JP2008015157A - Imaging device - Google Patents

Imaging device Download PDF

Info

Publication number
JP2008015157A
JP2008015157A JP2006185583A JP2006185583A JP2008015157A JP 2008015157 A JP2008015157 A JP 2008015157A JP 2006185583 A JP2006185583 A JP 2006185583A JP 2006185583 A JP2006185583 A JP 2006185583A JP 2008015157 A JP2008015157 A JP 2008015157A
Authority
JP
Japan
Prior art keywords
polarization
light
pair
light beam
pupil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006185583A
Other languages
Japanese (ja)
Other versions
JP4857962B2 (en
Inventor
Yosuke Kusaka
洋介 日下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2006185583A priority Critical patent/JP4857962B2/en
Publication of JP2008015157A publication Critical patent/JP2008015157A/en
Application granted granted Critical
Publication of JP4857962B2 publication Critical patent/JP4857962B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem in that the degree of coincidence of two images decreases due to imperfect separation of two luminous fluxes according to the direction of linear polarization and accordingly focus detection accuracy degrades. <P>SOLUTION: The imaging device includes: a pupil split polarization means 110 by which light 100 from a subject passing through the emission pupil of a photographing optical system is split into a pair of luminous fluxes 102 and 103 different from each other in gravity center and polarization characteristic; and an imaging element 211 in which pixels 212 and 213 that selectively receive either the luminous flux 102 or 103 are two-dimensionally arranged. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は撮像装置に関する。   The present invention relates to an imaging apparatus.

撮影光束を結像光学系の瞳の異なる領域を通る二つの光束に分割(瞳分割)し、それぞれの光束を偏光素子により異なる方向に直線偏光し、さらに異なる方向に直線偏光されたそれぞれの光束をハーフミラーにより分離し、分離された光束により形成される像を異なる偏光方向の直線偏光を検出する偏光素子を通して個別の撮像素子で撮像する。そして、撮像された二つの像のズレ量を検出し、ズレ量に基づいて撮影光学系の焦点調節状態を検出する撮像装置が知られている(例えば、特許文献1参照)。
なお、この明細書では上記のように偏光を用いて瞳分割を行い、像ズレを検出して焦点検出を行う方式を“偏光型瞳分割位相差検出方式”と呼ぶ。
The imaging light beam is divided into two light beams that pass through different areas of the pupil of the imaging optical system (pupil division), and each light beam is linearly polarized in different directions by a polarizing element, and further linearly polarized in different directions. Are separated by a half mirror, and an image formed by the separated light flux is picked up by an individual image sensor through a polarizing element that detects linearly polarized light in different polarization directions. An imaging device that detects the amount of deviation between two captured images and detects the focus adjustment state of the photographing optical system based on the amount of deviation is known (see, for example, Patent Document 1).
In this specification, as described above, a method of performing pupil division using polarized light and detecting an image shift and performing focus detection is referred to as a “polarization-type pupil division phase difference detection method”.

この出願の発明に関連する先行技術文献としては次のものがある。
特開昭50−039544号公報
Prior art documents related to the invention of this application include the following.
Japanese Patent Laid-Open No. 50-039544

しかしながら、上述した従来の撮像装置には次のような問題がある。直線偏光方向に応じて二つの光束を分光特性、光量および偏光特性を含め正確に分離可能な偏光ハーフミラーまたはハーフミラーを製作するのは困難であり、二つの光束の分離の不完全性によって二つの像の合致度が低下し、焦点検出精度が悪化するという問題がある。   However, the conventional imaging apparatus described above has the following problems. It is difficult to manufacture a polarization half mirror or half mirror that can accurately separate two beams according to the direction of linear polarization, including spectral characteristics, light quantity, and polarization properties. There is a problem that the degree of coincidence of two images is lowered and the focus detection accuracy is deteriorated.

(1) 請求項1の発明は、撮影光学系の射出瞳を通過する被写体からの光を、重心と偏光特性が異なる対の光束に分割する瞳分割偏光手段と、各光束を選択的に受光する画素が二次元状に配置された撮像素子とを備える。
(2) 請求項2の撮像装置は、瞳分割偏光手段によって撮影光学系の絞り開口近傍に配置され、絞り開口を通過する被写体光を分割するようにしたものである。
(3) 請求項3の撮像装置は、瞳分割偏光手段によって被写体光を反射して分割するようにしたものである。
(4) 請求項4の撮像装置は、瞳分割偏光手段によって、対の光束のそれぞれを偏光方向が略直交する直線偏光に分割するようにしたものである。
(5) 請求項5の撮像装置は、瞳分割偏光手段が入射光を直線偏光する偏光素子と、この偏光素子からの出射光の偏光方向を異なる方向に分割して旋光する対の旋光素子とを有する。
(6) 請求項6の撮像装置は、偏光素子によって、撮像装置の正位置撮影姿勢において入射光を垂直方向に直線偏向するようにしたものである。
(7) 請求項7の撮像装置は、瞳分割偏光手段が入射光を異なる方向に旋光する対の旋光素子と、対の旋光素子それぞれからの出射光を異なる方向に偏向する対の偏光素子とを有する。
(8) 請求項8の撮像装置は、対の偏光素子から出射する対の光束が、対の旋光素子に入射する光束において略同一の直線偏光方向の成分である。
(9) 請求項9の撮像装置は、対の旋光素子が、1/2波長板またはTN液晶または磁気光学素子である。
(10) 請求項10の撮像装置は、瞳分割偏光手段によって、右円偏光と左円偏光の対に分割するようにしたものである。
(11) 請求項11の撮像装置は、瞳分割偏光手段が入射光の特定方向の直線偏光成分のみを通過させる直線偏光素子と、直線偏光素子からの出射光を位相変調する対の1/4波長板とを有する。
(12) 請求項12の撮像装置は、瞳分割偏光手段が右旋性のコレステリック液晶素子と左旋性のコレステリック液晶素子とを有する。
(13) 請求項13の撮像装置は、右旋性コレステリック液晶素子と左旋性コレステリック液晶素子の円偏光変調特性を制御する制御部を有する。
(14) 請求項14の撮像装置は、瞳分割偏光手段が偏光特性を電気的に制御する第1偏光制御部を有する。
(15) 請求項15の撮像装置は、第1偏光制御部によって撮影状況に応じて偏光特性を制御するようにしたものである。
(16) 請求項16の撮像装置は、第1偏光制御手段によって、撮像時には入射する光の偏光状態を変化させないようにしたものである。
(17) 請求項17の撮像装置は、瞳分割偏光手段によって、撮影光学系の射出瞳を通過する被写体からの光を、重心と偏光特性が異なる複数対の光束に分割するようにしたものである。
(18) 請求項18の撮像装置は、撮像素子の画素の内の、瞳分割偏光手段により分割された対の光束の重心を結ぶ方向に延在し、対の光束の内の一方を受光する複数の第1画素の出力で表される信号波形と、対の光束の内の他方を受光する複数の第2画素の出力で表される信号波形とのズレ量を演算し、このズレ量に基づいて撮影光学系のデフォーカス量を検出する焦点検出手段を備える。
(19) 請求項19の撮像装置は、撮影光学系の絞り開口の大きさを制御する絞り制御手段を備え、絞り制御手段によって、デフォーカス量が所定値以下となった後に絞り開口の大きさを大きくするようにしたものである。
(20) 請求項20の撮像装置は、撮像素子が、対の光束の一方を受光する第1画素と、対の光束の他方を受光する第2画素とが規則的に二次元状に配置される。
(21) 請求項21の撮像装置は、第1画素が対の光束の内の所定の方向に直線偏光した第1光束を受光し、第2画素が対の光束の内の第1光束とは異なる方向に直線偏光した第2光束を受光する。
(22) 請求項22の撮像装置は、第1画素および第2画素には、光電変換部が受光する光束の直線偏光方向を規制する直線偏光素子が一体的に備えられる。
(23) 請求項23の撮像装置は、第1画素の直線偏光素子が、瞳分割偏光手段により分割された対の光束の内の第1光束を第1画素の光電変換部が受光するように直線偏光方向を規制し、第2画素の直線偏光素子が、瞳分割偏光手段により分割された対の光束の内の第2光束を第2画素の光電変換部が受光するように直線偏光方向を規制する。
(24) 請求項24の撮像装置は、第1画素は前記対の光束の内の右円偏光した第1光束を受光し、第2画素は前記対の光束の内の左円偏光した第2光束を受光する。
(25) 請求項25の撮像装置は、第1画素および第2画素には、光電変換部が受光する光束の円偏光方向を規制する偏光素子が一体的に備えられる。
(26) 請求項26の撮像装置は、偏光素子が1/4波長板とその出射光を直線偏光に変調する直線偏光素子から構成される。
(27) 請求項27の撮像装置は、偏光素子が右旋性のコレステリック液晶素子と左旋性のコレステリック液晶素子とから構成される。
(28) 請求項28の撮像装置は、コレステリック液晶素子の円偏光変調特性を制御する制御部を備える。
(29) 請求項29の撮像装置は、撮像素子の各画素には、光電変換部が受光する光束の偏光特性を電気的に制御する第2偏光制御部が一体的に備えられる。
(30) 請求項30の撮像装置は、第2偏光制御部が撮影状況に応じて偏光特性を制御する。
(31) 請求項31の撮像装置は、第2偏光制御部が撮影時には光電変換部が受光する光束の偏光状態を変化させないように制御する。
(32) 請求項32の撮像装置は、撮像素子が、対の光束の一方を受光する第1画素と、対の光束の他方を受光する第2画素とが規則的に二次元状に配置されるとともに、第1画素群および第2画素群は異なる分光感度特性を有する複数種類の画素から構成される。
(33) 請求項33の撮像装置は、第1画素群と第2画素群とが千鳥配置される。
(34) 請求項34の撮像装置は、第1画素群および第2画素群が赤、緑、青に感度特性を有する画素がベイヤー配列される。
(35) 請求項35の撮像装置は、撮像素子の各画素が光電変換部を撮影光学系の絞り開口近傍に投影するマイクロレンズを備える。
(36) 請求項36の撮像装置は、各画素は対の光電変換部を備え、マイクロレンズにより対の光電変換部が対の光束を受光する。
(37) 請求項37の撮像装置は、瞳分割偏光手段または撮影光学系の絞りの位置を検出する位置検出手段を備え、対の光束を選択的に受光した画素の出力に基づいて像ズレ量を演算し、像ズレ量と位置検出手段で検出した位置に基づいて撮影光学系のデフォーカス量を検出する焦点検出手段を備える。
(1) According to the first aspect of the present invention, pupil splitting polarization means for splitting light from a subject passing through the exit pupil of the photographing optical system into a pair of light fluxes having different centroids and polarization characteristics, and selectively receiving each light flux And an imaging device in which pixels to be arranged are two-dimensionally arranged.
(2) The imaging device according to claim 2 is arranged in the vicinity of the diaphragm aperture of the photographing optical system by the pupil division polarization unit, and divides subject light passing through the diaphragm aperture.
(3) The imaging apparatus according to claim 3 is configured to reflect and divide subject light by the pupil division polarization unit.
(4) In the imaging device according to claim 4, each of the pair of light beams is divided into linearly polarized light whose polarization directions are substantially orthogonal by the pupil division polarization unit.
(5) The imaging device according to claim 5, wherein the pupil division polarization unit linearly polarizes the incident light, and a pair of optical rotation elements that rotate the light by dividing the polarization direction of the outgoing light from the polarization element in different directions. Have
(6) In the imaging device according to the sixth aspect, incident light is linearly deflected in the vertical direction by the polarizing element in the normal position photographing posture of the imaging device.
(7) The image pickup apparatus according to claim 7 includes: a pair of optical rotators in which the pupil-dividing polarization unit rotates incident light in different directions; and a pair of polarizing elements that deflect outgoing light from each of the pair of optical rotators in different directions. Have
(8) In the imaging device according to the eighth aspect, the pair of light beams emitted from the pair of polarizing elements are components of substantially the same linear polarization direction in the light beams incident on the pair of optical rotation elements.
(9) In the imaging apparatus according to claim 9, the pair of optical rotatory elements is a half-wave plate, a TN liquid crystal, or a magneto-optical element.
(10) The imaging apparatus according to claim 10 is configured to divide into a pair of right circularly polarized light and left circularly polarized light by a pupil division polarization unit.
(11) In the imaging apparatus according to claim 11, the pupil-dividing polarization means passes through a linearly polarizing element that allows only a linearly polarized light component in a specific direction of incident light to pass through, and a quarter of a pair that phase-modulates outgoing light from the linearly polarizing element. And a wave plate.
(12) In the imaging device according to the twelfth aspect, the pupil division polarization means includes a dextrorotatory cholesteric liquid crystal element and a levorotatory cholesteric liquid crystal element.
(13) An image pickup apparatus according to a thirteenth aspect includes a controller that controls circular polarization modulation characteristics of a dextrorotatory cholesteric liquid crystal element and a levorotatory cholesteric liquid crystal element.
(14) The imaging apparatus according to claim 14 includes a first polarization control unit in which the pupil division polarization unit electrically controls the polarization characteristics.
(15) In the imaging device according to claim 15, the first polarization controller controls the polarization characteristics in accordance with the photographing situation.
(16) In the imaging device according to the sixteenth aspect, the polarization state of incident light is not changed during imaging by the first polarization control means.
(17) The imaging device according to claim 17 is configured such that the light from the subject passing through the exit pupil of the photographing optical system is divided into a plurality of pairs of light beams having different centroids and polarization characteristics by the pupil division polarization unit. is there.
(18) The imaging device according to claim 18 extends in a direction connecting the centroids of the pair of light beams divided by the pupil-dividing polarization means among the pixels of the image sensor, and receives one of the pair of light beams. The amount of deviation between the signal waveform represented by the output of the plurality of first pixels and the signal waveform represented by the output of the plurality of second pixels that receive the other of the pair of luminous fluxes is calculated, and the amount of deviation is calculated. Focus detection means for detecting the defocus amount of the photographing optical system is provided.
(19) The image pickup apparatus according to claim 19 includes an aperture control unit that controls a size of the aperture opening of the photographing optical system, and the size of the aperture opening after the defocus amount becomes a predetermined value or less by the aperture control unit. Is designed to be larger.
(20) In the imaging device according to claim 20, in the imaging device, the first pixel that receives one of the pair of light beams and the second pixel that receives the other of the pair of light beams are regularly arranged in a two-dimensional manner. The
(21) In the imaging device according to claim 21, the first pixel receives the first light beam linearly polarized in a predetermined direction in the pair of light beams, and the second pixel is the first light beam in the pair of light beams. A second light beam linearly polarized in a different direction is received.
(22) In the imaging device according to a twenty-second aspect, the first pixel and the second pixel are integrally provided with a linear polarization element that regulates a linear polarization direction of a light beam received by the photoelectric conversion unit.
(23) In the imaging device according to claim 23, the linearly polarizing element of the first pixel receives the first light beam of the pair of light beams divided by the pupil-dividing polarization means, so that the photoelectric conversion unit of the first pixel receives light. The linear polarization direction is regulated, and the linear polarization element of the second pixel is set so that the photoelectric conversion unit of the second pixel receives the second light beam of the pair of light beams divided by the pupil division polarization unit. regulate.
(24) In the imaging device according to claim 24, the first pixel receives the first circularly polarized first light beam in the pair of light beams, and the second pixel has the second circularly polarized second light beam in the pair of light beams. Receives light flux.
(25) In the imaging device according to claim 25, the first pixel and the second pixel are integrally provided with a polarizing element that regulates a circular polarization direction of a light beam received by the photoelectric conversion unit.
(26) In the imaging device according to a twenty-sixth aspect, the polarizing element includes a quarter-wave plate and a linearly polarizing element that modulates the emitted light to linearly polarized light.
(27) In the imaging device according to claim 27, the polarizing element includes a right-handed cholesteric liquid crystal element and a left-handed cholesteric liquid crystal element.
(28) The image pickup apparatus according to a twenty-eighth aspect includes a control unit that controls the circular polarization modulation characteristic of the cholesteric liquid crystal element.
(29) In the image pickup apparatus according to claim 29, each pixel of the image pickup device is integrally provided with a second polarization control unit that electrically controls the polarization characteristics of the light beam received by the photoelectric conversion unit.
(30) In the imaging device according to a thirtieth aspect, the second polarization control unit controls the polarization characteristics in accordance with the photographing situation.
(31) In the imaging device according to the thirty-first aspect, the second polarization control unit performs control so that the polarization state of the light beam received by the photoelectric conversion unit is not changed during photographing.
(32) In the imaging device according to a thirty-second aspect, the imaging device includes a first pixel that receives one of the pair of light beams and a second pixel that receives the other of the pair of light beams, which are regularly arranged in two dimensions. In addition, the first pixel group and the second pixel group are composed of a plurality of types of pixels having different spectral sensitivity characteristics.
(33) In the imaging device according to a thirty-third aspect, the first pixel group and the second pixel group are arranged in a staggered manner.
(34) In the imaging device according to a thirty-fourth aspect, pixels having sensitivity characteristics of red, green, and blue are arranged in a Bayer array in the first pixel group and the second pixel group.
(35) In the imaging device according to a thirty-fifth aspect, each pixel of the imaging element includes a microlens that projects the photoelectric conversion unit in the vicinity of the aperture opening of the photographing optical system.
(36) In the imaging device according to a thirty-sixth aspect, each pixel includes a pair of photoelectric conversion units, and the pair of photoelectric conversion units receives a pair of light beams by a microlens.
(37) The image pickup apparatus according to claim 37 is provided with position detection means for detecting the position of the pupil division polarization means or the stop of the photographing optical system, and the amount of image shift based on the output of the pixel that selectively receives the pair of light beams. And a focus detection unit that detects the defocus amount of the photographing optical system based on the image shift amount and the position detected by the position detection unit.

本発明によれば、二つの像の合致度が高く、高精度の焦点検出が可能になる。   According to the present invention, the degree of coincidence between two images is high, and high-precision focus detection is possible.

まず、図1は一実施の形態の偏光型瞳分割位相差検出の概要構成を示す。撮影光学系の光軸91に沿って撮影光学系に入射する光束100は、あらゆる方向に直線偏光した光の集まりである。入射光束100の内の所定の方向の偏光成分101(図では垂直方向)のみが、撮影光学系近傍に配置された瞳分割偏光部材110を通過する。   First, FIG. 1 shows a schematic configuration of polarization-type pupil division phase difference detection according to an embodiment. A light beam 100 incident on the photographing optical system along the optical axis 91 of the photographing optical system is a collection of light linearly polarized in all directions. Only the polarized light component 101 (vertical direction in the figure) of the incident light beam 100 in a predetermined direction passes through the pupil division polarizing member 110 disposed in the vicinity of the photographing optical system.

瞳分割偏光部材110は、瞳部分92(以下、測距瞳92と呼ぶ)を通過する光束の直線偏光方向を所定角度回転するとともに、瞳部分93(以下、測距瞳93と呼ぶ)を通過する光束の直線偏光方向を上記所定角度とは異なる角度回転する。測距瞳92から出射する光束102は所定方向に直線偏光している。また、測距瞳93から出射する光束103は光束102の直線偏光方向と略直交する方向に直線偏光している。   The pupil division polarizing member 110 rotates the linear polarization direction of the light beam passing through the pupil portion 92 (hereinafter referred to as the distance measuring pupil 92) by a predetermined angle and passes through the pupil portion 93 (hereinafter referred to as the distance measuring pupil 93). The linear polarization direction of the luminous flux to be rotated is rotated by an angle different from the predetermined angle. The light beam 102 emitted from the distance measuring pupil 92 is linearly polarized in a predetermined direction. The light beam 103 emitted from the distance measuring pupil 93 is linearly polarized in a direction substantially orthogonal to the linear polarization direction of the light beam 102.

撮像素子211は、光束102の直線偏光方向の光を選択的に受光する画素212と、光束103の直線偏光方向の光を選択的に受光する画素213とが、測距瞳92,93の並び方向に交互に配列されている。   In the imaging device 211, pixels 212 that selectively receive the light in the linear polarization direction of the light beam 102 and pixels 213 that selectively receive the light in the linear polarization direction of the light beam 103 are arranged in the range-finding pupils 92 and 93. They are arranged alternately in the direction.

このような構成により、画素212と213はそれぞれ、撮影光学系に入射する撮影光束の中の同一方向に直線偏光した成分の光束を受光することができる。瞳分割偏光部材110を出射する直線偏光方向の異なる2つの光束102,103をハーフミラー等で波面分割することなく、撮像素子211上の画素212,213を用いて空間的に分離して検出することができる。   With such a configuration, each of the pixels 212 and 213 can receive a light beam of a component linearly polarized in the same direction in the photographic light beam incident on the photographic optical system. The two light beams 102 and 103 having different linear polarization directions emitted from the pupil-dividing polarizing member 110 are spatially separated and detected using the pixels 212 and 213 on the image sensor 211 without being wavefront-divided by a half mirror or the like. be able to.

本願発明の撮像装置をデジタルスチルカメラに適用した一実施の形態を説明する。図2は一実施の形態のデジタルスチルカメラの構成を示す。デジタルスチルカメラ201は交換レンズ202とカメラボディ203から構成され、これらはマウント部204により結合される。このデジタルスチルカメラ201の交換レンズ202は、上述した瞳分割偏光部材110を備えている。   An embodiment in which the imaging apparatus of the present invention is applied to a digital still camera will be described. FIG. 2 shows a configuration of a digital still camera according to an embodiment. The digital still camera 201 includes an interchangeable lens 202 and a camera body 203, which are coupled by a mount unit 204. The interchangeable lens 202 of the digital still camera 201 includes the pupil division polarizing member 110 described above.

交換レンズ202は瞳分割偏光部材110、レンズ209、ズーミング用レンズ208、フォーカシング用レンズ210、絞り207、レンズ駆動制御装置206を備えている。レンズ駆動制御装置206は、瞳分割偏光部材110の制御と位置検出、フォーカシング用レンズ210、絞り207の駆動制御、ズーミング用レンズ208、フォーカシング用レンズ210および絞り207の状態検出、後述するボディ駆動制御装置214との通信によるレンズ情報の送信とカメラ情報の受信などを行う。なお、瞳分割偏光部材110は絞り207に近接(図では前側)して配置される。   The interchangeable lens 202 includes a pupil division polarizing member 110, a lens 209, a zooming lens 208, a focusing lens 210, an aperture 207, and a lens drive control device 206. The lens drive control unit 206 controls and positions the pupil division polarizing member 110, drives the focusing lens 210 and the diaphragm 207, controls the zooming lens 208, the focusing lens 210 and the diaphragm 207, and performs body drive control described later. Transmission of lens information and reception of camera information by communication with the device 214 are performed. Note that the pupil division polarizing member 110 is disposed close to the diaphragm 207 (front side in the figure).

カメラボディ203は撮像素子212、電気接点213、ボディ駆動制御装置214、液晶表示素子駆動回路215、液晶表示素子216、接眼レンズ217、メモリカード219などを備えている。撮像素子212は交換レンズ202の予定結像面に配置され、交換レンズ202により結像された被写体像を画像信号に変換する。ボディ駆動制御装置214は、撮像素子212からの画像信号の読み出しと画像信号の補正、レンズ駆動制御装置206との通信(レンズ情報の受信/カメラ情報(デフォーカス量)などの送信)、交換レンズ202の焦点調節状態の検出、デジタルスチルカメラ全体の動作制御などを行う。   The camera body 203 includes an image sensor 212, an electrical contact 213, a body drive control device 214, a liquid crystal display element drive circuit 215, a liquid crystal display element 216, an eyepiece lens 217, a memory card 219, and the like. The image sensor 212 is disposed on the planned imaging surface of the interchangeable lens 202, and converts the subject image formed by the interchangeable lens 202 into an image signal. The body drive control device 214 reads out an image signal from the image sensor 212 and corrects the image signal, communicates with the lens drive control device 206 (receives lens information / transmits camera information (defocus amount), etc.), an interchangeable lens. Detection of the focus adjustment state 202, operation control of the entire digital still camera, and the like are performed.

液晶表示素子駆動回路215は、ボディ駆動制御装置214の制御にしたがって液晶ビューファインダ(EVF:電気的ビューファインダー)の液晶表示素子216を駆動する。接眼レンズ217は撮影者が液晶表示素子216を観察するためのレンズである。メモリカード219は画像信号を格納記憶するための画像ストレージである。ボディ駆動制御装置214とレンズ駆動制御装置206は、マウント部204に設けられた電気接点部213を介して各種情報(レンズ情報、フォーカシングレンズ駆動のためのデフォーカス量等)の授受を行う。   The liquid crystal display element driving circuit 215 drives a liquid crystal display element 216 of a liquid crystal viewfinder (EVF: electrical viewfinder) under the control of the body drive control device 214. The eyepiece lens 217 is a lens for the photographer to observe the liquid crystal display element 216. The memory card 219 is an image storage for storing and storing image signals. The body drive control device 214 and the lens drive control device 206 exchange various information (lens information, defocus amount for driving the focusing lens, etc.) via the electrical contact portion 213 provided in the mount portion 204.

