JP2008018742A - Hybrid driving device - Google Patents

Hybrid driving device Download PDF

Info

Publication number
JP2008018742A
JP2008018742A JP2006189583A JP2006189583A JP2008018742A JP 2008018742 A JP2008018742 A JP 2008018742A JP 2006189583 A JP2006189583 A JP 2006189583A JP 2006189583 A JP2006189583 A JP 2006189583A JP 2008018742 A JP2008018742 A JP 2008018742A
Authority
JP
Japan
Prior art keywords
planetary gear
rotating
rotating element
gear device
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006189583A
Other languages
Japanese (ja)
Other versions
JP4203828B2 (en
Inventor
Makoto Iwanaka
誠 岩中
重樹 ▲高▼見
Shigeki Takami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
Original Assignee
Aisin AW Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AW Co Ltd filed Critical Aisin AW Co Ltd
Priority to JP2006189583A priority Critical patent/JP4203828B2/en
Priority to US11/822,090 priority patent/US7927244B2/en
Priority to CN2007800010317A priority patent/CN101351353B/en
Priority to DE112007000042T priority patent/DE112007000042T5/en
Priority to PCT/JP2007/063492 priority patent/WO2008007611A1/en
Publication of JP2008018742A publication Critical patent/JP2008018742A/en
Application granted granted Critical
Publication of JP4203828B2 publication Critical patent/JP4203828B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/20Control strategies involving selection of hybrid configuration, e.g. selection between series or parallel configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2054Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed by controlling transmissions or clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • B60W10/115Stepped gearings with planetary gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/72Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously
    • F16H3/727Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously with at least two dynamo electric machines for creating an electric power path inside the gearing, e.g. using generator and motor for a variable power torque path
    • F16H3/728Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously with at least two dynamo electric machines for creating an electric power path inside the gearing, e.g. using generator and motor for a variable power torque path with means to change ratio in the mechanical gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/50Drive Train control parameters related to clutches
    • B60L2240/507Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/0833Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths
    • F16H37/084Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths at least one power path being a continuously variable transmission, i.e. CVT
    • F16H2037/0866Power split variators with distributing differentials, with the output of the CVT connected or connectable to the output shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/10Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing at both ends of intermediate shafts
    • F16H2037/102Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing at both ends of intermediate shafts the input or output shaft of the transmission is connected or connectable to two or more differentials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/10Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing at both ends of intermediate shafts
    • F16H2037/105Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing at both ends of intermediate shafts characterised by number of modes or ranges, e.g. for compound gearing
    • F16H2037/106Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing at both ends of intermediate shafts characterised by number of modes or ranges, e.g. for compound gearing with switching means to provide two variator modes or ranges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2002Transmissions using gears with orbital motion characterised by the number of sets of orbital gears
    • F16H2200/201Transmissions using gears with orbital motion characterised by the number of sets of orbital gears with three sets of orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/203Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes
    • F16H2200/2041Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes with four engaging means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hybrid driving device for running by second rotary electric machine for a long time with a large rotational driving force regardless of the charging status of an electric storage means such as a battery. <P>SOLUTION: This hybrid driving device is provided with: an input axis I; an output axis O; first and second rotary electric machines MG1 and MG2; first and second planetary gear devices P1 and P2; and a plurality of friction engagement elements. The first and second planetary gear devices P1 and P2 are respectively provided with connection rotary elements (mj) connected through a transmission member M so as to be integrally rotated. The first planetary gear device P1 is configured by connecting the input axis I and the first rotary electrical machinery MG1 to two rotary elements other than the connection rotary element (mj), and the second planetary gear device P2 is configured by connecting the output axis O and the second rotary electrical machinery MG2 to two rotary elements other than the connection rotary elements (mj), and the plurality of friction engagement elements include a first brake B1 for selectively fixing the transmission member M and the connection rotary elements (mj) integrally rotated to a non-rotary member Ds. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、エンジンに接続された入力軸と、車輪に接続された出力軸と、第一回転電機と、第二回転電機と、第一遊星歯車装置と、第二遊星歯車装置と、を備えたハイブリッド駆動装置に関する。   The present invention includes an input shaft connected to an engine, an output shaft connected to a wheel, a first rotating electrical machine, a second rotating electrical machine, a first planetary gear device, and a second planetary gear device. The present invention relates to a hybrid drive device.

2つの回転電機と動力分配用の遊星歯車装置とを備えたいわゆるスプリット型のハイブリッド駆動装置が既に知られている。これに関して、例えば、下記の特許文献1には、図11に示すような構成のハイブリッド駆動装置Hが記載されている。このハイブリッド駆動装置Hは、エンジンEに接続された入力軸Iと、車輪に接続された出力軸Oと、第一回転電機MG1と、第二回転電機MG2と、3つの遊星歯車機構PG1〜PG3と、これらの遊星歯車機構PG1〜PG3の各回転要素間又は回転要素とケースDsとの係合を行うためのクラッチC1、C2及びブレーキB1、B2と、を備えている。ここでは便宜上、3つの遊星歯車機構を、エンジンE側から順に第一遊星歯車機構PG1、第二遊星歯車機構PG2、及び第三遊星歯車機構PG3とする。   A so-called split-type hybrid drive device having two rotating electric machines and a planetary gear device for power distribution is already known. In this regard, for example, the following Patent Document 1 describes a hybrid drive device H configured as shown in FIG. The hybrid drive device H includes an input shaft I connected to an engine E, an output shaft O connected to wheels, a first rotating electrical machine MG1, a second rotating electrical machine MG2, and three planetary gear mechanisms PG1 to PG3. And clutches C1 and C2 and brakes B1 and B2 for engaging the rotating elements of the planetary gear mechanisms PG1 to PG3 or between the rotating elements and the case Ds. Here, for convenience, the three planetary gear mechanisms are a first planetary gear mechanism PG1, a second planetary gear mechanism PG2, and a third planetary gear mechanism PG3 in order from the engine E side.

このハイブリッド駆動装置Hは、第一ブレーキB1を係合することにより第一のスプリットモードを実現し、その状態から第一クラッチC1又は第二クラッチC2を係合することによりパラレルモードを実現する。また、このハイブリッド駆動装置Hは、第一クラッチC1を係合することにより第二のスプリットモードを実現し、その状態から第二ブレーキB2又は第二クラッチC2を係合することによりパラレルモードを実現する。これにより、このハイブリッド駆動装置Hは、2つのスプリットモード及び4段階の固定変速比を有するパラレルモードを実現できる構成になっている。ここで、スプリットモードでは、第一遊星歯車機構PG1及び第二遊星歯車機構PG2により、入力軸I(エンジンE)と第一回転電機MG1と第二回転電機MG2との回転駆動力が分配・合成され、第二回転電機MG2と一体回転する軸Maに伝達される。そして、この軸Maに伝達された回転駆動力が第三遊星歯車機構PG3を介して出力軸Oに伝達される。一方、パラレルモードでは、入力軸I(エンジンE)の回転速度が所定の変速比で変速されて出力軸Oに伝達される。この際、第一回転電機MG1及び第二回転電機MG2は、車速及び変速比に応じた速度で回転しつつ、モータ又はジェネレータとして働く。   The hybrid drive device H realizes the first split mode by engaging the first brake B1, and realizes the parallel mode by engaging the first clutch C1 or the second clutch C2 from that state. In addition, the hybrid drive device H realizes the second split mode by engaging the first clutch C1, and realizes the parallel mode by engaging the second brake B2 or the second clutch C2 from that state. To do. Accordingly, the hybrid drive device H is configured to be able to realize two split modes and a parallel mode having four stages of fixed gear ratios. Here, in the split mode, the first planetary gear mechanism PG1 and the second planetary gear mechanism PG2 distribute and synthesize the rotational driving force between the input shaft I (engine E), the first rotating electrical machine MG1, and the second rotating electrical machine MG2. Then, it is transmitted to the shaft Ma that rotates integrally with the second rotating electrical machine MG2. Then, the rotational driving force transmitted to the shaft Ma is transmitted to the output shaft O via the third planetary gear mechanism PG3. On the other hand, in the parallel mode, the rotational speed of the input shaft I (engine E) is shifted at a predetermined gear ratio and transmitted to the output shaft O. At this time, the first rotating electrical machine MG1 and the second rotating electrical machine MG2 function as a motor or a generator while rotating at a speed corresponding to the vehicle speed and the gear ratio.

また、このハイブリッド駆動装置Hは、入力軸I(エンジンE)の回転を逆転させて出力軸Oに伝達する後進用の変速段を備えていない。したがって、このハイブリッド駆動装置Hは、後進を行うための後進モードでは、第二回転電機MG2を逆方向に回転させることにより、第三遊星歯車機構PG3を介して出力軸Oに後進方向の回転駆動力を伝達する構成となっている。   Further, the hybrid drive device H does not include a reverse gear stage that reverses the rotation of the input shaft I (engine E) and transmits it to the output shaft O. Therefore, in the reverse drive mode for performing the reverse drive, the hybrid drive device H rotates the second rotating electrical machine MG2 in the reverse direction to rotate the output shaft O in the reverse drive direction via the third planetary gear mechanism PG3. It is configured to transmit power.

米国特許6953409B2号明細書US Pat. No. 6,953,409 B2

しかし、上記のハイブリッド駆動装置Hの構成では、エンジンの回転駆動力を第一回転電機に伝達して発電を行うと、第二回転電機MG2及び軸Maに前進方向の回転駆動力が作用することになるため、第二回転電機MG2による後進走行中に発電を行った場合、大きな後進駆動力が出力できないという問題がある。そのため、第二回転電機MG2による後進走行を行い得る時間及びそのときに第二回転電機MG2が発生し得る駆動力は、バッテリ等の蓄電装置の充電状態により制約されることになり、大きな回転駆動力で長時間にわたって第二回転電機による後進走行を行うことは困難であった。   However, in the configuration of the hybrid drive device H described above, when the rotational driving force of the engine is transmitted to the first rotating electrical machine to generate power, the forward rotational driving force acts on the second rotating electrical machine MG2 and the shaft Ma. Therefore, when power generation is performed during reverse travel by the second rotating electrical machine MG2, there is a problem that a large reverse drive force cannot be output. Therefore, the time during which the second rotating electrical machine MG2 can perform the reverse travel and the driving force that can be generated by the second rotating electrical machine MG2 at that time are limited by the state of charge of the power storage device such as a battery, and thus a large rotational drive. It was difficult to perform reverse running by the second rotating electric machine for a long time with force.

本発明は、上記の課題に鑑みてなされたものであり、その目的は、エンジンの回転駆動力を第一回転電機に伝達して発電を行うとともに、このエンジンの回転駆動力が出力軸に伝達されない状態で第二回転電機の回転駆動力を出力軸に伝達することを可能とし、それにより、バッテリ等の蓄電装置の充電状態に関係なく、大きな回転駆動力で長時間にわたって第二回転電機による走行を行うことが可能なハイブリッド駆動装置を提供することにある。   The present invention has been made in view of the above-described problems, and an object of the present invention is to generate power by transmitting the rotational driving force of the engine to the first rotating electrical machine, and to transmit the rotational driving force of the engine to the output shaft. The rotational driving force of the second rotating electrical machine can be transmitted to the output shaft in a state in which the second rotating electrical machine is not operated, thereby allowing the second rotating electrical machine to operate with a large rotational driving force for a long time regardless of the state of charge of the power storage device such as a battery An object of the present invention is to provide a hybrid drive device capable of running.

上記目的を達成するための本発明に係るハイブリッド駆動装置の特徴構成は、エンジンに接続された入力軸と、車輪に接続された出力軸と、第一回転電機と、第二回転電機と、少なくとも3つの回転要素を有する第一遊星歯車装置と、少なくとも3つの回転要素を有する第二遊星歯車装置と、前記第一遊星歯車装置及び前記第二遊星歯車装置の一の回転要素を、他の回転要素に選択的に接続し又は非回転部材に選択的に固定する複数の摩擦係合要素と、を備えるとともに、前記第一遊星歯車装置及び前記第二遊星歯車装置は、伝動部材を介して一体回転するように接続された接続回転要素を互いに備え、前記第一遊星歯車装置は、前記接続回転要素以外の2つの回転要素にそれぞれ前記入力軸と前記第一回転電機とが接続され、前記第二遊星歯車装置は、前記接続回転要素以外の2つの回転要素にそれぞれ前記出力軸と前記第二回転電機とが接続され、前記複数の摩擦係合要素は、前記伝動部材及びこれと一体回転する前記接続回転要素を非回転部材に選択的に固定する第一ブレーキを含む点にある。   The characteristic configuration of the hybrid drive device according to the present invention for achieving the above object includes an input shaft connected to the engine, an output shaft connected to wheels, a first rotating electrical machine, a second rotating electrical machine, and at least A first planetary gear device having three rotating elements; a second planetary gear device having at least three rotating elements; and one rotating element of the first planetary gear device and the second planetary gear device for another rotation. A plurality of friction engagement elements selectively connected to the element or selectively fixed to the non-rotating member, and the first planetary gear device and the second planetary gear device are integrated via a transmission member. The first planetary gear device includes a connection rotating element connected to rotate, the input planetary gear device being connected to the two rotating elements other than the connecting rotating element, respectively, Two planets In the vehicle apparatus, the output shaft and the second rotating electrical machine are connected to two rotating elements other than the connecting rotating element, respectively, and the plurality of friction engagement elements include the transmission member and the connection rotating integrally therewith. A first brake for selectively fixing the rotating element to the non-rotating member.

この特徴構成によれば、前記第一遊星歯車装置及び前記第二遊星歯車装置の伝動部材を介して一体回転するように接続された接続回転要素を前記第一ブレーキにより非回転部材に固定することができる。この状態では、前記入力軸の回転は前記第一遊星歯車装置を介して前記第一回転電機には伝達されるが、前記出力軸及び第二回転電機には伝達されない。そのため、エンジンの回転駆動力を前記第一回転電機に伝達して発電を行いつつ、その影響を受けることなく、前記第二遊星歯車装置を介して前記第二回転電機の回転駆動力を前記出力軸に伝達して走行することが可能となる。したがって、バッテリ等の蓄電手段の充電状態に関係なく、大きな回転駆動力で長時間にわたって第二回転電機の回転駆動力による走行を行うことが可能となる。一方、前記第一ブレーキを係合解除した状態では、前記入力軸(エンジン)の回転駆動力を前記第一回転電機と前記伝動部材とに分配し、分配された回転駆動力を前記出力軸に伝達して走行することが可能となる。   According to this characteristic configuration, the connecting rotating element connected to rotate integrally through the transmission members of the first planetary gear device and the second planetary gear device is fixed to the non-rotating member by the first brake. Can do. In this state, the rotation of the input shaft is transmitted to the first rotating electrical machine via the first planetary gear device, but not transmitted to the output shaft and the second rotating electrical machine. Therefore, the rotational driving force of the second rotating electrical machine is output through the second planetary gear device without being influenced by transmitting the rotational driving force of the engine to the first rotating electrical machine and generating power. It is possible to travel by transmitting to the shaft. Therefore, it is possible to travel with the rotational driving force of the second rotating electrical machine for a long time with a large rotational driving force regardless of the state of charge of the power storage means such as the battery. On the other hand, when the first brake is disengaged, the rotational driving force of the input shaft (engine) is distributed to the first rotating electrical machine and the transmission member, and the distributed rotational driving force is applied to the output shaft. It is possible to travel by transmitting.

なお、本願では、「接続」は、回転の伝達を直接的に行う構造を含むほか、1又は2以上の部材を介して回転の伝達を間接的に行う構造も含む。また、本願では、サンギヤ、キャリア、リングギヤの三つの回転要素を備えた遊星歯車機構に関し、当該遊星歯車機構単独で、若しくは複数の遊星歯車機構を組み合わせて得られる装置を「遊星歯車装置」と呼ぶ。   In the present application, “connection” includes not only a structure that directly transmits rotation but also a structure that indirectly transmits rotation through one or more members. Further, in the present application, regarding a planetary gear mechanism including three rotating elements of a sun gear, a carrier, and a ring gear, a device obtained by using the planetary gear mechanism alone or a combination of a plurality of planetary gear mechanisms is referred to as a “planetary gear device”. .

ここで、前記第一ブレーキの係合状態で、前記第一遊星歯車装置を介して前記入力軸の回転駆動力を前記第一回転電機に伝達して発電を行い、前記第二遊星歯車装置を介して前記第二回転電機の回転駆動力を前記出力軸に伝達するシリーズモードと、前記第一ブレーキの係合解除状態で、前記第一遊星歯車装置を介して前記入力軸の回転駆動力を前記第一回転電機及び前記伝動部材の双方に分配し、前記第二遊星歯車装置を介して少なくとも前記伝動部材に分配された回転駆動力を前記出力軸に伝達するスプリットモードと、を切替可能に構成されていると好適である。   Here, in the engaged state of the first brake, the rotational driving force of the input shaft is transmitted to the first rotating electrical machine via the first planetary gear device to generate electric power, and the second planetary gear device is Via the first planetary gear device in the series mode in which the rotational driving force of the second rotating electrical machine is transmitted to the output shaft and the disengagement state of the first brake. Switchable between split mode for distributing to both the first rotating electrical machine and the transmission member and transmitting at least the rotational driving force distributed to the transmission member to the output shaft via the second planetary gear device. It is preferable to be configured.

このように構成すれば、例えば後進時等のように、前記第二回転電機の回転駆動力のみによる走行が適している場合にはシリーズモードで走行し、例えば発進加速時等のように、前記入力軸(エンジン)の回転駆動力を前記第一回転電機と前記伝動部材とに分配して分配後の回転駆動力を前記出力軸に伝達しつつ、必要に応じて第二回転電機の回転駆動力によりアシストする走行が適している状態ではスプリットモードで走行することができる。したがって、車両の走行状態等に応じて適切な走行モードを選択して効率的に走行することが可能となる。   If configured in this way, for example, when traveling by only the rotational driving force of the second rotating electrical machine, such as when moving backward, the vehicle travels in series mode, for example, when starting acceleration, etc. The rotational driving force of the input shaft (engine) is distributed to the first rotating electrical machine and the transmission member, and the distributed rotational driving force is transmitted to the output shaft, while the rotational driving force of the second rotating electrical machine is driven as necessary. In a state where traveling with assistance by force is suitable, the vehicle can travel in split mode. Therefore, it is possible to efficiently travel by selecting an appropriate travel mode according to the traveling state of the vehicle.

また、後進時に、前記シリーズモードで前記出力軸が後進回転する方向に前記第二回転電機を回転させる制御を行う構成とすると好適である。   Further, it is preferable that the second rotating electrical machine is controlled to rotate in the direction in which the output shaft rotates backward in the series mode during backward travel.

上記のとおり、前記第一ブレーキを係合状態としたシリーズモードでは、前記入力軸の回転は、前記第一遊星歯車装置を介して前記第一回転電機には伝達されるが、前記出力軸及び第二回転電機には伝達されない。したがって、このような構成とすれば、エンジンの回転駆動力による影響を受けることなく、前記第二回転電機により適切に後進を行うことができる。またこの際、エンジンの回転駆動力を前記第一回転電機に伝達して発電を行うので、バッテリ等の蓄電手段の充電状態に関係なく、大きな回転駆動力で長時間にわたって後進走行を行うことが可能となる。   As described above, in the series mode in which the first brake is engaged, the rotation of the input shaft is transmitted to the first rotating electrical machine via the first planetary gear device. It is not transmitted to the second rotating electrical machine. Therefore, with such a configuration, it is possible to appropriately reverse the second rotating electrical machine without being affected by the rotational driving force of the engine. At this time, since the rotational driving force of the engine is transmitted to the first rotating electrical machine to generate electric power, it is possible to travel backward for a long time with a large rotational driving force regardless of the state of charge of the power storage means such as a battery. It becomes possible.

ここで、複数の変速段を有し、各変速段に応じた所定の変速比で前記入力軸の回転速度を変速して前記出力軸に伝達するパラレルモードに、更に切替可能に構成されていると好適である。   Here, it has a plurality of shift stages, and is configured to be further switchable to a parallel mode in which the rotational speed of the input shaft is changed at a predetermined gear ratio according to each shift stage and transmitted to the output shaft. It is preferable.

このように構成すれば、例えば定常走行時等のように、前記入力軸(エンジン)の回転駆動力を所定の変速比で変速して前記出力軸に伝達しつつ、必要に応じて第二回転電機の回転駆動力によりアシストする走行が適している状態ではパラレルモードで走行することができる。したがって、車両の走行状態等に応じて適切に走行モードを選択してより効率的に走行することが可能となる。   With this configuration, the rotational driving force of the input shaft (engine) is changed at a predetermined speed ratio and transmitted to the output shaft, for example, during steady running, and the second rotation is performed as necessary. In a state where traveling assisted by the rotational driving force of the electric machine is suitable, the vehicle can travel in the parallel mode. Therefore, it is possible to travel more efficiently by appropriately selecting a travel mode according to the travel state of the vehicle.

本発明に係る遊星歯車装置の具体的構成については、前記第二遊星歯車装置は、回転速度の順に少なくとも第一回転要素、第二回転要素、及び第三回転要素を備え、前記第一回転要素に前記第二回転電機が接続され、前記接続回転要素としての前記第二回転要素に前記伝動部材が接続され、前記第三回転要素に前記出力軸が接続されている構成とすると好適である。   As for the specific configuration of the planetary gear device according to the present invention, the second planetary gear device includes at least a first rotating element, a second rotating element, and a third rotating element in order of rotational speed, and the first rotating element Preferably, the second rotating electrical machine is connected to the second rotating element as the connecting rotating element, the transmission member is connected to the third rotating element, and the output shaft is connected to the third rotating element.

なお本願では、「回転速度の順」は、高速側から低速側に向かう順、又は低速側から高速側に向かう順のいずれかであり、各遊星歯車装置の回転状態によりいずれともなり得るが、いずれの場合にも回転要素の順は変わらない。   In the present application, the “order of rotational speed” is either the order from the high speed side to the low speed side, or the order from the low speed side to the high speed side, and can be any depending on the rotation state of each planetary gear device. In either case, the order of the rotating elements does not change.

このように構成すれば、前記第一ブレーキの係合状態で、第二回転電機を前進方向に回転させることで、前記出力軸に後進方向の回転駆動力を伝達することができる。   If comprised in this way, the rotational drive force of a reverse drive direction can be transmitted to the said output shaft by rotating a 2nd rotary electric machine to a forward drive direction in the engagement state of said 1st brake.

ここで、前記第二遊星歯車装置は、回転速度の順で前記第三回転要素の次に第四回転要素を更に備え、前記複数の摩擦係合要素は、前記第四回転要素を非回転部材に選択的に固定する第二ブレーキを含む構成とすると好適である。   Here, the second planetary gear device further includes a fourth rotating element next to the third rotating element in order of rotational speed, and the plurality of friction engagement elements include the fourth rotating element as a non-rotating member. It is preferable to include a second brake that is selectively fixed to the brake.

このように構成すれば、前記第一ブレーキの係合解除状態で、前記第二ブレーキを係合状態とすることにより、前記伝動部材に伝達される入力軸(エンジン)の回転、及び第二回転電機の回転の速度を減速して出力軸に伝達することが可能となる。   If comprised in this way, rotation of the input shaft (engine) transmitted to the said transmission member, and 2nd rotation will be carried out by making said 2nd brake into an engagement state in the engagement release state of said 1st brake. The speed of rotation of the electric machine can be reduced and transmitted to the output shaft.

また、前記第一遊星歯車装置は、回転速度の順に少なくとも第一回転要素、第二回転要素、及び第三回転要素を備え、前記接続回転要素としての前記第一回転要素に前記伝動部材が接続され、前記第二回転要素に前記入力軸が接続され、前記第三回転要素に前記第一回転電機が接続されている構成とすると好適である。   The first planetary gear device includes at least a first rotating element, a second rotating element, and a third rotating element in order of rotational speed, and the transmission member is connected to the first rotating element as the connecting rotating element. Preferably, the input shaft is connected to the second rotating element, and the first rotating electrical machine is connected to the third rotating element.

ここで、前記複数の摩擦係合要素は、前記第一遊星歯車装置の第三回転要素と前記出力軸とを選択的に接続する第一クラッチと、前記第一遊星歯車装置の任意の2つの回転要素を選択的に接続する第二クラッチと、を含む構成とすると好適である。   Here, the plurality of friction engagement elements include a first clutch that selectively connects the third rotation element of the first planetary gear device and the output shaft, and any two of the first planetary gear device. Preferably, the configuration includes a second clutch that selectively connects the rotating elements.

このようにすれば、前記第一ブレーキの係合解除状態で実現されるスプリットモードやパラレルモードといった走行モードで、複数の変速段を備える構成とすることができる。   If it does in this way, it can be set as the structure provided with a several gear stage in driving modes, such as the split mode and parallel mode implement | achieved in the disengagement state of said 1st brake.

1.第一の実施形態
まず、本発明の第一の実施形態について図面に基づいて説明する。図1は、本実施形態に係るハイブリッド駆動装置Hの構成を示すスケルトン図である。また、図2は、本実施形態に係るハイブリッド駆動装置Hのシステム構成を示す模式図である。なお、図2において、二重の実線は回転駆動力の伝達経路を示し、二重の破線は電力の伝達経路を示し、白抜きの矢印は作動油の流れを示している。また、実線の矢印は各種情報の伝達経路を示している。これらの図に示すように、このハイブリッド駆動装置Hは、エンジンEに接続された入力軸Iと、車輪Wに接続された出力軸Oと、第一モータ・ジェネレータMG1と、第二モータ・ジェネレータMG2と、第一遊星歯車装置P1を構成する第一遊星歯車機構PG1と、第二遊星歯車装置P2を構成する第二遊星歯車機構PG2及び第三遊星歯車機構PG3と、を備えている。そして、これらの構成は、車体に固定される非回転部材としての駆動装置ケースDs(以下、単に「ケースDs」という。)内に収納されている。なお、第一モータ・ジェネレータMG1が本発明における「第一回転電機」に相当し、第二モータ・ジェネレータMG2が本発明における「第二回転電機」に相当する。
1. First Embodiment First, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a skeleton diagram showing the configuration of the hybrid drive apparatus H according to the present embodiment. FIG. 2 is a schematic diagram showing a system configuration of the hybrid drive apparatus H according to the present embodiment. In FIG. 2, the double solid line indicates the transmission path of the rotational driving force, the double broken line indicates the power transmission path, and the white arrow indicates the flow of the hydraulic oil. Also, solid arrows indicate various information transmission paths. As shown in these drawings, the hybrid drive device H includes an input shaft I connected to an engine E, an output shaft O connected to wheels W, a first motor generator MG1, and a second motor generator. MG2, 1st planetary gear mechanism PG1 which comprises 1st planetary gear apparatus P1, and 2nd planetary gear mechanism PG2 and 3rd planetary gear mechanism PG3 which comprise 2nd planetary gear apparatus P2 are provided. These configurations are housed in a drive device case Ds (hereinafter simply referred to as “case Ds”) as a non-rotating member fixed to the vehicle body. The first motor / generator MG1 corresponds to the “first rotating electrical machine” in the present invention, and the second motor / generator MG2 corresponds to the “second rotating electrical machine” in the present invention.

1−1.ハイブリッド駆動装置Hの各部の構成
図1及び図2に示すように、入力軸Iは、エンジンEに接続されている。ここで、エンジンEとしては、ガソリンエンジンやディーゼルエンジン等の公知の各種エンジンを用いることができる。本例では、入力軸IはエンジンEのクランクシャフト等の出力回転軸と一体的に接続されている。なお、エンジンEの出力回転軸との間にダンパやクラッチ等を介して接続された構成としても好適である。出力軸Oは、ディファレンシャル装置17等を介して車輪Wに回転駆動力を伝達可能に接続されている。本例では、入力軸Iと出力軸Oとは同一軸線上に配置されている。
1-1. Configuration of Each Part of Hybrid Drive Device H As shown in FIGS. 1 and 2, the input shaft I is connected to the engine E. Here, as the engine E, various known engines such as a gasoline engine and a diesel engine can be used. In this example, the input shaft I is integrally connected to an output rotation shaft such as a crankshaft of the engine E. In addition, it is suitable also as a structure connected via the damper, the clutch, etc. between the output rotating shafts of the engine E. The output shaft O is connected to the wheel W through the differential device 17 or the like so as to be able to transmit the rotational driving force. In this example, the input shaft I and the output shaft O are arranged on the same axis.

図1に示すように、第一モータ・ジェネレータMG1は、ケースDsに固定されたステータSt1と、このステータSt1の径方向内側に回転自在に支持されたロータRo1と、を有している。この第一モータ・ジェネレータMG1のロータRo1は、第一遊星歯車機構PG1のキャリアca1と一体回転するように連結されている。また、第二モータ・ジェネレータMG2は、ケースDsに固定されたステータSt2と、このステータSt2の径方向内側に回転自在に支持されたロータRo2と、を有している。この第二モータ・ジェネレータMG2のロータRo2は、第三遊星歯車機構PG3のサンギヤs3と一体回転するように連結されている。第1モータ・ジェネレータMG1及び第2モータ・ジェネレータMG2は、図2に示すように、それぞれインバータ12を介して蓄電装置としてのバッテリ11に電気的に接続されている。そして、第1モータ・ジェネレータMG1及び第2モータ・ジェネレータMG2は、それぞれ電力の供給を受けて動力を発生するモータ(電動機)としての機能と、動力の供給を受けて電力を発生するジェネレータ(発電機)としての機能を果すことが可能とされている。   As shown in FIG. 1, the first motor / generator MG1 includes a stator St1 fixed to the case Ds, and a rotor Ro1 that is rotatably supported on the radially inner side of the stator St1. The rotor Ro1 of the first motor / generator MG1 is connected to rotate integrally with the carrier ca1 of the first planetary gear mechanism PG1. The second motor / generator MG2 includes a stator St2 fixed to the case Ds, and a rotor Ro2 that is rotatably supported on the radial inner side of the stator St2. The rotor Ro2 of the second motor / generator MG2 is coupled to rotate integrally with the sun gear s3 of the third planetary gear mechanism PG3. As shown in FIG. 2, the first motor / generator MG <b> 1 and the second motor / generator MG <b> 2 are electrically connected to a battery 11 as a power storage device via an inverter 12. Each of the first motor / generator MG1 and the second motor / generator MG2 functions as a motor (electric motor) that generates power by receiving power and a generator (power generation) that generates power by receiving power. Function).

本例では、第一モータ・ジェネレータMG1は、主にキャリアca1を介して入力された回転駆動力により発電を行い、バッテリ11を充電し、或いは第二モータ・ジェネレータMG2を駆動するための電力を供給する。ただし、車両の高速走行時等には第一モータ・ジェネレータMG1はモータとして機能する場合もある。一方、第二モータ・ジェネレータMG2は、主に車両の走行用の駆動力を補助する駆動モータとして機能する。ただし、車両の減速のための回生制動時等には第二モータ・ジェネレータMG2はジェネレータとして機能する。これら第一モータ・ジェネレータMG1及び第二モータ・ジェネレータMG2の動作は、制御装置ECUから制御指令に従ってインバータ12を介して行われる。   In this example, the first motor / generator MG1 mainly generates electric power by the rotational driving force input via the carrier ca1, charges the battery 11, or supplies electric power for driving the second motor / generator MG2. Supply. However, when the vehicle is traveling at high speed, the first motor / generator MG1 may function as a motor. On the other hand, the second motor / generator MG2 mainly functions as a drive motor that assists the driving force for driving the vehicle. However, the second motor / generator MG2 functions as a generator at the time of regenerative braking for deceleration of the vehicle. The operations of the first motor / generator MG1 and the second motor / generator MG2 are performed via the inverter 12 in accordance with a control command from the control unit ECU.

図1に示すように、第一遊星歯車機構PG1は、入力軸Iと同軸状に配置されたダブルピニオン型の遊星歯車機構である。すなわち、第一遊星歯車機構PG1は、複数対のピニオンギヤを支持するキャリアca1と、前記ピニオンギヤにそれぞれ噛み合うサンギヤs1及びリングギヤr1とを回転要素として有している。サンギヤs1は、伝動部材Mを介して第二遊星歯車機構PG2のリングギヤr2及び第三遊星歯車機構PG3のキャリアca3と一体回転するように接続されている。本例では、伝動部材Mは、第二遊星歯車機構PG2及び第三遊星歯車機構PG3を内部に収める概略円筒状の部材としている。リングギヤr1は、入力軸Iと一体回転するように接続されている。キャリアca1は、第一モータ・ジェネレータMG1のロータRo1と一体回転するように接続されている。これにより、第一遊星歯車機構PG1は、主に、入力軸Iの回転駆動力を第一モータ・ジェネレータMG1と伝動部材Mとに分配する動力分配用の遊星歯車装置として機能する。本実施形態においては、この第一遊星歯車機構PG1が本発明における「第一遊星歯車装置P1」を構成する。そして、この第一遊星歯車機構PG1のサンギヤs1、リングギヤr1、キャリアca1が、それぞれ第一遊星歯車装置P1の「第一回転要素(m1)」、「第二回転要素(m2)」、「第三回転要素(m3)」に相当する。また、伝動部材Mと一体回転するように接続されるサンギヤs1(第一回転要素(m1))が、「接続回転要素(mj)」となる。   As shown in FIG. 1, the first planetary gear mechanism PG <b> 1 is a double pinion type planetary gear mechanism arranged coaxially with the input shaft I. That is, the first planetary gear mechanism PG1 includes a carrier ca1 that supports a plurality of pairs of pinion gears, and a sun gear s1 and a ring gear r1 that mesh with the pinion gears, respectively, as rotating elements. The sun gear s1 is connected via the transmission member M so as to rotate integrally with the ring gear r2 of the second planetary gear mechanism PG2 and the carrier ca3 of the third planetary gear mechanism PG3. In this example, the transmission member M is a substantially cylindrical member that houses the second planetary gear mechanism PG2 and the third planetary gear mechanism PG3. The ring gear r1 is connected to rotate integrally with the input shaft I. The carrier ca1 is connected to rotate integrally with the rotor Ro1 of the first motor / generator MG1. Thereby, the first planetary gear mechanism PG1 mainly functions as a planetary gear device for power distribution that distributes the rotational driving force of the input shaft I to the first motor / generator MG1 and the transmission member M. In the present embodiment, the first planetary gear mechanism PG1 constitutes the “first planetary gear device P1” in the present invention. Then, the sun gear s1, the ring gear r1, and the carrier ca1 of the first planetary gear mechanism PG1 are the “first rotating element (m1)”, “second rotating element (m2)”, “first” of the first planetary gear device P1, respectively. This corresponds to “three rotation elements (m3)”. Further, the sun gear s1 (first rotating element (m1)) connected to rotate integrally with the transmission member M is a “connected rotating element (mj)”.

そして、第一遊星歯車機構PG1のキャリアca1は、第一クラッチC1を介して出力軸Oに選択的に接続される。後述するように、出力軸Oは、第二遊星歯車機構PG2のキャリアca2及び第三遊星歯車機構PG3のリングギヤr3と一体回転するように接続されている。したがって、第一モータ・ジェネレータMG1及び第一遊星歯車機構PG1のキャリアca1は、第一クラッチC1を介して出力軸O、第二遊星歯車機構PG2のキャリアca2、及び第三遊星歯車機構PG3のリングギヤr3に選択的に接続される。また、第一遊星歯車機構PG1のリングギヤr1とキャリアca1は、第二クラッチC2を介して選択的に接続される。したがって、第二クラッチC2が係合状態とされると、第一遊星歯車機構PG1は全体が一体回転する直結状態となる。なお、この第二クラッチC2は、第一遊星歯車機構PG1の任意の2つの回転要素を選択的に接続するものであればよく、本例の構成に限定されるものではない。   The carrier ca1 of the first planetary gear mechanism PG1 is selectively connected to the output shaft O via the first clutch C1. As will be described later, the output shaft O is connected to rotate integrally with the carrier ca2 of the second planetary gear mechanism PG2 and the ring gear r3 of the third planetary gear mechanism PG3. Accordingly, the carrier ca1 of the first motor / generator MG1 and the first planetary gear mechanism PG1 is connected to the output shaft O, the carrier ca2 of the second planetary gear mechanism PG2, and the ring gear of the third planetary gear mechanism PG3 via the first clutch C1. Selectively connected to r3. Further, the ring gear r1 of the first planetary gear mechanism PG1 and the carrier ca1 are selectively connected via the second clutch C2. Therefore, when the second clutch C2 is engaged, the first planetary gear mechanism PG1 is in a directly connected state in which the whole rotates integrally. The second clutch C2 is not limited to the configuration of this example as long as it selectively connects any two rotating elements of the first planetary gear mechanism PG1.

第二遊星歯車機構PG2は、出力軸Oと同軸状に配置されたシングルピニオン型の遊星歯車機構である。すなわち、第二遊星歯車機構PG2は、複数のピニオンギヤを支持するキャリアca2と、前記ピニオンギヤにそれぞれ噛み合うサンギヤs2及びリングギヤr2とを回転要素として有している。リングギヤr2は、伝動部材Mを介して第一遊星歯車機構PG1のサンギヤs1及び第三遊星歯車機構PG3のキャリアca3と一体回転するように接続されている。キャリアca2は、出力軸O及び第三遊星歯車機構PG3のリングギヤr3と一体回転するように接続されている。サンギヤs2は、第二ブレーキB2を介してケースDsに選択的に固定される。   The second planetary gear mechanism PG2 is a single pinion type planetary gear mechanism arranged coaxially with the output shaft O. That is, the second planetary gear mechanism PG2 includes a carrier ca2 that supports a plurality of pinion gears, and a sun gear s2 and a ring gear r2 that mesh with the pinion gears, respectively, as rotating elements. The ring gear r2 is connected through the transmission member M so as to rotate integrally with the sun gear s1 of the first planetary gear mechanism PG1 and the carrier ca3 of the third planetary gear mechanism PG3. The carrier ca2 is connected to rotate integrally with the output shaft O and the ring gear r3 of the third planetary gear mechanism PG3. The sun gear s2 is selectively fixed to the case Ds via the second brake B2.

第三遊星歯車機構PG3は、出力軸Oと同軸状に配置されたシングルピニオン型の遊星歯車機構である。すなわち、第三遊星歯車機構PG3は、複数のピニオンギヤを支持するキャリアca3と、前記ピニオンギヤにそれぞれ噛み合うサンギヤs3及びリングギヤr3とを回転要素として有している。サンギヤs3は、第二モータ・ジェネレータMG2のロータRo2と一体回転するように接続されている。キャリアca3は、伝動部材Mを介して第一遊星歯車機構PG1のサンギヤs1及び第二遊星歯車機構PG2のリングギヤr2と一体回転するように接続されている。リングギヤr3は、出力軸O及び第二遊星歯車機構PG2のキャリアca2と一体回転するように接続されている。   The third planetary gear mechanism PG3 is a single pinion type planetary gear mechanism arranged coaxially with the output shaft O. That is, the third planetary gear mechanism PG3 includes, as rotating elements, a carrier ca3 that supports a plurality of pinion gears, and a sun gear s3 and a ring gear r3 that mesh with the pinion gears. The sun gear s3 is connected to rotate integrally with the rotor Ro2 of the second motor / generator MG2. The carrier ca3 is connected via the transmission member M so as to rotate integrally with the sun gear s1 of the first planetary gear mechanism PG1 and the ring gear r2 of the second planetary gear mechanism PG2. The ring gear r3 is connected to rotate integrally with the output shaft O and the carrier ca2 of the second planetary gear mechanism PG2.

以上のように、第二遊星歯車機構PG2及び第三遊星歯車機構PG3は、それぞれが有する3つの回転要素のうちの2つずつが互いに一体回転するように接続されており、それにより4つの回転要素を有する第二遊星歯車装置P2を構成している。この第二遊星歯車装置P2は、主に、伝動部材M及び第二モータ・ジェネレータMG2の回転速度を変速して出力軸Oに伝達する変速用の遊星歯車装置として機能する。本実施形態においては、第三遊星歯車機構PG3のサンギヤs3が、第二遊星歯車装置P2の「第一回転要素(m1)」に相当する。互いに一体回転する第二遊星歯車機構PG2のリングギヤr2及び第三遊星歯車機構PG3のキャリアca3が、第二遊星歯車装置P2の「第二回転要素(m2)」に相当する。互いに一体回転する第二遊星歯車機構PG2のキャリアca2及び第三遊星歯車機構PG3のリングギヤr3が、第二遊星歯車装置P2の「第三回転要素(m3)」に相当する。第二遊星歯車機構PG2のサンギヤs2が、第二遊星歯車装置P2の「第四回転要素(m4)」に相当する。また、伝動部材Mと一体回転するように接続される第二遊星歯車機構PG2のリングギヤr2及び第三遊星歯車機構PG3のキャリアca3(第二回転要素(m2))が、「接続回転要素(mj)」となる。   As described above, the second planetary gear mechanism PG <b> 2 and the third planetary gear mechanism PG <b> 3 are connected so that two of the three rotating elements of each of the second planetary gear mechanism PG <b> 3 and the third planetary gear mechanism PG <b> 3 rotate together. A second planetary gear device P2 having elements is formed. The second planetary gear device P2 mainly functions as a planetary gear device for shifting that changes the rotational speeds of the transmission member M and the second motor / generator MG2 and transmits them to the output shaft O. In the present embodiment, the sun gear s3 of the third planetary gear mechanism PG3 corresponds to the “first rotation element (m1)” of the second planetary gear device P2. The ring gear r2 of the second planetary gear mechanism PG2 and the carrier ca3 of the third planetary gear mechanism PG3 that rotate integrally with each other correspond to the “second rotation element (m2)” of the second planetary gear device P2. The carrier ca2 of the second planetary gear mechanism PG2 and the ring gear r3 of the third planetary gear mechanism PG3 that rotate integrally with each other correspond to the “third rotation element (m3)” of the second planetary gear device P2. The sun gear s2 of the second planetary gear mechanism PG2 corresponds to the “fourth rotating element (m4)” of the second planetary gear device P2. Further, the ring gear r2 of the second planetary gear mechanism PG2 and the carrier ca3 (second rotation element (m2)) of the third planetary gear mechanism PG3 connected so as to rotate integrally with the transmission member M are “connected rotation element (mj)”. ) ”.

また、このハイブリッド駆動装置Hでは、伝動部材Mは、第一ブレーキB1を介してケースDsに選択的に固定される。したがって、この伝動部材Mと一体回転する接続回転要素(mj)としての第一遊星歯車機構PG1のサンギヤs1(第一遊星歯車装置P1の第一回転要素(m1))、第二遊星歯車機構PG2のリングギヤr2及び第三遊星歯車機構PG3のキャリアca3(第二遊星歯車装置P2の第二回転要素(m2))も、同様に第一ブレーキB1を介してケースDsに選択的に固定される。   Moreover, in this hybrid drive device H, the transmission member M is selectively fixed to the case Ds via the first brake B1. Therefore, the sun gear s1 of the first planetary gear mechanism PG1 (the first rotating element (m1) of the first planetary gear device P1), the second planetary gear mechanism PG2 as the connecting rotating element (mj) that rotates integrally with the transmission member M. The ring gear r2 and the carrier ca3 of the third planetary gear mechanism PG3 (the second rotating element (m2) of the second planetary gear device P2) are also selectively fixed to the case Ds via the first brake B1.

上記のとおり、このハイブリッド駆動装置Hは、摩擦係合要素として、第一クラッチC1及び第二クラッチC2と、第一ブレーキB1及び第二ブレーキB2を備えている。これらの摩擦係合要素は、それぞれ、第一遊星歯車装置P1及び第二遊星歯車装置P2の一の回転要素を、他の回転要素に選択的に接続し又は非回転部材としてのケースDsに選択的に固定する。したがって、これらの摩擦係合要素が本発明における「複数の摩擦係合要素」を構成する。これらの摩擦係合要素としては、いずれも油圧により動作する多板式クラッチや多板式ブレーキを用いることができる。図2に示すように、これらの摩擦係合要素に供給される油圧は、制御装置ECUからの制御指令により動作する油圧制御装置13により制御される。この油圧制御装置13への作動油の供給は、エンジンEの動作中は機械式オイルポンプ14により行われ、エンジンEの停止中は電動オイルポンプ15により行われる。ここで、機械式オイルポンプ14は、入力軸Iの回転駆動力により駆動される。また、電動オイルポンプ15は、電動オイルポンプ用インバータ16を介して供給されるバッテリ11からの電力(供給経路は図示省略)により駆動される。なお、図2では、各摩擦係合要素は第一遊星歯車装置P1及び第二遊星歯車装置P2に含まれることとして図示を省略している。   As described above, the hybrid drive device H includes the first clutch C1 and the second clutch C2, and the first brake B1 and the second brake B2 as friction engagement elements. Each of the friction engagement elements is selectively connected to one rotating element of the first planetary gear device P1 and the second planetary gear device P2 to another rotating element or selected as a case Ds as a non-rotating member. Fixed. Therefore, these friction engagement elements constitute “a plurality of friction engagement elements” in the present invention. As these friction engagement elements, a multi-plate clutch or a multi-plate brake that operates by hydraulic pressure can be used. As shown in FIG. 2, the hydraulic pressure supplied to these friction engagement elements is controlled by a hydraulic control device 13 that operates according to a control command from the control device ECU. The hydraulic oil is supplied to the hydraulic control device 13 by the mechanical oil pump 14 while the engine E is operating, and by the electric oil pump 15 while the engine E is stopped. Here, the mechanical oil pump 14 is driven by the rotational driving force of the input shaft I. The electric oil pump 15 is driven by electric power (supply path is not shown) from the battery 11 supplied via the electric oil pump inverter 16. In FIG. 2, illustration of each friction engagement element is omitted because it is included in the first planetary gear device P1 and the second planetary gear device P2.

1−2.ハイブリッド駆動装置Hの制御システムの構成
また、図2に示すように、制御装置ECUは、車両の各部に設けられたセンサSe1〜Se7で取得される情報を用いて、エンジンE、第一モータ・ジェネレータMG1、第二モータ・ジェネレータMG2、油圧制御装置13を介して各摩擦係合要素C1、C2、B1、B2、並びに電動オイルポンプ15等の動作制御を行う。これらのセンサとして、本例では、第一モータ・ジェネレータ回転速度センサSe1、第二モータ・ジェネレータ回転速度センサSe2、エンジン回転速度センサSe3、バッテリ状態検出センサSe4、車速センサSe5、アクセル操作検出センサSe6、及びブレーキ操作検出センサSe7が設けられている。
1-2. Configuration of Control System for Hybrid Drive Device H Further, as shown in FIG. 2, the control device ECU uses the information acquired by the sensors Se1 to Se7 provided in each part of the vehicle to use the engine E, the first motor, Operation control of the friction engagement elements C1, C2, B1, B2, the electric oil pump 15 and the like is performed via the generator MG1, the second motor / generator MG2, and the hydraulic control device 13. As these sensors, in this example, the first motor / generator rotation speed sensor Se1, the second motor / generator rotation speed sensor Se2, the engine rotation speed sensor Se3, the battery state detection sensor Se4, the vehicle speed sensor Se5, and the accelerator operation detection sensor Se6. , And a brake operation detection sensor Se7.

ここで、第一モータ・ジェネレータ回転速度センサSe1は、第一モータ・ジェネレータMG1のロータRo1の回転速度を検出するためのセンサである。第二モータ・ジェネレータ回転速度センサSe2は、第二モータ・ジェネレータMG2のロータRo2の回転速度を検出するためのセンサである。エンジン回転速度センサSe3は、エンジンEの出力回転軸の回転速度を検出するためのセンサである。ここで、入力軸IはエンジンEの出力回転軸と一体回転するので、このエンジン回転速度センサSe3により検出されるエンジンEの回転速度は入力軸Iの回転速度と一致する。バッテリ状態検出センサSe4は、バッテリ11の充電量等の状態を検出するためのセンサである。車速センサSe5は、車速を検出するために出力軸Oの回転速度を検出するためのセンサである。アクセル操作検出センサSe6は、アクセルペダル18の操作量を検出するためのセンサである。ブレーキ操作検出センサSe7は、図示しないホイールブレーキに連動するブレーキペダル19の操作量を検出するためのセンサである。   Here, the first motor / generator rotation speed sensor Se1 is a sensor for detecting the rotation speed of the rotor Ro1 of the first motor / generator MG1. The second motor / generator rotational speed sensor Se2 is a sensor for detecting the rotational speed of the rotor Ro2 of the second motor / generator MG2. The engine rotation speed sensor Se3 is a sensor for detecting the rotation speed of the output rotation shaft of the engine E. Here, since the input shaft I rotates integrally with the output rotation shaft of the engine E, the rotation speed of the engine E detected by the engine rotation speed sensor Se3 matches the rotation speed of the input shaft I. The battery state detection sensor Se4 is a sensor for detecting a state such as a charge amount of the battery 11. The vehicle speed sensor Se5 is a sensor for detecting the rotational speed of the output shaft O in order to detect the vehicle speed. The accelerator operation detection sensor Se6 is a sensor for detecting the operation amount of the accelerator pedal 18. The brake operation detection sensor Se7 is a sensor for detecting the operation amount of the brake pedal 19 interlocked with a wheel brake (not shown).

また、制御装置ECUは、エンジン制御手段31、モータ・ジェネレータ制御手段32、バッテリ状態検出手段33、モータ・ジェネレータ回転検出手段34、車速検出手段35、切替制御手段36、電動オイルポンプ制御手段37、エンジン回転検出手段38、モード・変速段選択手段39、及び要求駆動力検出手段40を備えている。制御装置ECUにおけるこれらの各手段は、CPU等の演算処理装置を中核部材として、入力されたデータに対して種々の処理を行うための機能部がハードウエア又はソフトウエア(プログラム)或いはその両方により実装されて構成されている。   The control unit ECU includes an engine control unit 31, a motor / generator control unit 32, a battery state detection unit 33, a motor / generator rotation detection unit 34, a vehicle speed detection unit 35, a switching control unit 36, an electric oil pump control unit 37, An engine rotation detecting means 38, a mode / shift stage selecting means 39, and a required driving force detecting means 40 are provided. Each of these means in the control unit ECU includes an arithmetic processing unit such as a CPU as a core member, and a functional unit for performing various processes on input data is performed by hardware or software (program) or both. Implemented and configured.

エンジン制御手段31は、エンジンEの動作開始、停止、回転速度制御、出力トルク制御等の動作制御を行う。モータ・ジェネレータ制御手段32は、インバータ12を介して、第一モータ・ジェネレータMG1及び第二モータ・ジェネレータMG2の回転速度制御、回転トルク制御等の動作制御を行う。バッテリ状態検出手段33は、バッテリ状態検出センサSe4の出力に基づいて、バッテリ11の充電量等の状態を検出する。モータ・ジェネレータ回転検出手段34は、第一モータ・ジェネレータ回転速度センサSe1、及び第二モータ・ジェネレータ回転速度センサSe2の出力に基づいて、第一モータ・ジェネレータMG1及び第二モータ・ジェネレータMG2の回転速度を検出する。車速検出手段35は、車速センサSe5からの出力に基づいて車速を検出する。切替制御手段36は、油圧制御装置13の動作を制御することにより、ハイブリッド駆動装置Hの各摩擦係合要素C1、C2、B1、B2(図1参照)のそれぞれの係合又は係合解除を行い、ハイブリッド駆動装置Hの動作モード及び変速段を切り替える制御を行う。電動オイルポンプ制御手段37は、電動オイルポンプ用インバータ16を介して電動オイルポンプ15の動作制御を行う。エンジン回転検出手段38は、エンジン回転速度センサSe3からの出力に基づいて、エンジンEの出力回転軸及び入力軸Iの回転速度を検出する。   The engine control means 31 performs operation control such as operation start, stop, rotation speed control, and output torque control of the engine E. The motor / generator control means 32 performs operation control such as rotational speed control and rotational torque control of the first motor / generator MG 1 and the second motor / generator MG 2 via the inverter 12. The battery state detection means 33 detects the state of the battery 11 such as the amount of charge based on the output of the battery state detection sensor Se4. The motor / generator rotation detecting means 34 rotates the first motor / generator MG1 and the second motor / generator MG2 based on the outputs of the first motor / generator rotation speed sensor Se1 and the second motor / generator rotation speed sensor Se2. Detect speed. The vehicle speed detection means 35 detects the vehicle speed based on the output from the vehicle speed sensor Se5. The switching control means 36 controls the operation of the hydraulic control device 13 to engage or disengage each friction engagement element C1, C2, B1, B2 (see FIG. 1) of the hybrid drive device H. And control for switching the operation mode and the gear position of the hybrid drive device H is performed. The electric oil pump control means 37 controls the operation of the electric oil pump 15 via the electric oil pump inverter 16. The engine rotation detection means 38 detects the rotation speed of the output rotation shaft of the engine E and the input shaft I based on the output from the engine rotation speed sensor Se3.

モード・変速段選択手段39は、図3に示すような制御マップに従って、動作モード及び変速段の選択を行う。図3は、車速及び要求駆動力と各動作モードが備える各変速段の受け持ち範囲との関係を規定したマップを示す図であり、このモード・変速段選択手段39において用いる制御マップの一例である。この図において横軸は車速であり、縦軸は運転者のアクセル操作等に基づく要求駆動力である。モード・変速段選択手段39は、車速及び要求駆動力に応じて、この制御マップに従い適切な動作モード及び変速段の選択を行う。具体的には、モード・変速段選択手段39は、車速の情報を車速検出手段35から取得する。また、モード・変速段選択手段37は、要求駆動力の情報を要求駆動力検出手段40から取得する。そして、モード・変速段選択手段39は、図3に示す制御マップに従って、取得された車速及び要求駆動力に応じて規定された動作モード及び変速段を選択する。なお、スプリットモードとパラレルモードとが重複する領域では、モード・変速段選択手段39は、バッテリ充電量、冷却水温度、油温等の各種条件の組み合わせによりいずれかの動作モードを選択する。また、本実施形態においては、シリーズモードは、車両を後進させる際に用いる後進用のモードとしている。したがって、モード・変速段選択手段39は、図示しないシフトレバーにより後進レンジが選択されている場合等の後進時、すなわち車速が負の場合にはシリーズモードを選択する。要求駆動力検出手段40は、アクセル操作検出センサSe6及びブレーキ操作検出センサSe7からの出力に基づいて、運転者による要求駆動力を演算して取得する。   The mode / shift stage selection means 39 selects an operation mode and a shift stage according to a control map as shown in FIG. FIG. 3 is a diagram showing a map that defines the relationship between the vehicle speed and the required driving force and the range of each gear stage provided in each operation mode, and is an example of a control map used in this mode / speed stage selection means 39. . In this figure, the horizontal axis represents the vehicle speed, and the vertical axis represents the required driving force based on the driver's accelerator operation or the like. The mode / shift stage selection means 39 selects an appropriate operation mode and shift stage according to this control map according to the vehicle speed and the required driving force. Specifically, the mode / gear stage selection unit 39 acquires vehicle speed information from the vehicle speed detection unit 35. Further, the mode / gear stage selection unit 37 acquires information on the required driving force from the required driving force detection unit 40. Then, the mode / shift stage selection means 39 selects an operation mode and a shift stage that are defined according to the acquired vehicle speed and the required driving force in accordance with the control map shown in FIG. In the region where the split mode and the parallel mode overlap, the mode / shift stage selection means 39 selects one of the operation modes according to a combination of various conditions such as the battery charge amount, the coolant temperature, and the oil temperature. In the present embodiment, the series mode is a reverse mode used when the vehicle is moved backward. Accordingly, the mode / shift stage selection means 39 selects the series mode when the vehicle is traveling backward, such as when the reverse range is selected by a shift lever (not shown), that is, when the vehicle speed is negative. The required driving force detection means 40 calculates and acquires the required driving force by the driver based on the outputs from the accelerator operation detection sensor Se6 and the brake operation detection sensor Se7.

1−3.ハイブリッド駆動装置Hの動作モード
次に、本実施形態に係るハイブリッド駆動装置Hにより実現可能な動作モードについて説明する。図4は、複数の動作モード及び各動作モードが備える各変速段での複数の摩擦係合要素C1、C2、B1、B2の作動状態を示す作動表である。この図において、「○」は各摩擦係合要素が係合状態にあることを示している。一方、「無印」は、各摩擦係合要素が係合解除状態にあること示している。また、図5は、切替可能な動作モード及び変速段の関係を示す図である。なお、本実施形態ではシリーズモードは後進用のモードであるので、基本的には車両の停止状態で他のモードからシリーズモードへの切替が行われる。
1-3. Operation Mode of Hybrid Drive Device H Next, operation modes that can be realized by the hybrid drive device H according to the present embodiment will be described. FIG. 4 is an operation table showing the operation states of the plurality of friction engagement elements C1, C2, B1, and B2 at the plurality of operation modes and at the respective shift stages included in each operation mode. In this figure, “◯” indicates that each friction engagement element is in an engaged state. On the other hand, “no mark” indicates that each friction engagement element is in a disengaged state. FIG. 5 is a diagram showing the relationship between the switchable operation mode and the shift speed. In the present embodiment, since the series mode is a reverse mode, switching from the other mode to the series mode is basically performed while the vehicle is stopped.

図6から図9は、第一遊星歯車装置P1及び第二遊星歯車装置P2の速度線図を示しており、図6はスプリットモードでの速度線図、図7及び図8はパラレルモードでの速度線図、図9はシリーズモードでの速度線図をそれぞれ示している。これらの速度線図において、縦軸は、各回転要素の回転速度に対応している。すなわち、縦軸に対応して記載している「0」は回転速度がゼロであることを示しており、上側が正、下側が負である。そして、並列配置された複数本の縦線のそれぞれが、第一遊星歯車装置P1及び第二遊星歯車装置P2の各回転要素に対応している。すなわち、各縦線の上側に記載されている「s1」、「r1」、「ca1」はそれぞれ第一遊星歯車装置P1を構成する第一遊星歯車機構PG1のサンギヤs1、リングギヤr1、キャリアca1に対応し、「r2」、「ca2」、「s2」はそれぞれ第二遊星歯車装置P2を構成する第二遊星歯車機構PG2のリングギヤr2、キャリアca2、サンギヤs2に対応し、「s3」、「ca3」、「r3」はそれぞれ第二遊星歯車装置P2を構成する第三遊星歯車機構PG3のサンギヤs3、キャリアca3、リングギヤr3に対応している。また、各回転要素に対応する縦線の間隔は、第一遊星歯車機構PG1、第二遊星歯車機構PG2、及び第三遊星歯車機構PG3のギヤ比に対応している。そして、図6、図7及び図9において、直線L1は第一遊星歯車装置P1の動作状態を示し、直線L2は第二遊星歯車装置P2の動作状態を示している。なお、図6に示すスプリットモードの高速段(Hi)及び図8に示すパラレルモードの第2速段から第4速段では、第一遊星歯車装置P1と第二遊星歯車装置P2とは、速度線図上で同一直線状となるため、これらの各直線が各変速段における第一遊星歯車装置P1及び第二遊星歯車装置P2の両方の動作状態を示している。なお、これらの速度線図上において、「○」は第一モータ・ジェネレータMG1の回転速度、「□」は第二モータ・ジェネレータMG2の回転速度、「△」は入力軸I(エンジンE)の回転速度、「☆」は出力軸Oの回転速度、「×」はブレーキをそれぞれ示している。   6 to 9 show velocity diagrams of the first planetary gear device P1 and the second planetary gear device P2, FIG. 6 is a velocity diagram in the split mode, and FIGS. 7 and 8 are diagrams in the parallel mode. FIG. 9 shows a velocity diagram in the series mode. In these velocity diagrams, the vertical axis corresponds to the rotational speed of each rotating element. That is, “0” described corresponding to the vertical axis indicates that the rotational speed is zero, with the upper side being positive and the lower side being negative. Each of the plurality of vertical lines arranged in parallel corresponds to each rotating element of the first planetary gear device P1 and the second planetary gear device P2. That is, “s1”, “r1”, and “ca1” described on the upper side of each vertical line are respectively applied to the sun gear s1, the ring gear r1, and the carrier ca1 of the first planetary gear mechanism PG1 constituting the first planetary gear device P1. “R2”, “ca2”, and “s2” correspond to the ring gear r2, the carrier ca2, and the sun gear s2 of the second planetary gear mechanism PG2 constituting the second planetary gear device P2, and “s3”, “ca3”, respectively. ”And“ r3 ”respectively correspond to the sun gear s3, the carrier ca3, and the ring gear r3 of the third planetary gear mechanism PG3 constituting the second planetary gear device P2. Further, the interval between the vertical lines corresponding to the respective rotating elements corresponds to the gear ratio of the first planetary gear mechanism PG1, the second planetary gear mechanism PG2, and the third planetary gear mechanism PG3. 6, 7, and 9, the straight line L <b> 1 indicates the operation state of the first planetary gear device P <b> 1, and the straight line L <b> 2 indicates the operation state of the second planetary gear device P <b> 2. In the split mode high speed stage (Hi) shown in FIG. 6 and the parallel mode shown in FIG. 8 from the second speed stage to the fourth speed stage, the first planetary gear device P1 and the second planetary gear device P2 Since they are the same straight line on the diagram, each of these straight lines indicates the operating state of both the first planetary gear device P1 and the second planetary gear device P2 at each shift stage. In these speed diagrams, “◯” represents the rotational speed of the first motor / generator MG1, “□” represents the rotational speed of the second motor / generator MG2, and “Δ” represents the input shaft I (engine E). The rotational speed, “☆” indicates the rotational speed of the output shaft O, and “×” indicates the brake.

図3〜図8において、「Lo」、「Hi」はスプリットモードの低速段、高速段をそれぞれ示している。また、「1st」、「2nd」、「3rd」、「4th」は、パラレルモードの第1速段、第2速段、第3速段、第4速段をそれぞれ示している。以下、単に「低速段」、「高速段」というときは、スプリットモードの低速段、高速段を表し、単に「第1速段」、「第2速段」、「第3速段」、「第4速段」というときは、パラレルモードの第1速段、第2速段、第3速段、第4速段を表す。また、本実施形態の説明において、単に「変速段」というときは、スプリットモードの複数の変速段及びパラレルモードの複数の変速段の全部又はその中の一部を包括的に表すものとする。   3 to 8, “Lo” and “Hi” indicate the low speed stage and the high speed stage in the split mode, respectively. “1st”, “2nd”, “3rd”, and “4th” indicate the first speed, second speed, third speed, and fourth speed in the parallel mode, respectively. Hereinafter, the term “low speed stage” and “high speed stage” simply represent the low speed stage and the high speed stage of the split mode, and simply “first speed stage”, “second speed stage”, “third speed stage”, “ The term “fourth speed” represents the first speed, the second speed, the third speed, and the fourth speed in the parallel mode. Further, in the description of the present embodiment, when simply referred to as “shift speed”, all or a part of the plurality of shift speeds in the split mode and the plurality of shift speeds in the parallel mode are comprehensively represented.

図3〜図9に示すように、このハイブリッド駆動装置Hは、「スプリットモード」、「パラレルモード」及び「シリーズモード」の3つの動作モードを切替可能に構成されている。そして、このハイブリッド駆動装置Hは、スプリットモードでは2段の変速段を有し、パラレルモードでは4段の変速段を有している。また、上記のとおり、本実施形態においては、シリーズモードは、車両を後進させる際に用いる後進用のモードとする。これらの動作モード及び各動作モード内での変速段は、モード・変速段選択手段39により図3に示す制御マップに従って選択される。そして、選択された動作モード及び変速段への切り替えは、制御装置ECUからの制御指令により各摩擦係合要素C1、C2、B1、B2が係合又は係合解除されることにより行われる。なお、この際、制御装置ECUは、モータ・ジェネレータ制御手段32による第一モータ・ジェネレータMG1及び第二モータ・ジェネレータMG2の回転速度及び回転トルクの制御、エンジン制御手段31によるエンジンEの回転速度及び回転トルクの制御等も行う。以下、各動作モードでのハイブリッド駆動装置Hの動作状態について詳細に説明する。   As shown in FIGS. 3 to 9, the hybrid drive device H is configured to be able to switch between three operation modes of “split mode”, “parallel mode”, and “series mode”. The hybrid drive device H has two speeds in the split mode and four speeds in the parallel mode. As described above, in the present embodiment, the series mode is a reverse mode used when the vehicle is driven backward. These operation modes and shift speeds in each operation mode are selected by the mode / shift speed selection means 39 according to the control map shown in FIG. Then, switching to the selected operation mode and shift speed is performed by engaging or disengaging the friction engagement elements C1, C2, B1, and B2 according to a control command from the control device ECU. At this time, the control device ECU controls the rotational speed and rotational torque of the first motor / generator MG1 and the second motor / generator MG2 by the motor / generator control means 32, and the rotational speed of the engine E by the engine control means 31. It also controls rotational torque. Hereinafter, the operation state of the hybrid drive device H in each operation mode will be described in detail.

1−4.スプリットモード
スプリットモードは、第一遊星歯車装置P1(第一遊星歯車機構PG1)を介して入力軸I(エンジンE)の回転駆動力を第一モータ・ジェネレータMG1及び伝動部材Mの双方に分配し、第二遊星歯車装置P2(第二遊星歯車機構PG2及び第三遊星歯車機構PG3)を介して少なくとも伝動部材Mに分配された回転駆動力を出力軸Oに伝達しつつ走行するモードである。本実施形態においては、ハイブリッド駆動装置Hは、スプリットモードでは、「低速段(Lo)」及び「高速段(Hi)」の2つの変速段を有している。そして、図5に示すとおり、低速段(Lo)は、高速段(Hi)及びパラレルモードの第1速段(1st)との間で切り替え可能となっている。また、高速段(Hi)は、低速段(Lo)並びにパラレルモードの第2速段(2nd)、第3速段(3rd)、及び第4速段(4th)との間で切り替え可能となっている。
1-4. Split mode The split mode distributes the rotational driving force of the input shaft I (engine E) to both the first motor / generator MG1 and the transmission member M via the first planetary gear unit P1 (first planetary gear mechanism PG1). In this mode, the vehicle travels while transmitting at least the rotational driving force distributed to the transmission member M to the output shaft O via the second planetary gear device P2 (second planetary gear mechanism PG2 and third planetary gear mechanism PG3). In the present embodiment, the hybrid drive device H has two shift speeds of “low speed (Lo)” and “high speed (Hi)” in the split mode. As shown in FIG. 5, the low speed stage (Lo) can be switched between the high speed stage (Hi) and the first speed stage (1st) in the parallel mode. Further, the high speed stage (Hi) can be switched between the low speed stage (Lo) and the second speed stage (2nd), the third speed stage (3rd), and the fourth speed stage (4th) in the parallel mode. ing.

図4に示すように、スプリットモードの低速段(Lo)では、第二ブレーキB2が係合状態とされることで第二遊星歯車機構PG2のサンギヤs2がケースDsに固定される。そして、図6に直線L1として示すように、第一遊星歯車装置P1(第一遊星歯車機構PG1)は、回転速度の順で中間となるリングギヤr1が入力軸I(エンジンE)と一体的に回転し、その回転駆動力がサンギヤs1及びキャリアca1に分配される。そして、サンギヤs1に分配された回転駆動力は伝動部材Mを介して第二遊星歯車機構PG2のリングギヤr2及び第三遊星歯車機構PG3のキャリアca3に伝達され、キャリアca1に分配された回転駆動力は第一モータ・ジェネレータMG1のロータRo1に伝達される(図1参照)。この際、エンジンEは、高い効率で排ガスの少ない状態に(一般に最適燃費特性に沿うよう)に維持されるよう制御されつつ入力軸Iを介して正方向の回転トルクをリングギヤr1に伝達する。また、第一モータ・ジェネレータMG1は、負方向の回転トルクを出力することにより、入力軸Iの回転トルクの反力をキャリアca1に伝達する。そして、第一モータ・ジェネレータMG1の回転速度によりサンギヤs1(伝動部材M)の回転速度が決定される。通常の走行状態では、第一モータ・ジェネレータMG1は、正回転(回転速度が正)しつつ負方向の回転トルクを発生して発電を行う。   As shown in FIG. 4, at the low speed stage (Lo) in the split mode, the sun gear s2 of the second planetary gear mechanism PG2 is fixed to the case Ds when the second brake B2 is engaged. Then, as shown as a straight line L1 in FIG. 6, the first planetary gear device P1 (first planetary gear mechanism PG1) has a ring gear r1 that is intermediate in the order of rotational speed, integrally with the input shaft I (engine E). The rotation driving force is distributed to the sun gear s1 and the carrier ca1. The rotational driving force distributed to the sun gear s1 is transmitted to the ring gear r2 of the second planetary gear mechanism PG2 and the carrier ca3 of the third planetary gear mechanism PG3 via the transmission member M, and the rotational driving force distributed to the carrier ca1. Is transmitted to the rotor Ro1 of the first motor generator MG1 (see FIG. 1). At this time, the engine E transmits the rotational torque in the positive direction to the ring gear r1 via the input shaft I while being controlled to be maintained in a state of high efficiency and low exhaust gas (generally along the optimum fuel consumption characteristics). Further, the first motor / generator MG1 transmits a reaction torque of the rotation torque of the input shaft I to the carrier ca1 by outputting a rotation torque in the negative direction. The rotational speed of the sun gear s1 (transmission member M) is determined by the rotational speed of the first motor / generator MG1. In a normal traveling state, the first motor / generator MG1 generates power by generating a rotational torque in the negative direction while rotating forward (rotation speed is positive).

そして、この低速段(Lo)では、図6に直線L2として示すように、第二遊星歯車装置P2(第二遊星歯車機構PG2及び第三遊星歯車機構PG3)は、回転速度の順に、第一回転要素(m1)としての第三遊星歯車機構PG3のサンギヤs3が第二モータ・ジェネレータMG2のロータRo2と一体回転し、第二回転要素(m2)としての第二遊星歯車機構PG2のリングギヤr2及び第三遊星歯車機構PG3のキャリアca3が伝動部材Mと一体回転し、第三回転要素(m3)としての第二遊星歯車機構PG2のキャリアca2及び第三遊星歯車機構PG3のリングギヤr3が出力軸Oと一体回転し、第四回転要素(m4)としての第二遊星歯車機構PG2のサンギヤs2は第二ブレーキB2によりケースDsに固定される。これにより、第一遊星歯車装置P1から伝動部材Mに分配された入力軸I(エンジンE)の回転駆動力と、第二モータ・ジェネレータMG2の回転駆動力とが、出力軸Oに伝達される。この際、伝動部材Mの回転及び第二モータ・ジェネレータMG2の回転は、その回転速度の絶対値が減速されて出力軸Oに伝達される。   In this low speed stage (Lo), as shown by a straight line L2 in FIG. 6, the second planetary gear device P2 (second planetary gear mechanism PG2 and third planetary gear mechanism PG3) The sun gear s3 of the third planetary gear mechanism PG3 as the rotating element (m1) rotates integrally with the rotor Ro2 of the second motor / generator MG2, and the ring gear r2 of the second planetary gear mechanism PG2 as the second rotating element (m2) and The carrier ca3 of the third planetary gear mechanism PG3 rotates integrally with the transmission member M, and the carrier ca2 of the second planetary gear mechanism PG2 as the third rotating element (m3) and the ring gear r3 of the third planetary gear mechanism PG3 are output shafts O. The sun gear s2 of the second planetary gear mechanism PG2 as the fourth rotating element (m4) is fixed to the case Ds by the second brake B2. As a result, the rotational driving force of the input shaft I (engine E) distributed to the transmission member M from the first planetary gear device P1 and the rotational driving force of the second motor / generator MG2 are transmitted to the output shaft O. . At this time, the rotation of the transmission member M and the rotation of the second motor / generator MG2 are transmitted to the output shaft O after the absolute value of the rotation speed is decelerated.

図4に示すように、スプリットモードの高速段(Hi)では、第一クラッチC1が係合状態とされることで第一遊星歯車機構PG1のキャリアca1が出力軸Oに直結され、これらが一体回転する状態となる。それにより、この高速段では、図6に示すように、第一遊星歯車装置P1と第二遊星歯車装置P2とは、速度線図上で同一直線状となる。そして、これらの各回転要素の中で、回転速度の順で中間となる第一遊星歯車機構PG1のリングギヤr1が入力軸Iと一体回転し、回転速度の順でその一方側となる第二遊星歯車機構PG2のキャリアca2及び第三遊星歯車機構PG3のリングギヤr3が出力軸O及び第一モータ・ジェネレータMG1と一体回転し、回転速度の順でその他方側となる第三遊星歯車機構PG3のサンギヤs3が第二モータ・ジェネレータMG2と一体回転する。この際、エンジンEは、高い効率で排ガスの少ない状態に(一般に最適燃費特性に沿うよう)に維持されるよう制御されつつ入力軸Iを介して正方向の回転トルクを第一遊星歯車機構PG1のリングギヤr1に伝達する。また、第二モータ・ジェネレータMG2は、負方向の回転トルクを出力することにより、入力軸Iの回転トルクの反力を第三遊星歯車機構PG3のサンギヤs3に伝達する。そして、入力軸I(エンジンE)及び第二モータ・ジェネレータMG2の回転速度により出力軸Oの回転速度が決定される。これにより、第一遊星歯車装置P1を介して入力軸I(エンジンE)の回転駆動力が出力軸Oに伝達されるとともに、第二遊星歯車装置P2を介して第二モータ・ジェネレータMG2の回転駆動力が出力軸Oに伝達される。なお、この際、第一モータ・ジェネレータMG1に正方向の回転トルクを出力させれば、回転駆動力の不足分を第一モータ・ジェネレータMG1によりアシストしながら走行することができる。   As shown in FIG. 4, in the high speed stage (Hi) of the split mode, the carrier ca1 of the first planetary gear mechanism PG1 is directly connected to the output shaft O when the first clutch C1 is engaged, and these are integrated. It will be in a rotating state. As a result, at this high speed stage, as shown in FIG. 6, the first planetary gear device P1 and the second planetary gear device P2 are collinear on the velocity diagram. Among these rotating elements, the ring gear r1 of the first planetary gear mechanism PG1 that is intermediate in the order of rotational speed rotates integrally with the input shaft I, and the second planet that is on one side in the order of rotational speed. The sun gear of the third planetary gear mechanism PG3 in which the carrier ca2 of the gear mechanism PG2 and the ring gear r3 of the third planetary gear mechanism PG3 rotate integrally with the output shaft O and the first motor / generator MG1 and become the other side in order of rotational speed. s3 rotates integrally with the second motor / generator MG2. At this time, the engine E is controlled so as to maintain high efficiency and low exhaust gas (generally along optimum fuel consumption characteristics), while applying a positive rotational torque via the input shaft I to the first planetary gear mechanism PG1. Is transmitted to the ring gear r1. Further, the second motor / generator MG2 outputs a rotational torque in the negative direction, thereby transmitting a reaction force of the rotational torque of the input shaft I to the sun gear s3 of the third planetary gear mechanism PG3. The rotational speed of the output shaft O is determined by the rotational speeds of the input shaft I (engine E) and the second motor / generator MG2. Thereby, the rotational driving force of the input shaft I (engine E) is transmitted to the output shaft O via the first planetary gear device P1, and the rotation of the second motor / generator MG2 via the second planetary gear device P2. The driving force is transmitted to the output shaft O. At this time, if the first motor / generator MG1 outputs a rotational torque in the positive direction, the first motor / generator MG1 can assist the traveling with the insufficient rotational driving force.

1−5.パラレルモード
パラレルモードは、複数の変速段を有し、各変速段に応じた所定の変速比で入力軸Iの回転速度を変速して出力軸Oに伝達しつつ走行するモードである。本実施形態においては、ハイブリッド駆動装置Hは、パラレルモードでは、入力軸I及び第二モータ・ジェネレータMG2の回転速度を減速して出力軸Oに伝達する減速変速段としての「第1速段(1st)」及び「第2速段(2nd)」と、入力軸I及び第二モータ・ジェネレータMG2の回転速度を同速で出力軸Oに伝達する直結段としての「第3速段(3rd)」と、入力軸Iの回転速度を増速して出力軸Oに伝達する増速変速段としての「第4速段(4th)」とを有している。
1-5. Parallel mode The parallel mode is a mode in which the vehicle has a plurality of gear speeds and travels while changing the rotational speed of the input shaft I at a predetermined gear ratio corresponding to each gear speed and transmitting it to the output shaft O. In the present embodiment, in the parallel mode, the hybrid drive device H decelerates the rotational speeds of the input shaft I and the second motor / generator MG2 and transmits them to the output shaft O as the “first speed stage ( 1st) ”and“ second speed (2nd) ”and“ third speed (3rd) as a direct connection stage that transmits the rotational speeds of the input shaft I and the second motor / generator MG2 to the output shaft O at the same speed ”. ”And“ fourth speed (4th) ”as the speed increasing gear that increases the rotational speed of the input shaft I and transmits it to the output shaft O.

そして、図5に示すとおり、第1速段(1st)は、第2速段(2nd)、第3速段(3rd)及びスプリットモードの低速段(Lo)との間で切り替え可能となっている。第2速段(2nd)は、第1速段(1st)、第3速段(3rd)、第4速段(4th)、及びスプリットモードの高速段(Hi)との間で切り替え可能となっている。第3速段(3rd)は、第1速段(1st)、第2速段(2nd)、第4速段(4th)、及びスプリットモードの高速段(Hi)との間で切り替え可能となっている。第4速段(4th)は、第2速段(2nd)、第3速段(3rd)、及びスプリットモードの高速段(Hi)との間で切り替え可能となっている。以下、各変速段でのハイブリッド駆動装置Hの動作状態について説明する。   As shown in FIG. 5, the first speed (1st) can be switched between the second speed (2nd), the third speed (3rd), and the low speed (Lo) in the split mode. Yes. The second speed (2nd) can be switched among the first speed (1st), the third speed (3rd), the fourth speed (4th), and the high speed (Hi) in the split mode. ing. The third speed (3rd) can be switched among the first speed (1st), the second speed (2nd), the fourth speed (4th), and the high speed (Hi) in the split mode. ing. The fourth speed (4th) can be switched between the second speed (2nd), the third speed (3rd), and the high speed (Hi) in the split mode. Hereinafter, the operation state of the hybrid drive device H at each shift stage will be described.

図4に示すように、パラレルモードの第1速段(1st)では、第二クラッチC2及び第二ブレーキB2が係合状態とされる。そして、第二クラッチC2が係合状態とされることで、図7に直線L1として示すように、第一遊星歯車機構PG1は、全体が一体回転する直結状態となり、入力軸Iの回転速度が同速で伝動部材Mに伝達される。また、図7に直線L2として示すように、第二ブレーキB2が係合状態とされることで、この伝動部材Mの回転及び第二モータ・ジェネレータMG2の回転が減速して第二遊星歯車機構PG2のキャリアca2及び第三遊星歯車機構PG3のリングギヤr3に伝達され、出力軸Oから出力される。パラレルモードの複数の変速段の中では、この第1速段の変速比が最も大きくなるように設定されている。   As shown in FIG. 4, at the first speed (1st) in the parallel mode, the second clutch C2 and the second brake B2 are engaged. When the second clutch C2 is engaged, the first planetary gear mechanism PG1 is in a directly connected state in which the whole is integrally rotated as shown by a straight line L1 in FIG. 7, and the rotational speed of the input shaft I is increased. It is transmitted to the transmission member M at the same speed. Further, as shown by a straight line L2 in FIG. 7, the second brake B2 is engaged, whereby the rotation of the transmission member M and the rotation of the second motor / generator MG2 are decelerated, and the second planetary gear mechanism. It is transmitted to the carrier ca2 of PG2 and the ring gear r3 of the third planetary gear mechanism PG3 and output from the output shaft O. Among the plurality of shift speeds in the parallel mode, the speed ratio of the first speed is set to be the largest.

図4に示すように、パラレルモードの第2速段(2nd)、第3速段(3rd)、及び第4速段(4th)では、第一クラッチC1が係合状態とされることで第一遊星歯車機構PG1のキャリアca1及び第一モータ・ジェネレータMGが出力軸Oに直結され、これらが一体回転する状態となる。したがって、図8に示すように、第一遊星歯車装置P1と第二遊星歯車装置P2とは、速度線図上で同一直線状となる。そして、このパラレルモードの第2速段(2nd)では、第二ブレーキB2が係合状態とされることで、第二遊星歯車装置P2を構成する第二遊星歯車機構PG2のサンギヤs2がケースDsに固定される。第3速段(3rd)では、第二クラッチC2が係合状態とされることで、第一遊星歯車装置P1及び第二遊星歯車装置P2は全体が一体回転する直結状態とされる。第4速段(4th)では、第一ブレーキB1が係合状態とされることで、伝動部材M及びこれと一体回転する第一遊星歯車機構PG1のサンギヤs1、第二遊星歯車機構PG2のリングギヤr2及び第三遊星歯車機構PG3のキャリアca3がケースDsに固定される。これにより、入力軸I(エンジンE)の回転速度は、各変速段(2nd、3rd、4th)の変速比に応じて変速(減速、同速又は増速)されて出力軸Oに伝達され、出力される。   As shown in FIG. 4, at the second speed (2nd), the third speed (3rd), and the fourth speed (4th) in the parallel mode, the first clutch C1 is engaged so that the first gear C1 is engaged. The carrier ca1 and the first motor / generator MG of the single planetary gear mechanism PG1 are directly connected to the output shaft O, and these are rotated integrally. Therefore, as shown in FIG. 8, the first planetary gear device P1 and the second planetary gear device P2 are in the same straight line on the velocity diagram. At the second speed (2nd) in the parallel mode, the second brake B2 is engaged, so that the sun gear s2 of the second planetary gear mechanism PG2 constituting the second planetary gear device P2 is moved to the case Ds. Fixed to. At the third speed (3rd), when the second clutch C2 is engaged, the first planetary gear device P1 and the second planetary gear device P2 are in a directly connected state in which the whole rotates integrally. At the fourth speed (4th), when the first brake B1 is engaged, the transmission member M, the sun gear s1 of the first planetary gear mechanism PG1 that rotates integrally therewith, and the ring gear of the second planetary gear mechanism PG2 The carrier ca3 of r2 and the third planetary gear mechanism PG3 is fixed to the case Ds. As a result, the rotational speed of the input shaft I (engine E) is shifted (decelerated, the same speed or increased) according to the gear ratio of each gear (2nd, 3rd, 4th) and transmitted to the output shaft O. Is output.

このパラレルモードでは、第二モータ・ジェネレータMG2を力行させることにより、エンジンEの回転駆動力を第二モータ・ジェネレータMG2の回転駆動力でアシストしながら走行することが可能である。また、第一モータ・ジェネレータMG1は、負方向の回転トルクを発生して発電し、又は正方向の回転トルクを発生して力行することでエンジンEの回転駆動力をアシストすることが可能である。なお、第一モータ・ジェネレータMG1及び第二モータ・ジェネレータMG2は、回転トルクを発生しない状態とすることも可能である。   In this parallel mode, the second motor / generator MG2 can be powered to run while assisting the rotational driving force of the engine E with the rotational driving force of the second motor / generator MG2. Further, the first motor / generator MG1 can assist in the rotational driving force of the engine E by generating negative rotational torque to generate electric power, or generating positive rotational torque and powering. . Note that the first motor / generator MG1 and the second motor / generator MG2 may be in a state where no rotational torque is generated.

1−6.シリーズモード
シリーズモードは、第一遊星歯車装置P1(第一遊星歯車機構PG1)を介して入力軸I(エンジンE)の回転駆動力を第一モータ・ジェネレータMG1に伝達して発電を行い、第二遊星歯車装置P2(第二遊星歯車機構PG2及び第三遊星歯車機構PG3)を介して第二モータ・ジェネレータMG2の回転駆動力を出力軸Oに伝達しつつ走行するモードである。本実施形態においては、シリーズモードは、車両を後進させる際に用いる後進用のモードとしている。
1-6. Series mode The series mode generates power by transmitting the rotational driving force of the input shaft I (engine E) to the first motor / generator MG1 via the first planetary gear device P1 (first planetary gear mechanism PG1). In this mode, the second planetary gear device P2 (the second planetary gear mechanism PG2 and the third planetary gear mechanism PG3) travels while transmitting the rotational driving force of the second motor / generator MG2 to the output shaft O. In the present embodiment, the series mode is a reverse mode used when the vehicle is moved backward.

図4に示すように、シリーズモードでは、第一ブレーキB1が係合状態とされることで、伝動部材MがケースDsに固定される。これにより、第一遊星歯車機構PG1のサンギヤs1、第二遊星歯車機構PG2のリングギヤr2及び第三遊星歯車機構PG3のキャリアca3もケースDsに固定される。そして、図9に直線L1として示すように、第一遊星歯車装置P1(第一遊星歯車機構PG1)は、回転速度の順で中間の第二回転要素(m2)となるリングギヤr1が入力軸I(エンジンE)と一体的に回転する。そして、この回転駆動力が、回転速度の順で一方側となる第三回転要素(m3)としてのキャリアca1を介して第一モータ・ジェネレータMG1のロータRo1に伝達される。そして、第一モータ・ジェネレータMG1は、正回転(回転速度が正)しつつ負方向の回転トルクを発生して発電を行う。この際、エンジンEは、高い効率で排ガスの少ない状態に(一般に最適燃費特性に沿うよう)に維持されるよう制御される。なお、このとき回転速度の順で他方側となる第一回転要素(m1)としてのサンギヤs1はケースDsに固定されているため、このサンギヤs1は回転しない。   As shown in FIG. 4, in the series mode, the transmission member M is fixed to the case Ds when the first brake B1 is engaged. Thereby, the sun gear s1 of the first planetary gear mechanism PG1, the ring gear r2 of the second planetary gear mechanism PG2, and the carrier ca3 of the third planetary gear mechanism PG3 are also fixed to the case Ds. 9, the first planetary gear device P1 (first planetary gear mechanism PG1) has a ring gear r1 serving as an intermediate second rotating element (m2) in order of rotational speed. Rotates integrally with (Engine E). Then, this rotational driving force is transmitted to the rotor Ro1 of the first motor / generator MG1 via the carrier ca1 as the third rotational element (m3) on one side in the order of the rotational speed. The first motor / generator MG1 generates electric power by generating a rotational torque in the negative direction while rotating forward (rotation speed is positive). At this time, the engine E is controlled so as to be maintained in a state of high efficiency and low exhaust gas (generally along optimum fuel consumption characteristics). At this time, since the sun gear s1 as the first rotating element (m1) on the other side in the order of the rotational speed is fixed to the case Ds, the sun gear s1 does not rotate.

一方、図9に直線L2として示すように、第二遊星歯車装置P2(第二遊星歯車機構PG2及び第三遊星歯車機構PG3)は、回転速度の順に、第一回転要素(m1)としての第三遊星歯車機構PG3のサンギヤs3が第二モータ・ジェネレータMG2のロータRo2と一体回転し、第二回転要素(m2)としての第二遊星歯車機構PG2のリングギヤr2及び第三遊星歯車機構PG3のキャリアca3が第一ブレーキB1を介してケースDsに固定され、第三回転要素(m3)としての第二遊星歯車機構PG2のキャリアca2及び第三遊星歯車機構PG3のリングギヤr3が出力軸Oと一体回転する。したがって、第二モータ・ジェネレータMG2を、正回転(回転速度が正)しつつ正方向の回転トルクを発生するように力行させれば、出力軸Oには負回転(回転速度が負)、かつ負方向の回転トルクが伝達され、車両を後進させることができる。この際、第二モータ・ジェネレータMG2には、第一モータ・ジェネレータMG1により発電された電力が供給される。なお、このシリーズモードでは、第二モータ・ジェネレータMG2を、負回転しつつ負方向の回転トルクを発生させるように力行させれば、車両を前進させることができる。   On the other hand, as shown by a straight line L2 in FIG. 9, the second planetary gear device P2 (second planetary gear mechanism PG2 and third planetary gear mechanism PG3) is a first rotating element (m1) in the order of rotational speed. The sun gear s3 of the three planetary gear mechanism PG3 rotates integrally with the rotor Ro2 of the second motor / generator MG2, and the carrier of the ring gear r2 of the second planetary gear mechanism PG2 and the third planetary gear mechanism PG3 as the second rotating element (m2). The ca3 is fixed to the case Ds via the first brake B1, and the carrier ca2 of the second planetary gear mechanism PG2 and the ring gear r3 of the third planetary gear mechanism PG3 as the third rotating element (m3) rotate integrally with the output shaft O. To do. Therefore, if the second motor / generator MG2 is powered so as to generate a rotational torque in the positive direction while rotating forward (rotation speed is positive), the output shaft O rotates negatively (rotation speed is negative), and The negative rotational torque is transmitted, and the vehicle can be moved backward. At this time, the electric power generated by the first motor / generator MG1 is supplied to the second motor / generator MG2. In this series mode, if the second motor / generator MG2 is powered to generate negative rotational torque while negatively rotating, the vehicle can be moved forward.

このシリーズモードでは、第一ブレーキB1により伝動部材M及び接続回転要素(mj)となる第一遊星歯車機構PG1のサンギヤs1、第二遊星歯車機構PG2のリングギヤr2及び第三遊星歯車機構PG3のキャリアca3が非回転部材としてのケースDsに固定される。この状態では、入力軸I(エンジンE)の回転は第一遊星歯車装置P1(第一遊星歯車機構PG1)を介して第一モータ・ジェネレータMG1には伝達されるが、出力軸O及び第二モータ・ジェネレータMG2には伝達されない。そのため、エンジンEの回転駆動力を第一モータ・ジェネレータMG1に伝達して発電を行いつつ、その影響を受けることなく、第二遊星歯車装置P2(第二遊星歯車機構PG2及び第三遊星歯車機構PG3)を介して第二モータ・ジェネレータMG2を力行して発生する回転駆動力を出力軸Oに伝達して走行することができる。したがって、バッテリ11の充電状態に関係なく、大きな回転駆動力で長時間にわたって第二モータ・ジェネレータMG2を力行し、その回転駆動力による走行を行うことが可能となる。   In this series mode, the sun gear s1 of the first planetary gear mechanism PG1, the ring gear r2 of the second planetary gear mechanism PG2, and the carrier of the third planetary gear mechanism PG3, which are the transmission member M and the connecting rotation element (mj) by the first brake B1. ca3 is fixed to the case Ds as a non-rotating member. In this state, the rotation of the input shaft I (engine E) is transmitted to the first motor / generator MG1 via the first planetary gear device P1 (first planetary gear mechanism PG1), but the output shaft O and the second It is not transmitted to motor generator MG2. Therefore, the second planetary gear device P2 (the second planetary gear mechanism PG2 and the third planetary gear mechanism is transmitted without being influenced by transmitting the rotational driving force of the engine E to the first motor / generator MG1 and generating electric power. It is possible to travel by transmitting the rotational driving force generated by powering the second motor / generator MG2 via PG3) to the output shaft O. Therefore, regardless of the state of charge of the battery 11, it is possible to power the second motor / generator MG2 for a long time with a large rotational driving force and to run with the rotational driving force.

2.第二の実施形態
次に、本発明の第二の実施形態について説明する。図10は、本実施形態に係るハイブリッド駆動装置Hの構成を示すスケルトン図である。本実施形態に係るハイブリッド駆動装置Hは、第一遊星歯車装置P1及び第二遊星歯車装置P2の各回転要素を実現するための具体的構成だけが上記第一の実施形態と異なるが、その他の構成については基本的に同じである。すなわち、第一遊星歯車装置P1が、回転速度の順に第一回転要素(m1)、第二回転要素(m2)、及び第三回転要素(m3)を有し、第一回転要素(m1)が接続回転要素(mj)となる点、及び、第二遊星歯車装置P2が、回転速度の順に第一回転要素(m1)、第二回転要素(m2)、第三回転要素(m3)、及び第四回転要素(m4)を有し、第二回転要素(m2)が接続回転要素(mj)となる点は、上記第一の実施形態と同様である。また、各回転要素と各摩擦係合要素C1、C2、B1、B2との関係についても上記第一の実施形態と同様である。
2. Second Embodiment Next, a second embodiment of the present invention will be described. FIG. 10 is a skeleton diagram showing the configuration of the hybrid drive apparatus H according to the present embodiment. The hybrid drive device H according to the present embodiment differs from the first embodiment only in the specific configuration for realizing the rotating elements of the first planetary gear device P1 and the second planetary gear device P2. The configuration is basically the same. That is, the first planetary gear device P1 has a first rotating element (m1), a second rotating element (m2), and a third rotating element (m3) in order of rotational speed, and the first rotating element (m1) The point which becomes the connection rotation element (mj), and the second planetary gear device P2 are the first rotation element (m1), the second rotation element (m2), the third rotation element (m3), and the The point which has four rotation elements (m4) and a 2nd rotation element (m2) becomes a connection rotation element (mj) is the same as that of said 1st embodiment. The relationship between each rotating element and each friction engagement element C1, C2, B1, B2 is also the same as in the first embodiment.

したがって、本実施形態に係るハイブリッド駆動装置Hは、図4に示す作動表に従って動作する。また、第一遊星歯車装置P1及び第二遊星歯車装置P2における回転速度の順の回転要素(m1〜m4)を基準とすれば、速度線図は、上記第一の実施形態に係る図6〜図9と同様となる。なお、その他の構成についても、特に説明しない点については、上記第一の実施形態と同様である。以下、上記第一の実施形態との相違点となる、第一遊星歯車装置P1及び第二遊星歯車装置P2の具体的構成について説明する。   Therefore, the hybrid drive device H according to the present embodiment operates according to the operation table shown in FIG. Moreover, if the rotation elements (m1 to m4) in the order of the rotation speed in the first planetary gear device P1 and the second planetary gear device P2 are used as a reference, the speed diagram is shown in FIGS. The same as in FIG. Other configurations are the same as those in the first embodiment, unless otherwise described. Hereinafter, specific configurations of the first planetary gear device P1 and the second planetary gear device P2 that are different from the first embodiment will be described.

2−1.第一遊星歯車装置P1及び第二遊星歯車装置P2の具体的構成
図10に示すように、第一遊星歯車装置P1が第一遊星歯車機構PG1により構成され、第一遊星歯車機構PG1が、入力軸Iと同軸状に配置されたダブルピニオン型の遊星歯車機構である点は、上記第一の実施形態と同様である。一方、本実施形態においては、キャリアca1が、伝動部材Mを介して第二遊星歯車機構PG2の第二回転要素(m2)としてサンギヤs2と一体回転するように接続されている。また、リングギヤr1が、入力軸Iと一体回転するように接続されている。そして、サンギヤs1が、第一モータ・ジェネレータMG1のロータRo1と一体回転するように接続されている。本実施形態においては、この第一遊星歯車機構PG1のキャリアca1、リングギヤr1、サンギヤs1が、それぞれ第一遊星歯車装置P1の「第一回転要素(m1)」、「第二回転要素(m2)」、「第三回転要素(m3)」に相当する。また、伝動部材Mと一体回転するように接続されるキャリアca1(第一回転要素(m1))が、「接続回転要素(mj)」となる。
2-1. Specific Configuration of First Planetary Gear Device P1 and Second Planetary Gear Device P2 As shown in FIG. 10, the first planetary gear device P1 is constituted by a first planetary gear mechanism PG1, and the first planetary gear mechanism PG1 is input. The double pinion type planetary gear mechanism arranged coaxially with the shaft I is the same as the first embodiment. On the other hand, in the present embodiment, the carrier ca1 is connected via the transmission member M so as to rotate integrally with the sun gear s2 as the second rotating element (m2) of the second planetary gear mechanism PG2. Further, the ring gear r1 is connected so as to rotate integrally with the input shaft I. The sun gear s1 is connected to rotate integrally with the rotor Ro1 of the first motor / generator MG1. In the present embodiment, the carrier ca1, the ring gear r1, and the sun gear s1 of the first planetary gear mechanism PG1 are the “first rotating element (m1)” and “second rotating element (m2) of the first planetary gear device P1, respectively. ”,“ Third rotation element (m3) ”. Further, the carrier ca1 (first rotating element (m1)) connected to rotate integrally with the transmission member M is a “connected rotating element (mj)”.

そして、第一遊星歯車機構PG1のサンギヤs1は、第一クラッチC1を介して出力軸Oに選択的に接続される。後述するように、出力軸Oは、第二遊星歯車機構PG2のキャリアca2及び第三遊星歯車機構PG3のキャリアca3と一体回転するように接続されている。したがって、第一モータ・ジェネレータMG1及び第一遊星歯車機構PG1のサンギヤs1は、第一クラッチC1を介して出力軸O、第二遊星歯車機構PG2のキャリアca2、及び第三遊星歯車機構PG3のキャリアca3に選択的に接続される。また、上記第一の実施形態と同様に、第一遊星歯車機構PG1のリングギヤr1とキャリアca1は、第二クラッチC2を介して選択的に接続される。したがって、第二クラッチC2が係合状態とされると、第一遊星歯車機構PG1は全体が一体回転する直結状態となる。   The sun gear s1 of the first planetary gear mechanism PG1 is selectively connected to the output shaft O via the first clutch C1. As will be described later, the output shaft O is connected to rotate integrally with the carrier ca2 of the second planetary gear mechanism PG2 and the carrier ca3 of the third planetary gear mechanism PG3. Accordingly, the sun gear s1 of the first motor / generator MG1 and the first planetary gear mechanism PG1 is connected to the output shaft O, the carrier ca2 of the second planetary gear mechanism PG2, and the carrier of the third planetary gear mechanism PG3 via the first clutch C1. It is selectively connected to ca3. Similarly to the first embodiment, the ring gear r1 of the first planetary gear mechanism PG1 and the carrier ca1 are selectively connected via the second clutch C2. Therefore, when the second clutch C2 is engaged, the first planetary gear mechanism PG1 is in a directly connected state in which the whole rotates integrally.

また、第二遊星歯車装置P2が第二遊星歯車機構PG2及び第三遊星歯車機構PG3により構成され、第二遊星歯車機構PG2及び第三遊星歯車機構PG3が、それぞれ出力軸Oと同軸状に配置されたシングルピニオン型の遊星歯車機構である点は、上記第一の実施形態と同様である。一方、本実施形態においては、第二遊星歯車機構PG2は、サンギヤs2が、伝動部材Mを介して第一遊星歯車機構PG1のキャリアca1と一体回転するように接続されている。また、キャリアca2が、出力軸O及び第三遊星歯車機構PG3のキャリアca3と一体回転するように接続されている。そして、リングギヤr2が、第三遊星歯車機構PG3のリングギヤr3と一体回転するように接続されている。また、第三遊星歯車機構PG3は、サンギヤs3が、第二モータ・ジェネレータMG2のロータRo2と一体回転するように接続されている。また、キャリアca3が、出力軸O及び第二遊星歯車機構PG2のキャリアca2と一体回転するように接続されている。そして、リングギヤr3が、第二遊星歯車機構PG2のリングギヤr2と一体回転するように接続されている。そして、互いに一体回転する第二遊星歯車機構PG2のリングギヤr2及び第三遊星歯車機構PG3のリングギヤr3は、第二ブレーキB2を介してケースDsに選択的に固定される。   Further, the second planetary gear device P2 is constituted by the second planetary gear mechanism PG2 and the third planetary gear mechanism PG3, and the second planetary gear mechanism PG2 and the third planetary gear mechanism PG3 are arranged coaxially with the output shaft O, respectively. The single pinion type planetary gear mechanism is the same as in the first embodiment. On the other hand, in the present embodiment, the second planetary gear mechanism PG2 is connected so that the sun gear s2 rotates integrally with the carrier ca1 of the first planetary gear mechanism PG1 via the transmission member M. Further, the carrier ca2 is connected to rotate integrally with the output shaft O and the carrier ca3 of the third planetary gear mechanism PG3. The ring gear r2 is connected to rotate integrally with the ring gear r3 of the third planetary gear mechanism PG3. The third planetary gear mechanism PG3 is connected such that the sun gear s3 rotates integrally with the rotor Ro2 of the second motor / generator MG2. Further, the carrier ca3 is connected to rotate integrally with the output shaft O and the carrier ca2 of the second planetary gear mechanism PG2. The ring gear r3 is connected to rotate integrally with the ring gear r2 of the second planetary gear mechanism PG2. The ring gear r2 of the second planetary gear mechanism PG2 and the ring gear r3 of the third planetary gear mechanism PG3 that rotate integrally with each other are selectively fixed to the case Ds via the second brake B2.

以上のように、第二遊星歯車機構PG2及び第三遊星歯車機構PG3は、それぞれが有する3つの回転要素のうちの2つずつが互いに一体回転するように接続されており、それにより4つの回転要素を有する第二遊星歯車装置P2を構成している。そして、本実施形態においては、第三遊星歯車機構PG3のサンギヤs3が、第二遊星歯車装置P2の「第一回転要素(m1)」に相当する。第二遊星歯車機構PG2のサンギヤs2が、第二遊星歯車装置P2の「第二回転要素(m2)」に相当する。互いに一体回転する第二遊星歯車機構PG2のキャリアca2及び第三遊星歯車機構PG3のキャリアca3が、第二遊星歯車装置P2の「第三回転要素(m3)」に相当する。第二遊星歯車機構PG2のリングギヤr2及び第三遊星歯車機構PG3のリングギヤr3が、第二遊星歯車装置P2の「第四回転要素(m4)」に相当する。また、伝動部材Mと一体回転するように接続される第二遊星歯車機構PG2のサンギヤs2(第二回転要素(m2))が、「接続回転要素(mj)」となる。   As described above, the second planetary gear mechanism PG <b> 2 and the third planetary gear mechanism PG <b> 3 are connected so that two of the three rotating elements of each of the second planetary gear mechanism PG <b> 3 and the third planetary gear mechanism PG <b> 3 rotate together. A second planetary gear device P2 having elements is formed. In the present embodiment, the sun gear s3 of the third planetary gear mechanism PG3 corresponds to the “first rotation element (m1)” of the second planetary gear device P2. The sun gear s2 of the second planetary gear mechanism PG2 corresponds to the “second rotating element (m2)” of the second planetary gear device P2. The carrier ca2 of the second planetary gear mechanism PG2 and the carrier ca3 of the third planetary gear mechanism PG3 that rotate integrally with each other correspond to the “third rotation element (m3)” of the second planetary gear device P2. The ring gear r2 of the second planetary gear mechanism PG2 and the ring gear r3 of the third planetary gear mechanism PG3 correspond to the “fourth rotating element (m4)” of the second planetary gear device P2. Further, the sun gear s2 (second rotating element (m2)) of the second planetary gear mechanism PG2 connected so as to rotate integrally with the transmission member M is a “connected rotating element (mj)”.

このハイブリッド駆動装置Hでは、上記第一の実施形態と同様に、伝動部材Mは、第一ブレーキB1を介してケースDsに選択的に固定される。したがって、この伝動部材Mと一体回転する接続回転要素(mj)としての第一遊星歯車機構PG1のキャリアca1(第一遊星歯車装置P1の第一回転要素(m1))、及び第二遊星歯車機構PG2のサンギヤs2(第二遊星歯車装置P2の第二回転要素(m2))も、同様に第一ブレーキB1を介してケースDsに選択的に固定される。   In this hybrid drive device H, as in the first embodiment, the transmission member M is selectively fixed to the case Ds via the first brake B1. Therefore, the carrier ca1 of the first planetary gear mechanism PG1 (the first rotating element (m1) of the first planetary gear device P1) as the connecting rotating element (mj) that rotates integrally with the transmission member M, and the second planetary gear mechanism. Similarly, the sun gear s2 of PG2 (the second rotating element (m2) of the second planetary gear device P2) is also selectively fixed to the case Ds via the first brake B1.

3.その他の実施形態
(1)上記の各実施形態では、ハイブリッド駆動装置Hは、シリーズモード、スプリットモード、及びパラレルモードの3つの動作モードを切替可能に構成された場合の例について説明した。しかし、本発明の適用範囲となるハイブリッド駆動装置Hの構成はこれらに限定されない。すなわち、ハイブリッド駆動装置Hは、これらの3つの動作モードのいずれか一つ以上を実現可能とした構成とすることも本発明の好適な実施形態の一つである。
3. Other Embodiments (1) In each of the above embodiments, the hybrid drive apparatus H has been described as an example in which the three operation modes of the series mode, the split mode, and the parallel mode can be switched. However, the configuration of the hybrid drive device H that is an application range of the present invention is not limited to these. That is, it is also a preferred embodiment of the present invention that the hybrid drive device H is configured to be able to realize any one or more of these three operation modes.

(2)上記の各実施形態では、シリーズモードを、車両を後進させる際に用いる後進用のモードとした場合を例として説明した。しかし、シリーズモードを前進用の動作モードとし、或いは前進及び後進の両方のための動作モードとすることも好適な実施形態の一つである。 (2) In each of the above embodiments, the case where the series mode is the reverse mode used when the vehicle is driven backward has been described as an example. However, it is one of the preferred embodiments that the series mode is an operation mode for forward movement or an operation mode for both forward movement and reverse movement.

(3)上記の各実施形態では、ハイブリッド駆動装置Hが、スプリットモード及びパラレルモードのそれぞれについて複数の変速段を有する場合を例として説明した。しかし、本発明の適用範囲はこれに限定されない。したがって、スプリットモード及びパラレルモードの一方又は双方において、変速段を一つのみとした構成とすることも本発明の好適な実施形態の一つである。 (3) In each of the above embodiments, the case where the hybrid drive device H has a plurality of shift speeds for each of the split mode and the parallel mode has been described as an example. However, the scope of application of the present invention is not limited to this. Therefore, in one or both of the split mode and the parallel mode, it is also one preferred embodiment of the present invention to have a configuration with only one gear position.

(4)また、上記の各実施形態において説明した第一遊星歯車装置P1及び第二遊星歯車装置P2の構成、並びにこれらの各回転要素に対する摩擦係合要素の配置構成は単なる例示であり、上記以外の構成によっても本発明の構成を実現することが可能な全ての構成が、本発明の適用範囲に含まれる。 (4) In addition, the configurations of the first planetary gear device P1 and the second planetary gear device P2 described in each of the above-described embodiments, and the arrangement configuration of the friction engagement elements with respect to each of these rotation elements are merely examples. All configurations that can realize the configuration of the present invention by configurations other than the above are included in the scope of the present invention.

本発明は、2つの回転電機を備えたいわゆるスプリット型のハイブリッド駆動装置及びそのような駆動装置を用いた車両等に利用することができる。   The present invention can be used for a so-called split-type hybrid drive device including two rotating electric machines, a vehicle using such a drive device, and the like.

本発明の第一の実施形態に係るハイブリッド駆動装置のスケルトン図Skeleton diagram of hybrid drive device according to first embodiment of the present invention 第一の実施形態に係るハイブリッド駆動装置のシステム構成を示す模式図The schematic diagram which shows the system configuration | structure of the hybrid drive device which concerns on 1st embodiment. 第一の実施形態に係る制御マップの一例を示す図The figure which shows an example of the control map which concerns on 1st embodiment 第一の実施形態に係る作動表を示す図The figure which shows the action | operation table | surface which concerns on 1st embodiment. 第一の実施形態に係る切替可能な動作モード及び変速段の関係を示す図The figure which shows the relationship between the switchable operation mode which concerns on 1st embodiment, and a gear stage. 第一の実施形態に係るスプリットモードでの速度線図Speed diagram in split mode according to the first embodiment 第一の実施形態に係るパラレルモードでの速度線図(1)Speed diagram in parallel mode according to the first embodiment (1) 第一の実施形態に係るパラレルモードでの速度線図(2)Speed diagram in parallel mode according to the first embodiment (2) 第一の実施形態に係るシリーズモードでの速度線図Velocity diagram in series mode according to the first embodiment 本発明の第二の実施形態に係るハイブリッド駆動装置のスケルトン図Skeleton diagram of hybrid drive device according to second embodiment of the present invention 背景技術に係るハイブリッド駆動装置のスケルトン図Skeleton diagram of hybrid drive device according to background art

符号の説明Explanation of symbols

H:ハイブリッド駆動装置
E:エンジン
I:入力軸
O:出力軸
M:伝動部材
MG1:第一モータ・ジェネレータ(第一回転電機)
MG2:第二モータ・ジェネレータ(第二回転電機)
P1:第一遊星歯車装置
P2:第二遊星歯車装置
PG1:第一遊星歯車機構
PG2:第二遊星歯車機構
PG3:第三遊星歯車機構
Ds:ケース
C1:第一クラッチ
C2:第二クラッチ
B1:第一ブレーキ
B2:第二ブレーキ
(mJ):接続回転要素
(m1):第一回転要素
(m2):第二回転要素
(m3):第三回転要素
(m4):第四回転要素

H: Hybrid drive device E: Engine I: Input shaft O: Output shaft M: Transmission member MG1: First motor / generator (first rotating electrical machine)
MG2: Second motor / generator (second rotating electrical machine)
P1: first planetary gear device P2: second planetary gear device PG1: first planetary gear mechanism PG2: second planetary gear mechanism PG3: third planetary gear mechanism Ds: case C1: first clutch C2: second clutch B1: First brake B2: Second brake (mJ): Connection rotation element (m1): First rotation element (m2): Second rotation element (m3): Third rotation element (m4): Fourth rotation element

Claims (8)

エンジンに接続された入力軸と、車輪に接続された出力軸と、第一回転電機と、第二回転電機と、少なくとも3つの回転要素を有する第一遊星歯車装置と、少なくとも3つの回転要素を有する第二遊星歯車装置と、前記第一遊星歯車装置及び前記第二遊星歯車装置の一の回転要素を、他の回転要素に選択的に接続し又は非回転部材に選択的に固定する複数の摩擦係合要素と、を備えるとともに、
前記第一遊星歯車装置及び前記第二遊星歯車装置は、伝動部材を介して一体回転するように接続された接続回転要素を互いに備え、
前記第一遊星歯車装置は、前記接続回転要素以外の2つの回転要素にそれぞれ前記入力軸と前記第一回転電機とが接続され、
前記第二遊星歯車装置は、前記接続回転要素以外の2つの回転要素にそれぞれ前記出力軸と前記第二回転電機とが接続され、
前記複数の摩擦係合要素は、前記伝動部材及びこれと一体回転する前記接続回転要素を非回転部材に選択的に固定する第一ブレーキを含むハイブリッド駆動装置。
An input shaft connected to the engine, an output shaft connected to the wheels, a first rotating electrical machine, a second rotating electrical machine, a first planetary gear device having at least three rotating elements, and at least three rotating elements A plurality of second planetary gear devices, a plurality of first planetary gear devices and one rotating element of the second planetary gear device selectively connected to other rotating elements or selectively fixed to a non-rotating member. A friction engagement element,
The first planetary gear device and the second planetary gear device each include a connecting rotation element connected to rotate integrally through a transmission member,
In the first planetary gear device, the input shaft and the first rotating electrical machine are connected to two rotating elements other than the connecting rotating element,
In the second planetary gear device, the output shaft and the second rotating electrical machine are respectively connected to two rotating elements other than the connected rotating element,
The plurality of friction engagement elements include a first brake that selectively fixes the transmission member and the connection rotation element that rotates together with the transmission member to a non-rotation member.
前記第一ブレーキの係合状態で、前記第一遊星歯車装置を介して前記入力軸の回転駆動力を前記第一回転電機に伝達して発電を行い、前記第二遊星歯車装置を介して前記第二回転電機の回転駆動力を前記出力軸に伝達するシリーズモードと、
前記第一ブレーキの係合解除状態で、前記第一遊星歯車装置を介して前記入力軸の回転駆動力を前記第一回転電機及び前記伝動部材の双方に分配し、前記第二遊星歯車装置を介して少なくとも前記伝動部材に分配された回転駆動力を前記出力軸に伝達するスプリットモードと、を切替可能に構成されている請求項1に記載のハイブリッド駆動装置。
In the engaged state of the first brake, the rotational driving force of the input shaft is transmitted to the first rotating electrical machine via the first planetary gear device to generate electric power, and the second planetary gear device is used to generate power. A series mode for transmitting the rotational driving force of the second rotating electrical machine to the output shaft;
In the disengaged state of the first brake, the rotational driving force of the input shaft is distributed to both the first rotating electrical machine and the transmission member via the first planetary gear device, and the second planetary gear device is 2. The hybrid drive device according to claim 1, wherein the hybrid drive device is configured to be able to switch between a split mode in which a rotational driving force distributed to at least the transmission member via the transmission shaft is transmitted to the output shaft.
後進時に、前記シリーズモードで前記出力軸が後進回転する方向に前記第二回転電機を回転させる制御を行う請求項2に記載のハイブリッド駆動装置。   The hybrid drive device according to claim 2, wherein the second rotating electrical machine is controlled to rotate in a direction in which the output shaft rotates backward in the series mode during backward travel. 複数の変速段を有し、各変速段に応じた所定の変速比で前記入力軸の回転速度を変速して前記出力軸に伝達するパラレルモードに、更に切替可能に構成されている請求項2又は3に記載のハイブリッド駆動装置。   3. The system according to claim 2, further comprising a plurality of shift speeds, and further switchable to a parallel mode in which a rotational speed of the input shaft is changed at a predetermined speed ratio according to each speed speed and transmitted to the output shaft. Or the hybrid drive device of 3. 前記第二遊星歯車装置は、回転速度の順に少なくとも第一回転要素、第二回転要素、及び第三回転要素を備え、前記第一回転要素に前記第二回転電機が接続され、前記接続回転要素としての前記第二回転要素に前記伝動部材が接続され、前記第三回転要素に前記出力軸が接続されている請求項1から4のいずれか一項に記載のハイブリッド駆動装置。   The second planetary gear device includes at least a first rotating element, a second rotating element, and a third rotating element in order of rotational speed, the second rotating electrical machine is connected to the first rotating element, and the connected rotating element 5. The hybrid drive device according to claim 1, wherein the transmission member is connected to the second rotating element as the first rotating element, and the output shaft is connected to the third rotating element. 6. 前記第二遊星歯車装置は、回転速度の順で前記第三回転要素の次に第四回転要素を更に備え、前記複数の摩擦係合要素は、前記第四回転要素を非回転部材に選択的に固定する第二ブレーキを含む請求項5に記載のハイブリッド駆動装置。   The second planetary gear device further includes a fourth rotating element next to the third rotating element in order of rotational speed, and the plurality of friction engagement elements selectively select the fourth rotating element as a non-rotating member. The hybrid drive device according to claim 5, further comprising a second brake fixed to the vehicle. 前記第一遊星歯車装置は、回転速度の順に少なくとも第一回転要素、第二回転要素、及び第三回転要素を備え、前記接続回転要素としての前記第一回転要素に前記伝動部材が接続され、前記第二回転要素に前記入力軸が接続され、前記第三回転要素に前記第一回転電機が接続されている請求項1から6のいずれか一項に記載のハイブリッド駆動装置。   The first planetary gear device includes at least a first rotating element, a second rotating element, and a third rotating element in order of rotational speed, and the transmission member is connected to the first rotating element as the connecting rotating element, The hybrid drive apparatus according to any one of claims 1 to 6, wherein the input shaft is connected to the second rotating element, and the first rotating electrical machine is connected to the third rotating element. 前記複数の摩擦係合要素は、前記第一遊星歯車装置の第三回転要素と前記出力軸とを選択的に接続する第一クラッチと、前記第一遊星歯車装置の任意の2つの回転要素を選択的に接続する第二クラッチと、を含む請求項7に記載のハイブリッド駆動装置。

The plurality of friction engagement elements include a first clutch that selectively connects a third rotation element of the first planetary gear device and the output shaft, and any two rotation elements of the first planetary gear device. The hybrid drive device according to claim 7, further comprising a second clutch that is selectively connected.

JP2006189583A 2006-07-10 2006-07-10 Hybrid drive device Expired - Fee Related JP4203828B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006189583A JP4203828B2 (en) 2006-07-10 2006-07-10 Hybrid drive device
US11/822,090 US7927244B2 (en) 2006-07-10 2007-07-02 Hybrid drive apparatus
CN2007800010317A CN101351353B (en) 2006-07-10 2007-07-05 Hybrid drive apparatus
DE112007000042T DE112007000042T5 (en) 2006-07-10 2007-07-05 Hybrid drive device
PCT/JP2007/063492 WO2008007611A1 (en) 2006-07-10 2007-07-05 Hybrid driver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006189583A JP4203828B2 (en) 2006-07-10 2006-07-10 Hybrid drive device

Publications (2)

Publication Number Publication Date
JP2008018742A true JP2008018742A (en) 2008-01-31
JP4203828B2 JP4203828B2 (en) 2009-01-07

Family

ID=38919729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006189583A Expired - Fee Related JP4203828B2 (en) 2006-07-10 2006-07-10 Hybrid drive device

Country Status (5)

Country Link
US (1) US7927244B2 (en)
JP (1) JP4203828B2 (en)
CN (1) CN101351353B (en)
DE (1) DE112007000042T5 (en)
WO (1) WO2008007611A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010125900A (en) * 2008-11-25 2010-06-10 Aisin Aw Co Ltd Hybrid drive device
JP2010125899A (en) * 2008-11-25 2010-06-10 Aisin Aw Co Ltd Hybrid drive device
JP2010184549A (en) * 2009-02-10 2010-08-26 Toyota Motor Corp Hybrid type power output device
JP2011218836A (en) * 2010-04-02 2011-11-04 Toyota Motor Corp Vehicular hybrid drive system
JP5177235B2 (en) * 2010-04-14 2013-04-03 トヨタ自動車株式会社 Vehicle drive device
WO2013145093A1 (en) * 2012-03-26 2013-10-03 トヨタ自動車株式会社 Hybrid vehicle drive control device
KR20150078779A (en) * 2013-12-31 2015-07-08 현대자동차주식회사 Power transmission apparatus for vehicle
KR20150078777A (en) * 2013-12-31 2015-07-08 현대자동차주식회사 Power transmission apparatus for vehicle

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006030945A1 (en) * 2006-07-05 2008-02-14 Jungheinrich Ag Drive system for a truck with an internal combustion engine
JP4007403B1 (en) * 2006-09-01 2007-11-14 トヨタ自動車株式会社 Power output device and hybrid vehicle
US8235853B2 (en) * 2006-10-18 2012-08-07 Magna Powertrain Inc. Hybrid transmissions with planetary gearsets
JP4840135B2 (en) * 2006-12-30 2011-12-21 トヨタ自動車株式会社 Control device for vehicle drive device
JP4339374B2 (en) * 2007-04-27 2009-10-07 本田技研工業株式会社 Power equipment
JP2009214783A (en) * 2008-03-12 2009-09-24 Toyota Motor Corp Drive unit of hybrid vehicle
US8292012B2 (en) * 2008-06-30 2012-10-23 GM Global Technology Operations LLC Apparatus and method for a quick start engine and hybrid system
US20100099532A1 (en) * 2008-10-20 2010-04-22 Cashen Wilhelm A Hybrid drive method and apparatus
GB2466975B (en) * 2009-01-16 2013-06-19 Gm Global Tech Operations Inc Torque distributing drive mechanism for motorized vehicles
TW201114559A (en) * 2009-10-21 2011-05-01 Jann Yei Industry Co Ltd Front-depression stapling device structure
DE102010004228A1 (en) * 2010-01-09 2011-07-14 IAV GmbH Ingenieurgesellschaft Auto und Verkehr, 10587 Device for driving a vehicle
DE102010012667B4 (en) * 2010-03-24 2012-06-21 Voith Patent Gmbh driving device
DE102010035205A1 (en) * 2010-08-24 2012-03-01 Volkswagen Ag Hybrid drive system for a motor vehicle
CN102678846B (en) * 2011-03-14 2015-11-25 上海捷能汽车技术有限公司 Speed change gear, the drive system comprising this speed change gear and controlling method thereof
CN110293838A (en) 2012-02-03 2019-10-01 通用电气混合动力技术公司 For transmitting the device and method of power in hybrid vehicle
US11161403B2 (en) 2012-02-03 2021-11-02 Ge Hybrid Technologies, Llc Apparatus and method for delivering power in a hybrid vehicle
AT513352B1 (en) * 2012-08-24 2015-06-15 Avl List Gmbh Powertrain for a vehicle
KR101509699B1 (en) 2013-10-28 2015-04-08 현대자동차 주식회사 Power transmission system of hybrid electric vehicle
KR101510345B1 (en) 2013-10-29 2015-04-08 현대자동차 주식회사 Power transmission system of hybrid electric vehicle
KR101794898B1 (en) * 2013-12-23 2017-12-01 스카니아 씨브이 악티에볼라그 Propulsion system for a vehicle
WO2015099593A1 (en) 2013-12-23 2015-07-02 Scania Cv Ab Propulsion system for a vehicle
WO2015099600A1 (en) 2013-12-23 2015-07-02 Scania Cv Ab A method of supplying electrical appliances of a vehicle
US10604142B2 (en) 2013-12-23 2020-03-31 Scania Cv Ab Method for control of a propulsion system of a vehicle, a propulsion system, a computer program product and a vehicle
DE112014005377T5 (en) 2013-12-23 2016-08-25 Scania Cv Ab Drive system for a vehicle
US9592832B2 (en) 2014-03-18 2017-03-14 Ford Global Technologie,S Llc Extending hybrid electric vehicle regenerative braking
JP6176226B2 (en) * 2014-12-01 2017-08-09 トヨタ自動車株式会社 Hybrid car
DE102014225736A1 (en) * 2014-12-12 2016-06-16 Zf Friedrichshafen Ag Multi-speed transmission in planetary construction
JP6256374B2 (en) * 2015-02-18 2018-01-10 トヨタ自動車株式会社 Hybrid vehicle
KR101655674B1 (en) 2015-05-14 2016-09-08 현대자동차주식회사 Transmission for hybrid vehicle
CN105082996B (en) * 2015-08-06 2017-09-26 福建万润新能源科技有限公司 A kind of bi-motor Two-mode Coupling power set and control method
JP6617745B2 (en) * 2017-04-28 2019-12-11 トヨタ自動車株式会社 Drive device for hybrid vehicle
CN107244232B (en) * 2017-05-02 2019-12-13 北京理工大学 Series-parallel hybrid power transmission device for passenger car
JP6888497B2 (en) * 2017-09-21 2021-06-16 トヨタ自動車株式会社 Control device for vehicle power transmission device
CN109177716B (en) * 2018-08-17 2019-11-26 宁波上中下自动变速器有限公司 Dynamical system for hybrid vehicle

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6478705B1 (en) * 2001-07-19 2002-11-12 General Motors Corporation Hybrid electric powertrain including a two-mode electrically variable transmission
JP3857669B2 (en) * 2002-09-04 2006-12-13 日産自動車株式会社 Hybrid transmission
JP4088574B2 (en) 2003-09-05 2008-05-21 トヨタ自動車株式会社 Power output device and automobile equipped with the same
JP4000529B2 (en) * 2003-12-10 2007-10-31 アイシン・エィ・ダブリュ株式会社 Hybrid drive device
US6953409B2 (en) * 2003-12-19 2005-10-11 General Motors Corporation Two-mode, compound-split, hybrid electro-mechanical transmission having four fixed ratios
JP3979398B2 (en) 2004-03-22 2007-09-19 日産自動車株式会社 Hybrid transmission
JP2006022833A (en) 2004-07-06 2006-01-26 Nissan Motor Co Ltd Drive device for hybrid vehicle
US7101298B2 (en) * 2004-09-22 2006-09-05 General Motors Corporation Electric variable transmission with de-coupled engine charging in reverse
JP4190490B2 (en) * 2004-12-10 2008-12-03 トヨタ自動車株式会社 Power output device, automobile equipped with the same, control device for power output device, and control method for power output device
US7179186B2 (en) * 2005-01-04 2007-02-20 General Motors Corporation Electrically variable transmission having three interconnected planetary gear sets
US7479080B2 (en) * 2006-07-24 2009-01-20 Gm Global Technology Operations, Inc. Hybrid architecture incorporating three motor generators and brakes

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010125899A (en) * 2008-11-25 2010-06-10 Aisin Aw Co Ltd Hybrid drive device
JP2010125900A (en) * 2008-11-25 2010-06-10 Aisin Aw Co Ltd Hybrid drive device
JP2010184549A (en) * 2009-02-10 2010-08-26 Toyota Motor Corp Hybrid type power output device
JP2011218836A (en) * 2010-04-02 2011-11-04 Toyota Motor Corp Vehicular hybrid drive system
JP5177235B2 (en) * 2010-04-14 2013-04-03 トヨタ自動車株式会社 Vehicle drive device
JPWO2013145093A1 (en) * 2012-03-26 2015-08-03 トヨタ自動車株式会社 Drive control apparatus for hybrid vehicle
WO2013145093A1 (en) * 2012-03-26 2013-10-03 トヨタ自動車株式会社 Hybrid vehicle drive control device
KR20150078779A (en) * 2013-12-31 2015-07-08 현대자동차주식회사 Power transmission apparatus for vehicle
KR20150078777A (en) * 2013-12-31 2015-07-08 현대자동차주식회사 Power transmission apparatus for vehicle
KR101588796B1 (en) 2013-12-31 2016-01-26 현대자동차 주식회사 Power transmission apparatus for vehicle
KR101628147B1 (en) 2013-12-31 2016-06-08 현대자동차 주식회사 Power transmission apparatus for vehicle
US9623744B2 (en) 2013-12-31 2017-04-18 Hyundai Motor Company Power transmission apparatus for vehicle
US9695919B2 (en) 2013-12-31 2017-07-04 Hyundai Motor Company Power transmission apparatus for vehicle

Also Published As

Publication number Publication date
US7927244B2 (en) 2011-04-19
CN101351353B (en) 2011-11-09
WO2008007611A1 (en) 2008-01-17
JP4203828B2 (en) 2009-01-07
CN101351353A (en) 2009-01-21
DE112007000042T5 (en) 2008-08-21
US20080009380A1 (en) 2008-01-10

Similar Documents

Publication Publication Date Title
JP4203828B2 (en) Hybrid drive device
JP4257800B1 (en) Hybrid drive device
JP4278110B2 (en) Hybrid drive device
JP4989257B2 (en) Hybrid drive unit
JP4158122B2 (en) Hybrid drive device
JP5067642B2 (en) Hybrid drive unit
US9604530B2 (en) Drive system for hybrid vehicle
JP2010076679A (en) Hybrid drive device
JP4906665B2 (en) Hybrid drive unit
JP4200460B2 (en) Hybrid drive device
JP6743617B2 (en) Power transmission device
JP4993200B2 (en) Hybrid drive unit
KR101788477B1 (en) Drive system for hybrid vehicle
JP2010234830A (en) Hybrid driving device
JP4548734B2 (en) Vehicle drive device and control method thereof
JP4912266B2 (en) Hybrid drive unit
JP6137135B2 (en) Vehicle drive control device
JP5083633B2 (en) Hybrid drive unit
US11807104B2 (en) Vehicle drive device
JP2006044348A (en) Motor overspeed preventing device for hybrid transmission
JP2017206213A (en) Drive unit for vehicle
JP2010234903A (en) Hybrid drive device
JP6007768B2 (en) Vehicle drive device
JP2011105118A (en) Hybrid driving device
JP2023076310A (en) Vehicular driving device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080805

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees