JP2008014691A - Stereo image measuring method and instrument for executing the same - Google Patents

Stereo image measuring method and instrument for executing the same Download PDF

Info

Publication number
JP2008014691A
JP2008014691A JP2006184076A JP2006184076A JP2008014691A JP 2008014691 A JP2008014691 A JP 2008014691A JP 2006184076 A JP2006184076 A JP 2006184076A JP 2006184076 A JP2006184076 A JP 2006184076A JP 2008014691 A JP2008014691 A JP 2008014691A
Authority
JP
Japan
Prior art keywords
model
measurement
stereo
point cloud
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006184076A
Other languages
Japanese (ja)
Inventor
Fuyuto Terui
冬人 照井
Shinichiro Nishida
信一郎 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aerospace Exploration Agency JAXA
Original Assignee
Japan Aerospace Exploration Agency JAXA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aerospace Exploration Agency JAXA filed Critical Japan Aerospace Exploration Agency JAXA
Priority to JP2006184076A priority Critical patent/JP2008014691A/en
Publication of JP2008014691A publication Critical patent/JP2008014691A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem that there is a limit to accuracy and reliability in cases where a model is used while taking account of a point group of the entire shape of a measuring object satellite as a point group model used for an ICP, by a method based on a combination of stereo processing and an ICP algorithm which is one method in 3D model matching among point groups. <P>SOLUTION: The stereo image measuring method includes: a step of finding the three-dimensional shape of a measuring object in the form of measured point groups by stereo-processing images in a plurality of cameras; a step of presupposing a visible part from known shape information on the measuring object, the relative position of a stereo camera, and its posture; a step of determining a model point group conformed to the spatial density of the point groups by using only shape information on the presupposed visible part; and a step of matching the measured point groups to the model point group by using the ICP algorithm to employ a position and posture corresponding to a model group whose evaluation function is the smallest as the result of measurement. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は複数台のカメラによるステレオ視とICP(Iterative Closest Point)アルゴリズムを組み合わせ、被計測物体の位置・姿勢を精度良く計測する画像計測方法とそれを実施する装置に関する。   The present invention relates to an image measurement method for accurately measuring the position / orientation of an object to be measured, and an apparatus for implementing the same, by combining stereo vision by a plurality of cameras and an ICP (Iterative Closest Point) algorithm.

宇宙空間に浮遊する故障衛星の捕獲、回収・投棄作業を行う「デブリ・リムーバ」と呼ばれる宇宙機の開発に必要な要素技術の一つとして、捕獲対象の運動(宇宙機との相対位置・姿勢)を宇宙機で取得したカメラ画像を処理することにより計測・推定する技術が必要とされている。その手法として今般ステレオ視とICP(Iterative Closest Point)アルゴリズムを組み合わせ、位置姿勢関係が分かっている複数台のカメラ、演算処理装置、記憶装置から構成される画像計測装置を開発したものである。ICPアルゴリズムとは対象物の完全な形状(モデル点群)が分かっている条件下で、その対象物の部分形状情報が別に得られたとき、その部分形状(計測点群)と既知のモデル点群との位置関係(座標変換)を推定するための手法として開発されたものである。そのアルゴリズムでは、当初両点群(計測点群とモデル点群)間の相対位置関係を一旦推定される座標変換を用いて設定、両点群の各点間の対応関係を「最も距離が近い」という規範に従って構築し、各対応点毎の差を集計して最小となる適正座標変換を繰り返し計算で求める。このサンプル点群の座標変換は3×3の回転行列,3×1の平行移動ベクトルに基づいてなされる。   As one of the elemental technologies necessary for the development of a spacecraft called `` Debris Remover '' that captures, collects, and dumps fault satellites floating in outer space, the movement of the capture target (relative position and attitude relative to the spacecraft) ) Is required to measure and estimate by processing camera images acquired by spacecraft. As a method for this, we have developed an image measurement device composed of a plurality of cameras, arithmetic processing devices, and storage devices that are known to have a positional orientation relationship by combining stereo vision and an ICP (Iterative Closest Point) algorithm. The ICP algorithm is a condition where the complete shape (model point cloud) of an object is known, and when the partial shape information of the object is obtained separately, the partial shape (measurement point cloud) and a known model point It was developed as a method for estimating the positional relationship (coordinate transformation) with the group. In that algorithm, the relative position relationship between the two point groups (measurement point group and model point group) is initially set using a coordinate transformation that is once estimated, and the correspondence between the points of both point groups is set to “the closest distance”. "Is constructed in accordance with the norm", and the difference between each corresponding point is aggregated to obtain the minimum appropriate coordinate transformation by repeated calculation. The coordinate conversion of the sample point group is performed based on a 3 × 3 rotation matrix and a 3 × 1 translation vector.

このICPアルゴリズムを適用したものとして、特許文献1には、乱雑に積まれた物体をビンピッキングするロボットの画像処理方法が提示されている。この発明は対象物体の位置姿勢を推定する過程で存在する評価関数の極小値を回避し、対象物体の3次元的な位置姿勢を正確に推定して乱雑に積まれた物体を安定に把持することを目的とし、特に、領域分割等の複雑な前処理を省略し、処理の高速化,効率化を図るものである。そのために、前処理として画像の雑音除去を行い、把持可能領域を探索する。この情報をもとにICPアルゴリズムを適用するモデルの初期位置姿勢値を決定し、モデル全体の位置姿勢を推定する。収束した評価関数がある閾値より小さければ、対象物体に対して他の物体との重なりをチェックし、把持可能と判断された物体について推定された位置姿勢にロボットを移動させ、ハンドリングするようにしたものである。
また、特許文献2に示された「情報処理方法および情報処理装置」は 形状・大きさが同一である現実モデルと仮想モデルとについて、両者の位置・姿勢を正確に一致させるように、仮想モデルの位置・姿勢を簡便に調整することを目的としたもので、この発明は現実物体に合成された仮想物体の位置姿勢を調整する情報処理方法であって、仮想物体に設定された仮想指標の位置情報を取得し、仮想指標の位置をユーザに報知し、ユーザによって操作される指示部の位置情報に基づき、前記仮想指標に対応する現実物体上の現実指標の位置情報を取得し、前記仮想指標の位置情報と前記現実指標の位置情報とに基づき、前記仮想物体の位置姿勢情報を設定するというものである。
しかし、これらの発明はICPアルゴリズムを利用したものではあるが、ステレオ画像の計測点を用いたものではない。
特開平9−277184号公報 「画像処理方法」 平成9年10月28日公開 特開2006−48639号公報 「情報処理方法および情報処理装置」 平成18年2月16日公開 照井冬人、上村平八郎、西田信一郎 “Terrstrial experiments for the motion estimation of a large space debris object using image data” Conference of Optics East 2005 ; 23-26 October 2005 Boston Marriott Copley Place
As an example to which this ICP algorithm is applied, Patent Document 1 proposes a robot image processing method for bin-picking objects randomly stacked. The present invention avoids the minimum value of the evaluation function that exists in the process of estimating the position and orientation of the target object, accurately estimates the three-dimensional position and orientation of the target object, and stably grasps objects that are randomly stacked. For this purpose, in particular, complicated pre-processing such as area division is omitted, and the processing speed and efficiency are improved. For this purpose, image denoising is performed as preprocessing, and a grippable area is searched. Based on this information, the initial position and orientation value of the model to which the ICP algorithm is applied is determined, and the position and orientation of the entire model is estimated. If the converged evaluation function is smaller than a certain threshold, the target object is checked for overlap with other objects, and the robot is moved to the estimated position and orientation for the object that is determined to be gripped and handled. Is.
In addition, the “information processing method and information processing apparatus” disclosed in Patent Document 2 uses a virtual model so that the position and orientation of a real model and a virtual model having the same shape and size can be accurately matched. The present invention is an information processing method for adjusting the position and orientation of a virtual object synthesized with a real object, and includes a virtual index set for the virtual object. Acquiring position information, informing the user of the position of the virtual index, acquiring position information of a real index on a real object corresponding to the virtual index based on position information of an instruction unit operated by the user, and The position / orientation information of the virtual object is set based on the position information of the index and the position information of the real index.
However, these inventions use the ICP algorithm, but do not use stereo image measurement points.
Japanese Patent Laid-Open No. 9-277184 “Image Processing Method” Published on October 28, 1997 JP, 2006-48639, A "Information processing method and information processing apparatus" Published on February 16, 2006 Futeru Terui, Heihachiro Uemura, Shinichiro Nishida “Terrstrial experiments for the motion estimation of a large space debris object using image data” Conference of Optics East 2005; 23-26 October 2005 Boston Marriott Copley Place

