JP2008016783A - Radio wave absorbing material - Google Patents

Radio wave absorbing material Download PDF

Info

Publication number
JP2008016783A
JP2008016783A JP2006189388A JP2006189388A JP2008016783A JP 2008016783 A JP2008016783 A JP 2008016783A JP 2006189388 A JP2006189388 A JP 2006189388A JP 2006189388 A JP2006189388 A JP 2006189388A JP 2008016783 A JP2008016783 A JP 2008016783A
Authority
JP
Japan
Prior art keywords
radio wave
wave absorber
band
carbon powder
wave absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006189388A
Other languages
Japanese (ja)
Inventor
Osamu Hashimoto
橋本  修
Hideo Uemoto
英雄 上本
Masaki Irie
正樹 入江
Isao Imai
功 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Covalent Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covalent Materials Corp filed Critical Covalent Materials Corp
Priority to JP2006189388A priority Critical patent/JP2008016783A/en
Publication of JP2008016783A publication Critical patent/JP2008016783A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide radio wave absorbing material having practical radio waves absorbing performance and capable of preventing generation of a harmful gas even in a case of fire. <P>SOLUTION: The radio wave absorbing material contains 20-30 wt.% carbon powder having an average grain size 1-100 μm and volatile component of not more than 0.5 wt.%, 15-40 wt.% a hydraulic cement, and the residual portion of a silica material, and has radio wave absorbing performance of not less than 20 dB in frequency bands of S band and C band. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ITS(高度道路交通システム;Intelligent Transport System)や無線LAN(Wireless Local Area Network)等に用いられるSバンド帯域およびCバンド帯域の電波を吸収する電波吸収材に関する。   The present invention relates to a radio wave absorber that absorbs S-band and C-band radio waves used in ITS (Intelligent Transport System), wireless LAN (Wireless Local Area Network), and the like.

近時、例えば、ITSの導入に伴い、DSRC(狭域通信システム;Dedicated Short Lange Communication)等の無線通信を利用したサービスの導入が進められている。またオフィスや家庭では、無線LANによる複数の端末のネットワーク構築が主流になりつつある。   Recently, for example, with the introduction of ITS, introduction of services using wireless communication such as DSRC (Dedicated Short Lange Communication) has been promoted. In offices and homes, the construction of a network of a plurality of terminals using a wireless LAN is becoming mainstream.

このようなDSRCや無線LAN等を支障なく運転するためには、使用する電波の路面や車両ルーフ、建造物の壁面等での反射を抑制する必要がある。そこで、電波障害対策として、路面や建築物の壁面、間仕切り等に電波吸収材を充填する方法が用いられており、種々の電波吸収材が提案されている(例えば、特許文献1〜3参照)。   In order to operate such DSRC or wireless LAN without any trouble, it is necessary to suppress the reflection of the radio waves used on the road surface, the vehicle roof, the wall surface of the building, and the like. Therefore, as a countermeasure against radio wave interference, a method of filling a road surface, a wall surface of a building, a partition or the like with a radio wave absorber is used, and various radio wave absorbers have been proposed (see, for example, Patent Documents 1 to 3). .

例えば、建築物の屋内に使用する電波吸収材については、高い電波吸収特性を有していることは勿論のこと、火災を想定すると火災発生時に有害ガスを発生しないという特性を有していることが必要とされ、そのためには、熱分解により有毒ガスが発生しない無機材料のみで構成される必要がある。   For example, radio wave absorbers used indoors in buildings have high radio wave absorption characteristics, as well as characteristics that do not generate harmful gases when a fire occurs, assuming a fire. Therefore, it is necessary to be composed of only an inorganic material that does not generate toxic gas by thermal decomposition.