撮像素子212には後述する画素が二次元状に配置されている。交換レンズ202を通過して撮像素子211上に形成された被写体像は撮像素子211により光電変換され、その出力はボディ駆動制御装置214へ送られる。ボディ駆動制御装置214は、画素出力に基づき所定の焦点検出位置でのデフォーカス量を算出し、このデフォーカス量をレンズ駆動制御装置206へ送る。また、ボディ駆動制御装置214は撮像素子211の出力に基づき生成した画像信号をメモリカード219に格納する。さらに、ボディ駆動制御装置214は画像信号を液晶表示素子駆動回路215へ送り、この画像信号を液晶表示素子216に表示させる。撮影者は液晶表示素子216に表示された画像を接眼レンズ217を介して観察することができる。   Pixels to be described later are arranged two-dimensionally on the image sensor 212. The subject image formed on the image sensor 211 after passing through the interchangeable lens 202 is photoelectrically converted by the image sensor 211, and its output is sent to the body drive control device 214. The body drive control device 214 calculates a defocus amount at a predetermined focus detection position based on the pixel output, and sends this defocus amount to the lens drive control device 206. Further, the body drive control device 214 stores the image signal generated based on the output of the image sensor 211 in the memory card 219. Further, the body drive control device 214 sends an image signal to the liquid crystal display element drive circuit 215 and causes the liquid crystal display element 216 to display the image signal. The photographer can observe the image displayed on the liquid crystal display element 216 through the eyepiece 217.

カメラボディ203には不図示の操作部材(シャッターボタン、焦点検出位置の設定部材等)が設けられており、ボディ駆動制御装置214はこれらの操作部材からの操作状態信号を検出し、検出結果に応じた動作(撮像動作、焦点検出位置の設定動作)の制御を行う。   The camera body 203 is provided with operation members (not shown) (shutter buttons, focus detection position setting members, etc.), and the body drive control device 214 detects operation state signals from these operation members and displays the detection results. The corresponding operation (imaging operation, focus detection position setting operation) is controlled.

レンズ駆動制御装置206は、レンズ情報をフォーカシング状態、ズーミング状態、絞り設定状態、絞り開放F値などに応じて変更する。具体的には、レンズ208、210の位置、絞り207の位置および瞳分割偏光部材110の位置をモニターし、これらのモニター情報に応じてレンズ情報を演算したり、あるいは予め用意されたルックアップテーブルからモニター情報に応じたレンズ情報を選択する。レンズ駆動制御装置206は、受信したデフォーカス量に基づきレンズ駆動量を算出し、このレンズ駆動量に基づきフォーカシングレンズ210を不図示のモーター等の駆動源により合焦点へと駆動する。   The lens drive control device 206 changes the lens information according to the focusing state, zooming state, aperture setting state, aperture opening F value, and the like. Specifically, the positions of the lenses 208 and 210, the position of the stop 207, and the position of the pupil division polarizing member 110 are monitored, and lens information is calculated according to the monitor information, or a lookup table prepared in advance. Select the lens information according to the monitor information. The lens drive control device 206 calculates a lens drive amount based on the received defocus amount, and drives the focusing lens 210 to a focal point by a drive source such as a motor (not shown) based on the lens drive amount.

図3は瞳分割偏光部材110の構成を示し、(a)は断面図、(b)〜(d)は光の入射方向から見た正面図である。(a)図に示すように、瞳分割偏光部材110は、光入射側に直線偏光素子120が、光出射側に旋光素子130がそれぞれ配置されている。(b)図に示すように、直線偏光素子120は入射する光束の垂直方向の直線偏光成分のみを通過させる。   3A and 3B show the configuration of the pupil division polarizing member 110, where FIG. 3A is a cross-sectional view, and FIGS. 3B to 3D are front views as seen from the incident direction of light. (a) As shown in the figure, in the pupil division polarizing member 110, a linearly polarizing element 120 is disposed on the light incident side, and an optical rotation element 130 is disposed on the light emitting side. (b) As shown in the figure, the linearly polarizing element 120 passes only the linearly polarized light component in the vertical direction of the incident light beam.

ここで、垂直方向とは、図2に示す撮像装置における通常の撮影姿勢(正位置撮影姿勢)を基準とした場合の方向である。通常の撮影姿勢では、水面などの水平な反射面(自然界では存在頻度が高い)から反射される光は水平方向の直線偏光成分を多く含む。したがって、垂直方向の直線偏光成分のみを透過させることによって、水面などの水平面の反射成分を除去し、良好な撮影結果を得ることが可能となる。   Here, the vertical direction is a direction based on a normal photographing posture (normal position photographing posture) in the imaging apparatus shown in FIG. In a normal photographing posture, light reflected from a horizontal reflecting surface such as the water surface (which frequently exists in nature) contains a lot of horizontal linearly polarized light components. Therefore, by transmitting only the linearly polarized light component in the vertical direction, it is possible to remove the reflection component of the horizontal surface such as the water surface and obtain a good photographing result.

(c)図に示すように、旋光素子130は垂直方向に対し+22.5度および−22.5度傾いた光学軸を持つ1/2波長位相シフト素子(1/2波長板)132、133から成る。1/2波長板132と133は、入射光束を垂直方向の分割線で略対称に水平方向に2分するように並置されている。1/2波長板132と133は、可視光の波長範囲において1/2波長位相シフト効果を有する。   (c) As shown in the figure, the optical rotator 130 is a half-wave phase shift element (half-wave plate) 132, 133 having optical axes inclined by +22.5 degrees and -22.5 degrees with respect to the vertical direction. Consists of. The half-wave plates 132 and 133 are juxtaposed so as to divide the incident light beam into two parts in the horizontal direction substantially symmetrically with the vertical dividing line. The half-wave plates 132 and 133 have a half-wave phase shift effect in the visible light wavelength range.

(d)図に示すように、旋光素子132から出射する光束112は直線偏光方向が+45度回転される。一方、旋光素子133から出射する光束113は直線偏光方向が−45度回転される。光束112と113は互いに直線偏光方向が直交する。   (d) As shown in the figure, the linear polarization direction of the light beam 112 emitted from the optical rotator 132 is rotated by +45 degrees. On the other hand, the linearly polarized light direction of the light beam 113 emitted from the optical rotator 133 is rotated by −45 degrees. The light beams 112 and 113 are orthogonal to each other in the direction of linear polarization.

図4は撮像素子211の全体模式図(正面図)である。撮像素子211は、直線偏光方向が垂直方向から+45度傾いた直線偏光成分を受光する第1画素212と、直線偏光方向が垂直方向から−45度傾いた直線偏光成分を受光する第2画素213とが、交互に水平方向に並んだ画素行が垂直方向に配列された構造となっている。   FIG. 4 is an overall schematic diagram (front view) of the image sensor 211. The imaging device 211 receives a first pixel 212 that receives a linearly polarized light component whose linear polarization direction is inclined +45 degrees from the vertical direction, and a second pixel that receives a linearly polarized light component whose linear polarization direction is inclined −45 degrees from the vertical direction. 213 has a structure in which pixel rows alternately arranged in the horizontal direction are arranged in the vertical direction.

図5は撮像素子211の部分拡大図(正面図)である。第1画素212と第2画素213は、市松模様状に二次元状に配列される。水平方向に瞳分割され互いに直交した方向に直線偏光した光束により形成される2像は、焦点調節状態に応じて撮像素子211上で水平方向に相対的にずれる。一方の像の空間分布は、第1画素212の水平方向の配列(例えば212a、212b、212c、・・・)によって受光される。他方の像の空間分布は、第2画素213の水平方向の配列(例えば213a、213b、213c、・・・)によって受光される。撮像素子211のどの部分の画素を焦点検出に用いるかによって、焦点検出位置の選択が可能になる。   FIG. 5 is a partially enlarged view (front view) of the image sensor 211. The first pixel 212 and the second pixel 213 are two-dimensionally arranged in a checkered pattern. Two images formed by a light beam that is divided into pupils in the horizontal direction and linearly polarized in directions orthogonal to each other are relatively shifted in the horizontal direction on the image sensor 211 according to the focus adjustment state. The spatial distribution of one image is received by the horizontal arrangement of the first pixels 212 (for example, 212a, 212b, 212c,...). The spatial distribution of the other image is received by the horizontal arrangement of the second pixels 213 (for example, 213a, 213b, 213c,...). The focus detection position can be selected depending on which part of the image sensor 211 is used for focus detection.

図6は偏光型瞳分割位相差検出方式による焦点検出を説明するための図であり、(a)は図2の光軸を含む紙面に垂直な面における断面図、(b)は偏光素子配列の正面図である。90は、交換レンズ202の予定結像面に配置された撮像素子211の前方d4の距離にある交換レンズ202の射出瞳面(絞り207および絞り207より後方の光学系によって決定される面)である。91は交換レンズ202の光軸である。また、92、93は一対の測距瞳、すなわち瞳分割偏光部材110により瞳分割された一対の光束が絞り207の開口により制限されてできる射出瞳面90の一対の領域であり、図6では模式的に楕円で示す。   6A and 6B are views for explaining focus detection by the polarization type pupil division phase difference detection method, in which FIG. 6A is a sectional view in a plane perpendicular to the paper surface including the optical axis in FIG. 2, and FIG. FIG. Reference numeral 90 denotes an exit pupil plane of the interchangeable lens 202 (a surface determined by the diaphragm 207 and the optical system behind the diaphragm 207) located at a distance d4 in front of the image sensor 211 disposed on the planned imaging plane of the interchangeable lens 202. is there. Reference numeral 91 denotes an optical axis of the interchangeable lens 202. Reference numerals 92 and 93 denote a pair of distance measurement pupils, that is, a pair of regions on the exit pupil plane 90 formed by a pair of light beams divided by the pupil division polarizing member 110 being limited by the aperture of the diaphragm 207. This is schematically shown as an ellipse.

14a、14bは+45度の直線偏光成分を透過する偏光素子であり、測距瞳92を出射する直線偏光の光を透過する。また、15a、15bは−45度の直線偏光成分を透過する偏光素子であり、測距瞳93出射する直線偏光の光を透過する。72,82は測距瞳92を出射する光束で、+45度方向に直線偏光されている。また、73,83は測距瞳93を出射する光束で、−45度方向に直線偏光されている。   Reference numerals 14 a and 14 b denote polarizing elements that transmit a linearly polarized light component of +45 degrees, and transmit linearly polarized light that exits the distance measuring pupil 92. Reference numerals 15a and 15b denote polarizing elements that transmit a linearly polarized light component of −45 degrees, and transmit linearly polarized light emitted from the distance measuring pupil 93. Reference numerals 72 and 82 denote light beams emitted from the distance measuring pupil 92 and linearly polarized in the +45 degree direction. Reference numerals 73 and 83 denote light beams emitted from the distance measuring pupil 93 and are linearly polarized in the −45 degree direction.

12a、12b、13a、13bは光電変換部である。1つの画素は光電変換部とその前に配置された偏光素子とから構成される。画素は半導体基板29上に半導体製造プロセスにより形成される。偏光素子も光電変換部上に一体的に形成される。なお、図6では隣接する4画素を模式的に例示するが、他の画素も同様である。光電変換部12aと偏光素子14aの組み合わせ、および光電変換部12bと偏光素子14bの組み合わせが、第1画素212を形成する。また、光電変換部13aと偏光素子15aの組み合わせ、および光電変換部13bと偏光素子15bの組み合わせが、第2画素213を形成する。   Reference numerals 12a, 12b, 13a, and 13b denote photoelectric conversion units. One pixel includes a photoelectric conversion unit and a polarizing element arranged in front of the photoelectric conversion unit. The pixels are formed on the semiconductor substrate 29 by a semiconductor manufacturing process. The polarizing element is also integrally formed on the photoelectric conversion unit. In FIG. 6, four adjacent pixels are schematically illustrated, but the same applies to other pixels. The combination of the photoelectric conversion unit 12a and the polarizing element 14a and the combination of the photoelectric conversion unit 12b and the polarizing element 14b form the first pixel 212. The combination of the photoelectric conversion unit 13a and the polarizing element 15a and the combination of the photoelectric conversion unit 13b and the polarizing element 15b form the second pixel 213.

図6(b)に示すように、偏光素子14a、15a、14b、15bは、測距瞳92を出射する光束と測距瞳93を出射する光束を交互に透過するように配置される。図6(a)において、光電変換部12aには、測距瞳92を出射する光束72と測距瞳93を出射する光束が向かう。偏光素子14aは測距瞳92を出射する光束72を透過し、測距瞳93を出射する光束を阻止する。光電変換部12aは、光束72が光電変換部12a上に形成する像の光強度に対応した信号を出力する。   As shown in FIG. 6B, the polarizing elements 14a, 15a, 14b, and 15b are disposed so as to alternately transmit the light beam emitted from the distance measuring pupil 92 and the light beam emitted from the distance measuring pupil 93. In FIG. 6A, the light beam 72 emitted from the distance measuring pupil 92 and the light beam emitted from the distance measuring pupil 93 are directed to the photoelectric conversion unit 12a. The polarizing element 14a transmits the light beam 72 emitted from the distance measuring pupil 92 and blocks the light beam emitted from the distance measuring pupil 93. The photoelectric conversion unit 12a outputs a signal corresponding to the light intensity of the image formed by the light beam 72 on the photoelectric conversion unit 12a.

光電変換部13aには、測距瞳93を出射する光束73と測距瞳92を出射する光束が向かう。偏光素子15aは測距瞳93を出射する光束73を透過し、測距瞳92を出射する光束を阻止する。光電変換部13aは、光束73が光電変換部13a上に形成する像の光強度に対応した信号を出力する。また、光電変換部12bには、測距瞳92を出射する光束82と測距瞳93を出射する光束が向かう。偏光素子14bは測距瞳92を出射する光束82を透過し、測距瞳93を出射する光束を阻止する。光電変換部12bは、光束82が光電変換部12b上に形成する像の光強度に対応した信号を出力する。   The light beam 73 emitted from the distance measuring pupil 93 and the light beam emitted from the distance measuring pupil 92 are directed to the photoelectric conversion unit 13a. The polarizing element 15a transmits the light beam 73 emitted from the distance measuring pupil 93 and blocks the light beam emitted from the distance measuring pupil 92. The photoelectric conversion unit 13a outputs a signal corresponding to the light intensity of the image formed by the light flux 73 on the photoelectric conversion unit 13a. Further, the light beam 82 emitted from the distance measuring pupil 92 and the light beam emitted from the distance measuring pupil 93 are directed to the photoelectric conversion unit 12b. The polarizing element 14 b transmits the light beam 82 emitted from the distance measuring pupil 92 and blocks the light beam emitted from the distance measuring pupil 93. The photoelectric conversion unit 12b outputs a signal corresponding to the light intensity of the image formed by the light beam 82 on the photoelectric conversion unit 12b.

光電変換部13bには、測距瞳93を出射する光束83と測距瞳92を出射する光束が向かう。偏光素子15bは測距瞳93を出射する光束83を透過し、測距瞳92を出射する光束を阻止する。光電変換部13bは、光束83が光電変換部13b上に形成する像の光強度に対応した信号を出力する。   A light beam 83 emitted from the distance measuring pupil 93 and a light beam emitted from the distance measuring pupil 92 are directed to the photoelectric conversion unit 13b. The polarizing element 15b transmits the light beam 83 emitted from the distance measuring pupil 93 and blocks the light beam emitted from the distance measuring pupil 92. The photoelectric conversion unit 13b outputs a signal corresponding to the light intensity of the image formed by the light beam 83 on the photoelectric conversion unit 13b.

上述した第1画素212と第2画素213を直線状に多数配置し、各画素の光電変換部の出力を測距瞳92および測距瞳93に対応した出力グループにまとめることによって、測距瞳92と測距瞳93を各々通過する焦点検出光束が画素列上に形成する一対の像の強度分布に関する情報が得られる。この情報に対して後述する像ズレ検出演算処理(相関演算処理、位相差検出処理)を施すことにより、いわゆる偏光型瞳分割位相差検出方式で一対の像の像ズレ量が検出される。像ズレ量は光軸に対して垂直な面内の方向のズレ量であるから、これを後述する方式により光軸方向のズレ量、すなわちデフォーカス量(撮像素子面と光学系の合焦面との光軸方向の偏差)に変換する。   A large number of the first pixels 212 and the second pixels 213 described above are arranged in a straight line, and the output of the photoelectric conversion unit of each pixel is collected into an output group corresponding to the distance measuring pupil 92 and the distance measuring pupil 93, thereby the distance measuring pupil. Information on the intensity distribution of a pair of images formed on the pixel array by the focus detection light fluxes that respectively pass through 92 and the distance measuring pupil 93 is obtained. By applying an image shift detection calculation process (correlation calculation process, phase difference detection process) to be described later to this information, the image shift amount of a pair of images is detected by a so-called polarization type pupil division phase difference detection method. Since the image displacement amount is a displacement amount in a direction perpendicular to the optical axis, this amount of displacement in the direction of the optical axis, that is, a defocus amount (focusing surface of the imaging element surface and the optical system) is obtained by a method described later. And deviation in the optical axis direction).

図7は、一実施の形態のデジタルスチルカメラ(撮像装置)201の動作を示すフローチャートである。ボディ駆動制御装置214は、カメラ201の電源スイッチ(不図示)がオンされるとこの動作を繰り返し実行する。ステップ100で電源がオンされるとステップ110へ進み、絞りを“撮影F値”、すなわち被写界の輝度または手動操作に応じて設定される絞り開口の大きさに設定して撮像を行い、画素のデータを読み出し、電子ビューファインダーに表示させる。ステップ120において、“焦点検出F値”、すなわち焦点検出用の画素のデータを読み出す場合に適用される絞り開口の大きさをデフォーカス量の大きさに応じて決定する。   FIG. 7 is a flowchart illustrating the operation of the digital still camera (imaging device) 201 according to the embodiment. The body drive control device 214 repeatedly executes this operation when a power switch (not shown) of the camera 201 is turned on. When the power is turned on in step 100, the process proceeds to step 110, and imaging is performed by setting the aperture to the “shooting F value”, that is, the size of the aperture opening set according to the luminance of the object field or the manual operation, The pixel data is read out and displayed on the electronic viewfinder. In step 120, the "focus detection F value", that is, the size of the aperture opening applied when reading the pixel data for focus detection is determined according to the size of the defocus amount.

図8を参照して焦点検出F値について説明する。瞳分割偏光部材110を出射する光束112,113は、瞳分割偏光部材110の直後に配置された絞りの開口の大きさにより制限を受ける。絞りが大きな開口88の場合には、光束112,113が制限された光束112a、113aの重心115、116の瞳の並び方向(水平方向)の間隔はG1となる。一方、絞りが小さい開口89の場合には、光束112,113が制限された光束112b、113bの重心117、118の瞳の並び方向(水平方向)の間隔はG2となる。間隔G2は間隔G1より狭くなる。   The focus detection F value will be described with reference to FIG. The light beams 112 and 113 emitted from the pupil division polarizing member 110 are limited by the size of the aperture of the stop disposed immediately after the pupil division polarization member 110. When the aperture is a large aperture 88, the interval in the pupil alignment direction (horizontal direction) of the centroids 115, 116 of the light beams 112a, 113a limited by the light beams 112, 113 is G1. On the other hand, in the case of the aperture 89 with a small stop, the interval between the pupils 112b and 113b in which the light beams 112 and 113 are restricted in the center of gravity 117 and 118 in the alignment direction (horizontal direction) of the pupil is G2. The interval G2 is narrower than the interval G1.

同一のデフォーカス量の場合に、光束112a、113aが形成する一対の像のズレ量(間隔G1に略比例)は、光束112b、113bが形成する一対の像のズレ量(間隔G2に略比例)より大きくなる。デフォーカス量が小さな合焦近傍では、焦点検出時に絞り開口を大きくして焦点検出精度を向上させる。同一のデフォーカス量の場合に、光束112a、113a(光束が太い)が形成する一対の像のコントラストは、光束112b、113b(光束が細い)が形成する一対の像のコントラストより低くなる。   In the case of the same defocus amount, the shift amount of the pair of images formed by the light beams 112a and 113a (substantially proportional to the gap G1) is the shift amount of the pair of images formed by the light beams 112b and 113b (substantially proportional to the gap G2). ) Bigger. In the vicinity of in-focus where the defocus amount is small, the aperture opening is enlarged during focus detection to improve focus detection accuracy. In the case of the same defocus amount, the contrast of the pair of images formed by the light beams 112a and 113a (thick light beam) is lower than the contrast of the pair of images formed by the light beams 112b and 113b (thin light beam).

デフォーカス量が大きな状態では、もともと像のコントラストが低下して像ズレ量の検出が困難になり焦点検出不能となりやすいので、デフォーカス量が大きな場合には焦点検出時に絞り開口を絞り込んで小さくし、焦点検出不能を回避する。また、初回の焦点検出時あるいは前回焦点検出不能時にも、絞り開口を絞り込んで小さくし、焦点検出不能を回避する。   When the defocus amount is large, the contrast of the image is originally lowered, making it difficult to detect the image misalignment and making it impossible to detect the focus.If the defocus amount is large, the aperture opening is narrowed down to reduce the focus. , Avoiding the inability to detect the focus. Also, when the first focus is detected or when the previous focus cannot be detected, the aperture is narrowed down to avoid the inability to detect the focus.

図7のステップ130において、焦点検出位置の画素領域に対応した第1画素のデータおよび第2画素のデータに基づいて後述する像ズレ検出演算処理(相関演算処理)を行い、像ズレ量を演算する。なお、焦点検出位置は不図示の操作部材を用いて撮影者により指定されているものとする。続くステップ140では、焦点検出F値および測距瞳距離に応じて像ズレ量をデフォーカス量に変換する(詳細を後述する)。ステップ150で合焦近傍か否か、つまり算出されたデフォーカス量の絶対値が所定値以内であるか否かを調べる。   In step 130 of FIG. 7, an image shift detection calculation process (correlation calculation process) described later is performed based on the first pixel data and the second pixel data corresponding to the pixel area at the focus detection position, and the image shift amount is calculated. To do. It is assumed that the focus detection position is designated by the photographer using an operation member (not shown). In subsequent step 140, the image shift amount is converted into a defocus amount in accordance with the focus detection F value and the distance measurement pupil distance (details will be described later). In step 150, it is checked whether or not the focus is close, that is, whether or not the calculated absolute value of the defocus amount is within a predetermined value.

合焦近傍でないと判定した場合はステップ160へ進み、デフォーカス量をレンズ駆動制御装置206へ送信し、交換レンズ202のフォーカシングレンズ210を合焦位置に駆動させ、ステップ110へ戻って上記動作を繰り返す。なお、焦点検出不能な場合もこのステップ160へ分岐し、レンズ駆動制御装置206へスキャン駆動命令を送信し、交換レンズ202のフォーカシングレンズ210を無限から至近までの間でスキャン駆動させ、ステップ110へ戻って上記動作を繰り返す。   If it is determined that the focus is not close, the process proceeds to step 160, the defocus amount is transmitted to the lens drive control device 206, the focusing lens 210 of the interchangeable lens 202 is driven to the focus position, and the process returns to step 110 to perform the above operation. repeat. Even when focus detection is impossible, the process branches to step 160, a scan drive command is transmitted to the lens drive control device 206, and the focusing lens 210 of the interchangeable lens 202 is driven to scan from infinity to the nearest position, and then step 110 is performed. Return and repeat the above operation.

一方、合焦近傍であると判定した場合はステップ170へ進み、不図示の操作部材の操作によりシャッターレリーズがなされたか否かを判定する。シャッターレリーズがなされていないと判定された場合は、ステップ110へ戻って上記動作を繰り返す。シャッターレリーズがなされたと判定された場合はステップ180へ進み、レンズ駆動制御装置206に対して絞り調整命令を送信し、交換レンズ202の絞り値を撮影F値(撮影者または自動により設定されたF値)にする。絞り制御が終了した時点で、撮像素子211に撮像動作を行わせ、撮像素子211の全画素からデータを読み出して、メモリーカード219に格納する。メモリーカード219に保存する前に、画像処理(周囲画素に基づく補間処理、高周波成分カット処理等)を行ってもよい。その後、ステップ110へ戻って上記動作を繰り返す。   On the other hand, if it is determined that it is in the vicinity of the in-focus state, the process proceeds to step 170, and it is determined whether or not a shutter release has been performed by operating an operation member not shown. If it is determined that the shutter release has not been performed, the process returns to step 110 and the above operation is repeated. If it is determined that the shutter release has been performed, the process proceeds to step 180, where an aperture adjustment command is transmitted to the lens drive control unit 206, and the aperture value of the interchangeable lens 202 is set to the shooting F value (the F or the camera set automatically). Value). When the aperture control is completed, the image sensor 211 performs an image capturing operation, reads data from all pixels of the image sensor 211, and stores the data in the memory card 219. Before storing in the memory card 219, image processing (interpolation processing based on surrounding pixels, high frequency component cut processing, etc.) may be performed. Thereafter, the process returns to step 110 to repeat the above operation.