我々が開発した計測対象の位置・姿勢を把握するための画像計測手法は、基本的に計測対象の3次元形状を複数台のカメラ画像を用いてステレオ処理して点群の形で求め、その計測点群と計測対象の既知の形状情報から割り出したモデル点群間をICPアルゴリズムを用いてマッチングさせるもの、すなわち、本発明のステレオ画像計測装置は、従来のステレオ画像計測手法と、部分形状と既知のモデル点群との位置関係を推定するための手法であるICPアルゴリズムとの組み合わせによる計測方法を提示するものである。本発明者らは非特許文献1に「大型スペースデブリに対する画像情報に基づく運動推定」を開示した。これは宇宙ロボットなどが故障衛星等の大型スペースデブリを捕捉するようなミッションの際に必要となる要素術の一つとして、姿勢運動を行う非協力の対象の運動を画像から計測する手法を提案したもので、エリア・べースト・ステレオ・ビジョンと、点群間の三次元モデルマッチングの手法の一つであるICPアルゴリズムの組み合わせによって、時系列画像から対象の姿勢運動を推定する手法を提案し、地上装置より得られた画像を用いた解析を行った結果を示したものである。しかし、その解析過程でICPに用いるモデル点群として計測対象衛星の全形状を考慮したモデルを用いた場合に、マッチングの誤差が大きくなることがあると共に、時には真値とは全く異なる結果を出すこともあるなど信頼性にも限界があるという問題が生じた。また、モデル点群の空間密度を単純な等間隔のものにした場合、ステレオ視から得られる計測点群は必ずしも空間的に等間隔のものではないという理由から、3次元モデルマッチングにおける精度が低くなるという問題が生じた。   The image measurement technique we have developed for grasping the position and orientation of the measurement object is basically a three-dimensional shape of the measurement object obtained by stereo processing using multiple camera images, in the form of a point cloud. A model point cloud determined from a measurement point cloud and a known shape information of a measurement target is matched using an ICP algorithm, that is, a stereo image measurement device according to the present invention includes a conventional stereo image measurement technique, a partial shape, A measurement method based on a combination with an ICP algorithm, which is a method for estimating a positional relationship with a known model point group, is presented. The present inventors disclosed Non-Patent Document 1 “motion estimation based on image information for large space debris”. This is a technique to measure the motion of non-cooperating objects that perform posture motion from images as one of the necessary techniques for missions where space robots capture large space debris such as broken satellites. Therefore, we proposed a method to estimate the posture motion of a target from a time-series image using a combination of area / best / stereo / vision and ICP algorithm, which is one of 3D model matching methods between point clouds. The result of having performed the analysis using the image obtained from the ground device is shown. However, when a model that takes into account the entire shape of the measurement target satellite is used as a model point group used for ICP in the analysis process, matching errors may increase, and sometimes the results are completely different from true values. There was a problem that reliability was limited. In addition, when the spatial density of the model point group is set to a simple equidistant interval, the accuracy in the three-dimensional model matching is low because the measurement point group obtained from stereo vision is not necessarily spatially equidistant. The problem of becoming.

本発明の課題は、上記の問題を解決すること、すなわち、ステレオ処理と点群間の3Dモデルマッチングにおける一手法であるICPアルゴリズムの組み合わせによる方法で、ICPに用いる点群モデルに計測対象衛星の全形状の点群を考慮したモデルを用いた場合の精度・信頼性に限界があるという問題を解決することにある。
また、モデル点群の密度を単純な空間的に等間隔のものにした場合、ステレオ視から得られる計測点群は必ずしも等間隔のものではないために、3次元モデルマッチングにおける精度に限界が低くなるという問題を解決することにある。
An object of the present invention is to solve the above problems, that is, a method based on a combination of stereo processing and 3D model matching between point groups, which is an ICP algorithm. The object is to solve the problem that there is a limit to the accuracy and reliability when using a model that takes into consideration point clouds of all shapes.
In addition, when the density of the model point cloud is simply spatially spaced, the measurement point cloud obtained from stereo vision is not necessarily evenly spaced, so the limit in accuracy in 3D model matching is low. Is to solve the problem of becoming.

本発明のステレオ画像計測方法は、計測対象の3次元形状を複数台のカメラ画像をステレオ処理して計測点群の形で求めるステップと、計測対象の既知の形状情報とステレオカメラの相対位置・姿勢とから可視部を予測するステップと、該予測した可視部の形状情報のみを用い前記計測点群の空間密度に合わせたモデル点群を決定するステップと、前記計測点群とモデル点群の間でICPアルゴリズムを用いてマッチングさせ、最も評価関数が小さなモデル群に対応する位置・姿勢を計測結果として採用するステップとを踏むようにした。
また、本発明のステレオ画像計測方法は、上記の計測点群の空間密度に合わせたモデル点群が、計測対象の既知の形状情報から三次元モデルを仮想作成し、該仮想モデルと各撮像素子からカメラ中心を通る視線との交点を演算してモデル点群の点とするものとした。
本発明のステレオ画像計測装置は、複数台のカメラと、該カメラの撮像画像を演算処理する手段と、記憶手段とを備えたものであって、前記演算手段は複数台のカメラ画像をステレオ処理して計測点群の形で求める機能と、既知の形状情報からステレオカメラの相対位置・姿勢から可視部を予測する機能と、該予測した可視部の形状情報のみを用い前記計測点群の空間密度に合わせたモデル点群を抽出する機能と、前記計測点群とモデル点群の間でICPアルゴリズムを用いてマッチングさせ、最も評価関数が小さなモデル群に対応する位置・姿勢を計測結果として採用する機能を備えるものとした。
The stereo image measurement method of the present invention includes a step of obtaining a three-dimensional shape of a measurement target in the form of a measurement point group by stereo processing of a plurality of camera images, a known shape information of the measurement target, and a relative position of the stereo camera. A step of predicting a visible portion from the posture, a step of determining a model point cloud according to the spatial density of the measurement point cloud using only the shape information of the predicted visible portion, and the measurement point cloud and the model point cloud The ICP algorithm is used for matching, and the step of adopting the position / orientation corresponding to the model group having the smallest evaluation function as the measurement result is taken.
Further, in the stereo image measurement method of the present invention, the model point group matching the spatial density of the measurement point group virtually creates a three-dimensional model from the known shape information of the measurement target, and the virtual model and each image sensor The point of intersection with the line of sight that passes through the center of the camera is calculated as a point of the model point group.
The stereo image measuring apparatus according to the present invention includes a plurality of cameras, a means for arithmetically processing the captured images of the cameras, and a storage means, and the arithmetic means stereo-processes the plurality of camera images. And a function for predicting the visible part from the relative position and orientation of the stereo camera from the known shape information, and the space of the measurement point group using only the predicted shape information of the visible part. A model point cloud that matches the density, and the measurement point cloud and model point cloud are matched using the ICP algorithm, and the position / orientation corresponding to the model cloud with the smallest evaluation function is used as the measurement result. It was supposed to have the function to do.