これに対して、特許文献1,3に開示された電波吸収材は、実用的な20dB以上の電波吸収性能が得られておらず、充分な電波吸収性能が得られていない。また、特許文献2に開示された電波吸収材は、バインダに実質的に塩素系有機物を使用するものであり、火災時に有害ガスが発生する恐れがある。
再公表特許WO2003/064780(表1等) 特開2002−353014号公報(段落[0018]等) 特開2003−218579号公報(段落[0007]、表1等)
On the other hand, the radio wave absorbers disclosed in Patent Documents 1 and 3 have not obtained practical radio wave absorption performance of 20 dB or more, and have not obtained sufficient radio wave absorption performance. In addition, the radio wave absorber disclosed in Patent Document 2 uses a chlorinated organic substance in the binder substantially, and there is a possibility that harmful gas is generated in a fire.
Republished patent WO2003 / 064780 (Table 1 etc.) JP 2002-353014 A (paragraph [0018] etc.) JP 2003-218579 A (paragraph [0007], Table 1 etc.)

本発明は、実用的な電波吸収性能を有し、火災発生時等にも有害ガスを発生させない電波吸収材を提供することを目的とする。   An object of the present invention is to provide a radio wave absorber that has practical radio wave absorption performance and does not generate harmful gas even in the event of a fire.

本発明の電波吸収材は、平均粒子径が1μm〜100μmで揮発分が0.5重量%以下であるカーボン粉末が20重量%〜30重量%、水硬性セメントが15重量%〜40重量%で、残部がシリカ質原料からなり、SバンドおよびCバンドの周波数帯域での電波吸収性能が20dB以上であることを特徴とする。   The radio wave absorber of the present invention has an average particle size of 1 to 100 μm and a volatile content of 0.5% by weight or less of carbon powder of 20 to 30% by weight, and hydraulic cement of 15 to 40% by weight. The remainder is made of a siliceous raw material, and the radio wave absorption performance in the frequency band of S band and C band is 20 dB or more.

電波吸収材は、好ましくは、厚さを2mm〜5mm、比重を1〜2、曲げ強度を5MPa以上の成形体とする。これにより施工性を高めることができる。   The radio wave absorber is preferably a molded body having a thickness of 2 mm to 5 mm, a specific gravity of 1 to 2, and a bending strength of 5 MPa or more. Thereby, workability can be improved.

本発明の電波吸収材によれば、20dB以上の電波吸収性能が得られ、火災発生時等にも有害ガスを発生させない。また、優れた施工性や耐久性を有する高強度の成形体を製造することができる。   According to the radio wave absorber of the present invention, radio wave absorption performance of 20 dB or more is obtained, and no harmful gas is generated even in the event of a fire. Moreover, the high intensity | strength molded object which has the outstanding workability and durability can be manufactured.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本発明の電波吸収材は、カーボン粉末が20重量%〜30重量%、水硬性セメントが15重量%〜40重量%で、残部がシリカ質原料からなる。電波吸収材はこのように無機材質で構成されており、仮に加熱環境に晒されても有害ガスを発生させるおそれのある塩素等の元素を含まないために、不燃性で安全性に優れている。   In the radio wave absorber of the present invention, the carbon powder is 20% by weight to 30% by weight, the hydraulic cement is 15% by weight to 40% by weight, and the balance is made of a siliceous raw material. The radio wave absorber is made of an inorganic material in this way, and does not contain elements such as chlorine that may generate harmful gases even if it is exposed to a heating environment, so it is nonflammable and excellent in safety. .

この電波吸収材は、(a)所定組成の原料粉末(カーボン粉末、水硬性セメント粉末、シリカ質原料粉末)に水を加え、これをミキサー等で混合してスラリー化し、(b)このスラリーを成形型に流し込み、原料に含まれている水硬性結合材(水硬性セメント)の作用で固化させ、十分な強度になるまで硬化させ、(c)脱型して硬化物を取り出して乾燥する、というプロセスにより製造することができる。   This radio wave absorber comprises (a) adding water to a raw material powder (carbon powder, hydraulic cement powder, siliceous raw material powder) having a predetermined composition and mixing it with a mixer or the like to form a slurry. (B) Pour into a mold, solidify by the action of a hydraulic binder (hydraulic cement) contained in the raw material, cure until sufficient strength, (c) demold and take out the cured product and dry, It can be manufactured by the process.

こうして製造された電波吸収材は、Sバンド(2GHz〜4GHz)およびCバンド(4GHz〜8GHz)の周波数帯域で20dB以上の電波吸収性能を示す。   The radio wave absorber manufactured in this way exhibits radio wave absorption performance of 20 dB or more in the frequency band of S band (2 GHz to 4 GHz) and C band (4 GHz to 8 GHz).

カーボン粉末としては、平均粒子径は1μm〜100μmで、揮発分が0.5重量%以下のものを用いる。平均粒径が1μm未満の場合には、後述する電波吸収材の製造プロセスにおいてスラリーを製造する際に必要となる水量が著しく多くなり、結果として良好な成形体を得ることができなくなる。一方、平均粒径が100μm超の場合には電波吸収性能が低下し、20dBという電波吸収性能を得ることができなくなる。   As the carbon powder, one having an average particle diameter of 1 μm to 100 μm and a volatile content of 0.5% by weight or less is used. When the average particle size is less than 1 μm, the amount of water required for producing the slurry in the production process of the radio wave absorber described later is remarkably increased, and as a result, a good molded article cannot be obtained. On the other hand, when the average particle size exceeds 100 μm, the radio wave absorption performance is lowered, and the radio wave absorption performance of 20 dB cannot be obtained.

揮発分が0.5重量%以下のカーボン粉末を用いるのは、揮発分が多いと吸湿性(吸水性)が高くなって、成形体の形状維持特性が低下し、また、雨水に晒されるような環境下では使用できなくなるからである。換言すれば、揮発分が極めて少ないので吸水性が極めて小さく、雨水に晒されるような環境下での耐久性を高めて、電波吸収性能を長期間維持することができるようになる。   The reason why carbon powder with a volatile content of 0.5% by weight or less is used is that if the volatile content is large, the hygroscopicity (water absorption) becomes high, the shape maintaining characteristics of the molded product deteriorate, and it is exposed to rainwater. This is because it cannot be used in a difficult environment. In other words, since the volatile content is extremely small, the water absorption is extremely small, and the durability in an environment where it is exposed to rainwater can be improved, and the radio wave absorption performance can be maintained for a long time.

カーボン粉末の含有量を20重量%〜30重量%とするのは、20重量%未満とすると、SバンドおよびCバンドの周波数帯域の電波を20dB以上吸収することができなくなり、30重量%超とすると、スラリーを製造する際に必要となる水量が著しく多くなり、結果として良好な成形体を得ることができなくなる。   If the content of the carbon powder is 20% by weight to 30% by weight, if less than 20% by weight, radio waves in the S-band and C-band frequency bands cannot be absorbed by 20 dB or more, exceeding 30% by weight. Then, the amount of water required when producing the slurry is remarkably increased, and as a result, a good molded article cannot be obtained.

カーボン粉末として特に好適に用いられるのはグラファイト粉末であり、他のカーボン粉末を用いた場合よりも電波吸収性能が大きくなる。この原因は明らかではないが、グラファイト粉末は鱗片状の形状を有しており、成形体において各粉末の主面が平行となるようにして面状に配向することで、電波吸収性能が高められているものと推測される。   Graphite powder is particularly preferably used as the carbon powder, and its radio wave absorption performance is greater than when other carbon powders are used. The cause of this is not clear, but the graphite powder has a scale-like shape, and the radio wave absorption performance can be improved by orienting the powder so that the main surfaces of the powder are parallel to each other in the molded body. It is presumed that

水硬性セメントは、電波吸収材の製造プロセスにおいて、原料粉末を成形する際に結合材として機能し、製造される電波吸収材(成形体)の強度を担う。水硬性セメントの含有量を15重量%〜40重量%とするのは、15重量%未満では電波吸収材(成形体)の強度が小さくなり、40重量%超では電波吸収材の強度は大きくなるが、シリカ質原料とカーボン粉末の含有量が小さくなるために、電波吸収性能や吸水防止性能が著しく低下し、また、粉末の量が多くなるため、亀裂が発生しやすく施工性が低下するからである。   The hydraulic cement functions as a binder when the raw material powder is molded in the manufacturing process of the radio wave absorber, and bears the strength of the radio wave absorber (molded body) to be manufactured. The content of the hydraulic cement is 15% to 40% by weight. If the content is less than 15% by weight, the strength of the radio wave absorber (molded product) decreases, and if it exceeds 40% by weight, the strength of the radio wave absorber increases. However, since the content of the siliceous raw material and the carbon powder is reduced, the radio wave absorption performance and the water absorption prevention performance are remarkably lowered, and the amount of the powder is increased, so that cracking is likely to occur and the workability is lowered. It is.

なお、水硬性セメントとは、水との反応により硬化体を形成することができるセメントであり、例えば、ポルトランドセメント、高炉セメント、フライアッシュセメント、アルミナセメント、シリカセメント等である。   The hydraulic cement is a cement that can form a hardened body by reaction with water. Examples thereof include Portland cement, blast furnace cement, fly ash cement, alumina cement, and silica cement.

シリカ質原料は混和材として用いられるものである。シリカ質原料自体には水硬性はないが、スラリーを製造した際にその水に溶けている水酸化カルシウム(水硬性セメントに由来する)と常温で徐々に化合して不溶性の化合物を作るというポゾラン活性が期待できる。このシリカ質原料としては、シリカヒュームが好適に用いられるが、その他にも、フライアッシュ、珪砂、珪石粉、高炉スラグ、珪藻土等を用いることができる。   The siliceous raw material is used as an admixture. Although the siliceous raw material itself is not hydraulic, pozzolans that form an insoluble compound by gradually combining at room temperature with calcium hydroxide (derived from hydraulic cement) dissolved in the water when the slurry is produced. Activity can be expected. Silica fume is preferably used as the siliceous raw material, but fly ash, quartz sand, quartzite powder, blast furnace slag, diatomaceous earth, and the like can also be used.

電波吸収材の厚さは2mm〜5mmとすることが好ましく、厚さが2mm未満であると施工性が低下し、逆に5mm超になると施工空間が広くなり、また、電波吸収材自体の重量が大きくなるので、好ましくない。   The thickness of the radio wave absorber is preferably 2 mm to 5 mm. If the thickness is less than 2 mm, the workability is lowered. Conversely, if the thickness exceeds 5 mm, the construction space is widened, and the weight of the radio wave absorber itself is increased. Is unfavorable because it increases.

電波吸収材の比重は1〜2とすることが好ましく、また曲げ強度は5MPa以上であることが好ましい。比重が1未満の電波吸収材の製造には、発泡等の特殊な製法が必要となり、また、曲げ強度が極めて小さいものとなってしまい、取り扱いが不便となる。一方、比重が2超の場合には、電波吸収材自体の重量が大きくなって、施工性が低下するという問題が生じる。このような厚さが2mm〜5mmで比重が1〜2の電波吸収材では、良好な施工性を得る観点から、曲げ強度が5MPa以上となるように、原料粉末の種類と配合割合を調節することが好ましい。   The specific gravity of the radio wave absorber is preferably 1 to 2, and the bending strength is preferably 5 MPa or more. In order to manufacture the radio wave absorber having a specific gravity of less than 1, a special manufacturing method such as foaming is required, and the bending strength is extremely small, which makes the handling inconvenient. On the other hand, when the specific gravity is more than 2, there is a problem that the weight of the radio wave absorber itself increases and the workability is lowered. In such a wave absorber having a thickness of 2 mm to 5 mm and a specific gravity of 1 to 2, the type and blending ratio of the raw material powder are adjusted so that the bending strength is 5 MPa or more from the viewpoint of obtaining good workability. It is preferable.

カーボン粉末としてグラファイト粉末(日本黒鉛工業(株)製)を、水硬性セメントして(アルミナセメント、電気化学工業(株)製)を、シリカ質原料としてシリカヒューム(エルケムジャパン(株)製)とを、表1に示す組成となるように秤量してミキサーに投入し、さらに所定量の水を加えて混合することにより、スラリーを製造した。   Graphite powder (manufactured by Nippon Graphite Industry Co., Ltd.) as carbon powder, hydraulic cement (alumina cement, manufactured by Electrochemical Industry Co., Ltd.), and silica fume (manufactured by Elchem Japan Co., Ltd.) as siliceous raw material Were weighed so as to have the composition shown in Table 1 and charged into a mixer, and a predetermined amount of water was added and mixed to prepare a slurry.

このスラリーを成形型に流し込んで密閉状態で24時間放置して固化させた。この固化物を脱型して室温で12時間、110℃で12時間乾燥した。こうして、表1に示す実施例1〜7および比較例1〜6の電波吸収材試料を製造した。   The slurry was poured into a mold and allowed to solidify in a sealed state for 24 hours. The solidified product was demolded and dried at room temperature for 12 hours and at 110 ° C. for 12 hours. Thus, the radio wave absorber samples of Examples 1 to 7 and Comparative Examples 1 to 6 shown in Table 1 were produced.

これらの試料について、その3点曲げ強度をJIS R1601により測定した。また、これらの試料の比重はその形状を測定して体積を求め、また重量を測定することにより求めた。電波吸収特性は、3mm厚の電波吸収材試料の背面(一方の主面)を金属アルミ板で裏打ちし、周波数5.8GHzにて、直線偏波を垂直入射させたときの吸収率で評価した。   The three-point bending strength of these samples was measured according to JIS R1601. The specific gravity of these samples was determined by measuring the shape and determining the volume, and by measuring the weight. The radio wave absorption characteristics were evaluated by the absorption rate when a back surface (one main surface) of a 3 mm thick radio wave absorber sample was lined with a metal aluminum plate and linearly polarized light was vertically incident at a frequency of 5.8 GHz. .

結果を表1に併記する。表1に示される通り、カーボン粉末が20重量%〜30重量%、水硬性セメントが15重量%〜40重量%で、残部がシリカ質原料からなり、カーボン粉末の平均粒子径が1μm〜100μmという条件を満たす実施例の試料では、20dB以上の高い電波吸収性能が得られた。また、強度も6MPa以上という高い値を示している。比較例1でカーボン粉末の平均粒径が小さいために、比較例4ではカーボン粉末含有率が大きいために、共にスラリー作製に大量の水を要してしまい、そのために良好な成形体を得ることができなかった。また比較例5ではセメント量が少ないために充分な強度が得られず、良好な成形体を得ることができなかった。また、比較例6では粉体量が多いため、亀裂が発生し良好な成形体を得ることができなかった。このため比較例1,比較例4,比較例5,比較例6の試料については特性評価を行っていない。比較例2はカーボン粉末の平均粒径が大きいために、また比較例3はカーボン粉末含有率が小さいために、ともに20dBの電波吸収性能を得ることができなかった。

Figure 2008016783
The results are also shown in Table 1. As shown in Table 1, the carbon powder is 20 wt% to 30 wt%, the hydraulic cement is 15 wt% to 40 wt%, the balance is made of a siliceous raw material, and the average particle size of the carbon powder is 1 μm to 100 μm In the sample of the example satisfying the condition, a high radio wave absorption performance of 20 dB or more was obtained. Further, the strength also shows a high value of 6 MPa or more. Since the average particle diameter of the carbon powder in Comparative Example 1 is small, the carbon powder content in Comparative Example 4 is large, so both require a large amount of water for slurry preparation, and therefore a good molded body is obtained. I could not. In Comparative Example 5, since the amount of cement was small, sufficient strength could not be obtained, and a good molded product could not be obtained. In Comparative Example 6, since the amount of powder was large, cracks occurred and a good molded product could not be obtained. Therefore, the characteristics of the samples of Comparative Example 1, Comparative Example 4, Comparative Example 5, and Comparative Example 6 are not evaluated. Since Comparative Example 2 had a large average particle size of carbon powder, and Comparative Example 3 had a low carbon powder content, both could not obtain a radio wave absorption performance of 20 dB.
Figure 2008016783

Claims (3)

平均粒子径が1μm〜100μmで揮発分が0.5重量%以下であるカーボン粉末が20重量%〜30重量%、水硬性セメントが15重量%〜40重量%で、残部がシリカ質原料からなり、
SバンドおよびCバンドの周波数帯域での電波吸収性能が20dB以上であることを特徴とする電波吸収材。
Carbon powder having an average particle size of 1 μm to 100 μm and a volatile content of 0.5 wt% or less is 20 wt% to 30 wt%, hydraulic cement is 15 wt% to 40 wt%, and the balance is made of siliceous raw material. ,
1. A radio wave absorber characterized by having a radio wave absorption performance in a frequency band of S band and C band of 20 dB or more.
厚さが2mm〜5mm、比重が1〜2、曲げ強度が5MPa以上であることを特徴とする請求項1に記載の電波吸収材。   2. The radio wave absorber according to claim 1, wherein the thickness is 2 mm to 5 mm, the specific gravity is 1 to 2, and the bending strength is 5 MPa or more. 前記カーボン粉末はグラファイト粉末であることを特徴とする請求項1または請求項2に記載の電波吸収材。   3. The radio wave absorber according to claim 1, wherein the carbon powder is graphite powder.
JP2006189388A 2006-07-10 2006-07-10 Radio wave absorbing material Pending JP2008016783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006189388A JP2008016783A (en) 2006-07-10 2006-07-10 Radio wave absorbing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006189388A JP2008016783A (en) 2006-07-10 2006-07-10 Radio wave absorbing material

Publications (1)

Publication Number Publication Date
JP2008016783A true JP2008016783A (en) 2008-01-24

Family

ID=39073489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006189388A Pending JP2008016783A (en) 2006-07-10 2006-07-10 Radio wave absorbing material

Country Status (1)

Country Link
JP (1) JP2008016783A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013061918A1 (en) * 2011-10-26 2013-05-02 日東電工株式会社 Electromagnetic wave absorber and method for manufacturing electromagnetic wave absorber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013061918A1 (en) * 2011-10-26 2013-05-02 日東電工株式会社 Electromagnetic wave absorber and method for manufacturing electromagnetic wave absorber
JP2013093463A (en) * 2011-10-26 2013-05-16 Nitto Denko Corp Electromagnetic wave absorber and manufacturing method therefor

Similar Documents

Publication Publication Date Title
EP2970003B1 (en) High-strength geopolymer composite cellular concrete
US9580356B2 (en) Self-foaming geopolymer composition containing aluminum dross
KR100884715B1 (en) Composition of blended cement using high-volume industrial by-products and method of thereof
US20130260043A1 (en) Method of coating a geopolymer onto an article
KR20170114611A (en) Non-Shirinkage And Non-cement Mortar Composition
RU2378218C2 (en) Raw composition for manufacturing of construction materials and products
KR101779565B1 (en) Eco-friendly cement concrete composition for ready-mixed concrete
WO2018111209A1 (en) Calcium silicate-based construction material absorbing electromagnetic waves
CA3019613A1 (en) Lightweight concrete formulations
KR102287712B1 (en) Mortar and its manufacturing method
EP1955986A1 (en) Light weight aggregate
KR101973717B1 (en) Fire Resistance Concrete Composition
JPWO2019131321A1 (en) Mold formed from curable composition
KR20190108323A (en) Geopolymer Concrete Composition And Method for Manufacturing Geopolymer Concrete Using the Same
KR20200134566A (en) Light Weight And Heat Insulation Mortar Composition Based on Industrial By-products
JP2008016783A (en) Radio wave absorbing material
US20200017415A1 (en) High strength porous material
JP2018080075A (en) Cement admixture, production method of cement admixture, cement composition and production method of cement composition
US20240199483A1 (en) Geopolymer foams based on ceramic materials
KR102406620B1 (en) Composite for Reduction of Carbon Dioxide, and Planter manufactured by such Composite, and Manufacturing Method of Planter
JP4129695B2 (en) Method for producing porous water-absorbing ceramics
KR102075289B1 (en) Ultra lightweight cement composition and method of preparing thereof
CN108516750B (en) Sound-insulating putty for interior wall and preparation method thereof
Abdel‐Rahman et al. Performance of irradiated blended cement paste composites containing ceramic waste powder towards sulfates, chlorides, and seawater attack
JP6729875B2 (en) Construction method of support structure