図7のステップ130における像ズレ検出演算処理について説明する。撮像素子211において、水平方向に延在する同一行に属する一対のデータ系列、例えば図5に示す第1画素の列(212a、212b、212c、・・・)のデータ系列と、第2画素の列(213a、213b、213c、・・・)のデータ系列の組み合わせで像ズレ検出を行う。   The image shift detection calculation process in step 130 of FIG. 7 will be described. In the image sensor 211, a pair of data series belonging to the same row extending in the horizontal direction, for example, the data series of the first pixel columns (212a, 212b, 212c,...) Shown in FIG. Image shift detection is performed by a combination of data series of columns (213a, 213b, 213c,...).

一対のデータ系列を(E1〜EL)、(F1〜FL)と一般化して表現した場合に、データ系列(E1〜EL)に対しデータ系列(F1〜FL)を相対的にずらしながら次式ににより2つのデータ列間のずらし量kにおける相関量C(k)を演算する。
C(k)=Σ|En−Fn+k| ・・・(1)
(1)式において、Σ演算においてnのとる範囲は、ずらし量kに応じてEn,Fn+kのデータが存在する範囲に限定される。また、ずらし量kは整数であり、一対のデータの検出ピッチを単位とした相対的シフト量である。
When a pair of data series is expressed by generalization as (E1 to EL) and (F1 to FL), the data series (F1 to FL) is relatively shifted with respect to the data series (E1 to EL) and To calculate the correlation amount C (k) in the shift amount k between the two data strings.
C (k) = Σ | En−Fn + k | (1)
In the equation (1), the range taken by n in the Σ operation is limited to the range where En, Fn + k data exists according to the shift amount k. The shift amount k is an integer, and is a relative shift amount in units of the detection pitch of a pair of data.

(1)式による演算結果は、図9(a)に示すように、一対のデータ系列の相関が高いシフト量(図9(a)ではk=kj=2)において相関量C(k)が最小(小さいほど相関度が高い)になる。次に、下記(2)〜(5)式による3点内挿の手法を用いて連続的な相関量に対する最小値C(x)を与えるシフト量xを求める。
x=kj+D/SLOP ・・・(2),
C(x)= C(kj)−|D| ・・・(3),
D={C(kj-1)−C(kj+1)}/2 ・・・(4),
SLOP=MAX{C(kj+1)−C(kj),C(kj-1)−C(kj)} ・・・(5)
(2)式で求めたシフト量xに検出ピッチ(同一種類の画素の配置ピッチ)を乗じて像ズレ量Xに換算する。
As shown in FIG. 9A, the calculation result according to the equation (1) indicates that the correlation amount C (k) is the shift amount (k = kj = 2 in FIG. 9A) where the correlation between the pair of data series is high. The minimum (the smaller the value, the higher the degree of correlation). Next, a shift amount x that gives a minimum value C (x) with respect to the continuous correlation amount is obtained using a three-point interpolation method according to the following equations (2) to (5).
x = kj + D / SLOP (2),
C (x) = C (kj) − | D | (3),
D = {C (kj-1) -C (kj + 1)} / 2 (4),
SLOP = MAX {C (kj + 1) -C (kj), C (kj-1) -C (kj)} (5)
The shift amount x obtained by the equation (2) is multiplied by the detection pitch (arrangement pitch of pixels of the same type) to be converted into the image shift amount X.

焦点検出の可能または不能、つまり像ズレ量Xの信頼性があるかどうかは、次のようにして判定される。図9(b)に示すように、一対のデータ系列の相関度が低い場合は、内挿された相関量の最小値C(x)の値が大きくなる。したがって、C(x)が所定値以上の場合は信頼性が低く焦点検出不能であると判定する。あるいは、C(x)をデータのコントラストで規格化するために、コントラストに比例した値となるSLOPでC(x)を除した値が所定値以上の場合は信頼性が低く焦点検出不能であると判定する。あるいはまた、コントラストに比例した値となるSLOPが所定値以下の場合は、被写体が低コントラストであり、算出された像ズレ量Xの信頼性が低く焦点検出不能であると判定する。   Whether or not focus detection is possible, that is, whether or not the image shift amount X is reliable is determined as follows. As shown in FIG. 9B, when the degree of correlation between the pair of data series is low, the value of the minimum value C (x) of the interpolated correlation amount becomes large. Therefore, when C (x) is equal to or greater than a predetermined value, it is determined that the reliability is low and focus detection is impossible. Alternatively, in order to normalize C (x) with the contrast of data, when the value obtained by dividing C (x) by SLOP that is proportional to the contrast is equal to or greater than a predetermined value, the reliability is low and focus detection is impossible. Is determined. Alternatively, when SLOP that is a value proportional to the contrast is equal to or less than a predetermined value, it is determined that the subject has low contrast, the reliability of the calculated image shift amount X is low, and focus detection is impossible.

図7(c)に示すように、一対のデータ系列の相関度が低く、所定のシフト範囲kmin〜kmaxの間で相関量C(k)の落ち込みがない場合は、最小値C(x)を求めることができず、このような場合は焦点検出不能と判定する。    As shown in FIG. 7C, when the correlation between the pair of data series is low and there is no drop in the correlation amount C (k) between the predetermined shift ranges kmin to kmax, the minimum value C (x) is set. In such a case, it is determined that the focus cannot be detected.

次に、図7のステップ140における像ズレ量からデフォーカス量への変換処理の詳細を説明する。焦点検出が可能であった場合は、算出された像ズレ量をデフォーカス量に変換する。図10に像ズレ量とデフォーカス量の関係を示す。図では、光軸91上にある点像被写体(黒地に白点)に対して、測距瞳92,93を通過して結像する光束62,63と撮像素子が配置された予定結像面P0の関係を示している。   Next, details of the conversion processing from the image shift amount to the defocus amount in step 140 of FIG. 7 will be described. If focus detection is possible, the calculated image shift amount is converted into a defocus amount. FIG. 10 shows the relationship between the image shift amount and the defocus amount. In the figure, a planned image plane on which a light beam 62 and 63 that forms an image through a distance-measuring pupil 92 and 93 and an image sensor are arranged for a point image subject (white point on a black background) on the optical axis 91. The relationship of P0 is shown.

図10(a−1)に示すように、光束62,63の結像位置P1が予定結像面P0より後方である場合は、予定結像面P0からの結像位置P1のデフォーカス量d(光線の進行方向を−とする)に応じて、予定結像面P0上には測距瞳92,93を通過する光束62,63によって一対の像52,53が形成される。図10(a−2)に示すように、測距瞳92を通過する光束62によって形成される像52は、測距瞳93を通過する光束63によって形成される像53から像ズレ量X(−方向)だけ変位している。   As shown in FIG. 10 (a-1), when the imaging position P1 of the light beams 62 and 63 is behind the planned imaging plane P0, the defocus amount d of the imaging position P1 from the planned imaging plane P0. In accordance with (the traveling direction of the light is −), a pair of images 52 and 53 are formed on the planned imaging plane P0 by the light beams 62 and 63 passing through the distance measuring pupils 92 and 93. As shown in FIG. 10 (a-2), the image 52 formed by the light beam 62 passing through the distance measuring pupil 92 is changed from the image 53 formed by the light beam 63 passing through the distance measuring pupil 93 to an image shift amount X ( -Direction) is displaced.

また、図10(b−1)に示すように、光束62,63の結像位置P2が予定結像面P0に一致している場合(合焦)には、予定結像面P0からの結像位置P1のデフォーカス量dは0でとなる。図10(b−2)に示すように、測距瞳92を通過する光束62によって形成される像52は、測距瞳93を通過する光束63によって形成される像53と一致し、像ズレ量Xが0になる。   Further, as shown in FIG. 10 (b-1), when the imaging position P2 of the light beams 62 and 63 coincides with the planned imaging plane P0 (in-focus), the connection from the planned imaging plane P0. The defocus amount d of the image position P1 is zero. As shown in FIG. 10 (b-2), the image 52 formed by the light beam 62 passing through the distance measuring pupil 92 coincides with the image 53 formed by the light beam 63 passing through the distance measuring pupil 93, and the image shift. The quantity X becomes zero.

さらに、図10(c−1)に示すように、光束62,63の結像位置P3が予定結像面P0より前方である場合は、予定結像面P0からの結像位置P3のデフォーカス量dに応じて、予定結像面P0上には測距瞳92,93を通過する光束62,63によって一対の像52,53が形成される。この場合は、図10(a−1)に示す場合と像の位置関係が逆転する。図10(c−2)に示すように、測距瞳92を通過する光束62によって形成される像52は、測距瞳93を通過する光束63によって形成される像53から像ズレ量X(+方向)だけ変位している。   Furthermore, as shown in FIG. 10 (c-1), when the imaging position P3 of the light beams 62 and 63 is ahead of the planned imaging plane P0, the defocusing of the imaging position P3 from the planned imaging plane P0. In accordance with the amount d, a pair of images 52 and 53 are formed on the planned imaging plane P0 by the light beams 62 and 63 passing through the distance measuring pupils 92 and 93. In this case, the positional relationship between the image and the case shown in FIG. As shown in FIG. 10C-2, the image 52 formed by the light beam 62 passing through the distance measuring pupil 92 is changed from the image 53 formed by the light beam 63 passing through the distance measuring pupil 93 to an image shift amount X ( It is displaced only in the + direction).

予定結像面P0から測距瞳92,93までの距離Z(測距瞳距離)は、瞳分割偏光部材110または絞り207の位置と絞り以降にある光学系の配置に基づいて演算により求めることができる。測距瞳92,93の重心間隔Hは、図8に示す重心間隔G1,G2を射出瞳面90の距離に換算することによって得られる。像ズレ量X、測距瞳重心間隔Hおよび測距瞳距離Zにより、結像位置の予定結像面に対するデフォーカス量dを次式により求めることができる。
d=X・Z/(X+H) ・・・(6)
また、一対のデータ系列がぴったり合致した場合(X=0)の場合は、実際にはデータ列が検出ピッチの半分だけずれた状態となるので、(2)式で求めたシフト量xはデータピッチの半分だけオフセットされて像ズレ量Xに換算され、(6)式に適用される。
The distance Z (ranging pupil distance) from the planned imaging plane P0 to the distance measuring pupils 92 and 93 is obtained by calculation based on the position of the pupil division polarizing member 110 or the diaphragm 207 and the arrangement of the optical system after the diaphragm. Can do. The center-of-gravity interval H between the distance measuring pupils 92 and 93 is obtained by converting the center-of-gravity intervals G1 and G2 shown in FIG. Based on the image shift amount X, the distance measurement center-of-gravity distance H, and the distance measurement pupil distance Z, the defocus amount d of the image formation position with respect to the planned image formation surface can be obtained by
d = X · Z / (X + H) (6)
When the pair of data series exactly match (X = 0), the data string is actually shifted by half of the detection pitch, so the shift amount x obtained by equation (2) is the data It is offset by half of the pitch, converted to an image shift amount X, and applied to equation (6).

《撮像素子の変形例》
図11は、一実施の形態の偏光型瞳分割位相差検出に適用可能な瞳分割偏光部材の変形例の構成を示し、(a)は断面図、(b)と(c)は光入射方向から見た正面図である。図11(a)において、瞳分割偏光部材110は、光入射側に旋光素子150と、光出射側に直線偏光素子140とが配置される。図11(b)において、旋光素子150は、垂直方向に対して入射光の直線偏光の角度を+45度および−45度回転させる液晶素子152、153から成る。液晶素子152と153は、入射光束を垂直方向の分割線で略対称に水平方向に2分するように並置されている。液晶素子152と153には、捩れ角が+45度、−45度のツイステッドネマチック液晶を硬化したものが使用される。
<< Modification of image sensor >>
FIG. 11 shows a configuration of a modified example of the pupil-dividing polarizing member applicable to the polarization-type pupil-dividing phase difference detection according to the embodiment, where (a) is a cross-sectional view, and (b) and (c) are light incident directions. It is the front view seen from. In FIG. 11A, the pupil-dividing polarizing member 110 includes an optical rotation element 150 on the light incident side and a linear polarizing element 140 on the light emission side. In FIG. 11B, the optical rotation element 150 includes liquid crystal elements 152 and 153 that rotate the angle of linearly polarized light of incident light with respect to the vertical direction by +45 degrees and −45 degrees. The liquid crystal elements 152 and 153 are juxtaposed so as to divide the incident light beam into two parts in the horizontal direction substantially symmetrically with the dividing line in the vertical direction. As the liquid crystal elements 152 and 153, those obtained by curing twisted nematic liquid crystals having twist angles of +45 degrees and −45 degrees are used.

図11(c)において、直線偏光素子140は、垂直方向に対して入射光の直線偏光の角度が+45度および−45度の直線偏光成分のみを通過させる直線偏光素子部142、143から成る。直線偏光素子部142から出射する光束は直線偏光方向が+45度となり、直線偏光素子部143から出射する光束は直線偏光方向が−45度となる。直線偏光素子部142、143から出射する光束は、旋光素子150に入射する前の直線偏光方向が垂直方向に揃っている。   In FIG. 11C, the linearly polarizing element 140 is composed of linearly polarizing element parts 142 and 143 that allow only linearly polarized light components having incident angles of +45 degrees and −45 degrees to the vertical direction. The light beam emitted from the linear polarization element unit 142 has a linear polarization direction of +45 degrees, and the light beam emitted from the linear polarization element unit 143 has a linear polarization direction of −45 degrees. The luminous fluxes emitted from the linearly polarizing element portions 142 and 143 have the linearly polarized directions aligned in the vertical direction before entering the optical rotator 150.

図12は、一実施の形態の偏光型瞳分割位相差検出に適用可能な撮像素子の変形例の構成を示し、(a)が断面図、(b)が正面図である。なお、以下では図6を参照して説明する。16a、16bは入射光の直線偏光方向を−45度回転する旋光素子であり、17a、17bは入射光の直線偏光方向を+45度回転する旋光素子である。これらの旋光素子は、捩れ角が+45度、−45度のツイステッドネマチック液晶を硬化したものが使用される。また、18は旋光素子16a、16b、17a、17bと光電変換部12a、12b、13a、13bの間に配置された直線偏光素子である。   FIGS. 12A and 12B show a configuration of a modification of the imaging device applicable to the polarization type pupil division phase difference detection according to the embodiment, in which FIG. 12A is a cross-sectional view and FIG. 12B is a front view. In the following, description will be given with reference to FIG. Reference numerals 16a and 16b denote optical rotators that rotate the linear polarization direction of incident light by −45 degrees, and reference numerals 17a and 17b denote optical rotators that rotate the linear polarization direction of incident light by +45 degrees. As these optical rotatory elements, those obtained by curing twisted nematic liquid crystals having twist angles of +45 degrees and −45 degrees are used. Reference numeral 18 denotes a linearly polarizing element disposed between the optical rotators 16a, 16b, 17a, and 17b and the photoelectric conversion units 12a, 12b, 13a, and 13b.

図12(a)において、1つの画素は光電変換部とその前に配置された偏光素子および旋光素子とから構成される。画素は半導体基板29上に半導体製造プロセスにより形成される。偏光素子18および旋光素子16a、16b、17a、17bも光電変換部12a、12b、13a、13b上に一体的に形成される。なお、図12では隣接する4画素を模式的に例示するが、他の画素も同様である。図12(b)に示すように、旋光素子16a、17a、16b、16bは測距瞳92を出射する光束と測距瞳93を出射する光束を交互に透過するように配置される。   In FIG. 12A, one pixel is composed of a photoelectric conversion unit, a polarizing element and an optical rotator arranged in front of it. The pixels are formed on the semiconductor substrate 29 by a semiconductor manufacturing process. The polarizing element 18 and the optical rotators 16a, 16b, 17a, and 17b are also integrally formed on the photoelectric conversion units 12a, 12b, 13a, and 13b. FIG. 12 schematically illustrates four adjacent pixels, but the same applies to other pixels. As shown in FIG. 12B, the optical rotators 16a, 17a, 16b, and 16b are arranged so as to alternately transmit the light beam emitted from the distance measuring pupil 92 and the light beam emitted from the distance measurement pupil 93.

光電変換部12a、旋光素子16aおよび偏光素子18の組み合わせ(光電変換部12b、旋光素子16bおよび偏光素子18の組み合わせ)によって、測距瞳92を出射する光束72は、旋光素子16aで直線偏光方向が垂直方向に戻され、偏光素子18を通過して光電変換部12aに受光される。測距瞳93を出射する光束は、旋光素子16aで直線偏光方向が水平方向に回転され、偏光素子18により通過を阻止されるので、光電変換部12aに受光されない。   The light beam 72 emitted from the distance measuring pupil 92 by the combination of the photoelectric conversion unit 12a, the optical rotation element 16a, and the polarization element 18 (the combination of the photoelectric conversion unit 12b, the optical rotation element 16b, and the polarization element 18) is linearly polarized by the optical rotation element 16a. Is returned to the vertical direction, passes through the polarizing element 18, and is received by the photoelectric conversion unit 12a. The luminous flux emitted from the distance measuring pupil 93 is not received by the photoelectric conversion unit 12a because the linear polarization direction is rotated in the horizontal direction by the optical rotator 16a and is prevented from passing by the polarizing element 18.

光電変換部13a、旋光素子17aおよび偏光素子18の組み合わせ(光電変換部13b、旋光素子17bおよび偏光素子18の組み合わせ)によって、測距瞳93を出射する光束73は、旋光素子17aで直線偏光方向が垂直方向に戻され、偏光素子18を通過して光電変換部13aに受光される。測距瞳92を出射する光束は、旋光素子17aで直線偏光方向が水平方向に回転され、偏光素子18により通過を阻止されるので、光電変換部13aに受光されない。   The light beam 73 emitted from the distance measuring pupil 93 by the combination of the photoelectric conversion unit 13a, the optical rotation element 17a, and the polarization element 18 (the combination of the photoelectric conversion unit 13b, the optical rotation element 17b, and the polarization element 18) is linearly polarized by the optical rotation element 17a. Is returned to the vertical direction, passes through the polarizing element 18, and is received by the photoelectric conversion unit 13a. The light beam emitted from the distance measuring pupil 92 is not received by the photoelectric conversion unit 13a because the linear polarization direction is rotated in the horizontal direction by the optical rotation element 17a and is prevented from passing by the polarization element 18.

図13は、一実施の形態の偏光型瞳分割位相差検出に適用可能な撮像素子の他の変形例の構成を示し、(a)が断面図、(b)が正面図である。なお、以下では図6を参照して説明する。20a、20bは入射光の直線偏光方向を−45度回転する旋光素子であり、21a、21bは入射光の直線偏光方向を+45度回転する旋光素子である。これらの旋光素子は、磁気光学効果(ファラデー効果)により直線偏光方向+45度、−45度回転する材料(磁性ガーネット膜)である。また、19は旋光素子の旋光効果を電気的に制御するための透明電極であり、透明電極19に所定の電圧を加えるとともに、不図示の外部磁場を印加することにより、磁性ガーネット膜の磁化方向を制御し、旋光効果の有無を制御することができる。18は旋光素子と光電変換部の間に配置された直線偏光素子である。   FIGS. 13A and 13B show a configuration of another modification of the image sensor that can be applied to the polarization-type pupil division phase difference detection according to the embodiment, where FIG. 13A is a cross-sectional view and FIG. 13B is a front view. In the following, description will be given with reference to FIG. Reference numerals 20a and 20b denote optical rotation elements that rotate the linear polarization direction of incident light by −45 degrees, and reference numerals 21a and 21b denote optical rotation elements that rotate the linear polarization direction of incident light by +45 degrees. These optical rotatory elements are materials (magnetic garnet films) that rotate by +45 degrees and −45 degrees in the direction of linear polarization due to the magneto-optic effect (Faraday effect). Reference numeral 19 denotes a transparent electrode for electrically controlling the optical rotation effect of the optical rotatory element. By applying a predetermined voltage to the transparent electrode 19 and applying an external magnetic field (not shown), the magnetization direction of the magnetic garnet film And the presence or absence of the optical rotation effect can be controlled. Reference numeral 18 denotes a linearly polarized light element disposed between the optical rotation element and the photoelectric conversion unit.

図13(a)において、1つの画素は光電変換部とその前に配置された偏光素子、旋光素子および透明電極とから構成される。画素は半導体基板29上に半導体製造プロセスにより形成される。偏光素子18、旋光素子20a、20b、21a、21bおよび透明電極19も光電変換部12a、12b、13a、13b上に一体的に形成される。なお、図13では隣接する4画素を模式的に例示するが、他の画素も同様である。   In FIG. 13A, one pixel is composed of a photoelectric conversion unit and a polarizing element, an optical rotator, and a transparent electrode arranged in front of it. The pixels are formed on the semiconductor substrate 29 by a semiconductor manufacturing process. The polarizing element 18, the optical rotation elements 20a, 20b, 21a, 21b, and the transparent electrode 19 are also integrally formed on the photoelectric conversion units 12a, 12b, 13a, 13b. FIG. 13 schematically illustrates four adjacent pixels, but the same applies to other pixels.

図13(b)に示すように、旋光素子20a、21a、20b、21bは、測距瞳92を出射する光束と測距瞳93を出射する光束とを交互に透過するように配置される。光電変換部12a、旋光素子20aおよび偏光素子18の組み合わせ(光電変換部12b、旋光素子20bおよび偏光素子18の組み合わせ)によって、測距瞳92を出射する光束72は、旋光素子20aで直線偏光方向が垂直方向に戻され、偏光素子18を通過して光電変換部12aに受光される。測距瞳93を出射する光束は、旋光素子20aで直線偏光方向が水平方向に回転され、偏光素子18により通過を阻止されるので、光電変換部12aに受光されない。   As shown in FIG. 13B, the optical rotators 20a, 21a, 20b, and 21b are arranged so as to alternately transmit the light beam emitted from the distance measuring pupil 92 and the light beam emitted from the distance measurement pupil 93. The light beam 72 emitted from the distance measuring pupil 92 by the combination of the photoelectric conversion unit 12a, the optical rotation element 20a, and the polarization element 18 (the combination of the photoelectric conversion unit 12b, the optical rotation element 20b, and the polarization element 18) is linearly polarized by the optical rotation element 20a. Is returned to the vertical direction, passes through the polarizing element 18, and is received by the photoelectric conversion unit 12a. The light beam emitted from the distance measuring pupil 93 is not received by the photoelectric conversion unit 12a because the linear polarization direction is rotated in the horizontal direction by the optical rotation element 20a and is prevented from passing by the polarization element 18.

光電変換部13a、旋光素子21aおよび偏光素子18の組み合わせ(光電変換部13b、旋光素子21bおよび偏光素子18の組み合わせ)によって、測距瞳93を出射する光束73は、旋光素子21aで直線偏光方向が垂直方向に戻され、偏光素子18を通過して光電変換部13aに受光される。測距瞳92を出射する光束は、旋光素子21aで直線偏光方向が水平方向に回転され、偏光素子18により通過を阻止されるので、光電変換部13aに受光されない。   The light beam 73 emitted from the distance measuring pupil 93 by the combination of the photoelectric conversion unit 13a, the optical rotation element 21a, and the polarization element 18 (the combination of the photoelectric conversion unit 13b, the optical rotation element 21b, and the polarization element 18) is linearly polarized by the optical rotation element 21a. Is returned to the vertical direction, passes through the polarizing element 18, and is received by the photoelectric conversion unit 13a. The light beam emitted from the distance measuring pupil 92 is not received by the photoelectric conversion unit 13a because the linear polarization direction is rotated in the horizontal direction by the optical rotation element 21a and is prevented from passing by the polarization element 18.

透明電極19の制御により、焦点検出時は、旋光素子20a、20bにより入射光の直線偏光方向を−45度回転し、旋光素子21a、21bにより入射光の直線偏光方向を+45度回転する。撮影時は、旋光素子20a、20bにより入射光の直線偏光方向を−45度以外の方向に調整して回転し、また旋光素子21a、21bにより入射光の直線偏光方向を+45度以外の方向に調整して回転する。回転方向の調整により、偏光素子18を通過する光量が減少する。これにより、絞り開口の大きさや露光時間を制御することなく、撮影光量を制御することが可能になる。   By controlling the transparent electrode 19, at the time of focus detection, the linear polarization direction of the incident light is rotated by −45 degrees by the optical rotators 20a and 20b, and the linear polarization direction of the incident light is rotated by +45 degrees by the optical rotators 21a and 21b. At the time of photographing, the optical polarization elements 20a and 20b are rotated by adjusting the linear polarization direction of incident light to a direction other than -45 degrees, and the optical polarization elements 21a and 21b are used to adjust the linear polarization direction of incident light to directions other than +45 degrees. Adjust and rotate. By adjusting the rotational direction, the amount of light passing through the polarizing element 18 is reduced. This makes it possible to control the amount of photographing light without controlling the size of the aperture opening and the exposure time.