本発明のステレオ画像計測方法は、計測対象の既知の形状情報とステレオカメラの相対位置・姿勢とから可視部を予測し、該予測した可視部の形状情報のみを用い前記計測点群の空間密度に合わせたモデル点群を決定してICPに用いるので、計測対象衛星の全形状の点群を考慮したモデルを用いた場合に比べ、ステレオ処理とICPアルゴリズムの組み合わせによる方法の計測精度・信頼性が向上する。
また、本発明のステレオ画像計測方法は、上記の計測点群の空間密度に合わせたモデル点群が、計測対象の既知の形状情報から三次元モデルを仮想作成し、該仮想モデルと各撮像素子からカメラ中心を通る視線との交点を演算してモデル点群の点とするものとしたので、従来のモデル点群の密度を単純な空間的に等間隔のものにした場合に比べ実際的であり三次元モデルマッチングにおける精度が向上する。
また、本発明のステレオ画像計測装置は、複数台のカメラと、該カメラの撮像画像を演算処理する手段と、記憶手段とを備えたものであって、前記演算手段は複数台のカメラ画像をステレオ処理して計測点群の形で求める機能と、既知の形状情報からステレオカメラの相対位置・姿勢から可視部を予測する機能と、該予測した可視部の形状情報のみを用い前記計測点群の空間密度に合わせたモデル点群を抽出する機能と、前記計測点群とモデル点群の間でICPアルゴリズムを用いてマッチングさせ、最も評価関数が小さなモデル群に対応する位置・姿勢を計測結果として採用する機能を備えるものとしたので、上記のような精度・信頼性の高い計測対象の位置・姿勢計測方法を実施することができる。
The stereo image measurement method of the present invention predicts the visible part from the known shape information of the measurement target and the relative position / orientation of the stereo camera, and uses only the predicted shape information of the visible part, and the spatial density of the measurement point group Since the model point cloud matched to the model is determined and used for ICP, the measurement accuracy and reliability of the method based on the combination of stereo processing and the ICP algorithm is compared to the case of using a model that considers the point cloud of the entire shape of the measurement target satellite Will improve.
Further, in the stereo image measurement method of the present invention, the model point group matching the spatial density of the measurement point group virtually creates a three-dimensional model from the known shape information of the measurement target, and the virtual model and each image sensor Since the point of intersection with the line of sight that passes through the camera center is calculated as the point of the model point cloud, it is more practical than when the density of the conventional model point cloud is simply spatially spaced. Yes, accuracy in 3D model matching is improved.
The stereo image measuring apparatus of the present invention comprises a plurality of cameras, a means for calculating the captured image of the cameras, and a storage means, wherein the calculating means takes a plurality of camera images. A function for obtaining a measurement point cloud by performing stereo processing, a function for predicting a visible part from a relative position / posture of a stereo camera from known shape information, and the measurement point group using only the predicted shape information of the visible part A function to extract a model point cloud according to the spatial density of the image, and matching between the measurement point group and the model point group using an ICP algorithm, and the position / orientation corresponding to the model group having the smallest evaluation function Therefore, it is possible to implement the position / posture measurement method of the measurement object with high accuracy and reliability as described above.

図1は本発明のステレオ画像計測手法を説明するフローチャートである。図中ステップ1は複数台のカメラで計測対象を撮影する。ステップ2で計測対象の3次元形状を複数台のカメラ画像をステレオ処理して計測点群の形で求めると共に記憶手段に記憶するステップであり、ステップ3は計測対象の既知の形状情報とステレオカメラの相対位置・姿勢とから可視部を予測するステップ、ステップ4は該予測した可視部の形状情報のみを用い前記計測点群の空間密度に合わせたモデル点群を決定するステップ、ステップ5は前記計測点群とモデル点群の間でICPアルゴリズムを用いてマッチングさせ、最も評価関数が小さなモデル群に対応する位置・姿勢を計測結果として採用するステップである。   FIG. 1 is a flowchart for explaining the stereo image measurement method of the present invention. In step 1 in the figure, a measurement target is photographed by a plurality of cameras. In step 2, the three-dimensional shape of the measurement target is stereo-processed from a plurality of camera images and obtained in the form of measurement point groups, and stored in the storage means. Step 3 includes the known shape information of the measurement target and the stereo camera. A step of predicting a visible portion from the relative position / posture of step 4, step 4 is a step of determining a model point cloud according to the spatial density of the measurement point cloud using only the shape information of the predicted visible portion, and step 5 is the step of In this step, the measurement point group and the model point group are matched using the ICP algorithm, and the position / orientation corresponding to the model group having the smallest evaluation function is employed as the measurement result.

本発明の最大の特徴点はICPに用いるモデル点群に計測対象衛星の全形状の点群を用いるのではなく、計測対象とステレオカメラの相対位置・姿勢から可視部(フロント・サーフェス)を予測し、その可視部だけのモデル点群をICPに用いることによって精度の向上を図るようにした点にある。そして計測対象と複数のカメラ間の相対位置・姿勢の推定のプロセスにおいて計測対象が如何なる姿勢をとるか予測の付かない場合には、事前に、形状が分かっている計測対象について可視部(フロント・サーフェス)が異なる複数の位置・姿勢に対応するモデル点群の組を作成し記憶装置に保存しておくと作業効率がよくなる。しかし、計測点群が計測対象である宇宙空間に浮遊する人工衛星の姿勢運動に応じて時系列として得られる場合には、計測した姿勢の時系列データから未来の位置・姿勢を予測することができるので、その位置・姿勢に対応するモデル点群をICPに用いることが可能なため、前述のモデル点群の組は必ずしも必要としない。   The largest feature point of the present invention is not to use the point cloud of the entire shape of the measurement target satellite for the model point group used for ICP, but to predict the visible part (front surface) from the relative position and orientation of the measurement target and the stereo camera. However, the accuracy is improved by using the model point group of only the visible part in the ICP. If the process of estimating the relative position and orientation between the measurement target and multiple cameras cannot predict what orientation the measurement target will take, the visible part (front If a set of model point groups corresponding to a plurality of positions / postures having different surfaces is created and stored in a storage device, the work efficiency is improved. However, when the measurement point cloud is obtained as a time series according to the attitude movement of the satellite floating in the outer space to be measured, it is possible to predict the future position and attitude from the time series data of the measured attitude. Since the model point group corresponding to the position / orientation can be used for ICP, the set of model point groups described above is not necessarily required.

図2はカメラを2台用いて計測対象を撮影した場合のステレオ視により得られる計測3次元点群の例を模式的に示したものである。ここでは簡単のために計測対象の形状を箱型と仮定している。計測点群は2台のカメラから見える部分のみの3次元位置を表す点の集合となり、カメラの撮像素子の各ピクセルに対して1点が対応する。
図3は既知の計測対象の形状・模様情報(CADデータ)に基づく三次元全形状モデルから可視部(フロント・サーフェス)上のモデル点群を求める方法を模式的に示したものである。撮像素子の各ピクセルからカメラ中心を通る視線とこの全形状モデル面の交点を演算して決めた点の集合をモデル点群とする。このような点群の決め方を採用したことにより、点群間の分布が等間隔ではなくなり、図2の計測点群の空間密度に合わせたモデル点群とすることができる。
FIG. 2 schematically shows an example of a measurement three-dimensional point group obtained by stereo viewing when a measurement object is photographed using two cameras. Here, for the sake of simplicity, the shape of the measurement target is assumed to be a box shape. The measurement point group is a set of points representing the three-dimensional position of only the part visible from the two cameras, and one point corresponds to each pixel of the image sensor of the camera.
FIG. 3 schematically shows a method for obtaining a model point group on the visible portion (front surface) from a three-dimensional full shape model based on known shape / pattern information (CAD data) of a measurement target. A set of points determined by calculating the intersection of the line of sight passing through the center of the camera from each pixel of the image sensor and the entire shape model plane is defined as a model point group. By adopting such a method for determining the point group, the distribution between the point groups is not evenly spaced, and a model point group that matches the spatial density of the measurement point group in FIG. 2 can be obtained.

図4に本発明のステレオ画像計測装置の基本構成図を示す。複数台のカメラ1a,1b‥‥が演算手段2と記憶手段3を備えたパソコンPCに接続され、画像データは記憶手段(HDD等)3に蓄積されたプログラムに従って演算処理手段2で処理される。記憶手段3には本発明の計測方法を実行するプログラムの他、計測対象の形状・模様情報(CADデータ)と、演算結果としての計測点群情報と、モデル点群の組を保存する。まず、複数台のカメラで撮影した計測対象の画像は前記のプログラムに従って演算手段2によりステレオ処理して該計測対象の3次元形状を計測点群の形で求め、記憶手段3に蓄積する。続いて前記記憶手段3に蓄積された計測対象の形状・模様情報とこの際のステレオカメラの相対位置・姿勢情報とから演算手段2がプログラムに従って可視部を予測する。さらに、演算手段2では計測対象の既知の形状情報に基づき該予測した可視部のみの三次元モデルを仮想作成し、該仮想モデルの外面と撮像素子4の各ピクセル4iからカメラ中心5を通る視線との交点Miを演算して求めた前記計測点群の空間密度に合わせたモデル点群ΣMiを決定し、このモデル点群情報を記憶手段に蓄積する。そして、演算手段は前記計測点群とモデル点群の間でICPアルゴリズムを用いてマッチングさせ、最も評価関数が小さなモデル群を特定し、当該モデル群に対応する位置・姿勢を計測結果として採用する。   FIG. 4 shows a basic configuration diagram of the stereo image measuring apparatus of the present invention. A plurality of cameras 1a, 1b,... Are connected to a personal computer PC provided with calculation means 2 and storage means 3, and image data is processed by calculation processing means 2 according to a program stored in storage means (HDD or the like) 3. . In addition to the program for executing the measurement method of the present invention, the storage means 3 stores a set of shape / pattern information (CAD data) to be measured, measurement point group information as a calculation result, and model point group. First, images of the measurement target photographed by a plurality of cameras are stereo-processed by the calculation means 2 according to the program described above, and a three-dimensional shape of the measurement target is obtained in the form of a measurement point group and stored in the storage means 3. Subsequently, the calculation means 2 predicts the visible portion according to the program from the shape / pattern information of the measurement object stored in the storage means 3 and the relative position / posture information of the stereo camera at this time. Further, the computing means 2 virtually creates a three-dimensional model of only the predicted visible portion based on the known shape information of the measurement target, and the line of sight passing through the camera center 5 from the outer surface of the virtual model and each pixel 4 i of the image sensor 4. The model point group ΣMi is determined in accordance with the spatial density of the measurement point group obtained by calculating the intersection point Mi with, and this model point group information is stored in the storage means. Then, the arithmetic means matches between the measurement point group and the model point group using an ICP algorithm, specifies the model group having the smallest evaluation function, and adopts the position / orientation corresponding to the model group as the measurement result. .

本発明は宇宙空間に浮遊する故障衛星の捕獲、回収・投棄作業を行う「デブリ・リムーバ」と呼ばれる宇宙機の開発に必要な要素技術の一つとして、開発されたものであるが、本発明は宇宙の分野に限らず、その形状に関するデータが既知である物体との相対位置・姿勢の計測に広く利用することができる。   The present invention was developed as one of the elemental technologies necessary for the development of a spacecraft called “debris remover” that performs the capture, recovery, and dumping operations of a failed satellite floating in space. Is not limited to the field of space, and can be widely used for measuring the relative position and orientation with an object whose shape data is known.

本発明のステレオ画像計測手法を説明するフローチャートである。It is a flowchart explaining the stereo image measuring method of this invention. カメラを2台用いて計測対象を撮影した場合のステレオ視により得られる計測3次元点群の例を模式的に示した図である。It is the figure which showed typically the example of the measurement three-dimensional point group obtained by the stereo vision at the time of imaging | photography the measurement object using two cameras. 既知の計測対象の形状・模様情報に基づく三次元全形状モデルから可視部上のモデル点群を求める方法を模式的に示した図である。It is the figure which showed typically the method of calculating | requiring the model point group on a visible part from the three-dimensional all shape model based on the shape and pattern information of a known measurement object. 本発明のステレオ画像計測装置の基本構成図を示す図である。It is a figure which shows the basic block diagram of the stereo image measuring device of this invention.

符号の説明Explanation of symbols

1a,1b‥‥ ステレオカメラ PC パソコン
2 演算手段 3 記憶手段
4 撮像素子 4i 各ピクセル
5 光学中心 O 計測対象
ΣS 計測点群 ΣM モデル点群
1a, 1b ... Stereo camera PC Personal computer 2 Calculation means 3 Storage means 4 Image sensor 4i Each pixel 5 Optical center O Measurement object ΣS Measurement point group ΣM Model point group

Claims (3)

計測対象の3次元形状を複数台のカメラ画像をステレオ処理して計測点群の形で求めるステップと、計測対象の既知の形状情報とステレオカメラの相対位置・姿勢とから可視部を予測するステップと、該予測した可視部の形状情報のみを用い前記計測点群の空間密度に合わせたモデル点群を決定するステップと、前記計測点群とモデル点群の間でICPアルゴリズムを用いてマッチングさせ、最も評価関数が小さなモデル群に対応する位置・姿勢を計測結果として採用するステップとを踏むステレオ画像位置計測方法。   A step of obtaining a three-dimensional shape of a measurement target in the form of a measurement point group by stereo processing of a plurality of camera images, and a step of predicting a visible portion from the known shape information of the measurement target and the relative position and orientation of the stereo camera Determining a model point cloud that matches the spatial density of the measurement point cloud using only the predicted shape information of the visible part, and matching between the measurement point cloud and the model point cloud using an ICP algorithm A stereo image position measuring method including the step of adopting a position / orientation corresponding to a model group having the smallest evaluation function as a measurement result. 計測点群の空間密度に合わせたモデル点群の決定は、計測対象の既知の形状情報から三次元モデルを仮想作成し、該仮想モデルと各撮像素子からカメラ中心を通る視線との交点を演算してモデル点群の点とするものである請求項1に記載のステレオ画像位置計測方法。   To determine the model point cloud according to the spatial density of the measurement point cloud, a virtual 3D model is created from the known shape information of the measurement target, and the intersection point between the virtual model and the line of sight passing through the camera center is calculated. The stereo image position measuring method according to claim 1, wherein the points are model point groups. 複数台のカメラと、該カメラの撮像画像を演算処理する手段と、記憶手段とを備えたものであって、前記演算手段は複数台のカメラ画像をステレオ処理して計測点群の形で求める機能と、既知の形状情報とステレオカメラの相対位置・姿勢とから可視部を予測する機能と、該予測した可視部の形状情報のみを用い前記計測点群の空間密度に合わせたモデル点群を決定する機能と、前記計測点群とモデル点群の間でICPアルゴリズムを用いてマッチングさせ、最も評価関数が小さなモデル群に対応する位置・姿勢を計測結果として採用する機能を備え、前記記憶手段は計測対象の既知の形状情報と、計測点群情報と、モデル点群情報とを記憶する機能を備えたものであるステレオ画像位置計測装置。   The apparatus includes a plurality of cameras, a means for arithmetically processing captured images of the cameras, and a storage means, and the arithmetic means stereo-processes the plurality of camera images and obtains them in the form of measurement point groups. A function that predicts the visible part from the function, the known shape information and the relative position and orientation of the stereo camera, and a model point cloud that matches the spatial density of the measurement point cloud using only the predicted shape information of the visible part. A function for determining, and a function for matching the measurement point group and the model point group using an ICP algorithm and adopting a position / orientation corresponding to a model group having the smallest evaluation function as a measurement result, Is a stereo image position measurement device having a function of storing known shape information of a measurement target, measurement point group information, and model point group information.
JP2006184076A 2006-07-04 2006-07-04 Stereo image measuring method and instrument for executing the same Withdrawn JP2008014691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006184076A JP2008014691A (en) 2006-07-04 2006-07-04 Stereo image measuring method and instrument for executing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006184076A JP2008014691A (en) 2006-07-04 2006-07-04 Stereo image measuring method and instrument for executing the same

Publications (1)

Publication Number Publication Date
JP2008014691A true JP2008014691A (en) 2008-01-24

Family

ID=39071854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006184076A Withdrawn JP2008014691A (en) 2006-07-04 2006-07-04 Stereo image measuring method and instrument for executing the same

Country Status (1)

Country Link
JP (1) JP2008014691A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101968877A (en) * 2010-10-15 2011-02-09 天津工业大学 Coded mark point design method for double-layer arc
JP2011163823A (en) * 2010-02-05 2011-08-25 Aisin Seiki Co Ltd Object-shape evaluating device
JP2011163822A (en) * 2010-02-05 2011-08-25 Aisin Seiki Co Ltd Object-shape evaluating device
JP2011209116A (en) * 2010-03-30 2011-10-20 Dainippon Screen Mfg Co Ltd Three-dimensional position/attitude recognition apparatus and system using the same, method, program
JP2011221988A (en) * 2010-03-24 2011-11-04 National Institute Of Advanced Industrial & Technology Three-dimensional position posture measurement device by stereo image, method and program
WO2012033159A1 (en) * 2010-09-10 2012-03-15 株式会社Ihi Method of detecting space debris
WO2014155715A1 (en) * 2013-03-29 2014-10-02 株式会社日立製作所 Object recognition device, object recognition method, and program
WO2016092749A1 (en) * 2014-12-09 2016-06-16 Canon Kabushiki Kaisha Information processing apparatus, information processing method, and program
JP2017151650A (en) * 2016-02-23 2017-08-31 村田機械株式会社 Object state specification method, object state specification apparatus, and conveyance vehicle
JP2019163624A (en) * 2018-03-19 2019-09-26 株式会社リコー Information processing device, information processing method and display device
CN111504191A (en) * 2020-05-06 2020-08-07 南京航空航天大学 Aviation part automatic rapid measurement method based on three-dimensional laser scanning

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011163823A (en) * 2010-02-05 2011-08-25 Aisin Seiki Co Ltd Object-shape evaluating device
JP2011163822A (en) * 2010-02-05 2011-08-25 Aisin Seiki Co Ltd Object-shape evaluating device
JP2011221988A (en) * 2010-03-24 2011-11-04 National Institute Of Advanced Industrial & Technology Three-dimensional position posture measurement device by stereo image, method and program
JP2011209116A (en) * 2010-03-30 2011-10-20 Dainippon Screen Mfg Co Ltd Three-dimensional position/attitude recognition apparatus and system using the same, method, program
US8923561B2 (en) 2010-09-10 2014-12-30 Ihi Corporation Method of detecting space debris
WO2012033159A1 (en) * 2010-09-10 2012-03-15 株式会社Ihi Method of detecting space debris
JP2012056517A (en) * 2010-09-10 2012-03-22 Ihi Corp Space debris detecting method
CN101968877A (en) * 2010-10-15 2011-02-09 天津工业大学 Coded mark point design method for double-layer arc
WO2014155715A1 (en) * 2013-03-29 2014-10-02 株式会社日立製作所 Object recognition device, object recognition method, and program
JP6069489B2 (en) * 2013-03-29 2017-02-01 株式会社日立製作所 Object recognition apparatus, object recognition method, and program
WO2016092749A1 (en) * 2014-12-09 2016-06-16 Canon Kabushiki Kaisha Information processing apparatus, information processing method, and program
JP2016109630A (en) * 2014-12-09 2016-06-20 キヤノン株式会社 Information processing apparatus, information processing method, and program
US10335963B2 (en) 2014-12-09 2019-07-02 Canon Kabushiki Kaisha Information processing apparatus, information processing method, and program
JP2017151650A (en) * 2016-02-23 2017-08-31 村田機械株式会社 Object state specification method, object state specification apparatus, and conveyance vehicle
JP2019163624A (en) * 2018-03-19 2019-09-26 株式会社リコー Information processing device, information processing method and display device
JP7163601B2 (en) 2018-03-19 2022-11-01 株式会社リコー Information processing device and information processing method
CN111504191A (en) * 2020-05-06 2020-08-07 南京航空航天大学 Aviation part automatic rapid measurement method based on three-dimensional laser scanning

Similar Documents

Publication Publication Date Title
JP2008014691A (en) Stereo image measuring method and instrument for executing the same
US10225473B2 (en) Threshold determination in a RANSAC algorithm
JP5430456B2 (en) Geometric feature extraction device, geometric feature extraction method, program, three-dimensional measurement device, object recognition device
JP4940461B2 (en) 3D object recognition apparatus and 3D object recognition method
JP5393531B2 (en) Position / orientation estimation apparatus, position / orientation estimation method, program, storage medium
JP5555207B2 (en) 3D posture estimation apparatus, 3D posture estimation method, and program
GB2580691A (en) Depth estimation
JP2017134617A (en) Position estimation device, program and position estimation method
JP5439277B2 (en) Position / orientation measuring apparatus and position / orientation measuring program
EP3185212B1 (en) Dynamic particle filter parameterization
Kinnell et al. Autonomous metrology for robot mounted 3D vision systems
JP2019032218A (en) Location information recording method and device
JP6626338B2 (en) Information processing apparatus, control method for information processing apparatus, and program
JP2006252275A (en) Restoration system of camera motion and object shape
CN116249607A (en) Method and device for robotically gripping three-dimensional objects
Ge et al. Vipose: Real-time visual-inertial 6d object pose tracking
Kingkan et al. Model-based virtual visual servoing with point cloud data
JP6489243B2 (en) Object recognition device, object recognition method, object recognition program, robot system, and robot
JP6228239B2 (en) A method for registering data using a set of primitives
Sundaresan et al. Multi-camera tracking of articulated human motion using motion and shape cues
JP2010009236A (en) Plane area estimation device and program
JP2005069757A (en) Method and system for presuming position and posture of camera using fovea wide-angle view image
Durchon et al. Challenges in applying deep learning to augmented reality for manufacturing
EP4064125A1 (en) Multi-dimensional object pose regression
JP2015132523A (en) Position/attitude measurement apparatus, position/attitude measurement method, and program

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091006