%セフゾール(sefsol)及び20%イソプロパノール含有滅菌生理食塩水)10μlを経鼻投与した(図1A及びC)。0.2mlの滅菌蒸留水に溶解させたスコポラミン(1mg/kg)をYMの30分前に皮下投与し、一方、0.2mlの滅菌蒸留水(20%メタノール含有)に溶解させた3-QNB(0.5 mg/kg)はYMの15分前に腹腔内投与して記憶喪失(記憶障害)を誘発させた。尚、対照試験として、コリベリンを0.5mg/mlの濃度で滅菌蒸留水に溶かし、1nmolをYMテストの24時間前及び30分前の2回、夫々、腹腔内投与及び皮下投与した。 A cholinergic drug-induced memory loss model was created as described in the literature (Chiba et al., 2005). Briefly, 8 hours old CD-1 mice were given a predetermined amount of a solvent containing or not containing colivelin (5% sefsol and 20%) 24 hours and 30 minutes before the Y-maze test (YM). 10 μl of isopropanol-containing sterile saline) was administered intranasally (FIGS. 1A and C). 3-QNB dissolved scopolamine (1 mg / kg) dissolved in 0.2 ml sterile distilled water subcutaneously 30 minutes before YM, while dissolved in 0.2 ml sterile distilled water (containing 20% methanol) (0.5 mg / kg) was administered intraperitoneally 15 minutes before YM to induce memory loss (memory impairment). As a control test, colivelin was dissolved in sterile distilled water at a concentration of 0.5 mg / ml, and 1 nmol was intraperitoneally and subcutaneously administered 24 hours before and 30 minutes before the YM test, respectively.
行動テスト
OF及びYMは文献(Kawasumi et al., 2004; Yamada et al., 2005; Chiba et al., 2005)に記載のとおり実施した。OFはマウスを実験環境に慣らせ、そのマウスを一辺100cmの灰色のプラスチック場に3分間自由にさせた。YM用の装置は、互いに120℃の角度で連結した3つの灰色アーム(40cm長、12cm高、底幅3cm、及び頂上幅10cm)である。各マウスはアーム端に置かれ、8分間自由にアームを探検させた。空間ワーキングメモリの指標である自発的変更の割合(Spontaneous Alternation :SA%)は、「テストにおける全選択数から2を引いた数(最初の2回は評価不可能)に対する前の2回の選択と異なるアームを選択(成功選択)する割合」として定義される。例えば、マウスが10回(1-2-3-2-3-1-2-3-2-1)のエントリーを行うと、全8回((10−2)回)の選択中、5回の成功選択があったことになり、SA%は62.5%となる。
Behavior test
OF and YM were performed as described in the literature (Kawasumi et al., 2004; Yamada et al., 2005; Chiba et al., 2005). OF acclimated the mouse to the experimental environment and left the mouse free in a 100 cm side gray plastic field for 3 minutes. The device for YM is three gray arms (40 cm long, 12 cm high,
免疫組織化学
免疫組織化学的分析は文献(Kawasumi et al., 2004; Yamada et al., 2005; Chiba et al., 2005)に記載されたように実施した。行動テストの後に、PBSを心臓経由で灌流させ、5%酢酸含有エタノール(ほとんどの実験)、又は4%PFA(ADNF免疫組織化学の場合)で固定した。脳をパラフィンに包埋し、New-Silane スライドガラス(Muto Pure Chemicals, Tokyo, Japan)上に10μm冠状断面(coronal section)を調製した。次に、試料をメタノール及びPBS中で脱パラフィン・洗浄した。免疫組織化学的検出は、抗ChAT抗体(1:50希釈、Chemicon USA)又は抗ADNF抗体(アフィニティ精製、1:50希釈)で反応させ、ABC法(Vectastain Elite Kit, Vector, CA, USA)で可視化した。50μm間隔(ブレグマの約0.6-0.9 mm前方)を有する5つの内側中隔(medial septum)におけるChAT免疫反応性ニューロンを計数し、各処理群当り3匹(N=3)のマウスにおけるChAT免疫反応性ニューロンの合計数の平均を比較した。ADNF免疫反応はFITC共役抗ウサギIgG二次抗体(Sigma)で可視化した。
Immunohistochemistry Immunohistochemical analysis was performed as described in the literature (Kawasumi et al., 2004; Yamada et al., 2005; Chiba et al., 2005). After behavioral testing, PBS was perfused through the heart and fixed with ethanol containing 5% acetic acid (most experiments) or 4% PFA (for ADNF immunohistochemistry). The brain was embedded in paraffin, and a 10 μm coronal section was prepared on a New-Silane glass slide (Muto Pure Chemicals, Tokyo, Japan). Next, the sample was deparaffinized and washed in methanol and PBS. For immunohistochemical detection, reaction with anti-ChAT antibody (1:50 dilution, Chemicon USA) or anti-ADNF antibody (affinity purification, 1:50 dilution), and ABC method (Vectastain Elite Kit, Vector, CA, USA) Visualized. ChAT immunoreactive neurons in 5 medial septums with 50 μm spacing (approximately 0.6-0.9 mm ahead of bregma) were counted and ChAT immune response in 3 mice (N = 3) per treatment group The average total number of sex neurons was compared. The ADNF immune response was visualized with FITC-conjugated anti-rabbit IgG secondary antibody (Sigma).
イムノブロット分析
イムノブロット分析は文献(Hashimoto et al., 2001a,b; Chiba et al., 2005)に記載されたように実施した。脳試料から溶解緩衝液(50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1 mM EDTA, 1% Trito-X100, Complete protease inhibitor)含有フォスファターゼ阻害剤カクテル(Sigma)で溶解したライセート(50μg/lane)をSDS-PAGEに処し、ゲル上で分画されたタンパクをPVDF膜に移した。膜をリン酸化STAT3抗体(1:200)又は全STAT3抗体(1:1000)と反応させ、ついで、西洋ワサビ(HRP)標識抗ウサギIgG抗体(BioRad Laboratories, Hercules, CA USA)の1:5000希釈と反応させた。抗原バンドをECL法(Amsharm Pharmacia Biotech, Uppsala, Sweden)により可視化した。
Immunoblot analysis Immunoblot analysis was performed as described in the literature (Hashimoto et al., 2001a, b; Chiba et al., 2005). Lysate (50 μg / g) dissolved in a phosphatase inhibitor cocktail (Sigma) containing lysis buffer (50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1 mM EDTA, 1% Trito-X100, Complete protease inhibitor) from the brain sample lane) was subjected to SDS-PAGE, and proteins fractionated on the gel were transferred to a PVDF membrane. Membranes are reacted with phosphorylated STAT3 antibody (1: 200) or total STAT3 antibody (1: 1000), then 1: 5000 dilution of horseradish (HRP) labeled anti-rabbit IgG antibody (BioRad Laboratories, Hercules, CA USA) And reacted. Antigen bands were visualized by ECL method (Amsharm Pharmacia Biotech, Uppsala, Sweden).
統計解析
インビトロ試験を示す図における全ての値は、平均値+SD(標準偏差)である。又、インビボ試験を示す図における全ての値は、平均値+SEM(標準誤差)である。統計分析は、one-way ANOVA により実施され、つづいてp<0.05で有意とされるFisher’s PLSDがなされた。
Statistical analysis All values in the figure showing in vitro tests are mean + SD (standard deviation). Moreover, all the values in the figure which shows an in-vivo test are an average value + SEM (standard error). Statistical analysis was performed by one-way ANOVA followed by Fisher's PLSD, which was significant at p <0.05.
結果:短期間のコリベリン経鼻投与による抗コリン作動性薬剤誘発性記憶障害(記憶喪失)の抑制
ADの認識機能障害の進行によって、中枢神経系(CNS)におけるコリン作動系が機能不全に陥る(Bartus et al., 1982; Coyle et al., 1983)。即ち、スコポラミン、3−キヌクリニジル ベンジレート(3−QNB)及びエチルコリンアジリジウム(AF64A)等の抗コリン作動性薬剤を投与することによって、齧歯類及びヒトで記憶障害が誘発される(Fisher et al., 2004; Krejcova et al., 2004)。
Results: Suppressing anticholinergic drug-induced memory impairment (memory loss) by short-term nasal administration of colivelin
The progression of AD cognitive dysfunction causes the cholinergic system to malfunction in the central nervous system (CNS) (Bartus et al., 1982; Coyle et al., 1983). That is, administration of anticholinergic agents such as scopolamine, 3-quinuclidinyl benzylate (3-QNB) and ethylcholine aziridinium (AF64A) induces memory impairment in rodents and humans (Fisher et al ., 2004; Krejcova et al., 2004).
上記のY-mazeテストを用いて、スコポラミン誘発による空間ワーキングメモリの損傷に対するコリベリン経鼻投与による効果を検討した(図1A)。同テストにおける空間ウォーキングメモリの指標であるSA%は、コントロールマウスで65.6+2.0%であるのに対して、スコポラミン処理マウスでは46.8+2.2%であり、スコポラミン処理によって空間ワーキングメモリに障害が生じたことが示された(Mamiya et al. 2001; Tajima et al., 2005)。一方、コリベリン経鼻投与を行った場合には、図1Bに示されるように、スコポラミン処理により誘発された空間ワーキングメモリ障害が投与量依存的に緩和された(200pmolコリベリン投与:50.9+2.3%、1nmolコリベリン投与:55.0+2.5%、5nmolコリベリン投与:59.2+3.1%)。 Using the Y-maze test described above, the effect of nasal administration of colibellin on spatial working memory damage induced by scopolamine was examined (FIG. 1A). In the same test, SA%, an index of spatial walking memory, was 65.6 + 2.0% in control mice, but 46.8 + 2.2% in scopolamine-treated mice, and scopolamine treatment caused spatial working memory impairment. (Mamiya et al. 2001; Tajima et al., 2005). On the other hand, when nasal administration of colibellin was performed, as shown in FIG. 1B, the spatial working memory disturbance induced by scopolamine treatment was alleviated in a dose-dependent manner (200 pmol colivelin administration: 50.9 + 2.3%, 1 nmol colivelin administration: 55.0 + 2.5%, 5 nmol colibellin administration: 59.2 + 3.1%).
更に、別の薬剤として3-QNBを用いて、同様のテストを実施した(図1C)。その結果、図1Dに示されるように、コリベリン経鼻投与によって、空間ワーキングメモリ障害が投与量依存的に緩和された。比較として、ドネペジル(5 mg/kg)は空間ワーキングメモリ障害を僅かに阻止し得たのみであった。 Furthermore, a similar test was performed using 3-QNB as another drug (FIG. 1C). As a result, as shown in FIG. 1D, the spatial working memory disorder was alleviated in a dose-dependent manner by nasal administration of colibellin. For comparison, donepezil (5 mg / kg) was only able to slightly block spatial working memory failure.
試験した投与量ではAGA-(C8R)HNG17又はADNFを単独で投与しても3-QNB誘発の空間ワーキングメモリ障害に効果を及ぼすことができなかった(図2A,B)。従って、これらが結合した融合ペプチドであるコリベリンの効果は、それぞれのペプチドによる単独の効果によるものではなく、融合ペプチドとしたことによるインビボにおける両方のペプチドの顕著な相乗作用によるものと考えられる。 Administration of AGA- (C8R) HNG17 or ADNF alone at the dose tested did not have an effect on 3-QNB-induced spatial working memory impairment (FIGS. 2A, B). Therefore, it is considered that the effect of colivelin, which is a fusion peptide to which these are bound, is not due to the effect of each peptide alone, but due to the remarkable synergistic action of both peptides in vivo due to the fusion peptide.
結果:神経保護ペプチドの長期間の繰り返し経鼻投与による効果の増強
ADNFを1週間以上に亘り毎日経鼻投与することによって、抗コリン作動性薬剤AF64Aにより誘発される記憶障害に対する神経保護効果が奏効されることが報告されている(Gozes et al., 2000)。従って、図2に示された上記の結果と合せると、この効果は長期の繰り返し投与によってインビボでのADNF濃度が増加した為と思われる。
Results: Enhanced effect of long-term repeated nasal administration of neuroprotective peptides
It has been reported that daily nasal administration of ADNF for more than one week has a neuroprotective effect against memory impairment induced by the anticholinergic drug AF64A (Gozes et al., 2000). Thus, when combined with the above results shown in FIG. 2, this effect appears to be due to increased ADNF concentrations in vivo with long-term repeated administration.
これを検証すべく、1日1回の処理当り1 nmolでAGA-(C8R)HNG17、ADNF及びコリベリンを7日間マウスに投与し、各ペプチドの効果を評価した(図3)。短期間の投与とは対照的に、ADNF単独投与では僅かな効果しか得られなかったものの、AGA-(C8R)HNG17及びコリベリンの投与では3−QNB誘発の空間ワーキングメモリ障害を有効に緩和させることが示された(図3B)。 To verify this, mice were administered AGA- (C8R) HNG17, ADNF and colivelin at 1 nmol per treatment per day for 7 days, and the effect of each peptide was evaluated (FIG. 3). In contrast to short-term administration, administration of AGA- (C8R) HNG17 and colivelin effectively alleviates 3-QNB-induced spatial working memory impairment, although ADNF alone has had little effect. Was shown (FIG. 3B).
結果:長期間の繰り返しコリベリン経鼻投与によるAβ25-35誘発性記憶障害の緩和
Aβを繰り返しi.c.v.投与することによって齧歯類に記憶障害が誘発することが知られている(Flood et al., 1991; Delobette et al., 1997; Yamada et al., 1999; Yamaguchi and Kawashima., 2001; Stepanichev et al., 2003b)。そこで、文献(Yamada et al., 2005; Chiba et al., 2005)に従い、上記のようにインビボにおけるAβ毒性に対するコリベリン経鼻投与による治療効果を検討した。
Results: Relieving Aβ25-35-induced memory impairment by long-term repeated colivelin nasal administration
It is known that repeated icv administration of Aβ induces memory impairment in rodents (Flood et al., 1991; Delobette et al., 1997; Yamada et al., 1999; Yamaguchi and Kawashima., 2001; Stepanichev et al., 2003b). Therefore, according to the literature (Yamada et al., 2005; Chiba et al., 2005), the therapeutic effect by nasal administration of colibellin on Aβ toxicity in vivo was examined as described above.
その結果、コントロールマウスでSA%が66.1+2.1%であるのに対して、Aβ25-35投与マウスでは53.3+1.7%でありAβを繰り返し投与することによって空間ワーキングメモリに障害が誘発されることが示された。一方で、Aβ25-35投与に加えてコリベリン経鼻投与(1 nmol)した場合にはSA%が68.0+2.4%、Aβ25-35投与に加えてADNFを経鼻投与した場合にはSA%が62.4+3.0%となり、コリベリン及びADNFの経鼻投与はAβ25-35誘発性記憶障害に対して顕著な治療効果があること、更に、コリベリンはADNFよりも効果が優れていることが示された(図4B)。 As a result, SA% in control mice was 66.1 + 2.1%, whereas in mice treated with Aβ25-35, it was 53.3 + 1.7%, and repeated administration of Aβ can induce damage to spatial working memory. Indicated. On the other hand, SA% was 68.0 + 2.4% when nasal administration (1 nmol) in addition to Aβ25-35 was administered, and SA% was 62.4 when ADNF was administered nasally in addition to Aβ25-35. + 3.0%, indicating that nasal administration of colibellin and ADNF has a significant therapeutic effect on Aβ25-35-induced memory impairment, and that colivelin is more effective than ADNF (Fig. 4B).
結果:Aβ25-35に誘発されるChAT陽性ニューロン数減少のコリベリンによる阻止
Aβのi.c.v.投与によりマウスのニューロンの内側中隔におけるコリンアセチルトランスフェラーゼ(ChAT)の発現レベルが減少すること、及び、空間ワーキングメモリの障害の程度と内側中隔におけるChAT免疫反応性ニューロン数との間に正の相関関係があることが報告されている(Tajima et al., 2005; Yamada et al., 2005)。
Results: Prevention of Aβ25-35-induced decrease in the number of ChAT-positive neurons by colivelin
Aβ icv administration reduces choline acetyltransferase (ChAT) expression levels in the inner septum of mouse neurons, and between the degree of spatial working memory impairment and the number of ChAT immunoreactive neurons in the inner septum Have been reported to have a positive correlation (Tajima et al., 2005; Yamada et al., 2005).
そこで本発明者は、上記の免疫組織化学分析によってインビボにおけるコリベリンの神経保護効果を検討した。図5に示された結果から、Aβ25-35を注入されたマウスにおける内側中隔におけるChAT免疫反応性ニューロン数(232.3+16.0)がコントロール(555.6+57.4)と比較して顕著に減少していること、及び、コリベリン処置マウスにおいてはコントロールとほぼ同数(514.0+21.1)のChAT免疫反応性ニューロン数が見られることが観察され、Aβ25-35の繰り返し投与によるChAT免疫反応性ニューロン数の減少が、コリベリンの経鼻投与によって顕著に阻止されることが判明した。 Therefore, the present inventor examined the neuroprotective effect of colivelin in vivo by the immunohistochemical analysis described above. From the results shown in FIG. 5, the number of ChAT immunoreactive neurons in the medial septum (232.3 + 16.0) in mice injected with Aβ25-35 is significantly reduced compared to the control (555.6 + 57.4) In addition, it was observed that the number of ChAT immunoreactive neurons was almost the same as the control (514.0 + 21.1) in the mice treated with colivelin, and the decrease in the number of ChAT immunoreactive neurons by repeated administration of Aβ25-35, It was found that nasal administration of colivelin was significantly inhibited.
結果:コリベリン経鼻投与の嗅球を介するCNSへの輸送
経鼻投与されたコリベリンのCNSへの輸送経路を検討すべく、5 nmolコリベリンを15分間隔で5回経鼻投与したマウスの脳切片におけるコリベリンを上記の方法で免疫染色した。即ち、嗅球を含むマウス脳切片を4%パラホルムアルデヒド(PFA)で固定し、コリベリンを認識する抗ADNF抗体で免疫染色すると、コリベリン処理したマウスの嗅球の腹方部(ventral region)でコリベリン免疫染色が観察された(図6B、D)。一方、コントロールマウスではコリベリン免疫染色は観察されなかった(図6A、C)。従って、これらのことから、経鼻投与したコリベリンは嗅球を介してCNSに輸送されることが強く示唆された。又、経鼻投与された化合物は細胞外及び細胞内の両輸送経路でCNSに入るという従来の知見と一致して、コリベリン免疫染色が嗅球の神経軸索及び細胞外マトリックスの双方に検出された。又、E及びFは、夫々、コントロールマウス及びコリベリン処理マウスを二次抗体のみで染色したネガティブコントロールである。
Results: Transport to the CNS via the olfactory bulb of colibellin nasal administration In order to study the transport route of nasally administered corivelin to the CNS, in the brain section of a mouse administered 5 times nasally 5 nmol colivelin at 15 minute intervals Coliberin was immunostained as described above. That is, when a mouse brain section containing the olfactory bulb is fixed with 4% paraformaldehyde (PFA) and immunostained with an anti-ADNF antibody that recognizes koliberin, the corbelin immunostaining is performed in the ventral region of the olfactory bulb of the mouse treated with koliberin. Was observed (FIG. 6B, D). On the other hand, no colivelin immunostaining was observed in the control mice (FIGS. 6A and 6C). Therefore, these results strongly suggested that intranasally administered colivelin is transported to the CNS via the olfactory bulb. Consistent with previous findings that nasally administered compounds enter the CNS via both extracellular and intracellular transport pathways, colivelin immunostaining was detected in both the olfactory bulb nerve axon and extracellular matrix. . E and F are negative controls obtained by staining a control mouse and a colibellin-treated mouse with only the secondary antibody, respectively.
結果: インビボにおけるJAK2/STAT3軸を介するコリベリンの作用
細胞内のヒューマニン(HN)シグナル経路がJAK2及びSTAT3を介するものであることがインビトロにおいて判明している(Hashimoto et al., 2005)。又、JAKキナーゼによるチロシン705(Tyr705)のリン酸化によりSTAT3が活性化されることが知られている。インビボにおいても同様のHN誘導性生存促進(prosurvival)経路が活性化されてコリベリンが作用するか否かを確認すべく、コリベリンの経鼻投与によってSTAT3がインビボでリン酸化されるか否か検討した。図1A(短時間投与プロトコール)に示されるように、AGA-(C8R)HNG17、ADNF又はコリベリンをCD−1マウスに2回経鼻投与した。脳試料をYM直後に調製した。上記の免疫ブロット分析により、コリベリン処理マウスの嗅球におけるリン酸化STAT3(Tyr705)が上昇した一方で、STARA3の全量には変化なかった。これらのことから、STAT3はコリベリン経鼻投与によりリン酸化されたことが示唆された(図7)。対照的に、AGA-(C8R)HNG17の投与によってもSTAT3リン酸化レベルは上昇しなかったことから、このSTAT3リン酸化レベルの上昇は、コリベリン介在の記憶障害の緩和(改善)に必須であることが示唆された。
Results: Effects of colivelin via the JAK2 / STAT3 axis in vivo It has been found in vitro that the intracellular humanin (HN) signaling pathway is via JAK2 and STAT3 (Hashimoto et al., 2005 ). It is also known that STAT3 is activated by phosphorylation of tyrosine 705 (Tyr705) by JAK kinase. In order to confirm whether the same HN-induced prosurvival pathway is activated in vivo and that corivelin acts, we investigated whether STAT3 is phosphorylated in vivo by nasal administration of corivelin. . As shown in FIG. 1A (short-time administration protocol), AGA- (C8R) HNG17, ADNF or colivelin was administered nasally twice to CD-1 mice. Brain samples were prepared immediately after YM. The immunoblot analysis described above increased phosphorylated STAT3 (Tyr705) in the olfactory bulb of colivelin-treated mice, but did not change the total amount of STARA3. These results suggested that STAT3 was phosphorylated by nasal administration of colibellin (FIG. 7). In contrast, administration of AGA- (C8R) HNG17 did not increase STAT3 phosphorylation levels, and this increase in STAT3 phosphorylation levels is essential for alleviating (improving) memory impairment mediated by colivelin. Was suggested.
NH刺激によりSTAT3がリン酸化されるが、このリン酸化にかかわる主なキナーゼはJAK2である。コリベリン投与とSTAT3のリン酸化との関連を検討すべく、図1Aに示した実験プロトコールに準じて、Y-mazeテスト(YM)の24時間前に、JAK2阻害剤であるAG490処理(5 mg/kg)し、スコポラミン誘発記憶障害のコリベリンによる抑制に対する影響を試験した。図8に示されるように、AG490を皮下注射することによって、スコポラミン皮下投与により誘発されるSA%減少のコリベリンによる抑制が阻止された。一方で、AG490はコントロールマウス又はスコポラミン処理マウスのSA%には何ら影響を与えなかった。対照的に、AG490の類似化合物であるAG43(JAK2阻害活性がない)処理(5 mg/kg)では、コントロールマウス、スコポラミン処理マウス又はコリベリン経鼻投与マウスのいずれのSA%に対しても影響を及ぼさなかった(図8B)。以上の事実から、スコポラミン誘発性記憶障害のコリベリンによる抑制は、インビボにおいてもJAK2/STAT3軸を介するものであると結論される。 STAT3 is phosphorylated by NH stimulation, and the main kinase involved in this phosphorylation is JAK2. In order to examine the relationship between the administration of colivelin and the phosphorylation of STAT3, according to the experimental protocol shown in FIG. 1A, 24 hours before the Y-maze test (YM), AGAK treatment (5 mg / mg) was performed. kg) and tested the effect of scopolamine-induced memory impairment on suppression by colivelin. As shown in FIG. 8, the subcutaneous injection of AG490 prevented the suppression of SA% reduction induced by subcutaneous administration of scopolamine by colibellin. On the other hand, AG490 had no effect on SA% of control mice or scopolamine treated mice. In contrast, AG43 (no JAK2 inhibitory activity) treatment (5 mg / kg), which is an analog of AG490, has an effect on the SA% of control mice, scopolamine-treated mice, or nasally administered mice. (FIG. 8B). From the above facts, it can be concluded that the suppression of scopolamine-induced memory impairment by colivelin is also via the JAK2 / STAT3 axis in vivo.
結果:コリベリンの投与方法による比較
同量のコリベリンを鼻腔内投与、腹腔内投与及び皮下投与した場合に、どの方法が優れているかを検討するために、スコポラミン誘発記憶喪失モデルを用いて、1nmolのコリベリンを鼻腔内、腹腔内及び皮下に投与してその効果を比較検討した。その結果、図9に示されるように、鼻腔内投与では有意にスコポラミン誘発性記憶障害が改善されたのに対して、他の2つの投与方法では改善されなかった、これらのことから、鼻腔内投与は他の2つの投与方法と比較して、予想外の格段の有効性を有するものであることが実証された。
Results: Comparison with the administration method of corivelin To investigate which method is superior when the same amount of corivelin is administered intranasally, intraperitoneally and subcutaneously, a scopolamine-induced memory loss model was used. Coliberin was administered intranasally, intraperitoneally and subcutaneously to compare its effects. As a result, as shown in FIG. 9, scopolamine-induced memory impairment was significantly improved by intranasal administration, but not by the other two administration methods. It has been demonstrated that the administration has unexpectedly significant effectiveness compared to the other two administration methods.
本発明のヒューマニン誘導体又は該誘導体と神経向性ペプチドとの融合ペプチドを有効成分として含有する経鼻投与剤を使用することによって、非侵襲的で有効性の高いアルツハイマー病予防・治療用の薬剤及び予防・治療方法が提供され、アルツハイマー病治療を長期間に亘り安全に実施することが可能となった。 By using a nasal administration agent containing the humanin derivative of the present invention or a fusion peptide of the derivative and a neurotropic peptide as an active ingredient, a noninvasive and highly effective drug for the prevention and treatment of Alzheimer's disease and Prevention and treatment methods have been provided, and it has become possible to safely carry out Alzheimer's disease treatment for a long period of time.
本明細書中に引用される文献に記載された内容は、本明細書の一部として本明細書の開示内容を構成するものである。 The contents described in the documents cited in the present specification constitute the disclosure of the present specification as a part of the present specification.
[引用文献]
Bartus RT, Dean III RL, Beer B, and Lippa AS (1982) The Cholinergic hypothesis of geriatric memory dysfunction. Science 217:408-417.
Brenneman DE, Gozes I (1996) A femtomolar-acting neuroprotective peptide. J Clin Invest 97:2299-2307.
Brenneman DE, Hauser J, Neale E, Rubinraut S, Fridkin M, Davidson A, Gozes I (1998) Activity-dependent neurotrophic factor: structure-activity relationships of femtomolar-acting peptides. J Pharmacol Exp Ther 285:619-627.
Brenneman DE, Spong CY, Hauser JM, Abebe D, Pinhasov A, Golian T, Gozes I (2004) Protective peptides that are orally active and mechanistically nonchiral. J Pharmacol Exp Ther 309: 1190-1197.
Chiba T, Yamada M, Hashimoto Y, Sato M, Sasabe J, Kita Y, Terashita K, Aiso S, Nishimoto I, Matsuoka M (2005) Development of a femtomolar-acting humanin
derivative named colivelin by attaching activity-dependent neurotrophic factor to its N terminus: characterization of colivelin-mediated neuroprotection against Alzheimer's disease-relevant insults in vitro and in vivo. J Neurosci. 25:10252-61.
Chiba T, Hashimoto Y, Tajima H, Yamada M, Kato R, Niikura T, Terashita K, Schulman H, Aiso S, Kita Y, Matsuoka M, Nishimoto I (2004) Neuroprotective effect of activity-dependent neurotrophic factor against toxicity from familial amyotrophic lateral sclerosis-linked mutant SOD1 in vitro and in vivo. J Neurosci Res 78: 542-552.
Chiba T, Yamada M, Sasabe J, Terashita K, Aiso S, Matsuoka M, Nishimoto I (2006) Colivelin prolongs survival of an ALS model mouse. Biochem Biophys Res Commun 343: 793-798.
Coyle JT, Price DL, and DeLong MR (1983) Alzheimer’s Disease: A disorder of cortical cholinergic innervation. Science 216: 1184-1190.
Delobette S, Privat A, and Maurice T (1997) In vitro aggregation facilities b-amyloid peptide-(25-35)-induced amnesia in the rat. Eur. J. Pharmacol 319: 1-4.
Ebert U, Kirch W (1998) Scopolamine model of dementia: electroencephalogram findings and cognitive performance. Eur J Clin Invest 28: 944-949. Review.
Fisher A, Brandeis R, Pittel Z, Karton I, Sapir M, Dachir S, Levy A and Heldman E (1989) (+)-cis-2-Methyl-spiro(1,3-oxathiolane-5,3') quinuclidine (AF102B): A new M1 agonist attenuates cognitive dysfunctions in AF64A-treated rats. Neurosci Lett 102: 325-331.
Flood JF, Morley JE, and Roberts E (1991) Amnestic effects in mice of four synthetic peptides homologous to amyloid beta protein from patients with Alzheimer disease. Proc Natl Acad Sci USA 88: 3363-3366.
Fisher A, Brandeis R, Pittel Z, Karton I, Sapir M, Dachir S, Levy A and Heldman E (1989) (+)-cis-2-Methyl-spiro(1,3-oxathiolane-5,3') quinuclidine (AF102B): A new M1 agonist attenuates cognitive dysfunctions in AF64A-treated rats. Neurosci Lett 102: 325-331.
Frautschy SA, Baird A, Cole GM (1991) Effects of injected Alzheimer beta-amyloid cores in rat brain. Proc Natl Acad Sci USA 88: 8362-8366.
Glazner GW, Boland A, Dresse AE, Brenneman DE, Gozes I, Mattson MP (1999) Activity-dependent neurotrophic factor peptide (ADNF9) protects neurons against oxidative stress-induced death. J Neurochem 73:2341-2347.
Gozes I, Bardea A, Reshef A, Zamostiano R, Zhukovsky S, Rubinraut S, Fridkin M, Brenneman DE (1996) Neuroprotective strategy for Alzheimer disease: intranasal administration of a fatty neuropeptide. Proc Natl Acad Sci USA 93: 427-432.
Gozes I, Giladi E, Pinhasov A, Bardea A, Brenneman DE (2000) Activity-dependent neurotrophic factor: intranasal administration of femtomolar-acting peptides improve performance in a water maze. J Pharmacol Exp Ther 293: 1091-1098.
Guo B, Zhai D, Cabezas E, Welsh K, Nouraini S, Satterthwait AC, Reed JC (2003) Humanin peptide suppresses apoptosis by interfering with Bax activation. Nature 423: 456-461.
Guo Q, Furukawa K, Sopher BL, Pham DG, Xie J, Robinson N, Martin GM, Mattson MP (1996) Alzheimer's PS-1 mutation perturbs calcium homeostasis and sensitizes PC12 cells to death induced by amyloid beta-peptide. Neuroreport 8: 379-383.
Guo Q, Fu W, Sopher BL, Miller MW, Ware CB, Martin GM, Mattson MP (1999) Increased vulnerability of hippocampal neurons to excitotoxic necrosis in presenilin-1 mutant knock-in mice. Nat Med 5: 101-106.
Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297: 353-356
Hashimoto Y, Niikura T, Ito Y, Nishimoto I (2000) Multiple mechanisms underlie neurotoxicity by different types of Alzheimer's disease mutations of amyloid precursor protein. J Biol Chem 275: 34541-34551.
Hashimoto Y, Niikura T, Tajima H, Yasukawa T, Sudo H, Ito Y, Kita Y, Kawasumi M, Kouyama K, Doyu M, Sobue G, Koide T, Tsuji S, Lang J, Kurokawa K, Nishimoto I (2001a) A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer's disease genes and Ab. Proc Natl Acad Sci USA 98:6336-6341.
Hashimoto Y, Niikura T, Ito Y, Sudo H, Hata M, Arakawa E, Abe Y, Kita Y, Nishimoto I (2001b) Detailed characterization of neuroprotection by a rescue factor humanin against various Alzheimer's disease-relevant insults. J Neurosci 21:9235-9245.
Hashimoto Y, Suzuki H, Aiso S, Niikura T, Nishimoto I, Matsuoka M (2005) Involvement of tyrosine kinases and STAT3 in Humanin-mediated neuroprotection. Life Sci 77: 3092-3104.
Hashimoto Y, Niikura T, Ito Y, Nishimoto I (2000) Multiple mechanisms underlie neurotoxicity by different types of Alzheimer's disease mutations of amyloid precursor protein. J Biol Chem 275: 34541-34551.
Hashimoto Y, Tsuji O, Niikura T, Yamagishi Y, Ishizaka M, Kawasumi M, Chiba T, Kanekura K, Yamada M, Tsukamoto E, Kouyama K, Terashita K, Aiso S, Lin A, Nishimoto I (2003) Involvement of c-Jun N-terminal kinase in amyloid precursor protein-mediated neuronal cell death. J Neurochem 84: 864-877.
Hashimoto Y, Suzuki S, Aiso S, Niikura T, Nishimoto I, Matsuoka M (2005) Involvement of tyrosine kinases and STAT3 in Humanin-mediated neuroprotection. Life Sci in press.
Huang P, Miao S, Fan H, Sheng Q, Yan Y, Wang L, Koide SS (2000) Expression and characterization of the human YWK-II gene, encoding a sperm membrane protein related to the alzheimer betaA4-amyloid precursorprotein. Mol Hum Reprod 6: 1069-1078.
Illum L (2000) Transport of drugs from the nasal cavity to the central nervous system. Eur J Pharm Sci 11: 1-18. Review.
Kawasumi M, Hashimoto Y, Chiba T, Kanekura K, Yamagishi Y, Ishizaka M, Tajima H, Niikura T, Nishimoto I (2002) Molecular mechanisms for neuronal cell death by Alzheimer's amyloid precursor protein-relevant insults. Neurosignals. 11: 236-50. Review.
Kawasumi M, Chiba T, Yamada M, Miyamae-Kaneko M, Matsuoka M, Nakahara J, Tomita T, Iwatsubo T, Kato S, Aiso S, Nishimoto I, Kouyama K (2004) Targeted introduction of V642I mutation in amyloid precursor protein gene causes functional abnormality resembling early stage of Alzheimer's disease in aged mice. Eur J Neurosci 19: 2826-2838.
Kowall NW, McKee AC, Yankner BA, Beal MF (1992) In vivo neurotoxicity of beta-amyloid [beta(1-40)] and the beta(25-35) fragment. Neurobiol Aging 13: 537-542.
Krejcova G, Patocka J, Slaninova J (2004) Effect of humanin analogues on experimentally induced impairment of spatial memory in rats. J Pept Sci 10: 636-639.
Luciano F, Zhai D, Zhu X, Bailly-Maitre B, Ricci JE, Satterthwait AC, Reed JC (2005)
Cytoprotective peptide humanin binds and inhibits proapoptotic Bcl-2/Bax family proteinBimEL. J Biol Chem 280: 15825-15835.
Mamiya T, Ukai M (2001) [Gly(14)]-Humanin improved the learning and memory impairment induced by scopolamine in vivo. Br J Pharmacol 134: 1597-1599.
Mattson MP (2004) Pathways towards and away from Alzheimer's disease. Nature 430: 631-639. Review.
Miguel-Hidalgo JJ, Cacabelos R (1998) Beta-amyloid(1-40)-induced neurodegeneration in the rat hippocampal neurons of the CA1 subfield. Acta Neuropathol 95: 455-465.
Minami M, Inoue M, Wei S, Takeda K, Matsumoto M, Kishimoto T, Akira S (1996) STAT3 activation is a critical step in gp130-mediated terminal differentiation and growth arrest of a myeloid cell line. Proc Natl Acad Sci U S A. 93(9), 3963-6.
Niikura T, Hashimoto Y, Okamoto T, Abe Y, Yasukawa T, Kawasumi M, Hiraki T, Kita Y, Terashita K, Kouyama K, Nishimoto I (2001) Insulin-like growth factor I (IGF-I) protects cells from apoptosis by Alzheimer's V642I mutant amyloid precursor protein through IGF-I receptor in an IGF-binding protein-sensitive manner. J Neurosci 21: 1902-1910.
Niikura T, Hashimoto Y, Tajima H, Nishimoto I (2002) Death and survival of neuronal cells exposed to Alzheimer's insults. J Neurosci Res 70: 380-391. Review.
Niikura T, Chiba T, Aiso S, Matsuoka M, Nishimoto I (2004) Humanin: after the discovery. Mol Neurobiol 30: 327-340.
Nishimoto I, Matsuoka M, Niikura T (2004) Unravelling the role of Humanin. Trends Mol Med 10: 102-105.
Nitta A, Fukuta T, Hasegawa T, and Nabeshima T. Continuous infusion b-amyloid protein into the rat cerebral ventricle induces learning impairment and neuronal and morphological degeneration. Jpn J Pharmacol, 1997, 73: 51-57.
Stepanichev MY, Zdobnova IM, Yakovlev AA, Onufriev MV, Lazareva NA, Zarubenko II, Gulyaeva NV (2003a) Effects of tumor necrosis factor-alpha central administration on hippocampal damage in rat induced by amyloid beta-peptide (25-35). J Neurosci Res 71: 110-120.
Stepanichev MY, Moiseeva YV, Lazareva NA, Onufriev MV, and Gulyaeva NV (2003b) Single intracerebroventricular administration of amyloid-beta (25-35) peptide induces impairment in short-term rather than long-term memory in rats. Brain Res Bull 61: 197-205.
Sudo H, Hashimoto Y, Niikura T, Shao Z, Yasukawa T, Ito Y, Yamada M, Hata M, Hiraki T, Kawasumi M, Kouyama K, Nishimoto I (2001) Secreted Abeta does not mediate neurotoxicity by antibody-stimulated amyloid precursor protein. Biochem Biophys Res Commun 282: 548-556.
Tajima H, Kawasumi M, Chiba T, Yamada M, Yamashita K, Nawa M, Kita Y, Kouyama K, Aiso S, Matsuoka M, Niikura T, Nishimoto I (2005) A humanin derivative, S14G-HN, prevents amyloid-beta-induced memory impairment in mice. J Neurosci Res 79: 714-723.
Thorne RG, Frey WH 2nd.(2001) Delivery of neurotrophic factors to the central nervous system: pharmacokinetic considerations. Clin Pharmacokinet. 40:907-46.
Thorne RG, Pronk GJ, Padmanabhan V, Frey WH 2nd (2004) Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience 127: 481-496.
Yamada K, Tanaka T, Mamiya T, Shiotani T, Kameyama T, and Nabeshima T (1999) Improvement by nefiracetam of b-amyloid-(1-42)-induced learning and memory impairments in rats. Br J Pharmacol 126: 235-244.
Yamada M, Chiba T, Sasabe J, Nawa M, Tajima H, Niikura T, Terashita K, Aiso S, Kita Y, Matsuoka M, Nishimoto I (2005) Implanted cannula-mediated repetitive administration of Abeta25-35 into the mouse cerebral ventricle effectively impairs spatial working memory. Behav Brain Res 164: 139-146.
Yamaguchi Y, and Kawashima S (2001) Effects of amyloid-b-(25-35) on passive avoidance, radial-arm maze learning and choline acetyltransferase activity in the rat. Eur J Pharmacol 412: 265-272.
[Cited document]
Bartus RT, Dean III RL, Beer B, and Lippa AS (1982) The Cholinergic hypothesis of geriatric memory dysfunction.Science 217: 408-417.
Brenneman DE, Gozes I (1996) A femtomolar-acting neuroprotective peptide. J Clin Invest 97: 2299-2307.
Brenneman DE, Hauser J, Neale E, Rubinraut S, Fridkin M, Davidson A, Gozes I (1998) Activity-dependent neurotrophic factor: structure-activity relationships of femtomolar-acting peptides.J Pharmacol Exp Ther 285: 619-627.
Brenneman DE, Spong CY, Hauser JM, Abebe D, Pinhasov A, Golian T, Gozes I (2004) Protective peptides that are orally active and mechanistically nonchiral.J Pharmacol Exp Ther 309: 1190-1197.
Chiba T, Yamada M, Hashimoto Y, Sato M, Sasabe J, Kita Y, Terashita K, Aiso S, Nishimoto I, Matsuoka M (2005) Development of a femtomolar-acting humanin
derivative named colivelin by attaching activity-dependent neurotrophic factor to its N terminus: characterization of colivelin-mediated neuroprotection against Alzheimer's disease-relevant insults in vitro and in vivo. J Neurosci. 25: 10252-61.
Chiba T, Hashimoto Y, Tajima H, Yamada M, Kato R, Niikura T, Terashita K, Schulman H, Aiso S, Kita Y, Matsuoka M, Nishimoto I (2004) Neuroprotective effect of activity-dependent neurotrophic factor against toxicity from familial amyotrophic lateral sclerosis-linked mutant SOD1 in vitro and in vivo. J Neurosci Res 78: 542-552.
Chiba T, Yamada M, Sasabe J, Terashita K, Aiso S, Matsuoka M, Nishimoto I (2006) Colivelin prolongs survival of an ALS model mouse. Biochem Biophys Res Commun 343: 793-798.
Coyle JT, Price DL, and DeLong MR (1983) Alzheimer's Disease: A disorder of cortical cholinergic innervation. Science 216: 1184-1190.
Delobette S, Privat A, and Maurice T (1997) In vitro aggregation facilities b-amyloid peptide- (25-35) -induced amnesia in the rat.Eur. J. Pharmacol 319: 1-4.
Ebert U, Kirch W (1998) Scopolamine model of dementia: electroencephalogram findings and cognitive performance. Eur J Clin Invest 28: 944-949. Review.
Fisher A, Brandeis R, Pittel Z, Karton I, Sapir M, Dachir S, Levy A and Heldman E (1989) (+)-cis-2-Methyl-spiro (1,3-oxathiolane-5,3 ') quinuclidine (AF102B): A new M1 agonist attenuates cognitive dysfunctions in AF64A-treated rats.Neurosci Lett 102: 325-331.
Flood JF, Morley JE, and Roberts E (1991) Amnestic effects in mice of four synthetic peptides homologous to amyloid beta protein from patients with Alzheimer disease.Proc Natl Acad Sci USA 88: 3363-3366.
Fisher A, Brandeis R, Pittel Z, Karton I, Sapir M, Dachir S, Levy A and Heldman E (1989) (+)-cis-2-Methyl-spiro (1,3-oxathiolane-5,3 ') quinuclidine (AF102B): A new M1 agonist attenuates cognitive dysfunctions in AF64A-treated rats.Neurosci Lett 102: 325-331.
Frautschy SA, Baird A, Cole GM (1991) Effects of injected Alzheimer beta-amyloid cores in rat brain.Proc Natl Acad Sci USA 88: 8362-8366.
Glazner GW, Boland A, Dresse AE, Brenneman DE, Gozes I, Mattson MP (1999) Activity-dependent neurotrophic factor peptide (ADNF9) protects neurons against oxidative stress-induced death.J Neurochem 73: 2341-2347.
Gozes I, Bardea A, Reshef A, Zamostiano R, Zhukovsky S, Rubinraut S, Fridkin M, Brenneman DE (1996) Neuroprotective strategy for Alzheimer disease: intranasal administration of a fatty neuropeptide.Proc Natl Acad Sci USA 93: 427-432.
Gozes I, Giladi E, Pinhasov A, Bardea A, Brenneman DE (2000) Activity-dependent neurotrophic factor: intranasal administration of femtomolar-acting peptides improve performance in a water maze.J Pharmacol Exp Ther 293: 1091-1098.
Guo B, Zhai D, Cabezas E, Welsh K, Nouraini S, Satterthwait AC, Reed JC (2003) Humanin peptide suppresses apoptosis by interfering with Bax activation.Nature 423: 456-461.
Guo Q, Furukawa K, Sopher BL, Pham DG, Xie J, Robinson N, Martin GM, Mattson MP (1996) Alzheimer's PS-1 mutation perturbs calcium homeostasis and sensitizes PC12 cells to death induced by amyloid beta-peptide. Neuroreport 8: 379-383.
Guo Q, Fu W, Sopher BL, Miller MW, Ware CB, Martin GM, Mattson MP (1999) Increased vulnerability of hippocampal neurons to excitotoxic necrosis in presenilin-1 mutant knock-in mice. Nat Med 5: 101-106.
Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics.Science 297: 353-356
Hashimoto Y, Niikura T, Ito Y, Nishimoto I (2000) Multiple mechanisms underlie neurotoxicity by different types of Alzheimer's disease mutations of amyloid precursor protein. J Biol Chem 275: 34541-34551.
Hashimoto Y, Niikura T, Tajima H, Yasukawa T, Sudo H, Ito Y, Kita Y, Kawasumi M, Kouyama K, Doyu M, Sobue G, Koide T, Tsuji S, Lang J, Kurokawa K, Nishimoto I (2001a) A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer's disease genes and Ab.Proc Natl Acad Sci USA 98: 6336-6341.
Hashimoto Y, Niikura T, Ito Y, Sudo H, Hata M, Arakawa E, Abe Y, Kita Y, Nishimoto I (2001b) Detailed characterization of neuroprotection by a rescue factor humanin against various Alzheimer's disease-relevant insults.J Neurosci 21: 9235-9245.
Hashimoto Y, Suzuki H, Aiso S, Niikura T, Nishimoto I, Matsuoka M (2005) Involvement of tyrosine kinases and STAT3 in Humanin-mediated neuroprotection. Life Sci 77: 3092-3104.
Hashimoto Y, Niikura T, Ito Y, Nishimoto I (2000) Multiple mechanisms underlie neurotoxicity by different types of Alzheimer's disease mutations of amyloid precursor protein. J Biol Chem 275: 34541-34551.
Hashimoto Y, Tsuji O, Niikura T, Yamagishi Y, Ishizaka M, Kawasumi M, Chiba T, Kanekura K, Yamada M, Tsukamoto E, Kouyama K, Terashita K, Aiso S, Lin A, Nishimoto I (2003) Involvement of c -Jun N-terminal kinase in amyloid precursor protein-mediated neuronal cell death. J Neurochem 84: 864-877.
Hashimoto Y, Suzuki S, Aiso S, Niikura T, Nishimoto I, Matsuoka M (2005) Involvement of tyrosine kinases and STAT3 in Humanin-mediated neuroprotection.Life Sci in press.
Huang P, Miao S, Fan H, Sheng Q, Yan Y, Wang L, Koide SS (2000) Expression and characterization of the human YWK-II gene, encoding a sperm membrane protein related to the alzheimer betaA4-amyloid precursorprotein. Mol Hum Reprod 6: 1069-1078.
Illum L (2000) Transport of drugs from the nasal cavity to the central nervous system. Eur J Pharm Sci 11: 1-18. Review.
Kawasumi M, Hashimoto Y, Chiba T, Kanekura K, Yamagishi Y, Ishizaka M, Tajima H, Niikura T, Nishimoto I (2002) Molecular mechanisms for neuronal cell death by Alzheimer's amyloid precursor protein-relevant insults. Neurosignals. 11: 236- 50. Review.
Kawasumi M, Chiba T, Yamada M, Miyamae-Kaneko M, Matsuoka M, Nakahara J, Tomita T, Iwatsubo T, Kato S, Aiso S, Nishimoto I, Kouyama K (2004) Targeted introduction of V642I mutation in amyloid precursor protein gene causes functional abnormality resembling early stage of Alzheimer's disease in aged mice. Eur J Neurosci 19: 2826-2838.
Kowall NW, McKee AC, Yankner BA, Beal MF (1992) In vivo neurotoxicity of beta-amyloid [beta (1-40)] and the beta (25-35) fragment. Neurobiol Aging 13: 537-542.
Krejcova G, Patocka J, Slaninova J (2004) Effect of humanin analogues on experimentally induced impairment of spatial memory in rats.J Pept Sci 10: 636-639.
Luciano F, Zhai D, Zhu X, Bailly-Maitre B, Ricci JE, Satterthwait AC, Reed JC (2005)
Cytoprotective peptide humanin binds and inhibits proapoptotic Bcl-2 / Bax family protein BimEL.J Biol Chem 280: 15825-15835.
Mamiya T, Ukai M (2001) [Gly (14)]-Humanin improved the learning and memory impairment induced by scopolamine in vivo. Br J Pharmacol 134: 1597-1599.
Mattson MP (2004) Pathways towards and away from Alzheimer's disease.Nature 430: 631-639. Review.
Miguel-Hidalgo JJ, Cacabelos R (1998) Beta-amyloid (1-40) -induced neurodegeneration in the rat hippocampal neurons of the CA1 subfield. Acta Neuropathol 95: 455-465.
Minami M, Inoue M, Wei S, Takeda K, Matsumoto M, Kishimoto T, Akira S (1996) STAT3 activation is a critical step in gp130-mediated terminal differentiation and growth arrest of a myeloid cell line.Proc Natl Acad Sci US A 93 (9), 3963-6.
Niikura T, Hashimoto Y, Okamoto T, Abe Y, Yasukawa T, Kawasumi M, Hiraki T, Kita Y, Terashita K, Kouyama K, Nishimoto I (2001) Insulin-like growth factor I (IGF-I) protects cells from apoptosis by Alzheimer's V642I mutant amyloid precursor protein through IGF-I receptor in an IGF-binding protein-sensitive manner. J Neurosci 21: 1902-1910.
Niikura T, Hashimoto Y, Tajima H, Nishimoto I (2002) Death and survival of neuronal cells exposed to Alzheimer's insults.J Neurosci Res 70: 380-391. Review.
Niikura T, Chiba T, Aiso S, Matsuoka M, Nishimoto I (2004) Humanin: after the discovery. Mol Neurobiol 30: 327-340.
Nishimoto I, Matsuoka M, Niikura T (2004) Unravelling the role of Humanin.Trends Mol Med 10: 102-105.
Nitta A, Fukuta T, Hasegawa T, and Nabeshima T. Continuous infusion b-amyloid protein into the rat cerebral ventricle induces learning impairment and neuronal and morphological degeneration. Jpn J Pharmacol, 1997, 73: 51-57.
Stepanichev MY, Zdobnova IM, Yakovlev AA, Onufriev MV, Lazareva NA, Zarubenko II, Gulyaeva NV (2003a) Effects of tumor necrosis factor-alpha central administration on hippocampal damage in rat induced by amyloid beta-peptide (25-35). Neurosci Res 71: 110-120.
Stepanichev MY, Moiseeva YV, Lazareva NA, Onufriev MV, and Gulyaeva NV (2003b) Single intracerebroventricular administration of amyloid-beta (25-35) peptide induces impairment in short-term rather than long-term memory in rats.Brain Res Bull 61 : 197-205.
Sudo H, Hashimoto Y, Niikura T, Shao Z, Yasukawa T, Ito Y, Yamada M, Hata M, Hiraki T, Kawasumi M, Kouyama K, Nishimoto I (2001) Secreted Abeta does not mediate neurotoxicity by antibody-stimulated amyloid precursor protein. Biochem Biophys Res Commun 282: 548-556.
Tajima H, Kawasumi M, Chiba T, Yamada M, Yamashita K, Nawa M, Kita Y, Kouyama K, Aiso S, Matsuoka M, Niikura T, Nishimoto I (2005) A humanin derivative, S14G-HN, prevents amyloid-beta -induced memory impairment in mice. J Neurosci Res 79: 714-723.
Thorne RG, Frey WH 2nd. (2001) Delivery of neurotrophic factors to the central nervous system: pharmacokinetic considerations. Clin Pharmacokinet. 40: 907-46.
Thorne RG, Pronk GJ, Padmanabhan V, Frey WH 2 nd (2004) Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience 127: 481-496.
Yamada K, Tanaka T, Mamiya T, Shiotani T, Kameyama T, and Nabeshima T (1999) Improvement by nefiracetam of b-amyloid- (1-42) -induced learning and memory impairments in rats.Br J Pharmacol 126: 235- 244.
Yamada M, Chiba T, Sasabe J, Nawa M, Tajima H, Niikura T, Terashita K, Aiso S, Kita Y, Matsuoka M, Nishimoto I (2005) Implanted cannula-mediated repetitive administration of Abeta25-35 into the mouse cerebral ventricle effectively impairs spatial working memory. Behav Brain Res 164: 139-146.
Yamaguchi Y, and Kawashima S (2001) Effects of amyloid-b- (25-35) on passive avoidance, radial-arm maze learning and choline acetyltransferase activity in the rat.Eur J Pharmacol 412: 265-272.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007152376A JP2008019245A (en) | 2006-06-15 | 2007-06-08 | Intranasal agent for prevention and treatment of alzheimer's disease containing humanin derivative or fused peptide composed of humanin derivative and neurotropic peptide as active component |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006165441 | 2006-06-15 | ||
JP2007152376A JP2008019245A (en) | 2006-06-15 | 2007-06-08 | Intranasal agent for prevention and treatment of alzheimer's disease containing humanin derivative or fused peptide composed of humanin derivative and neurotropic peptide as active component |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008019245A true JP2008019245A (en) | 2008-01-31 |
Family
ID=39075486
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007152376A Pending JP2008019245A (en) | 2006-06-15 | 2007-06-08 | Intranasal agent for prevention and treatment of alzheimer's disease containing humanin derivative or fused peptide composed of humanin derivative and neurotropic peptide as active component |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008019245A (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61126014A (en) * | 1984-11-22 | 1986-06-13 | Teijin Ltd | Aqueous liquid drug for transnasal administration |
JPH02111A (en) * | 1987-08-03 | 1990-01-05 | Toyo Jozo Co Ltd | Physiologically active peptide preparation for nasotracheal |
JPH05509101A (en) * | 1990-07-24 | 1993-12-16 | リヤクスニフェルジタイト テ ライデン | Transmucosal drug formulations and transmucosal administration methods |
WO1995003818A1 (en) * | 1993-07-30 | 1995-02-09 | Teijin Limited | Powder for nasal administration of peptidic or proteinaceous drug |
JPH07118164A (en) * | 1993-10-19 | 1995-05-09 | Dot:Kk | Carrier for nasal absorption agent and physiologically active peptide composition |
JPH07165614A (en) * | 1993-10-21 | 1995-06-27 | Hisamitsu Pharmaceut Co Inc | Nasal composition and nasal preparation containing the same |
-
2007
- 2007-06-08 JP JP2007152376A patent/JP2008019245A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61126014A (en) * | 1984-11-22 | 1986-06-13 | Teijin Ltd | Aqueous liquid drug for transnasal administration |
JPH02111A (en) * | 1987-08-03 | 1990-01-05 | Toyo Jozo Co Ltd | Physiologically active peptide preparation for nasotracheal |
JPH05509101A (en) * | 1990-07-24 | 1993-12-16 | リヤクスニフェルジタイト テ ライデン | Transmucosal drug formulations and transmucosal administration methods |
WO1995003818A1 (en) * | 1993-07-30 | 1995-02-09 | Teijin Limited | Powder for nasal administration of peptidic or proteinaceous drug |
JPH07118164A (en) * | 1993-10-19 | 1995-05-09 | Dot:Kk | Carrier for nasal absorption agent and physiologically active peptide composition |
JPH07165614A (en) * | 1993-10-21 | 1995-06-27 | Hisamitsu Pharmaceut Co Inc | Nasal composition and nasal preparation containing the same |
Non-Patent Citations (1)
Title |
---|
JPN6012051380; CHIBA,T. et al: The Journal of neuroscience Vol.25, No.44, 2005, p.10252-61 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Rauk | Why is the amyloid beta peptide of Alzheimer's disease neurotoxic? | |
US20180318383A1 (en) | Peptide having neuronal loss prevention and regeneration effects, and composition containing same | |
CN107921085B (en) | Methods and compositions for treating aging-related disorders | |
Batonnet-Pichon et al. | Myofibrillar myopathies: new perspectives from animal models to potential therapeutic approaches | |
US9034825B2 (en) | Treatment of myocardial injury with humanin analogs | |
JP6794409B2 (en) | Blocking inflammatory proteases with theta defensins | |
Matsuoka | Protective effects of Humanin and calmodulin-like skin protein in Alzheimer’s disease and broad range of abnormalities | |
US8785391B2 (en) | Compound and method for treatment of alzheimer's disease and familial dementia | |
US8071533B2 (en) | Compositions and methods for modulating store-operated calcium entry | |
US20230355585A1 (en) | Prevention or treatment of disease states due to metal dis-homeostasis via administration of posiphen to healthy or sick humans | |
Niikura | Humanin and Alzheimer's disease: The beginning of a new field | |
US7790673B2 (en) | Methods and compositions relating to cystatin C | |
WO2016207413A1 (en) | New use of cell-permeable peptide inhibitors of the jnk signal transduction pathway for the treatment of mild cognitive impairment | |
Jayatunga et al. | Targeting mitophagy in Alzheimer’s disease | |
JP5801206B2 (en) | Compounds and methods for the treatment of Alzheimer's disease | |
WO2013103964A1 (en) | Methods and compositions for treating proteinopathies | |
WO2012144972A2 (en) | Methods to inhibit neurodegeneration | |
CN107406513B (en) | Double-stranded molecules (BIPARTITEs) and their use for treating abnormal protein aggregation | |
US20200230207A1 (en) | Treatment of bone growth disorders | |
JP2022518729A (en) | Treatment of central nervous system diseases | |
Matsuoka | Humanin signal for Alzheimer's disease | |
JP2008019245A (en) | Intranasal agent for prevention and treatment of alzheimer's disease containing humanin derivative or fused peptide composed of humanin derivative and neurotropic peptide as active component | |
US20140030274A1 (en) | Amyloidosis target useful in methods of treatment and for screening of compounds | |
US20170145055A1 (en) | Peptide inhibitors of caspase 2 activation | |
Lee et al. | Targeting cathepsin S promotes activation of OLF1-BDNF/TrkB axis to enhance cognitive function |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20080306 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20080307 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100524 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121023 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130521 |