図14は、円偏光を用いた一実施の形態の偏光型瞳分割位相差検出の概要構成を示す。撮影光学系の光軸91に沿って撮影光学系に入射する光束100は、あらゆる方向に直線偏光した光の集まりである。入射光束100の内の所定の方向の偏光成分101(図では垂直方向)のみが、撮影光学系近傍に配置された瞳分割偏光部材110を通過する。瞳分割偏光部材110は垂直方向に偏波面を持つ直線偏光101を右円偏光と左円偏光に分割し、右円偏光成分は測距瞳92を通過し、左円偏光成分は測距瞳93を通過する。測距瞳92から出射する光束142は右円偏光しており、また測距瞳93から出射する光束143は左円偏光している。撮像素子211には、光束142の右円偏光を選択的に受光する画素212と、光束143の左円偏光を選択的に受光する画素213とが測距瞳92,93の並び方向に交互に配列されている。   FIG. 14 shows a schematic configuration of polarization-type pupil division phase difference detection according to an embodiment using circularly polarized light. A light beam 100 incident on the photographing optical system along the optical axis 91 of the photographing optical system is a collection of light linearly polarized in all directions. Only the polarized light component 101 (vertical direction in the figure) of the incident light beam 100 in a predetermined direction passes through the pupil division polarizing member 110 disposed in the vicinity of the photographing optical system. The pupil division polarization member 110 divides the linearly polarized light 101 having the polarization plane in the vertical direction into right circular polarization and left circular polarization, the right circular polarization component passes through the distance measuring pupil 92, and the left circular polarization component is the distance measurement pupil 93. Pass through. The light beam 142 emitted from the distance measuring pupil 92 is right circularly polarized, and the light beam 143 emitted from the distance measuring pupil 93 is left circularly polarized. In the imaging device 211, pixels 212 that selectively receive the right circularly polarized light of the light beam 142 and pixels 213 that selectively receive the left circularly polarized light of the light beam 143 are alternately arranged in the direction in which the distance measurement pupils 92 and 93 are arranged. It is arranged.

図15は、図14に示す一実施の形態の円偏光型瞳分割位相差検出に適用可能な瞳分割偏光部材110の構成を示し、(a)は断面図、(b)、(c)および(d)は光入射方向から見た正面図である。図15(a)に示すように、瞳分割偏光部材110は、光入射側に直線偏光素子120と光出射側に円偏光素子160が配置される。図15(b)において、直線偏光素子120は入射する光束の垂直方向の直線偏光成分のみを通過させる。   FIG. 15 shows a configuration of the pupil division polarizing member 110 applicable to the circular polarization type pupil division phase difference detection of the embodiment shown in FIG. 14, wherein (a) is a sectional view, (b), (c) and (D) is the front view seen from the light-incidence direction. As shown in FIG. 15A, the pupil-dividing polarizing member 110 includes a linearly polarizing element 120 on the light incident side and a circularly polarizing element 160 on the light emitting side. In FIG. 15B, the linearly polarizing element 120 passes only the linearly polarized light component in the vertical direction of the incident light beam.

図15(c)に示すように、円偏光素子160は垂直方向に対し、+45度および−45度傾いた光学軸を持つ1/4波長位相シフト素子(1/4波長板)162、163から成る。1/4波長板162と163は、入射光束を垂直方向の分割線で略対称に水平方向に2分するように並置されている。1/4波長板162と163は、可視光の波長範囲において1/4波長位相シフト効果を有する。また、図15(d)に示すように、円偏光素子162は入射する垂直方向の直線偏光を右回転の円偏光に変換し、円偏光素子162から出射する光束142は右円偏光となる。円偏光素子163は入射する垂直方向の直線偏光を左回転の円偏光に変換し、円偏光素子163から出射する光束143は左円偏光となる。   As shown in FIG. 15 (c), the circularly polarizing element 160 includes 1/4 wavelength phase shift elements (1/4 wavelength plates) 162 and 163 having optical axes inclined by +45 degrees and −45 degrees with respect to the vertical direction. Become. The quarter wave plates 162 and 163 are juxtaposed so as to divide the incident light beam into two parts in the horizontal direction substantially symmetrically with the dividing line in the vertical direction. The quarter wavelength plates 162 and 163 have a quarter wavelength phase shift effect in the wavelength range of visible light. Further, as shown in FIG. 15D, the circularly polarizing element 162 converts the incident linearly polarized light into right-handed circularly polarized light, and the light beam 142 emitted from the circularly polarizing element 162 becomes right circularly polarized light. The circularly polarizing element 163 converts the incident linearly polarized light in the vertical direction into counterclockwise circularly polarized light, and the light beam 143 emitted from the circularly polarizing element 163 becomes left circularly polarized light.

図16は、図14に示す一実施の形態の円偏光型瞳分割位相差検出に適用可能な撮像素子211の部分拡大図である。画素222と画素223は市松模様状に二次元状に配列される。水平方向に瞳分割され互いに反対回転方向に円偏光した光束により形成される2像は、焦点調節状態に応じて撮像素子211上で水平方向に相対的にずれる。一方の像の空間分布は、画素222の水平方向の配列(例えば222a、222b、222c、・・・)によって受光される。また、他方の像の空間分布は、画素223の水平方向の配列(例えば223a、223b、223c、・・・)によって受光される。   FIG. 16 is a partial enlarged view of the image sensor 211 applicable to the circularly polarized pupil division phase difference detection of the embodiment shown in FIG. The pixels 222 and 223 are two-dimensionally arranged in a checkered pattern. Two images formed by a light beam that is divided into pupils in the horizontal direction and circularly polarized in opposite directions of rotation are relatively shifted in the horizontal direction on the image sensor 211 in accordance with the focus adjustment state. The spatial distribution of one image is received by the horizontal arrangement of the pixels 222 (eg, 222a, 222b, 222c,...). The spatial distribution of the other image is received by the horizontal arrangement of the pixels 223 (for example, 223a, 223b, 223c,...).

図17は、図14に示す一実施の形態の円偏光型瞳分割位相差検出に適用可能な撮像素子の変形例の構成を示し、(a)は断面図、(b)は正面図である。なお、以下では図6を参照して説明する。22a、22bは入射光の右円偏光成分を透過し、左円偏光成分を反射する円偏光素子であり、23a、23bは入射光の左円偏光成分を透過し、右円偏光成分を反射する円偏光素子である。円偏光素子22a、22b、23a、23bは、螺旋構造の回転方向が右回転と左回転のコレステリック液晶である。なお、円偏光素子を1/4波長板とその出射光を直線偏光に変調する直線偏光素子から構成してもよい。   FIG. 17 shows a configuration of a modification of the imaging device applicable to the circularly polarized pupil division phase difference detection of the embodiment shown in FIG. 14, wherein (a) is a sectional view and (b) is a front view. . In the following, description will be given with reference to FIG. 22a and 22b are circular polarization elements that transmit the right circular polarization component of incident light and reflect the left circular polarization component, and 23a and 23b transmit the left circular polarization component of incident light and reflect the right circular polarization component. It is a circularly polarizing element. The circularly polarizing elements 22a, 22b, 23a, and 23b are cholesteric liquid crystals in which the rotation direction of the spiral structure is clockwise and counterclockwise. The circularly polarizing element may be composed of a ¼ wavelength plate and a linearly polarizing element that modulates the emitted light into linearly polarized light.

19は円偏光素子の円偏光効果を電気的に制御するために円偏光素子を挟んで配置される透明電極であり、透明電極19に所定の電圧を印加しない状態ではコレステリック液晶がプレーナ配向となるため、円偏光素子22a、22b、23a、23bが円偏光効果を有する。透明電極19に所定の電圧を印加すると、コレステリック液晶分子が揃ってホメオトロピック配向となって円偏光効果はなくなる。   Reference numeral 19 denotes a transparent electrode disposed so as to sandwich the circularly polarizing element in order to electrically control the circularly polarizing effect of the circularly polarizing element. When a predetermined voltage is not applied to the transparent electrode 19, the cholesteric liquid crystal is in the planar alignment. Therefore, the circularly polarizing elements 22a, 22b, 23a, and 23b have a circularly polarizing effect. When a predetermined voltage is applied to the transparent electrode 19, the cholesteric liquid crystal molecules are aligned and become homeotropic alignment, thereby eliminating the circularly polarizing effect.

図17(a)に示すように、1つの画素は光電変換部とその前に配置された円偏光素子および透明電極とから構成される。画素は半導体基板29上に半導体製造プロセスにより形成される。円偏光素子および透明電極も光電変換部上に一体的に形成される。なお、図17では隣接する4画素を模式的に例示する。また、図17(b)に示すように、円偏光素子22a、23a、22b、23bは、測距瞳92を出射する光束と測距瞳93を出射する光束とを交互に透過するように配置される。   As shown in FIG. 17A, one pixel includes a photoelectric conversion unit, a circularly polarizing element and a transparent electrode disposed in front of the photoelectric conversion unit. The pixels are formed on the semiconductor substrate 29 by a semiconductor manufacturing process. A circularly polarizing element and a transparent electrode are also integrally formed on the photoelectric conversion unit. Note that FIG. 17 schematically illustrates four adjacent pixels. As shown in FIG. 17B, the circularly polarizing elements 22a, 23a, 22b, and 23b are arranged so as to alternately transmit the light beam emitted from the distance measuring pupil 92 and the light beam emitted from the distance measuring pupil 93. Is done.

光電変換部12aと円偏光素子22aの組み合わせ(光電変換部12bと円偏光素子22bの組み合わせ)によって、測距瞳92を出射する光束(右円偏光)は、円偏光素子22aを通過して光電変換部12aに受光される。測距瞳93を出射する光束は、円偏光素子22aにより通過を阻止されるので光電変換部12aに受光されない。また、光電変換部13aと円偏光素子23aの組み合わせ(光電変換部13bと円偏光素子23bの組み合わせ)によって、測距瞳93を出射する光束(左円偏光)は、円偏光素子23aを通過して光電変換部13aに受光される。測距瞳92を出射する光束は、円偏光素子23aにより通過を阻止されるので光電変換部13aに受光されない。   By the combination of the photoelectric conversion unit 12a and the circular polarization element 22a (the combination of the photoelectric conversion unit 12b and the circular polarization element 22b), the light beam (right circular polarization) emitted from the distance measuring pupil 92 passes through the circular polarization element 22a and is photoelectrically converted. Light is received by the converter 12a. Since the light beam emitted from the distance measuring pupil 93 is blocked from passing by the circularly polarizing element 22a, it is not received by the photoelectric conversion unit 12a. Further, the light beam (left circularly polarized light) emitted from the distance measuring pupil 93 passes through the circularly polarizing element 23a by the combination of the photoelectric converting part 13a and the circularly polarizing element 23a (a combination of the photoelectric converting part 13b and the circularly polarizing element 23b). The light is received by the photoelectric conversion unit 13a. Since the light beam emitted from the distance measuring pupil 92 is blocked from passing by the circularly polarizing element 23a, it is not received by the photoelectric conversion unit 13a.

焦点検出時は透明電極19に電圧を印加せず、円偏光素子22a、22b、23a、23bの円偏光効果を有効にする。撮影時は透明電極19に電圧を印加し、円偏光素子22a、22b、23a、23bの円偏光効果を無効にして撮影光量の低下を防止する。   At the time of focus detection, no voltage is applied to the transparent electrode 19, and the circular polarization effect of the circular polarization elements 22a, 22b, 23a, and 23b is made effective. At the time of photographing, a voltage is applied to the transparent electrode 19 to invalidate the circularly polarizing effect of the circularly polarizing elements 22a, 22b, 23a, and 23b, thereby preventing a reduction in photographing light amount.

図18は瞳分割偏光部材の変形例の構成を示し、(a)は断面図、(b)、(c)および(c)は光入射方向から見た正面図である。ここでは瞳を上下左右方向に4分割した例を示す。図18(a)に示すように、瞳分割偏光部材110は、光入射側に直線偏光素子120と、光出射側に旋光素子170が配置されている。また、図18(b)に示すように、直線偏光素子120は入射する光束の垂直方向の直線偏光成分のみを通過させる。   FIG. 18 shows a configuration of a modified example of the pupil division polarizing member, where (a) is a cross-sectional view, and (b), (c) and (c) are front views as seen from the light incident direction. Here, an example in which the pupil is divided into four in the vertical and horizontal directions is shown. As shown in FIG. 18A, the pupil-dividing polarizing member 110 includes a linearly polarizing element 120 on the light incident side and an optical rotation element 170 on the light emitting side. Further, as shown in FIG. 18B, the linearly polarizing element 120 passes only the linearly polarized light component in the vertical direction of the incident light beam.

図18(c)において、旋光素子170は、上下左右に4等分された部分(1/2波長板)172、173、174、175から構成される。垂直方向に対し、偏光素子部分172の光学軸は+22.5度、偏光素子部分173の光学軸は−22.5度、偏光素子部分174の光学軸は0度、偏光素子部分175の光学軸は+45度傾いている。偏光素子部分172と偏光素子部173が左右方向の瞳分割を行う対であり、偏光素子部分174と偏光素子部分175が上下方向の瞳分割を行う対である。   In FIG. 18 (c), the optical rotator 170 is composed of parts (1/2 wavelength plates) 172, 173, 174, 175 that are divided into four equal parts in the vertical and horizontal directions. The optical axis of the polarizing element portion 172 is +22.5 degrees, the optical axis of the polarizing element portion 173 is −22.5 degrees, the optical axis of the polarizing element portion 174 is 0 degree, and the optical axis of the polarizing element portion 175 with respect to the vertical direction. Is tilted +45 degrees. The polarizing element portion 172 and the polarizing element portion 173 are a pair that performs pupil division in the horizontal direction, and the polarizing element portion 174 and the polarizing element portion 175 are a pair that performs pupil division in the vertical direction.

図18(d)において、旋光素子172から出射する光束372は直線偏光方向が+45度回転される。また、旋光素子173から出射する光束373は直線偏光方向が−45度回転される。光束372と373は互いに直線偏光方向が直交する。旋光素子174から出射する光束374は直線偏光方向が保存される。また、旋光素子175から出射する光束375は直線偏光方向が+90度回転される。光束374と375は互いに直線偏光方向が直交する。光束374および375は、光束372および373と直線偏向方向が45度をなす。   In FIG. 18D, the light beam 372 emitted from the optical rotator 172 has its linear polarization direction rotated by +45 degrees. Further, the light beam 373 emitted from the optical rotator 173 has its linear polarization direction rotated by −45 degrees. The light beams 372 and 373 have linear polarization directions orthogonal to each other. The light beam 374 emitted from the optical rotator 174 maintains the linear polarization direction. Further, the light beam 375 emitted from the optical rotator 175 has its linear polarization direction rotated by +90 degrees. The light beams 374 and 375 have linear polarization directions orthogonal to each other. The light beams 374 and 375 form a linear deflection direction of 45 degrees with the light beams 372 and 373.

図19は、図18に示す瞳分割偏光部材110に適用可能な撮像素子211の部分拡大図(正面図)である。画素232は+45度の直線偏光成分を受光し、測距瞳372から出射する光束の全部と、測距瞳374,375を出射する光束の半分を受光する。また、画素233は−45度の直線偏光成分を受光し、測距瞳373から出射する光束の全部と、測距瞳374,375を出射する光束の半分を受光する。   FIG. 19 is a partially enlarged view (front view) of the image sensor 211 applicable to the pupil-dividing polarizing member 110 shown in FIG. The pixel 232 receives a linearly polarized light component of +45 degrees, and receives all of the light beam emitted from the distance measuring pupil 372 and half of the light beam emitted from the distance measuring pupils 374 and 375. The pixel 233 receives a linearly polarized light component of −45 degrees, and receives all of the light beam emitted from the distance measuring pupil 373 and half of the light beam emitted from the distance measuring pupils 374 and 375.

画素234は垂直方向(0度)の直線偏光成分を受光し、測距瞳374から出射する光束の全部と、測距瞳372,373を出射する光束の半分を受光する。また、画素235は水平方向(+90度)の直線偏光成分を受光し、測距瞳375から出射する光束の全部と、測距瞳372,373を出射する光束の半分を受光する。画素232と画素233が交互に配列された画素行と、画素234と画素235が交互に配列された画素行とが交互に垂直方向に配列される。   The pixel 234 receives the linearly polarized light component in the vertical direction (0 degree), and receives all of the light beam emitted from the distance measurement pupil 374 and half of the light beam emitted from the distance measurement pupils 372 and 373. The pixel 235 receives the linearly polarized light component in the horizontal direction (+90 degrees), and receives all of the light beam emitted from the distance measuring pupil 375 and half of the light beam emitted from the distance measuring pupils 372 and 373. Pixel rows in which the pixels 232 and 233 are alternately arranged and pixel rows in which the pixels 234 and 235 are alternately arranged are alternately arranged in the vertical direction.

水平方向の像ズレ検出に用いられる2像は、測距瞳372、374,375の領域を通過する光束と、測距瞳373、374,375の領域を通過する光束とによって形成される。一方の像の空間分布は、画素232の水平方向の配列によって受光される。他方の像の空間分布は、画素233の水平方向の配列によって受光される。像の検出ピッチは1画素おきとなる。一対の測距瞳の領域に共通部分(測距瞳374、375)を含むが、その重心位置は異なるので、偏光型瞳分割位相差検出が可能となる。   The two images used for detecting the image shift in the horizontal direction are formed by a light beam that passes through the areas of the distance measuring pupils 372, 374, and 375 and a light beam that passes through the areas of the distance measuring pupils 373, 374, and 375. The spatial distribution of one image is received by the horizontal arrangement of the pixels 232. The spatial distribution of the other image is received by the horizontal arrangement of the pixels 233. The image detection pitch is every other pixel. Although a common portion (ranging pupils 374 and 375) is included in the pair of ranging pupils, the center of gravity is different, so that the polarization-type pupil division phase difference can be detected.

垂直方向の像ズレ検出に用いられる2像は、測距瞳374、372,373の領域を通過する光束と測距瞳375、372,373の領域を通過する光束によって形成される。一方の像の空間分布は、画素234の垂直方向の配列によって受光される。他方の像の空間分布は、画素235の水平方向の配列によって受光される。像の検出ピッチは3画素おきとなる。一対の測距瞳の領域に共通部分(測距瞳372、373)を含むが、その重心位置は異なるので、偏光型瞳分割位相差検出が可能となる。水平方向の像ズレ検出は1行おきに可能であり、垂直方向の像ズレ検出は各列で可能である。   Two images used for detection of image shift in the vertical direction are formed by a light beam that passes through the areas of the distance measuring pupils 374, 372, and 373 and a light beam that passes through the areas of the distance measuring pupils 375, 372, and 373. The spatial distribution of one image is received by the vertical arrangement of pixels 234. The spatial distribution of the other image is received by the horizontal arrangement of the pixels 235. The image detection pitch is every three pixels. The pair of distance measurement pupils includes a common portion (the distance measurement pupils 372 and 373), but the center of gravity is different, so that the polarization-type pupil division phase difference can be detected. Image shift detection in the horizontal direction is possible every other row, and image shift detection in the vertical direction is possible in each column.

図20は、図18に示す瞳分割偏光部材に適用可能な撮像素子211の部分拡大図(正面図)である。4種類の画素232〜235が232→234→233→235の順番に配列された画素行が、1画素ずつ横ズレしながら垂直方向に配列される。水平方向の像ズレ検出に用いられる2像は、測距瞳372、374,375の領域を通過する光束と、測距瞳373、374,375の領域を通過する光束とによって形成される。一方の像の空間分布は、画素232の水平方向の配列によって受光される。また、他方の像の空間分布は、画素233の水平方向の配列によって受光される。像の検出ピッチは3画素おきとなる。   20 is a partially enlarged view (front view) of the image sensor 211 that can be applied to the pupil-dividing polarizing member shown in FIG. The pixel rows in which the four types of pixels 232 to 235 are arranged in the order of 232 → 234 → 233 → 235 are arranged in the vertical direction while laterally shifting one pixel at a time. The two images used for detecting the image shift in the horizontal direction are formed by a light beam that passes through the areas of the distance measuring pupils 372, 374, and 375 and a light beam that passes through the areas of the distance measuring pupils 373, 374, and 375. The spatial distribution of one image is received by the horizontal arrangement of the pixels 232. The spatial distribution of the other image is received by the horizontal arrangement of the pixels 233. The image detection pitch is every three pixels.

垂直方向の像ズレ検出に用いられる2像は、測距瞳374、372,373の領域を通過する光束と、測距瞳375、372,373の領域を通過する光束とによって形成される。一方の像の空間分布は、画素234の垂直方向の配列によって受光される。また、他方の像の空間分布は、画素235の水平方向の配列によって受光される。像の検出ピッチは3画素おきとなる。水平方向の像ズレ検出は各行で可能であり、垂直方向の像ズレ検出は各列で可能である。   The two images used for vertical image shift detection are formed by a light beam that passes through the areas of the distance measuring pupils 374, 372, and 373 and a light beam that passes through the areas of the distance measuring pupils 375, 372, and 373. The spatial distribution of one image is received by the vertical arrangement of pixels 234. The spatial distribution of the other image is received by the horizontal arrangement of the pixels 235. The image detection pitch is every three pixels. Image shift detection in the horizontal direction is possible in each row, and image shift detection in the vertical direction is possible in each column.

図21は瞳を斜め方向に4分割する瞳分割偏光部材の変形例を示し、(a)は断面図、(b)、(c)および(d)は光入射方向から見た正面図である。(a)図に示すように、瞳分割偏光部材110は光入射側に直線偏光素子120、光出射側に旋光素子180が配置される。また、(b)図に示すように、直線偏光素子120は入射する光束の垂直方向の直線偏光成分のみを通過させる。   FIG. 21 shows a modification of the pupil-dividing polarizing member that divides the pupil into four oblique directions, (a) is a cross-sectional view, and (b), (c), and (d) are front views as seen from the light incident direction. . (a) As shown in the figure, the pupil-dividing polarizing member 110 includes a linearly polarizing element 120 on the light incident side and an optical rotator 180 on the light emitting side. Further, as shown in FIG. 5B, the linearly polarizing element 120 passes only the linearly polarized light component in the vertical direction of the incident light beam.

図21(c)において、旋光素子180は、斜め左右に4等分された部分(1/2波長板)182、183、184、185から構成される。垂直方向に対し、偏光素子部分185の光学軸は+22.5度、偏光素子部分184の光学軸は−22.5度、偏光素子部分182の光学軸は0度、偏光素子部分183の光学軸は+45度傾いている。偏光素子部分182と偏光素子部分183が右上がり45度斜め方向の瞳分割を行う対であり、偏光素子部分184と偏光素子部分185が左上がり45度斜め方向の瞳分割を行う対である。   In FIG. 21 (c), the optical rotatory element 180 is composed of portions (1/2 wavelength plates) 182, 183, 184, 185 that are diagonally divided into left and right. With respect to the vertical direction, the optical axis of the polarizing element portion 185 is +22.5 degrees, the optical axis of the polarizing element portion 184 is -22.5 degrees, the optical axis of the polarizing element portion 182 is 0 degree, and the optical axis of the polarizing element portion 183 Is tilted +45 degrees. The polarizing element portion 182 and the polarizing element portion 183 are a pair that performs pupil division in a 45-degree oblique direction that rises to the right, and the polarizing element portion 184 and the polarizing element portion 185 that form a pupil division that forms a 45-degree oblique direction that is raised to the left.

図21(d)において、旋光素子185から出射する光束385は直線偏光方向が+45度回転され、また、旋光素子184から出射する光束384は直線偏光方向が−45度回転される。光束384と385は互いに直線偏光方向が直交する。旋光素子182から出射する光束382は直線偏光方向が保存され、また、旋光素子183から出射する光束383は直線偏光方向が+90度回転される。光束382と383は互いに直線偏光方向が直交する。光束382および383は、光束384および385と直線偏向方向が45度をなす。   In FIG. 21D, the light beam 385 emitted from the optical rotator 185 has its linear polarization direction rotated by +45 degrees, and the light beam 384 emitted from the optical rotator 184 has its linear polarization direction rotated by −45 degrees. The light beams 384 and 385 have linear polarization directions orthogonal to each other. The light beam 382 emitted from the optical rotator 182 maintains the linear polarization direction, and the light beam 383 emitted from the optical rotator 183 is rotated by +90 degrees in the linear polarization direction. The light beams 382 and 383 have linear polarization directions orthogonal to each other. The light beams 382 and 383 form a 45-degree linear deflection direction with the light beams 384 and 385.

図22は、図21に示す瞳分割偏光部材に適用可能な撮像素子211の部分拡大図(正面図)である。画素265は+45度の直線偏光成分を受光し、測距瞳385から出射する光束の全部と、測距瞳382,383を出射する光束の半分を受光する。画素264は−45度の直線偏光成分を受光し、測距瞳384から出射する光束の全部と、測距瞳382,383を出射する光束の半分を受光する。画素262は垂直方向(0度)の直線偏光成分を受光し、測距瞳382から出射する光束の全部と、測距瞳384,385を出射する光束の半分を受光する。画素263は水平方向(+90度)の直線偏光成分を受光し、測距瞳383から出射する光束の全部と、測距瞳384,385を出射する光束の半分を受光する。   FIG. 22 is a partially enlarged view (front view) of the image sensor 211 applicable to the pupil division polarizing member shown in FIG. The pixel 265 receives a linearly polarized light component of +45 degrees, and receives all of the light beam emitted from the distance measuring pupil 385 and half of the light beam emitted from the distance measuring pupils 382 and 383. The pixel 264 receives a linearly polarized light component of −45 degrees, and receives all of the light beam emitted from the distance measuring pupil 384 and half of the light beam emitted from the distance measuring pupils 382 and 383. The pixel 262 receives the linearly polarized light component in the vertical direction (0 degree), and receives all of the light beam emitted from the distance measuring pupil 382 and half of the light beam emitted from the distance measuring pupils 384 and 385. The pixel 263 receives the linearly polarized light component in the horizontal direction (+90 degrees), and receives all of the light beam emitted from the distance measuring pupil 383 and half of the light beam emitted from the distance measuring pupils 384 and 385.

画素262、263,264,265からなるユニットが2次元に配列される。右上がり斜め45度方向の像ズレ検出に用いられる2像は、測距瞳382、384,385の領域を通過する光束と測距瞳383、384,385の領域を通過する光束によって形成される。一方の像の空間分布は、画素262の右上がり斜め45度方向の配列によって受光される。また、他方の像の空間分布は、画素233の右上がり斜め45度方向の配列によって受光される。   Units composed of pixels 262, 263, 264, and 265 are two-dimensionally arranged. The two images used for detecting the image misalignment in the 45 ° upward oblique direction are formed by a light beam that passes through the area of the distance measuring pupils 382, 384, 385 and a light beam that passes through the area of the distance measuring pupils 383, 384, 385. . The spatial distribution of one image is received by the array of the pixels 262 in the 45 ° upward diagonal direction. In addition, the spatial distribution of the other image is received by the array of the pixels 233 in a 45 ° upward diagonal direction.

一対の測距瞳の領域に共通部分(測距瞳384、385)を含むが、その重心位置は異なるので偏光型瞳分割位相差検出が可能となる。左上がり斜め45度方向の像ズレ検出に用いられる2像は、測距瞳384、382,383の領域を通過する光束と測距瞳385、382,383の領域を通過する光束によって形成される。一方の像の空間分布は、画素264の左上がり斜め45度方向の配列によって受光される。また、他方の像の空間分布は、画素265の左上がり斜め45度方向の配列によって受光される。一対の測距瞳の領域に共通部分(測距瞳382、383)を含むが、その重心位置は異なるので偏光型瞳分割位相差検出が可能となる。   Although a common portion (ranging pupils 384 and 385) is included in the pair of distance measuring pupil regions, the center of gravity is different, so that the polarization type pupil division phase difference can be detected. The two images used for detecting the image misalignment in the 45 ° upward diagonal direction are formed by a light beam that passes through the area of the distance measuring pupils 384, 382, and 383 and a light beam that passes through the area of the distance measuring pupils 385, 382, and 383. . The spatial distribution of one image is received by the array of the pixels 264 in the 45 ° upward diagonal direction. Further, the spatial distribution of the other image is received by the array of the pixels 265 in the 45 ° upward diagonal direction. Although a common portion (ranging pupils 382 and 383) is included in the pair of ranging pupils, the center of gravity position thereof is different, so that the polarization-type pupil division phase difference can be detected.

図23は瞳を水平方向に4分割した瞳分割偏光部材の他の変形例の構成を示し、(a)は断面図、(b)、(c)および(d)は光入射方向から見た正面図である。(a)図に示すように、瞳分割偏光部材110は、光入射側に直線偏光素子120、光出射側に旋光素子190がそれぞれ配置される。また、(b)図に示すように、直線偏光素子120は入射する光束の垂直方向の直線偏光成分のみを通過させる。   FIG. 23 shows a configuration of another modified example of the pupil division polarizing member in which the pupil is divided into four in the horizontal direction, (a) is a cross-sectional view, and (b), (c) and (d) are viewed from the light incident direction. It is a front view. (a) As shown in the figure, in the pupil division polarizing member 110, a linearly polarizing element 120 is disposed on the light incident side, and an optical rotation element 190 is disposed on the light emitting side. Further, as shown in FIG. 5B, the linearly polarizing element 120 passes only the linearly polarized light component in the vertical direction of the incident light beam.

図23(c)において、旋光素子190は、水平方向に4分割された部分(1/2波長板)192、193、194、195から構成される。垂直方向に対し、偏光素子部分192の光学軸は+22.5度、偏光素子部分193の光学軸は−22.5度、偏光素子部分194の光学軸は0度、偏光素子部分195の光学軸は+45度傾いている。偏光素子部分192と偏光素子部分193が水平方向の瞳分割(高精度な像ズレ検出:重心間隔が広い)を行う対であり、偏光素子部分194と偏光素子部分195が水平方向の瞳分割(大デフォーカス時の像ズレ検出:重心間隔が狭い)を行う対である。偏光素子部分192と偏光素子部分193の並び方向の幅より、偏光素子部分192と偏光素子部分193の並び方向の幅が狭いので、大デフォーカス時の像コントラスト低下は偏光素子部分192と偏光素子部分193を通過する光束によって形成される像のほうが小さくなる。   In FIG. 23 (c), the optical rotator 190 is composed of portions (1/2 wavelength plates) 192, 193, 194, 195 that are divided into four in the horizontal direction. The optical axis of the polarizing element portion 192 is +22.5 degrees, the optical axis of the polarizing element portion 193 is −22.5 degrees, the optical axis of the polarizing element portion 194 is 0 degree, and the optical axis of the polarizing element portion 195 with respect to the vertical direction. Is tilted +45 degrees. The polarizing element portion 192 and the polarizing element portion 193 are a pair that performs horizontal pupil division (highly accurate image shift detection: wide center of gravity separation), and the polarizing element portion 194 and the polarizing element portion 195 are horizontal pupil divisions ( Detection of image misalignment at the time of large defocusing: the distance between the centers of gravity is narrow). Since the width in the alignment direction of the polarizing element portion 192 and the polarizing element portion 193 is narrower than the width in the alignment direction of the polarizing element portion 192 and the polarizing element portion 193, the image contrast reduction at the time of large defocus is caused by the polarization element portion 192 and the polarizing element. The image formed by the light beam passing through the portion 193 is smaller.

図23(d)において、旋光素子192から出射する光束392は直線偏光方向が+45度回転される。また、旋光素子193から出射する光束393は直線偏光方向が−45度回転される。光束392と393は互いに直線偏光方向が直交する。旋光素子194から出射する光束394は直線偏光方向が保存され、旋光素子195から出射する光束395は直線偏光方向が+90度回転される。光束394と395は互いに直線偏光方向が直交する。光束394および395は、光束392および393と直線偏向方向が45度をなす。図23に示す瞳分割偏光部材110に対応する撮像素子211には、図19、図20に示す撮像素子211が用いられる。   In FIG. 23D, the light beam 392 emitted from the optical rotator 192 has its linear polarization direction rotated by +45 degrees. Further, the light beam 393 emitted from the optical rotator 193 has its linear polarization direction rotated by −45 degrees. The light beams 392 and 393 have linear polarization directions orthogonal to each other. The light beam 394 emitted from the optical rotator 194 has its linear polarization direction preserved, and the light beam 395 emitted from the optical rotator 195 has its linear polarization direction rotated by +90 degrees. The light beams 394 and 395 have the linear polarization directions orthogonal to each other. The light beams 394 and 395 form a 45-degree linear deflection direction with the light beams 392 and 393. The image sensor 211 shown in FIGS. 19 and 20 is used as the image sensor 211 corresponding to the pupil division polarization member 110 shown in FIG.

図24は、瞳を垂直方向および水平方向に4分割した瞳分割偏光部材の他の変形例の構成を示し、(a)は断面図、(b)、(c)および(d)が光入射方向から見た正面図である。(a)図に示すように、瞳分割偏光部材110は、光入射側に直線偏光素子120が、光出射側に旋光素子300がそれぞれ配置される。また、(b)図に示すように、直線偏光素子120は入射する光束の垂直方向の直線偏光成分のみを通過させる。   FIG. 24 shows a configuration of another modified example of the pupil division polarizing member in which the pupil is divided into four in the vertical direction and the horizontal direction, (a) is a cross-sectional view, and (b), (c) and (d) are light incident. It is the front view seen from the direction. (a) As shown in the figure, in the pupil division polarizing member 110, a linearly polarizing element 120 is disposed on the light incident side, and an optical rotation element 300 is disposed on the light emitting side. Further, as shown in FIG. 5B, the linearly polarizing element 120 passes only the linearly polarized light component in the vertical direction of the incident light beam.

図24(c)において、旋光素子300は、中心部が垂直方向に2分割され、周辺部が水平方向に2分割された部分(1/2波長板)302、303、304、305から構成される。垂直方向に対し、偏光素子部分302の光学軸は+22.5度、偏光素子部分303の光学軸は−22.5度、偏光素子部分304の光学軸は0度、偏光素子部分305の光学軸は+45度傾いている。偏光素子部分302と偏光素子部分303が水平方向の瞳分割を行う対であり、偏光素子部分304と偏光素子部分305が垂直方向の瞳分割を行う対である。   In FIG. 24 (c), the optical rotatory element 300 is composed of portions (1/2 wavelength plates) 302, 303, 304, 305 in which the central part is divided into two in the vertical direction and the peripheral part is divided in two in the horizontal direction. The The optical axis of the polarizing element portion 302 is +22.5 degrees, the optical axis of the polarizing element portion 303 is −22.5 degrees, the optical axis of the polarizing element portion 304 is 0 degree, and the optical axis of the polarizing element portion 305 with respect to the vertical direction. Is tilted +45 degrees. The polarizing element portion 302 and the polarizing element portion 303 are a pair that performs pupil division in the horizontal direction, and the polarizing element portion 304 and the polarizing element portion 305 are a pair that performs pupil division in the vertical direction.

図24(d)において、旋光素子302から出射する光束312は直線偏光方向が+45度回転される。また、旋光素子303から出射する光束313は直線偏光方向が−45度回転される。光束312と313は互いに直線偏光方向が直交する。旋光素子304から出射する光束314は直線偏光方向が保存され、旋光素子305から出射する光束315は直線偏光方向が+90度回転される。光束314と315は互いに直線偏光方向が直交する。光束314および315は、光束312および313と直線偏向方向が45度をなす。図24に示す瞳分割偏光部材110に対応する撮像素子211には、図19、図20に示す撮像素子が用いられる。   In FIG. 24D, the light beam 312 emitted from the optical rotator 302 has its linear polarization direction rotated by +45 degrees. Further, the light beam 313 emitted from the optical rotator 303 has its linear polarization direction rotated by −45 degrees. The light beams 312 and 313 are orthogonal to each other in the direction of linear polarization. The light beam 314 emitted from the optical rotator 304 has its linear polarization direction preserved, and the light beam 315 emitted from the optical rotator 305 has its linear polarization direction rotated +90 degrees. The light beams 314 and 315 have linear polarization directions orthogonal to each other. The light beams 314 and 315 form a 45-degree linear deflection direction with the light beams 312 and 313. The image sensor shown in FIGS. 19 and 20 is used for the image sensor 211 corresponding to the pupil division polarization member 110 shown in FIG.

図25は、図1に示す一実施の形態の偏光型瞳分割位相差検出に適用可能なカラー撮像素子の構成を示す。なお、以下では図6を参照して説明する。16は+45度の直線偏光成分を透過する偏光素子であり、測距瞳92を出射する直線偏光の光を透過する。また、17は−45度の直線偏光成分を透過する偏光素子であり、測距瞳93を出射する直線偏光の光を透過する。偏光素子16、17と光電変換部12a、13a、12b、13bの間には、図26に示す分光透過特性を持つカラーフィルタR,G,Bが配置される。   FIG. 25 shows a configuration of a color imaging device applicable to the polarization type pupil division phase difference detection of the embodiment shown in FIG. In the following, description will be given with reference to FIG. Reference numeral 16 denotes a polarizing element that transmits a linearly polarized light component of +45 degrees, and transmits linearly polarized light that exits the distance measuring pupil 92. Reference numeral 17 denotes a polarizing element that transmits a linearly polarized light component of −45 degrees, and transmits linearly polarized light that exits the distance measuring pupil 93. Color filters R, G, and B having spectral transmission characteristics shown in FIG. 26 are arranged between the polarizing elements 16 and 17 and the photoelectric conversion units 12a, 13a, 12b, and 13b.

1つの画素は、光電変換部とその前に配置された偏光素子およびカラーフィルタとから構成される。画素は半導体基板29上に半導体製造プロセスにより形成される。偏光素子およびカラーフィルタも光電変換部上に一体的に形成される。なお、図25では隣接する4画素を模式的に例示するが、他の画素も同様である。   One pixel includes a photoelectric conversion unit and a polarizing element and a color filter arranged in front of the photoelectric conversion unit. The pixels are formed on the semiconductor substrate 29 by a semiconductor manufacturing process. A polarizing element and a color filter are also integrally formed on the photoelectric conversion unit. In FIG. 25, four adjacent pixels are schematically illustrated, but the same applies to other pixels.

変更素子16,17は、測距瞳92を出射する光束と測距瞳93を出射する光束とを交互に透過するように配置される。光電変換部12a、変更素子16、フィルタGの組み合わせによって、測距瞳92を出射する光束のうち、緑の波長成分が光電変換部12aに受光される。測距瞳93を出射する光束は偏光素子16により通過を阻止されるので、光電変換部12aに受光されない。また、光電変換部12b、旋光素子17、フィルタGの組み合わせによって、測距瞳93を出射する光束のうち、緑の波長成分が光電変換部12bに受光される。測距瞳92を出射する光束は偏光素子17により通過を阻止されるので、光電変換部13aに受光されない。   The changing elements 16 and 17 are arranged so as to alternately transmit the light beam emitted from the distance measuring pupil 92 and the light beam emitted from the distance measuring pupil 93. With the combination of the photoelectric conversion unit 12a, the changing element 16, and the filter G, the green wavelength component of the light beam emitted from the distance measuring pupil 92 is received by the photoelectric conversion unit 12a. Since the light beam emitted from the distance measuring pupil 93 is blocked from passing by the polarizing element 16, it is not received by the photoelectric conversion unit 12a. In addition, by combining the photoelectric conversion unit 12b, the optical rotation element 17, and the filter G, the green wavelength component of the light beam emitted from the distance measuring pupil 93 is received by the photoelectric conversion unit 12b. Since the light beam emitted from the distance measuring pupil 92 is blocked from passing by the polarizing element 17, it is not received by the photoelectric conversion unit 13a.

図27は、図25に示す撮像素子211の部分拡大図(正面図)である。カラーフィルタR、G、Bはベイヤー配列となっている。ベイヤー配列ユニット240は、緑画素241、244、青画素242および赤画素243からなり、+45度方向の直線偏光成分を通過する偏光素子が付けられている。ベイヤー配列ユニット250は、緑画素241、244、青画素242および赤画素243からなり、+45度方向の直線偏光成分を通過する偏光素子が付けられている。これらのベイヤー配列ユニット240、250が市松模様状に二次元状に配列される。   27 is a partially enlarged view (front view) of the image sensor 211 shown in FIG. The color filters R, G, and B are in a Bayer array. The Bayer array unit 240 includes green pixels 241 and 244, a blue pixel 242 and a red pixel 243, and a polarizing element that passes a linearly polarized light component in the +45 degree direction is attached. The Bayer array unit 250 includes green pixels 241 and 244, a blue pixel 242 and a red pixel 243, and is attached with a polarizing element that passes a linearly polarized light component in the +45 degree direction. These Bayer arrangement units 240 and 250 are two-dimensionally arranged in a checkered pattern.

水平方向に瞳分割され互いに直交した方向に直線偏光した光束により形成される2像は、焦点調節状態に応じて撮像素子上で水平方向に相対的にずれる。一方の像の空間分布の緑色成分は、緑画素241、244の水平方向の配列(例えば241a、241b、・・・、244a、244b、・・・)によって受光される。また、他方の像の空間分布の緑色成分は、緑画素251、254の水平方向の配列(例えば251a、251b、・・・、254a、254b、・・・)によって受光される。   Two images formed by a light beam that is pupil-divided in the horizontal direction and linearly polarized in directions orthogonal to each other are relatively shifted in the horizontal direction on the image sensor in accordance with the focus adjustment state. The green component of the spatial distribution of one image is received by the horizontal arrangement (for example, 241a, 241b, ..., 244a, 244b, ...) of the green pixels 241 and 244. Further, the green component of the spatial distribution of the other image is received by the horizontal arrangement (for example, 251a, 251b,..., 254a, 254b,...) Of the green pixels 251 and 254.

一方の像の空間分布の青色成分は、青画素242の水平方向の配列(例えば242a、242b、・・・)によって受光される。また、他方の像の空間分布の青色成分は、青画素252の水平方向の配列(例えば252a、252b、・・・)によって受光される。一方の像の空間分布の赤色成分は、赤画素243の水平方向の配列(例えば243a、243b、・・・)によって受光される。また、他方の像の空間分布の赤色成分は、赤画素253の水平方向の配列(例えば253a、253b、・・・)によって受光される。   The blue component of the spatial distribution of one image is received by the horizontal arrangement (for example, 242a, 242b,...) Of the blue pixels 242. Further, the blue component of the spatial distribution of the other image is received by the horizontal arrangement (for example, 252a, 252b,...) Of the blue pixels 252. The red component of the spatial distribution of one image is received by the horizontal arrangement (for example, 243a, 243b,...) Of the red pixels 243. Further, the red component of the spatial distribution of the other image is received by the horizontal arrangement (for example, 253a, 253b,...) Of the red pixels 253.

図28は、図14に示す一実施の形態の瞳分割型位相差検出に適用可能な瞳分割偏光部材の変形例の構成を示し、(a)は断面図、(b)は光入射方向から見た正面図である。(a)図に示すように、瞳分割偏光部材110は、円偏光素子320と、円偏光素子320の円偏光効果を電気的に制御するための円偏光素子320を挟んで配置される透明電極321とから構成される。(b)図に示すように、円偏光素子320は2つの部分322,323から成り、2つの部分322,323は入射光束を垂直方向の分割線で略対称に水平方向に2分するように並置されている。   28 shows a configuration of a modified example of the pupil division polarizing member applicable to the pupil division type phase difference detection of the embodiment shown in FIG. 14, where (a) is a cross-sectional view and (b) is a view from the light incident direction. FIG. (a) As shown to a figure, the pupil division | segmentation polarizing member 110 is a transparent electrode arrange | positioned on both sides of the circularly polarizing element 320 for electrically controlling the circularly polarizing element 320 and the circularly polarizing effect of the circularly polarizing element 320 321. (b) As shown in the figure, the circularly polarizing element 320 is composed of two parts 322 and 323, and the two parts 322 and 323 divide the incident light beam into two parts in the horizontal direction substantially symmetrically with the vertical dividing line. It is juxtaposed.

円偏光素子部分322、323は、螺旋構造の回転方向が右回転と左回転のコレステリック液晶である。透明電極321に所定の電圧を印加しない状態では、コレステリック液晶がプレーナ配向となるために、円偏光素子は円偏光効果を有する。透明電極321に所定の電圧を印加すると、コレステリック液晶分子が揃ってホメオトロピック配向となり、円偏光効果はなくなる。   The circularly polarizing element portions 322 and 323 are cholesteric liquid crystals in which the rotation direction of the spiral structure is clockwise and counterclockwise. In a state where a predetermined voltage is not applied to the transparent electrode 321, the cholesteric liquid crystal has a planar alignment, so that the circularly polarizing element has a circularly polarizing effect. When a predetermined voltage is applied to the transparent electrode 321, cholesteric liquid crystal molecules are aligned and become homeotropic alignment, and the circular polarization effect is lost.

透明電極321に電圧を印加しない状態では、円偏光素子部分322は入射光の右円偏光成分を透過し、左円偏光成分を反射する。また、円偏光素子部分323は入射光の左円偏光成分を透過し、右円偏光成分を反射する。透明電極321を電圧を印加した状態では、円偏光素子部分322と円偏光素子部分323は、入射光に何の作用もせずにそのまま透過させる。   In a state where no voltage is applied to the transparent electrode 321, the circularly polarizing element portion 322 transmits the right circularly polarized component of the incident light and reflects the left circularly polarized component. The circularly polarizing element portion 323 transmits the left circularly polarized component of incident light and reflects the right circularly polarized component. In a state where a voltage is applied to the transparent electrode 321, the circularly polarizing element part 322 and the circularly polarizing element part 323 transmit the incident light as it is without performing any action.

図29は、円偏光を利用し撮影時の光量確保するようにした一実施の形態の偏光型瞳分割位相差検出の概要構成を示す。図28に示す瞳分割偏光部材110と、図17に示す撮像素子を用いた撮像装置では、撮像時に撮影光量を増加させることが可能となる。瞳分割偏光部材110を制御(円偏光効果を無効化)することによって、入射する光束100(あらゆる方向に直線偏光した光の集まり)は瞳分割偏光部材110をそのままの状態で通過し、光量の低下は発生しない。撮像素子211を制御(円偏光効果を無効化)することによって、画素212,213は画素に入射する光束を光量の低下を伴わずに受光することができる。   FIG. 29 shows a schematic configuration of polarization-type pupil division phase difference detection according to an embodiment in which circularly polarized light is used to secure a light quantity during photographing. In the imaging device using the pupil division polarizing member 110 shown in FIG. 28 and the imaging device shown in FIG. 17, it is possible to increase the amount of photographing light during imaging. By controlling the pupil division polarization member 110 (invalidating the circular polarization effect), the incident light beam 100 (a collection of light linearly polarized in all directions) passes through the pupil division polarization member 110 as it is, and the amount of light is reduced. There is no decline. By controlling the image sensor 211 (invalidating the circular polarization effect), the pixels 212 and 213 can receive the light beam incident on the pixel without reducing the amount of light.

図30は、図29に示す一実施の形態を適用したジタルスチルカメラ(撮像装置)の動作を示すフローチャートである。この一実施の形態のカメラでは、撮像時に瞳分割偏光部材を制御して光量の低下を防止する。なお、図7に示す処理と同様な処理を行うステップに対しては同一のステップ番号を付して相違点を中心に説明する。ステップ105において、ステップ110における撮像に先立ち、瞳分割偏光部材と撮像素子の円偏光効果を無効化する。ステップ125では、ステップ130の焦点検出に先立ち、瞳分割偏光部材と撮像素子の円偏光効果を有効化する。また、ステップ175では、ステップ180の撮像に先立ち、瞳分割偏光部材と撮像素子の円偏光効果を無効化する。   FIG. 30 is a flowchart showing the operation of the digital still camera (imaging device) to which the embodiment shown in FIG. 29 is applied. In the camera according to this embodiment, the pupil-dividing polarizing member is controlled at the time of imaging to prevent the light amount from decreasing. Note that steps that perform the same processing as the processing shown in FIG. 7 are given the same step numbers, and the differences will be mainly described. In step 105, prior to imaging in step 110, the circular polarization effect of the pupil-dividing polarizing member and the image sensor is nullified. In step 125, prior to focus detection in step 130, the circular polarization effect of the pupil division polarizing member and the image sensor is validated. In step 175, prior to imaging in step 180, the circular polarization effect of the pupil-dividing polarizing member and the image sensor is nullified.

図31は、図1に示す一実施の形態の瞳分割型位相差検出に適用可能な瞳分割偏光部材の変形例の構成を示し、(a)は断面図、(b)、(c)および(d)は光入射方向から見た正面図である。(a)図において、瞳分割偏光部材110は、光入射側に直線偏光素子120が、光出射側に旋光素子330がそれぞれ配置される。旋光素子330は周囲をコイル119に囲まれる。(b)図は、直線偏光素子120は入射する光束の垂直方向の直線偏光成分のみを通過させる。   FIG. 31 shows a configuration of a modified example of the pupil division polarizing member applicable to the pupil division type phase difference detection of the embodiment shown in FIG. 1, wherein (a) is a cross-sectional view, (b), (c) and (d) is the front view seen from the light incident direction. In FIG. 6A, the pupil-dividing polarizing member 110 has a linearly polarizing element 120 disposed on the light incident side and an optical rotatory element 330 disposed on the light emitting side. The optical rotatory element 330 is surrounded by a coil 119. (b) In the figure, the linearly polarizing element 120 passes only the linearly polarized light component in the vertical direction of the incident light beam.

図31(c)において、旋光素子330は2つの部分332,333から成り、2つの部分322,323は入射光束を垂直方向の分割線で略対称に水平方向に2分するように並置されている。旋光素子332,333は、磁気光学効果(ファラデー効果:コイル119に流す電流によって乗じる磁場の影響により偏光面が回転する)によって、直線偏光方向+45度、−45度回転する材料(磁性ガーネット膜)である。コイル119に流す電流を調整することによって、直線偏光方向+45度、−45度から変化させることが可能である。   In FIG. 31 (c), the optical rotatory element 330 is composed of two portions 332 and 333, and the two portions 322 and 323 are juxtaposed so as to divide the incident light beam into two parts in the horizontal direction substantially symmetrically with the dividing line in the vertical direction. Yes. The optical rotators 332 and 333 are materials (magnetic garnet film) that rotate by +45 degrees and −45 degrees in the linear polarization direction due to the magneto-optic effect (Faraday effect: the polarization plane is rotated by the influence of the magnetic field multiplied by the current passed through the coil 119). It is. By adjusting the current flowing through the coil 119, the linear polarization direction can be changed from +45 degrees and −45 degrees.

図31(d)において、旋光素子332から出射する光束112は、直線偏光方向が+45度回転される。また、旋光素子333から出射する光束113は、直線偏光方向が−45度回転される。その結果、光束112と113は互いに直線偏光方向が直交する。   In FIG. 31D, the light beam 112 emitted from the optical rotator 332 has its linear polarization direction rotated by +45 degrees. The light beam 113 emitted from the optical rotator 333 is rotated by −45 degrees in the linear polarization direction. As a result, the light beams 112 and 113 have the linear polarization directions orthogonal to each other.

コイル119に流す電流を制御し、焦点検出時は、旋光素子332、333により入射光の直線偏光方向を+45度および−45度回転する。また、撮影時は、旋光素子332、333により入射光の直線偏光方向を+45度および−45度以外の方向に調整して回転する。回転方向の調整によって、撮像素子に設けられた偏光素子を通過する光量が減少する。これにより、絞り開口の大きさや露光時間を制御することなく、撮影光量を制御することが可能になる。   The current flowing through the coil 119 is controlled, and at the time of focus detection, the optical polarization elements 332 and 333 rotate the linear polarization direction of incident light by +45 degrees and −45 degrees. At the time of photographing, the optical polarization elements 332 and 333 are rotated by adjusting the linear polarization direction of incident light to directions other than +45 degrees and −45 degrees. By adjusting the rotation direction, the amount of light passing through the polarizing element provided in the imaging element is reduced. This makes it possible to control the amount of photographing light without controlling the size of the aperture opening and the exposure time.

図32は、図1に示す一実施の形態の瞳分割型位相差検出に適用可能な瞳分割偏光部材の変形例の構成を示し、(a)は断面図、(b)、(c)および(d)は光入射方向から見た正面図である。(a)図に示すように、瞳分割偏光部材110は、光入射側に直線偏光素子120が、光出射側に旋光素子340がそれぞれ配置される。   FIG. 32 shows a configuration of a modified example of the pupil division polarizing member applicable to the pupil division type phase difference detection of the embodiment shown in FIG. 1, wherein (a) is a sectional view, (b), (c) and (d) is the front view seen from the light incident direction. (a) As shown in the figure, in the pupil division polarizing member 110, a linearly polarizing element 120 is disposed on the light incident side, and an optical rotation element 340 is disposed on the light emitting side.

図33は旋光素子340の詳細な構成を示す。旋光素子340は、ガラス基板344上に形成された透明電極341に挟まれた捩れ角が所定角度のツイステッドネマチック液晶層340aからなる液晶素子340a、および同様の構造の液晶素子340b、340c・・を多層に重ねた構成となっている。各層のツイステットネマチック液晶層による旋光効果の有無を、各層に設けられた透明電極の電圧の印加の有無により制御できる。ツイステッドネマチック層の捻り角は微小角(例えば+11.25度、あるいは−11.25度)に設定されており、何層目までの液晶層をONにするかで、旋光素子を出射する光束の直線偏光方向が、入射光束の直線偏光方向に対して回転する角度を調整することが可能になる。   FIG. 33 shows a detailed configuration of the optical rotation element 340. The optical rotator 340 includes a liquid crystal element 340a formed of a twisted nematic liquid crystal layer 340a having a predetermined twist angle sandwiched between transparent electrodes 341 formed on a glass substrate 344, and liquid crystal elements 340b, 340c,. It has a multi-layered structure. The presence or absence of the optical rotation effect by the twisted nematic liquid crystal layer of each layer can be controlled by the presence or absence of voltage application of the transparent electrode provided in each layer. The twist angle of the twisted nematic layer is set to a very small angle (for example, +11.25 degrees or -11.25 degrees), and the number of liquid crystal layers up to which one is turned on depends on the luminous flux emitted from the optical rotation element. It is possible to adjust the angle at which the linear polarization direction rotates with respect to the linear polarization direction of the incident light beam.

図32(b)に示すように、直線偏光素子120は入射する光束の垂直方向の直線偏光成分のみを通過させる。また、図32(c)に示すように、旋光素子340は2つの部分342,343から成り、2つの部分342,343は入射光束を垂直方向の分割線で略対称に水平方向に2分するように並置されている。さらに、図32(d)に示すように、焦点検出時には、透明電極の制御により旋光素子332から出射する光束112は直線偏光方向が+45度回転される。また、旋光素子333から出射する光束113は直線偏光方向が−45度回転される。光束112と113は互いに直線偏光方向が直交する。   As shown in FIG. 32B, the linearly polarizing element 120 passes only the linearly polarized light component in the vertical direction of the incident light beam. Further, as shown in FIG. 32 (c), the optical rotatory element 340 is composed of two parts 342 and 343, and the two parts 342 and 343 divide the incident light beam into two parts in the horizontal direction substantially symmetrically with the dividing line in the vertical direction. Are juxtaposed. Furthermore, as shown in FIG. 32 (d), at the time of focus detection, the light beam 112 emitted from the optical rotator 332 is rotated by +45 degrees in the linear polarization direction by controlling the transparent electrode. Further, the light beam 113 emitted from the optical rotator 333 is rotated by −45 degrees in the direction of linear polarization. The light beams 112 and 113 are orthogonal to each other in the direction of linear polarization.

撮影時は、旋光素子332、333により入射光の直線偏光方向を+45度および−45度以外の方向に調整して回転する。回転方向の調整により、撮像素子に設けられた偏光素子を通過する光量が減少する。これにより、絞り開口の大きさや露光時間を制御することなく、撮影光量を制御することが可能になる。   At the time of photographing, the optical polarization elements 332 and 333 are rotated by adjusting the linear polarization direction of incident light to directions other than +45 degrees and −45 degrees. By adjusting the rotation direction, the amount of light passing through the polarizing element provided in the imaging element is reduced. This makes it possible to control the amount of photographing light without controlling the size of the aperture opening and the exposure time.

図34は、直線偏光を利用し撮影時の光量調整するようにした一実施の形態の偏光型瞳分割位相差検出の概要構成を示す。図31および図32に示す瞳分割偏光部材110と、図6に示す撮像素子とを用いた撮像装置では、撮像時に撮影光量を調整することが可能となる。瞳分割偏光部材110を制御(直線偏光の旋光効果を無効化)することによって、入射する光束100(あらゆる方向に直線偏光した光の集まり)のうち、垂直方向に直線偏光した光束101のみが測距瞳92,93を通過し、通過の際に直線偏光の方向は回転されない。測距瞳92,93を通過した光束144(直線偏光方向が垂直)は、撮像素子211の画素212、213に受光される。画素212は+45度方向の直線偏光成分、画素213は−45度方向の直線偏光成分を受光するので、光束144のうち画素212、213に受光される。光量は半分になる。   FIG. 34 shows a schematic configuration of polarization-type pupil division phase difference detection according to an embodiment in which linearly polarized light is used to adjust the amount of light at the time of photographing. In the imaging apparatus using the pupil-dividing polarizing member 110 shown in FIGS. 31 and 32 and the imaging device shown in FIG. 6, it is possible to adjust the photographing light amount during imaging. By controlling the pupil-dividing polarizing member 110 (invalidating the optical rotation effect of linearly polarized light), only the light beam 101 linearly polarized in the vertical direction is measured out of the incident light beam 100 (collection of light linearly polarized in all directions). It passes through the distance pupils 92 and 93, and the direction of linearly polarized light is not rotated during the passage. The light beam 144 (linear polarization direction is vertical) that has passed through the distance measuring pupils 92 and 93 is received by the pixels 212 and 213 of the image sensor 211. Since the pixel 212 receives the linearly polarized light component in the +45 degree direction and the pixel 213 receives the linearly polarized component in the −45 degree direction, the light is received by the pixels 212 and 213 in the light beam 144. The light intensity is halved.

図35は、図1に示す一実施の形態の瞳分割型位相差検出に適用可能な瞳分割偏光部材の変形例の構成を示し、(a)は断面図、(b)および(c)は光入射方向から見た正面図である。(a)図において、瞳分割偏光部材110は、光入射側に旋光素子330が、光出射側に直線偏光素子140がそれぞれ配置される。また、旋光素子330は周囲をコイル119に囲まれる。   FIG. 35 shows a configuration of a modified example of the pupil division polarizing member applicable to the pupil division type phase difference detection of the embodiment shown in FIG. 1, wherein (a) is a cross-sectional view, and (b) and (c) are It is the front view seen from the light incident direction. In FIG. 5A, the pupil division polarizing member 110 has an optical rotation element 330 disposed on the light incident side and a linear polarization element 140 disposed on the light exit side. The optical rotation element 330 is surrounded by a coil 119.

図35(b)において、旋光素子330は2つの部分332,333から成り、2つの部分322,323は入射光束を垂直方向の分割線で略対称に水平方向に2分するように並置されている。旋光素子332,333は、磁気光学効果(ファラデー効果:コイル119に流す電流によって乗じる磁場の影響により偏光面が回転する)により、直線偏光方向+45度、−45度回転する材料(磁性ガーネット膜)である。コイル119に流す電流を調整することによって、直線偏光方向+45度、−45度から変化させることが可能である。   In FIG. 35 (b), the optical rotatory element 330 is composed of two portions 332 and 333, and the two portions 322 and 323 are juxtaposed so as to divide the incident light beam into two substantially horizontal lines in the vertical direction. Yes. Optical rotators 332 and 333 are materials (magnetic garnet films) that rotate by +45 degrees and −45 degrees in the linear polarization direction due to the magneto-optic effect (Faraday effect: the polarization plane rotates due to the influence of the magnetic field multiplied by the current flowing through the coil 119). It is. By adjusting the current flowing through the coil 119, the linear polarization direction can be changed from +45 degrees and −45 degrees.

図35(c)において、直線偏光素子140は垂直方向に対し、入射光の直線偏光の角度が+45度および−45度の直線偏光成分のみを通過させる直線偏光素子部142、143から成る。直線偏光素子部142から出射する光束は、直線偏光方向が+45度となる。直線偏光素子部143から出射する光束は、直線偏光方向が−45度となる。コイル119に流す電流を制御し、旋光素子332、333により同一方向に直線偏光した入射光束が旋光素子332、333により偏光方向が回転され出射時の偏光方向が回転され、直線偏光方向を+45度および−45度となるように調整される。   In FIG. 35 (c), the linearly polarizing element 140 is composed of linearly polarizing element portions 142 and 143 that allow only linearly polarized light components whose incident light has linear polarization angles of +45 degrees and −45 degrees with respect to the vertical direction. The light beam emitted from the linear polarization element unit 142 has a linear polarization direction of +45 degrees. The light beam emitted from the linear polarization element unit 143 has a linear polarization direction of −45 degrees. The current flowing in the coil 119 is controlled, and the incident light beam linearly polarized in the same direction by the optical rotators 332 and 333 is rotated in the polarization direction by the optical rotators 332 and 333 to rotate the polarization direction at the time of emission, and the linear polarization direction is +45 degrees. And to be −45 degrees.

図36は、直線偏光を利用し、焦点検出時と撮影時の入射光束の直線偏光方向を選択するようにした一実施の形態の偏光型瞳分割位相差検出の概要構成を示す。図35に示す瞳分割偏光部材110と図6に示す撮像素子を用いた撮像装置では、焦点検出時と撮像時に入射光束の直線偏光方向を選択することができる。瞳分割偏光部材110を制御することによって、入射する光束100(あらゆる方向に直線偏光した光の集まり)のうち、特定の方向に直線偏光した光束101aのみが測距瞳92,93を通過する。測距瞳92,93を通過した光束102は、45度方向に直線偏光し、光束103は−45度方向に直線偏光しており、撮像素子211の画素212、213にそれぞれ受光される。   FIG. 36 shows a schematic configuration of polarization-type pupil division phase difference detection according to an embodiment in which linearly polarized light is used and the linearly polarized direction of the incident light beam at the time of focus detection and photographing is selected. In the imaging apparatus using the pupil division polarization member 110 shown in FIG. 35 and the imaging device shown in FIG. 6, the linear polarization direction of the incident light beam can be selected at the time of focus detection and imaging. By controlling the pupil division polarizing member 110, only the light beam 101a linearly polarized in a specific direction among the incident light beam 100 (a collection of light linearly polarized in all directions) passes through the distance measuring pupils 92 and 93. The light beam 102 that has passed through the distance measuring pupils 92 and 93 is linearly polarized in the 45 ° direction, and the light beam 103 is linearly polarized in the −45 ° direction, and is received by the pixels 212 and 213 of the image sensor 211, respectively.

入射光束100のうちから特定の方向101aを調整することによって、反射光の偏光成分を除去したクリアな画像を得ることができる。   By adjusting the specific direction 101a from the incident light beam 100, a clear image from which the polarization component of the reflected light is removed can be obtained.

図37は、瞳分割偏光部材を反射タイプにした一実施の形態の偏光型瞳分割位相差検出の概要構成を示す。撮影光学系の光軸91に沿って撮影光学系に入射する光束100は、あらゆる方向に直線偏光した光の集まりである。入射光束100のうちの所定の方向の偏光成分101(図では垂直方向)のみが撮影光学系近傍に配置された瞳分割偏光部材110により反射される。   FIG. 37 shows a schematic configuration of polarization-type pupil division phase difference detection according to an embodiment in which the pupil division polarization member is a reflection type. A light beam 100 incident on the photographing optical system along the optical axis 91 of the photographing optical system is a collection of light linearly polarized in all directions. Of the incident light beam 100, only a polarization component 101 (vertical direction in the figure) in a predetermined direction is reflected by a pupil division polarization member 110 disposed in the vicinity of the photographing optical system.

瞳分割偏光部材110は、図15に示す瞳分割偏光部材を反射タイプに変更した構成となっており、測距瞳92、測距瞳93に相当する部分にコレステリック液晶が用いられている。測距瞳92は、入射する光束のうちの垂直方向の直線偏光成分を右円偏光して反射する。また、測距瞳93は、入射する光束のうちの垂直方向の直線偏光成分を左円偏光して反射する。測距瞳92から出射する光束142は右円偏光している。また、測距瞳93から出射する光束143は左円偏光している。撮像素子211には光束142の右円偏光を選択的に受光する画素212と、光束143の光を選択的に受光する画素213とが測距瞳92,93の並び方向に交互に配列されている。   The pupil division polarization member 110 has a configuration in which the pupil division polarization member shown in FIG. 15 is changed to a reflection type, and cholesteric liquid crystal is used in portions corresponding to the distance measurement pupil 92 and the distance measurement pupil 93. The distance measuring pupil 92 reflects the vertically linearly polarized light component of the incident light beam as right circularly polarized light. Further, the distance measuring pupil 93 reflects the linearly polarized light component in the vertical direction of the incident light beam as left circularly polarized light. The light beam 142 emitted from the distance measuring pupil 92 is right-circularly polarized. The light beam 143 emitted from the distance measuring pupil 93 is left-circularly polarized. In the image sensor 211, pixels 212 that selectively receive the right circularly polarized light of the light beam 142 and pixels 213 that selectively receive the light of the light beam 143 are alternately arranged in the direction in which the distance measurement pupils 92 and 93 are arranged. Yes.

図38は一実施の形態の偏光型瞳分割位相差検出の概要構成を示し、(a)は断面図、(b)は正面図である。90は交換レンズの予定結像面に配置された撮像素子211の前方d4の距離にある交換レンズの射出瞳面、91は交換レンズの光軸、92、93は一対の測距瞳、512a、512b、513a、513bは光電変換部である。522a、522bは+45度の直線偏光成分を透過する偏光素子であり、測距瞳92を出射する直線偏光の光を透過する。また、523a、523bは−45度の直線偏光成分を透過する偏光素子であり、測距瞳93出射する直線偏光の光を透過する。72,82は測距瞳92を出射する光束であり、+45度方向に直線偏光されている。また、73,83は測距瞳93を出射する光束であり、−45度方向に直線偏光されている。530,531,532,533はマイクロレンズである。   FIG. 38 shows a schematic configuration of polarization-type pupil division phase difference detection according to an embodiment, where (a) is a cross-sectional view and (b) is a front view. 90 is the exit pupil plane of the interchangeable lens at a distance d4 in front of the imaging element 211 disposed on the planned imaging plane of the interchangeable lens, 91 is the optical axis of the interchangeable lens, 92 and 93 are a pair of distance measuring pupils, 512a, 512b, 513a, and 513b are photoelectric conversion units. Reference numerals 522a and 522b denote polarizing elements that transmit a linearly polarized light component of +45 degrees, and transmit linearly polarized light that exits the distance measuring pupil 92. Reference numerals 523a and 523b denote polarizing elements that transmit a linearly polarized light component of −45 degrees, and transmit linearly polarized light emitted from the distance measuring pupil 93. Reference numerals 72 and 82 denote light beams emitted from the distance measuring pupil 92, which are linearly polarized in the +45 degree direction. Reference numerals 73 and 83 denote light beams emitted from the distance measuring pupil 93 and are linearly polarized in the −45 degree direction. Reference numerals 530, 531, 532, and 533 are microlenses.

1つの画素は、光電変換部とその前に配置された偏光素子とマイクロレンズとから構成される。画素は半導体基板29上に半導体製造プロセスにより形成される。偏光素子とマイクロレンズ光電変換部上に一体的に形成される。なお、図38では隣接する4画素を模式的に例示するが、他の画素についても同様である。   One pixel includes a photoelectric conversion unit, a polarizing element arranged in front of the photoelectric conversion unit, and a microlens. The pixels are formed on the semiconductor substrate 29 by a semiconductor manufacturing process. It is integrally formed on the polarizing element and the microlens photoelectric conversion unit. FIG. 38 schematically illustrates four adjacent pixels, but the same applies to other pixels.

マイクロレンズ530、532により光電変換部512a、512bは射出瞳90上に測距瞳92を含む領域として投影される。また、マイクロレンズ531、533により光電変換部513a、513bは射出瞳90上に測距瞳93を含む領域として投影される。図38(b)において、偏光素子522a、523a、522b、523bは、測距瞳92を出射する光束と測距瞳93を出射する光束とを交互に透過するように配置される。   The photoelectric conversion units 512 a and 512 b are projected on the exit pupil 90 as a region including the distance measuring pupil 92 by the microlenses 530 and 532. In addition, the photoelectric conversion units 513 a and 513 b are projected on the exit pupil 90 as an area including the distance measuring pupil 93 by the microlenses 531 and 533. In FIG. 38B, the polarizing elements 522a, 523a, 522b, and 523b are arranged so as to alternately transmit the light beam emitted from the distance measurement pupil 92 and the light beam emitted from the distance measurement pupil 93.

図38(a)において、光電変換部512aには、測距瞳92を出射する光束72と測距瞳93を出射する光束が向かう。偏光素子522aは光束72を透過し、測距瞳93を出射する光束を阻止する。光電変換部512aは光束72がマイクロレンズ530上に形成する像の強度に対応した信号を出力する。また、光電変換部512bには、測距瞳92を出射する光束82と測距瞳93を出射する光束が向かう。偏光素子522bは光束82を透過し、測距瞳93を出射する光束を阻止する。光電変換部512bは光束72がマイクロレンズ532上に形成する像の強度に対応した信号を出力する。   In FIG. 38A, the light beam 72 emitted from the distance measuring pupil 92 and the light beam emitted from the distance measuring pupil 93 are directed to the photoelectric conversion unit 512a. The polarizing element 522a transmits the light beam 72 and blocks the light beam emitted from the distance measuring pupil 93. The photoelectric conversion unit 512 a outputs a signal corresponding to the intensity of the image formed by the light beam 72 on the microlens 530. Further, the light beam 82 emitted from the distance measuring pupil 92 and the light beam emitted from the distance measuring pupil 93 are directed to the photoelectric conversion unit 512b. The polarizing element 522b transmits the light beam 82 and blocks the light beam emitted from the distance measuring pupil 93. The photoelectric conversion unit 512 b outputs a signal corresponding to the intensity of the image formed by the light beam 72 on the microlens 532.

光電変換部513aには、測距瞳92を出射する光束と測距瞳93を出射する光束73が向かう。偏光素子523aは光束73を透過し、測距瞳93を出射する光束を阻止する。光電変換部513aは光束73がマイクロレンズ531上に形成する像の強度に対応した信号を出力する。また、光電変換部513bには、測距瞳92を出射する光束と測距瞳93を出射する光束83が向かう。偏光素子523bは光束83を透過し、測距瞳93を出射する光束を阻止する。光電変換部513bは光束83がマイクロレンズ533上に形成する像の強度に対応した信号を出力する。   The light beam emitted from the distance measuring pupil 92 and the light beam 73 emitted from the distance measuring pupil 93 are directed to the photoelectric conversion unit 513a. The polarizing element 523a transmits the light beam 73 and blocks the light beam emitted from the distance measuring pupil 93. The photoelectric conversion unit 513 a outputs a signal corresponding to the intensity of the image formed by the light beam 73 on the microlens 531. Further, the light beam emitted from the distance measuring pupil 92 and the light beam 83 emitted from the distance measuring pupil 93 are directed to the photoelectric conversion unit 513b. The polarizing element 523b transmits the light beam 83 and blocks the light beam emitted from the distance measuring pupil 93. The photoelectric conversion unit 513 b outputs a signal corresponding to the intensity of the image formed by the light beam 83 on the microlens 533.

以上のような構成では、マイクロレンズを用いるため入射光束を効率よく光電変換部に導くことによって光量をかせぐことができ、低輝度時の性能が向上する。   With the above configuration, since the microlens is used, the amount of light can be earned by efficiently guiding the incident light beam to the photoelectric conversion unit, and the performance at low luminance is improved.

図39は、図38に示す一実施の形態の偏光型瞳分割位相差検出の変形例を示し、(a)は断面図、(b)は正面図である。612a、612b、612c、612dと、613a、613b、613c、613dはそれぞれ光電変換部である。622a、622b、622c、622bは+45度の直線偏光成分を透過する偏光素子であり、測距瞳92を出射する直線偏光の光を透過する。また、623a、623b、623c、623dは−45度の直線偏光成分を透過する偏光素子であり、測距瞳93を出射する直線偏光の光を透過する。72は測距瞳92を出射する光束であり、+45度方向に直線偏光されている。また、73は測距瞳93を出射する光束であり、−45度方向に直線偏光されている。630,631,632,633はマイクロレンズである。   FIG. 39 shows a modification of the polarization type pupil division phase difference detection of the embodiment shown in FIG. 38, (a) is a cross-sectional view, and (b) is a front view. Reference numerals 612a, 612b, 612c, and 612d and 613a, 613b, 613c, and 613d are photoelectric conversion units. Reference numerals 622 a, 622 b, 622 c, and 622 b are polarizing elements that transmit a linearly polarized light component of +45 degrees, and transmit linearly polarized light that exits the distance measuring pupil 92. Reference numerals 623 a, 623 b, 623 c, and 623 d are polarizing elements that transmit a linearly polarized light component of −45 degrees, and transmit linearly polarized light emitted from the distance measuring pupil 93. A light beam 72 exits the distance measuring pupil 92 and is linearly polarized in the +45 degree direction. Reference numeral 73 denotes a light beam emitted from the distance measuring pupil 93, which is linearly polarized in the -45 degree direction. Reference numerals 630, 631, 632, and 633 denote microlenses.

1つの画素は、一対の光電変換部とその前に配置された一対の偏光素子とマイクロレンズとから構成される。画素は半導体基板29上に半導体製造プロセスにより形成される。偏光素子とマイクロレンズ光電変換部上に一体的に形成される。なお、図39では隣接する4画素を模式的に例示するが、他の画素についても同様である。   One pixel includes a pair of photoelectric conversion units, a pair of polarizing elements arranged in front of the photoelectric conversion unit, and a microlens. The pixels are formed on the semiconductor substrate 29 by a semiconductor manufacturing process. It is integrally formed on the polarizing element and the microlens photoelectric conversion unit. Note that FIG. 39 schematically illustrates four adjacent pixels, but the same applies to other pixels.

マイクロレンズ630、631,632,633によって、光電変換部612a、612b、612c、612dは射出瞳90上に測距瞳92を含む領域として投影される。また、マイクロレンズ630、631,632,633によって、光電変換部613a、613b、613c、613dは射出瞳90上に測距瞳93を含む領域として投影される。   The photoelectric conversion units 612a, 612b, 612c, and 612d are projected on the exit pupil 90 as an area including the distance measuring pupil 92 by the micro lenses 630, 631, 632, and 633. Further, the photoelectric conversion units 613a, 613b, 613c, and 613d are projected on the exit pupil 90 as an area including the distance measuring pupil 93 by the micro lenses 630, 631, 632, and 633.

図39(b)において、偏光素子622a、622b、622c、622b、623a、623b、623c、623bは、測距瞳92を出射する光束と測距瞳93を出射する光束を交互に透過するように配置される。   In FIG. 39 (b), polarizing elements 622a, 622b, 622c, 622b, 623a, 623b, 623c, and 623b alternately transmit the light beam emitted from the distance measuring pupil 92 and the light beam emitted from the distance measuring pupil 93. Be placed.

図39(a)において、マイクロレンズ632と一対の偏光素子622c、623cと一対の光電変換部612cからなる画素を例にして説明する。マイクロレンズ632には、測距瞳92を出射する光束72と測距瞳93を出射する光束73が通過する。偏光素子622cは光束72を透過し、測距瞳93を出射する光束73を阻止する。偏光素子623cは光束73を透過し、測距瞳93を出射する光束72を阻止する。光電変換部612cは、光束72がマイクロレンズ632上に形成する像の強度に対応した信号を出力する。また、光電変換部613cは、光束73がマイクロレンズ632上に形成する像の強度に対応した信号を出力する。   In FIG. 39A, a pixel including a microlens 632, a pair of polarizing elements 622c and 623c, and a pair of photoelectric conversion units 612c will be described as an example. The microlens 632 passes through a light beam 72 emitted from the distance measuring pupil 92 and a light beam 73 emitted from the distance measuring pupil 93. The polarizing element 622c transmits the light beam 72 and blocks the light beam 73 emitted from the distance measuring pupil 93. The polarizing element 623 c transmits the light beam 73 and blocks the light beam 72 that exits the distance measuring pupil 93. The photoelectric conversion unit 612 c outputs a signal corresponding to the intensity of the image formed by the light beam 72 on the microlens 632. Further, the photoelectric conversion unit 613 c outputs a signal corresponding to the intensity of the image formed by the light flux 73 on the microlens 632.

各画素の光電変換部の出力を測距瞳92および測距瞳93に対応した出力グループにまとめることによって、測距瞳92と測距瞳93をそれぞれ通過する焦点検出光束が画素列上に形成する一対の像の強度分布に関する情報が得られる。該情報に対して後述する像ズレ検出演算処理(相関演算処理、位相差検出処理)を施すことによって、いわゆる瞳分割位相差検出方式で一対の像の像ズレ量が検出される。   By focusing the output of the photoelectric conversion unit of each pixel into an output group corresponding to the distance measuring pupil 92 and the distance measuring pupil 93, a focus detection light beam that passes through each of the distance measuring pupil 92 and the distance measuring pupil 93 is formed on the pixel row. Information on the intensity distribution of a pair of images is obtained. By applying an image shift detection calculation process (correlation calculation process, phase difference detection process) to be described later to the information, an image shift amount of a pair of images is detected by a so-called pupil division phase difference detection method.

以上のような構成では、マイクロレンズを用いるため入射光束を効率よく光電変換部に導くことができ、光量をかせぐことができるので、低輝度時の性能が向上する。偏光を用いずにマイクロレンズの作用のみで瞳分割を行う方式と比較すると、マイクロレンズの収差や回折による瞳分割の不完全性(瞳の外形がぼけて、一対の瞳の一部が重なってしまう)の問題がない。   In the above configuration, since the microlens is used, the incident light beam can be efficiently guided to the photoelectric conversion unit, and the amount of light can be earned, so that the performance at the time of low luminance is improved. Compared with the method of dividing the pupil only by the action of the microlens without using polarized light, the pupil division is incomplete due to aberrations and diffraction of the microlens (the pupil's outline is blurred and part of the pair of pupils overlap) There is no problem.

図40は変形例の撮像装置の構成を示す。図2に示す撮像装置では撮像素子211を画像データ生成用に用いているが、図40に示すように撮像専用の撮像素子212を設け、撮像素子211は焦点検出と電子ビューファインダー表示用に用いるようにしてもよい。図40において、カメラボディ203には撮影光束を分離するハーフミラー221が配置され、透過側に撮像専用の撮像素子212が配置され、反射側に焦点検出兼電子ビューファインダー表示用の撮像素子211が配置される。撮影前は撮像素子211の出力に応じて、焦点検出および電子ビューファインダー表示が行われる。レリーズ時は撮像専用の撮像素子212の出力に応じた画像データが生成される。ハーフミラー221を全反射ミラーとし、撮影時は撮影光路から退避するようにしてもよい。   FIG. 40 shows a configuration of an imaging apparatus according to a modification. In the image pickup apparatus shown in FIG. 2, the image pickup device 211 is used for generating image data. However, as shown in FIG. 40, an image pickup device 212 dedicated to image pickup is provided, and the image pickup device 211 is used for focus detection and electronic viewfinder display. You may do it. In FIG. 40, the camera body 203 is provided with a half mirror 221 for separating a photographic light beam, an imaging element 212 dedicated to imaging on the transmission side, and an imaging element 211 for focus detection and electronic viewfinder display on the reflection side. Be placed. Before shooting, focus detection and electronic viewfinder display are performed according to the output of the image sensor 211. At the time of release, image data corresponding to the output of the imaging element 212 dedicated to imaging is generated. The half mirror 221 may be a total reflection mirror, and may be retracted from the photographing optical path during photographing.

このようにすれば、焦点検出兼電子ビューファインダー表示用の撮像素子211の画素サイズを大きくしても、その出力は焦点検出と解像度の要求が低い電子ビューファインダー表示に用いるだけなので、画像データの解像度が低下することがない。   In this way, even if the pixel size of the image sensor 211 for focus detection and electronic viewfinder display is increased, the output is only used for electronic viewfinder display with low focus detection and resolution requirements. The resolution does not decrease.

なお、図25に示す撮像素子211では赤、青,緑の3原色のフィルタを使用しているが、2つの色のみの撮像素子や4色以上の色を検出するフィルタを備えた撮像素子にも適用可能である。図25に示す撮像素子211では、色分解フィルタに原色フィルタ(RGB)を用いた例を示したが、補色フィルタ(緑:G、イエロー:Ye、マゼンタ:Mg,シアン:Cy)を採用してもよい。色分解は、色フィルタ以外にも光電変換部を構成するフォトダイオードの分光感度特性を光電変換部毎に変更することによっても達成することができる。また、図25に示す撮像素子211では、すべての色分解フィルタ上に偏光素子を設けた例を示したが、特定の色分解フィルタ(例えば緑色フィルタ)のみに偏光素子を設けるようにしてもよい。   Note that the image sensor 211 shown in FIG. 25 uses a filter of three primary colors of red, blue, and green. However, the image sensor includes only an image sensor of only two colors or a filter that detects four or more colors. Is also applicable. In the image sensor 211 shown in FIG. 25, the primary color filter (RGB) is used as the color separation filter, but complementary color filters (green: G, yellow: Ye, magenta: Mg, cyan: Cy) are employed. Also good. Color separation can also be achieved by changing the spectral sensitivity characteristics of the photodiodes constituting the photoelectric conversion unit for each photoelectric conversion unit in addition to the color filter. In addition, in the imaging element 211 illustrated in FIG. 25, the example in which the polarizing element is provided on all the color separation filters has been described. However, the polarizing element may be provided only on a specific color separation filter (for example, a green filter). .

なお、上述した撮像素子は、CCDイメージセンサやCMOSイメージセンサとして形成することができる。   Note that the above-described imaging device can be formed as a CCD image sensor or a CMOS image sensor.

上述した従来の撮像装置において、絞り位置を検出し、像ズレ量と絞り位置情報に基づいて撮影光学系のデフォーカス量を検出することによって、焦点検出精度を向上させることができる。   In the conventional imaging apparatus described above, the focus detection accuracy can be improved by detecting the aperture position and detecting the defocus amount of the photographing optical system based on the image shift amount and the aperture position information.

《発明の適用範囲》
撮像装置は、カメラボディに交換レンズが装着されたデジタルスチルカメラやフィルムスチルカメラに限定されない。レンズ一体型のデジタルスチルカメラやビデオカメラやフィルムカメラにも適用することができる。また、携帯電話などに内蔵される小型カメラモジュールや監視カメラなどにも適用することができる。カメラ以外の焦点検出装置や測距装置やステレオ測距装置にも適用することができる。
<Scope of invention>
The imaging device is not limited to a digital still camera or a film still camera in which an interchangeable lens is attached to the camera body. It can also be applied to lens-integrated digital still cameras, video cameras, and film cameras. Further, the present invention can be applied to a small camera module or a surveillance camera built in a mobile phone or the like. The present invention can also be applied to focus detection devices other than cameras, distance measuring devices, and stereo distance measuring devices.

以上説明したように、一実施の形態によれば次のような効果が得られる。
まず、従来の撮像装置では、瞳分割して直線偏光する際に、瞳に入射する光束において異なる直線偏光の光束について瞳分割を行っている。被写界の物体により反射、屈折、透過、散乱等の光学的作用を受けた光は、直線偏光の方向が一様でなく偏っている場合がある。直線偏光の方向が一様でない光束を瞳分割して得られた二つの像の間の合致性は本来的に低下しているので、焦点検出精度が悪化してしまう。
これに対し上述した一実施の形態の偏光型瞳分割位相差検出方式の撮像装置では、被写界の物体による反射、屈折、透過、散乱などの光学的作用の影響を受けずに焦点検出ができ、高精度な焦点検出が可能になる。
As described above, according to the embodiment, the following effects can be obtained.
First, in the conventional imaging device, when the pupil is divided and linearly polarized, the pupil division is performed on the light beams having different linear polarization in the light beams incident on the pupil. Light that has been subjected to optical effects such as reflection, refraction, transmission, and scattering by an object in the object field may have a non-uniform direction of linearly polarized light. Since the coincidence between the two images obtained by pupil division of a light beam whose direction of linear polarization is not uniform is inherently lowered, the focus detection accuracy is deteriorated.
On the other hand, the polarization pupil division phase difference detection type imaging apparatus of the above-described embodiment can detect the focus without being affected by the optical action such as reflection, refraction, transmission, and scattering by the object in the object field. This enables high-precision focus detection.

次に、従来の撮像装置では、直線偏光方向に応じて二つの光束を分光特性、光量および偏光特性を含め正確に分離可能な偏光ハーフミラーまたはハーフミラーを製作するのは困難であり、二つの光束の分離の不完全性によって二つの像の合致性が低下し、焦点検出精度が低下していた。また、 偏光ハーフミラーあるいはハーフミラーで分離して二つの像を撮像するので大きなスペースを必要とし、各像を撮像するために個別の撮像素子を必要としていた。さらに、焦点検出のために瞳分割に直線偏光を用いる場合、そのままの状態で撮影を行うと撮影光量が低下してしまう。撮影時に偏光素子と偏光ハーフミラー、ハーフミラーを撮影光路外に退避する場合には、退避用のスペースと退避のためのタイムラグと退避機構が必要となっていた。
これに対し上述した一実施の形態の偏光型瞳分割位相差検出方式の撮像装置では、像の合致性が高く、高精度な焦点検出ができる。また、ハーフミラーなどの光分離部材が不要なためスペースを節約できるとともに、単一の撮像素子のみで焦点検出ができる。さらに、撮影時に特別な機構やスペースを必要とせずに、瞬時に通常の露光量での撮影ができる。
Next, in a conventional imaging device, it is difficult to manufacture a polarization half mirror or a half mirror that can accurately separate two light fluxes according to the linear polarization direction, including spectral characteristics, light quantity, and polarization characteristics. The incompleteness of the separation of the luminous flux caused the coincidence of the two images to be lowered, and the focus detection accuracy was lowered. Further, since two images are picked up by being separated by a polarization half mirror or a half mirror, a large space is required, and a separate image pickup device is required to pick up each image. Further, when linearly polarized light is used for pupil division for focus detection, the amount of photographing light is reduced when photographing is performed as it is. When the polarizing element, the polarization half mirror, and the half mirror are retracted out of the photographing optical path at the time of shooting, a retracting space, a retracting time lag, and a retracting mechanism are required.
On the other hand, in the imaging apparatus of the polarization type pupil division phase difference detection method according to the embodiment described above, image matching is high and high-precision focus detection can be performed. Further, since a light separation member such as a half mirror is not required, space can be saved and focus detection can be performed with only a single image sensor. Furthermore, photographing with a normal exposure amount can be instantaneously performed without requiring any special mechanism or space for photographing.

従来の偏光型瞳分割位相差検出方式では、瞳を二分して一方向の像ズレを検出する例が開示されているのみであって、異なる方向で同時に像ズレを検出するにはどのようにシステムを構築すべきかに関してはなんの示唆もなかった。また、従来の偏光型瞳分割位相差検出方式では、像ズレ量(光軸に対して垂直な面内でのズレ量)のデフォーカス量(光軸方向のズレ量)への変換については記載がない。さらに、従来の偏光型瞳分割位相差検出方式においては、分割される瞳と予定焦点面の間の距離がレンズ交換およびフォーカシングおよびズーミングによって変化するので、像ズレ量からデフォーカス量への変換関係は単純な線形変換とはならない。さらにまた、従来の偏光型瞳分割位相差検出方式においては、焦点調節状態によらず同じ偏光型瞳分割位相差検出方式で焦点検出を行っているので、デフォーカス量が大きい状況で焦点検出不能に陥る場合がある。なお、合焦近傍の精度を重視した焦点検出モードと、デフォーカス量が大きい状況で焦点検出不能に陥らない焦点検出モードとを切り替えることについての記載はない。
これに対し上述した一実施の形態の偏光型瞳分割位相差検出方式の撮像装置では、異なる方向において同時あるいは切換えて像ズレ検出ができる。また、レンズ交換あるいはフォーカシングおよびスーミングにより分割される瞳の位置が変化した場合でも、正確なデフォーカス量を算出できる。さらに、大デフォーカス時においても確実に焦点検出ができる。
In the conventional polarization type pupil division phase difference detection method, only an example in which an image shift in one direction is detected by bisecting the pupil is disclosed, and how to detect an image shift simultaneously in different directions. There was no suggestion as to whether the system should be built. Further, in the conventional polarization type pupil division phase difference detection method, conversion of an image shift amount (a shift amount in a plane perpendicular to the optical axis) into a defocus amount (a shift amount in the optical axis direction) is described. There is no. Furthermore, in the conventional polarization-type pupil division phase difference detection method, the distance between the divided pupil and the planned focal plane changes due to lens exchange, focusing, and zooming, so the relationship of conversion from image shift amount to defocus amount Is not a simple linear transformation. Furthermore, in the conventional polarization-type pupil division phase difference detection method, focus detection is performed using the same polarization-type pupil division phase difference detection method regardless of the focus adjustment state, so that focus detection is impossible in a situation where the defocus amount is large. You may fall into. It should be noted that there is no description about switching between a focus detection mode that places importance on the accuracy in the vicinity of the focus and a focus detection mode that does not cause focus detection in a situation where the defocus amount is large.
In contrast, the polarization type pupil division phase difference detection type imaging apparatus according to the embodiment described above can detect image shift simultaneously or in different directions. In addition, even when the position of the pupil divided by lens replacement or focusing and smoothing changes, an accurate defocus amount can be calculated. Furthermore, focus detection can be performed reliably even during large defocusing.

一実施の形態の偏光型瞳分割位相差検出の概要構成を示す図The figure which shows schematic structure of the polarization type pupil division | segmentation phase difference detection of one Embodiment 一実施の形態のデジタルスチルカメラの構成を示す図The figure which shows the structure of the digital still camera of one embodiment 瞳分割偏光部材の構成を示す図The figure which shows the structure of a pupil division | segmentation polarizing member 撮像素子の全体模式図(正面図)Overall schematic diagram of image sensor (front view) 撮像素子の部分拡大図(正面図)Partial enlarged view of the image sensor (front view) 偏光型瞳分割位相差検出方式による焦点検出を説明するための図Diagram for explaining focus detection by polarization-type pupil division phase difference detection method 一実施の形態のデジタルスチルカメラ(撮像装置)の動作を示すフローチャートThe flowchart which shows operation | movement of the digital still camera (imaging device) of one embodiment 焦点検出F値を説明するための図The figure for demonstrating a focus detection F value 相関演算結果の信頼性を示す図Diagram showing the reliability of correlation calculation results 像ズレ量とデフォーカス量の関係を示す図Diagram showing the relationship between the amount of image shift and the amount of defocus 一実施の形態の偏光型瞳分割位相差検出に適用可能な瞳分割偏光部材の変形例の構成を示す図The figure which shows the structure of the modification of the pupil division | segmentation polarizing member applicable to the polarization type pupil division | segmentation phase difference detection of one embodiment. 一実施の形態の偏光型瞳分割位相差検出に適用可能な撮像素子の変形例の構成を示す図The figure which shows the structure of the modification of the image pick-up element applicable to the polarization type pupil division | segmentation phase difference detection of one Embodiment 一実施の形態の偏光型瞳分割位相差検出に適用可能な撮像素子の他の変形例の構成を示す図The figure which shows the structure of the other modification of the image pick-up element applicable to the polarization type pupil division | segmentation phase difference detection of one Embodiment 円偏光を用いた一実施の形態の偏光型瞳分割位相差検出の概要構成を示す図The figure which shows schematic structure of the polarization type pupil division | segmentation phase difference detection of one Embodiment using circularly polarized light 図14に示す一実施の形態の円偏光型瞳分割位相差検出に適用可能な瞳分割偏光部材の構成を示す図The figure which shows the structure of the pupil division | segmentation polarizing member applicable to the circular polarization type pupil division | segmentation phase difference detection of one Embodiment shown in FIG. 図14に示す一実施の形態の円偏光型瞳分割位相差検出に適用可能な撮像素子の部分拡大図FIG. 14 is a partially enlarged view of an image sensor that can be applied to circularly polarized pupil division phase difference detection according to the embodiment shown in FIG. 図14に示す一実施の形態の円偏光型瞳分割位相差検出に適用可能な撮像素子の変形例の構成を示す図The figure which shows the structure of the modification of an image pick-up element applicable to the circular polarization type pupil division | segmentation phase difference detection of one Embodiment shown in FIG. 瞳分割偏光部材の変形例の構成を示す図The figure which shows the structure of the modification of a pupil division | segmentation polarizing member. 図18に示す瞳分割偏光部材に適用可能な撮像素子の部分拡大図(正面図)Partial enlarged view (front view) of an image sensor applicable to the pupil division polarizing member shown in FIG. 図18に示す瞳分割偏光部材に適用可能な撮像素子の部分拡大図(正面図)Partial enlarged view (front view) of an image sensor applicable to the pupil division polarizing member shown in FIG. 瞳を斜め方向に4分割する瞳分割偏光部材の変形例を示す図The figure which shows the modification of the pupil division | segmentation polarizing member which divides a pupil into four in the diagonal direction 図21に示す瞳分割偏光部材に適用可能な撮像素子の部分拡大図(正面図)Partial enlarged view (front view) of an imaging device applicable to the pupil division polarizing member shown in FIG. 瞳を水平方向に4分割した瞳分割偏光部材の他の変形例の構成を示す図The figure which shows the structure of the other modification of the pupil division | segmentation polarizing member which divided the pupil into 4 in the horizontal direction. 瞳を垂直方向および水平方向に4分割した瞳分割偏光部材の他の変形例の構成を示す図The figure which shows the structure of the other modification of the pupil division | segmentation polarizing member which divided the pupil into the vertical direction and the horizontal direction into 4 parts 図1に示す一実施の形態の偏光型瞳分割位相差検出に適用可能なカラー撮像素子の構成を示す図The figure which shows the structure of the color image pick-up element applicable to the polarization type pupil division | segmentation phase difference detection of one Embodiment shown in FIG. カラーフィルターの分光透過特性を示す図Diagram showing spectral transmission characteristics of color filter 図25に示す撮像素子の部分拡大図(正面図)Partial enlarged view (front view) of the image sensor shown in FIG. 図14に示す一実施の形態の瞳分割型位相差検出に適用可能な瞳分割偏光部材の変形例の構成を示す図The figure which shows the structure of the modification of the pupil division | segmentation polarizing member applicable to the pupil division | segmentation type phase difference detection of one Embodiment shown in FIG. 円偏光を利用し撮影時の光量確保するようにした一実施の形態の偏光型瞳分割位相差検出の概要構成を示す図The figure which shows schematic structure of the polarization type pupil division | segmentation phase difference detection of one Embodiment which secured the light quantity at the time of imaging | photography using circularly polarized light 図29に示す一実施の形態を適用したジタルスチルカメラ(撮像装置)の動作を示すフローチャートThe flowchart which shows operation | movement of the digital still camera (imaging device) to which one embodiment shown in FIG. 29 is applied. 図1に示す一実施の形態の瞳分割型位相差検出に適用可能な瞳分割偏光部材の変形例の構成を示す図The figure which shows the structure of the modification of the pupil division | segmentation polarizing member applicable to the pupil division | segmentation type phase difference detection of one Embodiment shown in FIG. 図1に示す一実施の形態の瞳分割型位相差検出に適用可能な瞳分割偏光部材の変形例の構成を示す図The figure which shows the structure of the modification of the pupil division | segmentation polarizing member applicable to the pupil division | segmentation type phase difference detection of one Embodiment shown in FIG. 旋光素子の詳細な構成を示す図The figure which shows the detailed structure of the optical rotation element 直線偏光を利用し撮影時の光量調整するようにした一実施の形態の偏光型瞳分割位相差検出の概要構成を示す図The figure which shows schematic structure of the polarization type pupil division | segmentation phase difference detection of one Embodiment which adjusted the light quantity at the time of imaging | photography using linearly polarized light 図1に示す一実施の形態の瞳分割型位相差検出に適用可能な瞳分割偏光部材の変形例の構成を示す図The figure which shows the structure of the modification of the pupil division | segmentation polarizing member applicable to the pupil division | segmentation type phase difference detection of one Embodiment shown in FIG. 直線偏光を利用し、焦点検出時と撮影時の入射光束の直線偏光方向を選択するようにした一実施の形態の偏光型瞳分割位相差検出の概要構成を示す図The figure which shows schematic structure of the polarization type pupil division | segmentation phase difference detection of one Embodiment which utilized the linearly polarized light and selected the linearly polarized light direction of the incident light beam at the time of a focus detection and imaging | photography. 瞳分割偏光部材を反射タイプにした一実施の形態の偏光型瞳分割位相差検出の概要構成を示す図The figure which shows schematic structure of the polarization type pupil division phase difference detection of one Embodiment which used the pupil division polarization member as the reflection type 一実施の形態の偏光型瞳分割位相差検出の概要構成を示す図The figure which shows schematic structure of the polarization type pupil division | segmentation phase difference detection of one Embodiment 図38に示す一実施の形態の偏光型瞳分割位相差検出の変形例を示す図The figure which shows the modification of the polarization type pupil division | segmentation phase difference detection of one Embodiment shown in FIG. 変形例の撮像装置の構成を示す図The figure which shows the structure of the imaging device of a modification

符号の説明Explanation of symbols

12a、12b、13a、13b、512a、512b、513a、513b、612a、612b、612c、612d、613a、613b、613c、613d 光電変換部
14a、14b、15a、15b、16、17、120、140、522a、522b、523a、523b、622a、622b、622c、622d、623a、623b、623c、623d 偏光素子
16a、16b、17a、17b,20a、20b、21a、21b、22a、22b、23a、23b 旋光素子
19、321 透明電極
88,89 絞り開口
110 瞳分割偏光部材
115,116,117,118 重心
119 コイル
130,150,170,180,190,300,330,340 旋光素子
160 円偏光素子
211、212 撮像素子
212,213 画素
530〜533、630〜633 マイクロレンズ
12a, 12b, 13a, 13b, 512a, 512b, 513a, 513b, 612a, 612b, 612c, 612d, 613a, 613b, 613c, 613d Photoelectric converters 14a, 14b, 15a, 15b, 16, 17, 120, 140, 522a, 522b, 523a, 523b, 622a, 622b, 622c, 622d, 623a, 623b, 623c, 623d Polarizing element 16a, 16b, 17a, 17b, 20a, 20b, 21a, 21b, 22a, 22b, 23a, 23b 19, 321 Transparent electrode 88, 89 Diaphragm aperture 110 Pupil-dividing polarizing member 115, 116, 117, 118 Center of gravity 119 Coil 130, 150, 170, 180, 190, 300, 330, 340 Optical rotator 160 Circular polarizing element 211, 212 element 12,213 pixels 530~533,630~633 microlenses

Claims (37)

撮影光学系の射出瞳を通過する被写体からの光を、重心と偏光特性が異なる対の光束に分割する瞳分割偏光手段と、
前記各光束を選択的に受光する画素が二次元状に配置された撮像素子とを備えることを特徴とする撮像装置。
Pupil division polarization means for dividing light from a subject passing through the exit pupil of the photographing optical system into a pair of luminous fluxes having different polarization characteristics from the center of gravity;
An image pickup apparatus comprising: an image pickup element in which pixels that selectively receive the light beams are two-dimensionally arranged.
請求項1に記載の撮像装置において、
前記瞳分割偏光手段は前記撮影光学系の絞り開口近傍に配置され、前記絞り開口を通過する被写体光を分割することを特徴とする撮像装置。
The imaging apparatus according to claim 1,
The imaging apparatus according to claim 1, wherein the pupil division polarization unit is disposed in the vicinity of a diaphragm aperture of the photographing optical system and divides subject light passing through the diaphragm aperture.
請求項1に記載の撮像装置において、
前記瞳分割偏光手段は被写体光を反射して分割することを特徴とする撮像装置。
The imaging apparatus according to claim 1,
The pupil division polarization unit reflects and divides subject light to divide the imaging device.
請求項1に記載の撮像装置において、
前記瞳分割偏光手段は、前記対の光束のそれぞれを偏光方向が略直交する直線偏光に分割することを特徴とする撮像装置。
The imaging apparatus according to claim 1,
The pupil division polarization unit divides each of the pair of light beams into linearly polarized light whose polarization directions are substantially orthogonal to each other.
請求項4に記載の撮像装置において、
前記瞳分割偏光手段は、入射光を直線偏光する偏光素子と、この偏光素子からの出射光の偏光方向を異なる方向に分割して旋光する対の旋光素子とを有することを特徴とする撮像装置。
The imaging apparatus according to claim 4,
The pupil division polarization unit includes a polarization element that linearly polarizes incident light, and a pair of optical rotation elements that divide and rotate the polarization direction of light emitted from the polarization element in different directions. .
請求項5に記載の撮像装置において、
前記偏光素子は、撮像装置の正位置撮影姿勢において入射光を垂直方向に直線偏向することを特徴とする撮像装置。
The imaging apparatus according to claim 5,
The polarizing device linearly deflects incident light in a vertical direction in a normal position photographing posture of the imaging device.
請求項4に記載の撮像装置において、
前記瞳分割偏光手段は、入射光を異なる方向に旋光する対の旋光素子と、前記対の旋光素子それぞれからの出射光を異なる方向に偏向する対の偏光素子とを有することを特徴とする撮像装置。
The imaging apparatus according to claim 4,
The pupil division polarization unit includes a pair of optical rotation elements that rotate incident light in different directions, and a pair of polarization elements that deflect outgoing light from each of the pair of optical rotation elements in different directions. apparatus.
請求項7に記載の撮像装置において、
前記対の偏光素子から出射する対の光束は、前記対の旋光素子に入射する光束において略同一の直線偏光方向の成分であることを特徴とする撮像装置。
The imaging apparatus according to claim 7,
The pair of luminous fluxes emitted from the pair of polarization elements are components having substantially the same linear polarization direction in the luminous flux incident on the pair of optical rotation elements.
請求項5または請求項7に記載の撮像装置において、
前記対の旋光素子は、1/2波長板またはTN液晶または磁気光学素子であることを特徴とする撮像装置。
In the imaging device according to claim 5 or 7,
The pair of optical rotatory elements is a half-wave plate, a TN liquid crystal, or a magneto-optical element.
請求項1に記載の撮像装置において、
前記瞳分割偏光手段は、右円偏光と左円偏光の対に分割することを特徴とする撮像装置。
The imaging apparatus according to claim 1,
The pupil division polarization unit divides into a pair of right circularly polarized light and left circularly polarized light.
請求項10に記載の撮像装置において、
前記瞳分割偏光手段は、入射光の特定方向の直線偏光成分のみを通過させる直線偏光素子と、前記直線偏光素子からの出射光を位相変調する対の1/4波長板とを有することを特徴とする撮像装置。
The imaging device according to claim 10.
The pupil division polarization unit includes a linear polarization element that allows only a linear polarization component in a specific direction of incident light to pass through, and a pair of quarter-wave plates that phase-modulate light emitted from the linear polarization element. An imaging device.
請求項10に記載の撮像装置において、
前記瞳分割偏光手段は、右旋性のコレステリック液晶素子と左旋性のコレステリック液晶素子とを有することを特徴とする撮像装置。
The imaging device according to claim 10.
The pupil division polarization unit includes an dextrorotatory cholesteric liquid crystal element and a levorotatory cholesteric liquid crystal element.
請求項12に記載の撮像装置において、
前記右旋性コレステリック液晶素子と前記左旋性コレステリック液晶素子の円偏光変調特性を制御する制御部を有することを特徴とする撮像装置。
The imaging apparatus according to claim 12,
An image pickup apparatus comprising: a control unit that controls circular polarization modulation characteristics of the right-handed cholesteric liquid crystal element and the left-handed cholesteric liquid crystal element.
請求項1に記載の撮像装置において、
前記瞳分割偏光手段は、偏光特性を電気的に制御する第1偏光制御部を有することを特徴とする撮像装置。
The imaging apparatus according to claim 1,
The imaging apparatus according to claim 1, wherein the pupil division polarization unit includes a first polarization control unit that electrically controls polarization characteristics.
請求項14に記載の撮像装置において、
前記第1偏光制御部は、撮影状況に応じて偏光特性を制御することを特徴とする撮像装置。
The imaging device according to claim 14, wherein
The imaging apparatus according to claim 1, wherein the first polarization controller controls polarization characteristics in accordance with a shooting situation.
請求項15に記載の撮像装置において、
前記第1偏光制御手段は、撮像時には入射する光の偏光状態を変化させないことを特徴とする撮像装置。
The imaging device according to claim 15, wherein
The imaging apparatus according to claim 1, wherein the first polarization control means does not change a polarization state of incident light during imaging.
請求項1に記載の撮像装置において、
前記瞳分割偏光手段は、前記撮影光学系の射出瞳を通過する被写体からの光を、重心と偏光特性が異なる複数対の光束に分割することを特徴とする撮像装置。
The imaging apparatus according to claim 1,
The pupil division polarization unit divides light from a subject passing through an exit pupil of the photographing optical system into a plurality of pairs of light beams having different centroids and polarization characteristics.
請求項1に記載の撮像装置において、
前記撮像素子の画素の内の、前記瞳分割偏光手段により分割された対の光束の重心を結ぶ方向に延在し、前記対の光束の内の一方を受光する複数の第1画素の出力で表される信号波形と、前記対の光束の内の他方を受光する複数の第2画素の出力で表される信号波形とのズレ量を演算し、このズレ量に基づいて前記撮影光学系のデフォーカス量を検出する焦点検出手段を備えることを特徴とする撮像装置。
The imaging apparatus according to claim 1,
Out of the pixels of the image sensor, the outputs of a plurality of first pixels that extend in a direction connecting the centroids of the pair of light beams divided by the pupil-dividing polarization means and receive one of the pair of light beams. The amount of deviation between the signal waveform represented and the signal waveform represented by the output of the plurality of second pixels that receive the other of the pair of luminous fluxes is calculated, and based on this amount of deviation, the imaging optical system An imaging apparatus comprising a focus detection means for detecting a defocus amount.
請求項18に記載の撮像装置において、
前記撮影光学系の絞り開口の大きさを制御する絞り制御手段を備え、
前記絞り制御手段は、前記デフォーカス量が所定値以下となった後に絞り開口の大きさを大きくすることを特徴とする撮像装置。
The imaging device according to claim 18, wherein
A diaphragm control means for controlling the size of the diaphragm aperture of the photographing optical system,
The imaging apparatus according to claim 1, wherein the diaphragm control unit increases the size of the diaphragm aperture after the defocus amount becomes a predetermined value or less.
請求項1に記載の撮像装置において、
前記撮像素子は、前記対の光束の一方を受光する第1画素と、前記対の光束の他方を受光する第2画素とが規則的に二次元状に配置されることを特徴とする撮像装置。
The imaging apparatus according to claim 1,
The imaging device is characterized in that a first pixel that receives one of the pair of light beams and a second pixel that receives the other of the pair of light beams are regularly arranged in a two-dimensional manner. .
請求項20に記載の撮像装置において、
前記第1画素は前記対の光束の内の所定の方向に直線偏光した第1光束を受光し、前記第2画素は前記対の光束の内の前記第1光束とは異なる方向に直線偏光した第2光束を受光することを特徴とする撮像装置。
The imaging device according to claim 20,
The first pixel receives a first light beam linearly polarized in a predetermined direction of the pair of light beams, and the second pixel is linearly polarized in a direction different from the first light beam of the pair of light beams. An imaging apparatus that receives the second light flux.
請求項21に記載の撮像装置において、
前記第1画素および前記第2画素には、光電変換部が受光する光束の直線偏光方向を規制する直線偏光素子が一体的に備えられることを特徴とする撮像装置。
The imaging device according to claim 21, wherein
The imaging device, wherein the first pixel and the second pixel are integrally provided with a linear polarization element that regulates a linear polarization direction of a light beam received by the photoelectric conversion unit.
請求項22に記載の撮像装置において、
前記第1画素の直線偏光素子は、前記瞳分割偏光手段により分割された対の光束の内の第1光束を前記第1画素の光電変換部が受光するように直線偏光方向を規制し、
前記第2画素の直線偏光素子は、前記瞳分割偏光手段により分割された対の光束の内の第2光束を前記第2画素の光電変換部が受光するように直線偏光方向を規制することを特徴とする撮像装置。
The imaging device according to claim 22,
The linear polarization element of the first pixel regulates the linear polarization direction so that the photoelectric conversion unit of the first pixel receives the first light beam of the pair of light beams divided by the pupil division polarization unit,
The linear polarization element of the second pixel regulates the linear polarization direction so that the photoelectric conversion unit of the second pixel receives the second light beam of the pair of light beams divided by the pupil division polarization unit. An imaging device that is characterized.
請求項20に記載の撮像装置において、
前記第1画素は前記対の光束の内の右円偏光した第1光束を受光し、前記第2画素は前記対の光束の内の左円偏光した第2光束を受光することを特徴とする撮像装置。
The imaging device according to claim 20,
The first pixel receives a right circularly polarized first light beam of the pair of light beams, and the second pixel receives a left circularly polarized second light beam of the pair of light beams. Imaging device.
請求項24に記載の撮像装置において、
前記第1画素および前記第2画素には、光電変換部が受光する光束の円偏光方向を規制する偏光素子が一体的に備えられることを特徴とする撮像装置。
The imaging apparatus according to claim 24,
The imaging device, wherein the first pixel and the second pixel are integrally provided with a polarizing element that regulates a circular polarization direction of a light beam received by the photoelectric conversion unit.
請求項25に記載の撮像装置において、
前記偏光素子は、1/4波長板とその出射光を直線偏光に変調する直線偏光素子から構成されることを特徴とする撮像装置。
The imaging device according to claim 25,
The image pickup apparatus, wherein the polarizing element includes a ¼ wavelength plate and a linearly polarizing element that modulates the emitted light to linearly polarized light.
請求項25に記載の撮像装置において、
前記偏光素子は、右旋性のコレステリック液晶素子と左旋性のコレステリック液晶素子とから構成されることを特徴とする撮像装置。
The imaging device according to claim 25,
The imaging device, wherein the polarizing element includes a dextrorotatory cholesteric liquid crystal element and a levorotatory cholesteric liquid crystal element.
請求項27に記載の撮像装置において、
前記コレステリック液晶素子の円偏光変調特性を制御する制御部を備えることを特徴とする撮像装置。
The imaging device according to claim 27.
An imaging apparatus comprising: a control unit that controls circular polarization modulation characteristics of the cholesteric liquid crystal element.
請求項1に記載の撮像装置において、
前記撮像素子の各画素には、光電変換部が受光する光束の偏光特性を電気的に制御する第2偏光制御部が一体的に備えられることを特徴とする撮像装置。
The imaging apparatus according to claim 1,
2. An image pickup apparatus according to claim 1, wherein each pixel of the image pickup device is integrally provided with a second polarization control unit that electrically controls a polarization characteristic of a light beam received by the photoelectric conversion unit.
請求項29に記載の撮像装置において、
前記第2偏光制御部は、撮影状況に応じて偏光特性を制御することを特徴とする撮像装置。
The imaging device according to claim 29,
The image pickup apparatus, wherein the second polarization control unit controls a polarization characteristic according to a shooting situation.
請求項30に記載の撮像装置において、
前記第2偏光制御部は、撮影時には光電変換部が受光する光束の偏光状態を変化させないように制御することを特徴とする撮像装置。
The imaging device according to claim 30, wherein
The imaging apparatus according to claim 2, wherein the second polarization control unit controls the polarization state of the light beam received by the photoelectric conversion unit during imaging so as not to change.
請求項1に記載の撮像装置において、
前記撮像素子は、前記対の光束の一方を受光する第1画素と、前記対の光束の他方を受光する第2画素とが規則的に二次元状に配置されるとともに、第1画素群および第2画素群は異なる分光感度特性を有する複数種類の画素から構成されることを特徴とする撮像装置。
The imaging apparatus according to claim 1,
In the imaging device, a first pixel that receives one of the pair of light beams and a second pixel that receives the other of the pair of light beams are regularly arranged in a two-dimensional manner, and the first pixel group and The second pixel group is composed of a plurality of types of pixels having different spectral sensitivity characteristics.
請求項32に記載の撮像装置において、
前記第1画素群と前記第2画素群とが千鳥配置されることを特徴とする撮像装置。
The imaging device according to claim 32, wherein
An imaging apparatus, wherein the first pixel group and the second pixel group are arranged in a staggered manner.
請求項33に記載の撮像装置において、
前記第1画素群および前記第2画素群は、赤、緑、青に感度特性を有する画素がベイヤー配列されることを特徴とする撮像装置。
The imaging device according to claim 33.
In the imaging device, the first pixel group and the second pixel group include pixels having sensitivity characteristics of red, green, and blue in a Bayer array.
請求項1に記載の撮像装置において、
前記撮像素子の各画素は、光電変換部を前記撮影光学系の絞り開口近傍に投影するマイクロレンズを備えることを特徴とする撮像装置。
The imaging apparatus according to claim 1,
Each pixel of the image pickup device includes a microlens that projects a photoelectric conversion unit in the vicinity of an aperture opening of the photographing optical system.
請求項35に記載の撮像装置において、
前記各画素は対の光電変換部を備え、前記マイクロレンズにより前記対の光電変換部が前記対の光束を受光することを特徴とする撮像装置。
The imaging device according to claim 35,
Each of the pixels includes a pair of photoelectric conversion units, and the pair of photoelectric conversion units receives the pair of light beams by the microlens.
請求項1に記載の撮像装置において、
前記瞳分割偏光手段または前記撮影光学系の絞りの位置を検出する位置検出手段を備え、
前記対の光束を選択的に受光した画素の出力に基づいて像ズレ量を演算し、前記像ズレ量と前記位置検出手段で検出した位置に基づいて前記撮影光学系のデフォーカス量を検出する焦点検出手段を備えることを特徴とする撮像装置。
The imaging apparatus according to claim 1,
A position detection means for detecting the position of the iris of the pupil division polarization means or the photographing optical system;
An image shift amount is calculated based on an output of a pixel that selectively receives the pair of luminous fluxes, and a defocus amount of the photographing optical system is detected based on the image shift amount and a position detected by the position detecting unit. An imaging apparatus comprising a focus detection unit.
JP2006185583A 2006-07-05 2006-07-05 Imaging device Expired - Fee Related JP4857962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006185583A JP4857962B2 (en) 2006-07-05 2006-07-05 Imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006185583A JP4857962B2 (en) 2006-07-05 2006-07-05 Imaging device

Publications (2)

Publication Number Publication Date
JP2008015157A true JP2008015157A (en) 2008-01-24
JP4857962B2 JP4857962B2 (en) 2012-01-18

Family

ID=39072246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006185583A Expired - Fee Related JP4857962B2 (en) 2006-07-05 2006-07-05 Imaging device

Country Status (1)

Country Link
JP (1) JP4857962B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009157043A (en) * 2007-12-26 2009-07-16 Olympus Corp Imaging device and imaging equipment having the same
JP2009162847A (en) * 2007-12-28 2009-07-23 Nikon Corp Imaging apparatus
JP2009192605A (en) * 2008-02-12 2009-08-27 Sony Corp Imaging device and imaging apparatus
WO2010131436A1 (en) * 2009-05-15 2010-11-18 株式会社ニコン Distance measuring device and image pickup device
JP2012003080A (en) * 2010-06-17 2012-01-05 Olympus Corp Imaging apparatus
JP2012027393A (en) * 2010-07-27 2012-02-09 Olympus Corp Image pickup apparatus
JP2012042863A (en) * 2010-08-23 2012-03-01 Olympus Corp Imaging device
WO2012077301A1 (en) * 2010-12-10 2012-06-14 Canon Kabushiki Kaisha Image capturing apparatus and control method thereof
US8223256B2 (en) 2008-04-11 2012-07-17 Nikon Corporation Correlation calculation method, correlation calculation device, focus detection device and image-capturing apparatus
JP2012247645A (en) * 2011-05-27 2012-12-13 Fujifilm Corp Imaging apparatus
WO2013114890A1 (en) * 2012-02-03 2013-08-08 パナソニック株式会社 Image pick-up device and distance measuring device
WO2013114888A1 (en) * 2012-02-02 2013-08-08 パナソニック株式会社 Imaging device
WO2014020791A1 (en) * 2012-08-02 2014-02-06 パナソニック株式会社 Polarized color imaging device
JP2014161014A (en) * 2011-03-07 2014-09-04 Panasonic Corp Imaging apparatus and range finder
JP5611469B2 (en) * 2011-09-09 2014-10-22 富士フイルム株式会社 Stereoscopic imaging apparatus and method
WO2015015717A1 (en) * 2013-07-30 2015-02-05 パナソニックIpマネジメント株式会社 Imaging device and imaging system, electronic mirroring system, and distance measurement device using same
JP2017162985A (en) * 2016-03-09 2017-09-14 キヤノン株式会社 Imaging apparatus
WO2020085149A1 (en) * 2018-10-22 2020-04-30 富士フイルム株式会社 Image capturing device, and image capturing method
WO2020202876A1 (en) * 2019-03-29 2020-10-08 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging element and imaging device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05249412A (en) * 1991-12-05 1993-09-28 Eastman Kodak Co Focusing detecting device
JP2003244712A (en) * 2002-02-19 2003-08-29 Canon Inc Imaging apparatus and system
JP2005148655A (en) * 2003-11-19 2005-06-09 Sony Corp Image display device
JP2006106435A (en) * 2004-10-06 2006-04-20 Canon Inc Optical device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05249412A (en) * 1991-12-05 1993-09-28 Eastman Kodak Co Focusing detecting device
JP2003244712A (en) * 2002-02-19 2003-08-29 Canon Inc Imaging apparatus and system
JP2005148655A (en) * 2003-11-19 2005-06-09 Sony Corp Image display device
JP2006106435A (en) * 2004-10-06 2006-04-20 Canon Inc Optical device

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009157043A (en) * 2007-12-26 2009-07-16 Olympus Corp Imaging device and imaging equipment having the same
JP2009162847A (en) * 2007-12-28 2009-07-23 Nikon Corp Imaging apparatus
JP2009192605A (en) * 2008-02-12 2009-08-27 Sony Corp Imaging device and imaging apparatus
US8223256B2 (en) 2008-04-11 2012-07-17 Nikon Corporation Correlation calculation method, correlation calculation device, focus detection device and image-capturing apparatus
WO2010131436A1 (en) * 2009-05-15 2010-11-18 株式会社ニコン Distance measuring device and image pickup device
JP2010286828A (en) * 2009-05-15 2010-12-24 Nikon Corp Distance measuring device and image capturing apparatus
US8773645B2 (en) 2009-05-15 2014-07-08 Nikon Corporation Distance measuring device and imaging device
CN102422216A (en) * 2009-05-15 2012-04-18 株式会社尼康 Distance measuring device and image pickup device
JP2012003080A (en) * 2010-06-17 2012-01-05 Olympus Corp Imaging apparatus
US8749696B2 (en) 2010-06-17 2014-06-10 Olympus Corporation Image pickup apparatus having an exit pupil with divided areas
JP2012027393A (en) * 2010-07-27 2012-02-09 Olympus Corp Image pickup apparatus
JP2012042863A (en) * 2010-08-23 2012-03-01 Olympus Corp Imaging device
JP2012123317A (en) * 2010-12-10 2012-06-28 Canon Inc Imaging apparatus and control method thereof
US9049365B2 (en) 2010-12-10 2015-06-02 Canon Kabushiki Kaisha Image capturing apparatus and control method thereof
WO2012077301A1 (en) * 2010-12-10 2012-06-14 Canon Kabushiki Kaisha Image capturing apparatus and control method thereof
JP2014161014A (en) * 2011-03-07 2014-09-04 Panasonic Corp Imaging apparatus and range finder
JP2012247645A (en) * 2011-05-27 2012-12-13 Fujifilm Corp Imaging apparatus
JP5611469B2 (en) * 2011-09-09 2014-10-22 富士フイルム株式会社 Stereoscopic imaging apparatus and method
JPWO2013035427A1 (en) * 2011-09-09 2015-03-23 富士フイルム株式会社 Stereoscopic imaging apparatus and method
WO2013114888A1 (en) * 2012-02-02 2013-08-08 パナソニック株式会社 Imaging device
US10247866B2 (en) 2012-02-02 2019-04-02 Panasonic Intellectual Property Management Co., Ltd. Imaging device
JPWO2013114888A1 (en) * 2012-02-02 2015-05-11 パナソニックIpマネジメント株式会社 Imaging device
WO2013114890A1 (en) * 2012-02-03 2013-08-08 パナソニック株式会社 Image pick-up device and distance measuring device
JPWO2013114890A1 (en) * 2012-02-03 2015-05-11 パナソニックIpマネジメント株式会社 Imaging device and distance measuring device
JPWO2014020791A1 (en) * 2012-08-02 2016-07-21 パナソニックIpマネジメント株式会社 Polarized color imaging device
US9118796B2 (en) 2012-08-02 2015-08-25 Panasonic Intellectual Property Management Co., Ltd. Polarization color image capture device
WO2014020791A1 (en) * 2012-08-02 2014-02-06 パナソニック株式会社 Polarized color imaging device
JPWO2015015717A1 (en) * 2013-07-30 2017-03-02 パナソニックIpマネジメント株式会社 IMAGING DEVICE, IMAGING SYSTEM USING THE SAME, ELECTRONIC MIRROR SYSTEM, AND RANGING DEVICE
WO2015015717A1 (en) * 2013-07-30 2015-02-05 パナソニックIpマネジメント株式会社 Imaging device and imaging system, electronic mirroring system, and distance measurement device using same
US10310219B2 (en) 2013-07-30 2019-06-04 Panasonic Intellectual Property Management Co., Ltd. Imaging apparatus, imaging system that includes imaging apparatus, electron mirror system that includes imaging apparatus, and ranging apparatus that includes imaging apparatus
US10606031B2 (en) 2013-07-30 2020-03-31 Panasonic Intellectual Property Management Co., Ltd. Imaging apparatus, imaging system that includes imaging apparatus, electron mirror system that includes imaging apparatus, and ranging apparatus that includes imaging apparatus
JP2017162985A (en) * 2016-03-09 2017-09-14 キヤノン株式会社 Imaging apparatus
WO2020085149A1 (en) * 2018-10-22 2020-04-30 富士フイルム株式会社 Image capturing device, and image capturing method
US20210235006A1 (en) * 2018-10-22 2021-07-29 Fujifilm Corporation Imaging device and imaging method
JPWO2020085149A1 (en) * 2018-10-22 2021-09-16 富士フイルム株式会社 Imaging device and imaging method
WO2020202876A1 (en) * 2019-03-29 2020-10-08 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging element and imaging device

Also Published As

Publication number Publication date
JP4857962B2 (en) 2012-01-18

Similar Documents

Publication Publication Date Title
JP4857962B2 (en) Imaging device
JP5320735B2 (en) Imaging device
EP1653257B1 (en) Image capturing apparatus
US8749696B2 (en) Image pickup apparatus having an exit pupil with divided areas
JP5451111B2 (en) Focus detection apparatus and imaging apparatus having the same
US9100639B2 (en) Light field imaging device and image processing device
JP5045007B2 (en) Imaging device
US8369700B2 (en) Distance measurement and photometry device, and imaging apparatus
EP1720045A1 (en) Optical device and beam splitter
JP4826507B2 (en) Focus detection apparatus and imaging apparatus
JP4983271B2 (en) Imaging device
JP4858179B2 (en) Focus detection apparatus and imaging apparatus
JP2010212649A (en) Image sensor
JP2012008370A (en) Imaging device and interchangeable lens
JP6730881B2 (en) Imaging unit and imaging device
JPH11223761A (en) Camera with focus detector
JP7387265B2 (en) Imaging element, imaging device, control method, and program
JP7286452B2 (en) Imaging element and imaging device
JPH10164413A (en) Image-pickup device
JP2009151155A (en) Focus detecting device, focus adjusting device and imaging apparatus
JP2012027393A (en) Image pickup apparatus
JP4186243B2 (en) Camera with focus detection device
JP4106725B2 (en) Focus detection device and camera with focus detection device
JP2008242474A (en) Focus detection method
JP2013156379A (en) Light separation unit and imaging unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110818

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111017

R150 Certificate of patent or registration of utility model

Ref document number: 4857962

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees