JP2008014686A - Pin with light conductor member and injection molding die provided with the pin with light conductor member - Google Patents

Pin with light conductor member and injection molding die provided with the pin with light conductor member Download PDF

Info

Publication number
JP2008014686A
JP2008014686A JP2006184009A JP2006184009A JP2008014686A JP 2008014686 A JP2008014686 A JP 2008014686A JP 2006184009 A JP2006184009 A JP 2006184009A JP 2006184009 A JP2006184009 A JP 2006184009A JP 2008014686 A JP2008014686 A JP 2008014686A
Authority
JP
Japan
Prior art keywords
hollow shaft
light guide
ejector pin
pin
tubular spacer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006184009A
Other languages
Japanese (ja)
Inventor
Sadanori Takayama
定則 高山
Hiroaki Kawasaki
博明 川崎
Hideo Yamagishi
秀雄 山岸
Toshiharu Tanaka
敏晴 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Futaba Corp
Original Assignee
Futaba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Futaba Corp filed Critical Futaba Corp
Priority to JP2006184009A priority Critical patent/JP2008014686A/en
Publication of JP2008014686A publication Critical patent/JP2008014686A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Radiation Pyrometers (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize an ejector pin provided with a light conductor with a comparatively simple structure, attaining a small size and making the adjustment of the length of the ejector pin easy. <P>SOLUTION: The ejector pin provided with the light conductor comprises: a cylindrical hollow shaft part; a cylindrical spacer internally fixed with a heat resistant adhesive material being in contact with the hollow shaft; and an optical fiber bonded to the cylindrical spacer internally being in contact with the cylindrical spacer with the heat resistant adhesive material. The ejector pin constituted with the optical fiber, the cylindrical spacer and the tip face of the hollow shaft essentially in one same surface solves the problem. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、温度センサに光を導くための温度センサ用導光器に関する。特に成形金型のキャビティ内の樹脂の温度を測定するための導光体付ピンに関する。   The present invention relates to a light guide for a temperature sensor for guiding light to the temperature sensor. In particular, the present invention relates to a pin with a light guide for measuring the temperature of a resin in a cavity of a molding die.

近年、成形金型のキャビティ内に樹脂を射出充填して製品を成形する射出成形法においては、成形される部品の形状精度・微細化の要求が高まっている。また新しく開発された高機能性材料はその性能を発揮させるために従来よりも高温・高圧の条件をより精密に制御する必要がある。これらの要求に対応するため射出成形時の金型キャビティ内の温度・圧力を測定し成形条件にフィードバックする、いわゆるインテリジェント化が進んでいる。   In recent years, in the injection molding method of molding a product by injecting and filling a resin into a cavity of a molding die, there is an increasing demand for shape accuracy and miniaturization of a molded part. Also, newly developed high-functional materials need to be controlled more precisely at high temperature and high pressure than before in order to exhibit their performance. In order to meet these requirements, so-called intelligentization is progressing, in which the temperature and pressure in the mold cavity during injection molding are measured and fed back to the molding conditions.

具体的には金型のキャビティ内の樹脂圧力を測定するセンサ、樹脂温度を測定するセンサを設け、これらの情報を成形機にフィードバックするようになって来ている。   Specifically, a sensor for measuring the resin pressure in the cavity of the mold and a sensor for measuring the resin temperature are provided, and such information is fed back to the molding machine.

金型のキャビティ内の樹脂温度を測定する方法は、金型に埋め込んだ熱電対により間接的に測定する方法や、樹脂の赤外輻射線から直接的に測定する方法がある。この場合樹脂から放出される赤外輻射線は、光ファイバ束を導光体として赤外線検出器に伝達されることが多い。   As a method for measuring the resin temperature in the mold cavity, there are a method of measuring indirectly by a thermocouple embedded in the mold, and a method of measuring directly from the infrared radiation of the resin. In this case, the infrared radiation emitted from the resin is often transmitted to the infrared detector using the optical fiber bundle as a light guide.

図4に特許文献1に開示された赤外輻射導光器を示す。当該導光器は金型に設けたエジェクタピンの機能も果たしている。エジェクタピン100には内部を貫通する中空部1が設けられている。このエジェクタピン100の中空部1の金型のキャビティ面Cに面した一端には拡径部2が設けられ、内部にテーパー状孔を有する支持スリーブ3を収容し、当該支持スリーブ3はテーパー状のサファイアコーン4を収容する。   FIG. 4 shows an infrared radiation light guide disclosed in Patent Document 1. The light guide also functions as an ejector pin provided in the mold. The ejector pin 100 is provided with a hollow portion 1 penetrating the inside. A diameter-enlarged portion 2 is provided at one end of the hollow portion 1 of the ejector pin 100 facing the cavity surface C of the mold, and a support sleeve 3 having a tapered hole is accommodated therein, and the support sleeve 3 is tapered. The sapphire cone 4 is accommodated.

サファイアコーン4の大径端はエジェクタピンの端部とほぼ同一平面に配置され、小径端は中空部1内にケーブル状に配置した可撓性束状の光ファイバ5と接続される。光ファイバ5の他方の先端には赤外線輻射の受光部及び演算部(図示しない。)が設けられ、受光部に入射した赤外線から演算部で金型内の樹脂温度を演算する。   The large-diameter end of the sapphire cone 4 is arranged in substantially the same plane as the end portion of the ejector pin, and the small-diameter end is connected to a flexible bundle-like optical fiber 5 arranged in a cable shape in the hollow portion 1. The other end of the optical fiber 5 is provided with a light receiving portion and a calculating portion (not shown) for infrared radiation, and the calculating portion calculates the resin temperature in the mold from the infrared light incident on the light receiving portion.

ここで本件出願人が出願に係る発明に至る過程で検討した赤外輻射導光器の機能を有するエジェクタピン200を図5に示す。図5では図4と共通する部分には同じ符号を用いている。分図5(a)に上面図、分図5(b)にa‐a´部での断面図、分図5(c)に左側面図を示す。エジエクタピン200は内部を貫通する円断面の中空部1が設けられた中空軸状であり、その内部を導光体として単線の光ファイバ5が貫通し、光ファイバ5と中空軸部6の間はエポキシ系接着材7で固定されている。   Here, FIG. 5 shows an ejector pin 200 having the function of an infrared radiation light guide studied by the applicant of the present invention in the process leading to the invention according to the application. In FIG. 5, the same reference numerals are used for parts common to FIG. 5A is a top view, FIG. 5B is a sectional view taken along the line aa ′, and FIG. 5C is a left side view. The ejector pin 200 has a hollow shaft shape in which a hollow section 1 having a circular cross section penetrating the inside is provided, and a single-line optical fiber 5 passes through the inside as a light guide, and the gap between the optical fiber 5 and the hollow shaft section 6 is between It is fixed with an epoxy adhesive 7.

特開昭58−137721号公報JP 58-137721 A

特許文献1に開示された赤外輻射導光器はエジェクタピンに赤外輻射導光器の機能を複合化したものであり、金型に赤外輻射導光器用の追加工をすることなく温度測定を可能とする。
またサファイアコーン4はテーパー面で支持スリーブ3に支持され、支持スリーブ3は中空部1の拡径部2との段差で支持されているので、金型内の樹脂圧力が高くなってもサファイアコーン4がずれることはなく、成形品に窪み等の品質の劣化を生じさせることがない。
The infrared radiation light guide disclosed in Patent Document 1 is a combination of an ejector pin and the function of the infrared radiation light guide, and the temperature of the infrared radiation light guide is not added to the mold. Enable measurement.
Further, since the sapphire cone 4 is supported by the support sleeve 3 with a tapered surface, and the support sleeve 3 is supported by a step with respect to the enlarged diameter portion 2 of the hollow portion 1, even if the resin pressure in the mold increases, the sapphire cone 4 does not deviate, and the molded product does not deteriorate in quality such as dents.

しかし当該エジェクタピン100は構造が複雑なため加工が困難であり、径の細いエジェクタピンを作ることが難しかった。径の大きいエジェクタピン100は小形精密部品の成形には用いることができなかった。
エジェクタピンの長さは個々の金型によって変わるが、当該エジェクタピン100は構造上、予め寸法を決めてから製造する必要がある。そのため予め半完成品を準備し、顧客の注文に応じて長さ調整をしたピンを短納期で納入することは難しかった。
また複雑な構造に起因して非常に高価なものとなってしまい、一つの金型に複数の本エジェクタピンを設けることは実際上困難であった。
However, the ejector pin 100 is difficult to process because of its complicated structure, and it is difficult to produce an ejector pin with a small diameter. The ejector pin 100 having a large diameter cannot be used for molding small precision parts.
Although the length of an ejector pin changes with each metal mold | die, the said ejector pin 100 needs to manufacture after deciding a dimension previously on a structure. Therefore, it was difficult to prepare a semi-finished product in advance and deliver a pin whose length was adjusted according to the customer's order in a short delivery time.
Moreover, it becomes very expensive due to the complicated structure, and it is practically difficult to provide a plurality of ejector pins in one mold.

図5に示す本件出願人が出願に係る発明をするに至る過程で検討した赤外輻射導光器付エジェクタピン200は特許文献1に開示されたものと比較し構造が単純であり細い径のエジェクタピンを作ることができ、価格も比較的安価にできる。また中空軸部6はどの位置で切断しても同じ断面形状なので、予め中空軸部を長めの同一寸法とした半完成品を準備し、顧客の注文に応じて長さ調整をしたエジェクタピンを短納期で納入することができる。   The ejector pin 200 with an infrared radiation light guide studied by the applicant shown in FIG. 5 in the course of making the invention according to the application is simpler in structure and thinner than that disclosed in Patent Document 1. Ejector pins can be made and the price can be relatively low. Moreover, since the hollow shaft portion 6 has the same cross-sectional shape regardless of where it is cut, prepare a semi-finished product with the hollow shaft portion having the same long dimension in advance, and install an ejector pin whose length is adjusted according to the customer's order. Can be delivered with short delivery time.

ここでエジェクタピンは成形時の高圧力を受け、樹脂から発生する腐食性ガスに晒される厳しい環境で繰り返し使用されるため硬度・耐食性に優れた工具鋼(SKD)で作られることが多い。工具鋼はその硬さのため穴あけ加工が難しく径の小さい長穴を設けることは困難である。図5に示すエジェクタピン200では円断面の中空部1の内径は小さいものでもφ2mmになってしまい、直径φ1mmの光ファイバ5の周囲には光ファイバ5の半径と同じだけの隙間ができるのでその部分をエポキシ樹脂7で埋める必要があった。   Here, ejector pins are often made of tool steel (SKD) with excellent hardness and corrosion resistance because they are repeatedly used in harsh environments exposed to corrosive gas generated from resin under high pressure during molding. Tool steel is difficult to drill due to its hardness, and it is difficult to provide a long hole with a small diameter. In the ejector pin 200 shown in FIG. 5, even if the hollow section 1 having a circular cross section has a small inner diameter, it becomes φ2 mm, and a gap as large as the radius of the optical fiber 5 is formed around the optical fiber 5 having a diameter of φ1 mm. It was necessary to fill the portion with epoxy resin 7.

そのため図5に示すエジェクタピン200ではエポキシ樹脂7が固まる間に光ファイバ5が中空部1の中心からずれてしまい製品としての見栄えが悪いばかりでなく、測定位置精度が悪化することがあった。また図6に示すようにエポキシ樹脂層7が厚いため内部でボイド8が発生することがある。中空軸部6を例えばb−b´部で切断した際にはボイド8が表面に露出し平滑な表面が得られないという問題があった。   Therefore, in the ejector pin 200 shown in FIG. 5, the optical fiber 5 is displaced from the center of the hollow portion 1 while the epoxy resin 7 is hardened, so that the appearance as a product is not good and the measurement position accuracy is sometimes deteriorated. Further, as shown in FIG. 6, since the epoxy resin layer 7 is thick, voids 8 may be generated inside. When the hollow shaft portion 6 is cut at, for example, the bb ′ portion, there is a problem that the void 8 is exposed on the surface and a smooth surface cannot be obtained.

そこで本発明は特許文献1及び図5に開示したエジェクタピンの問題点を解決し、光ファイバを中空軸部の中心に位置決めし、接着材層の気泡の発生を防ぎ、軸部を任意の位置で切断可能とした比較的単純な構造の導光体付ピンを提供することを課題とする。ここで「ピン」は上述のエジェクタピンや、成形品の突き出し機能を有しないコアピンの他、高温での温度測定用のピンを含む用語として用いる。   Therefore, the present invention solves the problem of the ejector pin disclosed in Patent Document 1 and FIG. 5, positions the optical fiber at the center of the hollow shaft portion, prevents the formation of bubbles in the adhesive layer, and places the shaft portion at an arbitrary position. It is an object of the present invention to provide a light guide pin with a relatively simple structure that can be cut at a high speed. Here, the “pin” is used as a term including the above-described ejector pin, a core pin that does not have a protruding function of a molded product, and a pin for temperature measurement at a high temperature.

本発明に係る導光体付ピンは円筒状の中空軸部と、前記中空軸部に内接して耐熱性接着材で固着される管状スペーサと、前記管状スペーサに内接して耐熱性接着材で固着される円柱状の導光体を有し、前記導光体と、前記管状スペーサと前記中空軸部先端面が実質的に同一面を構成していることを特徴としている。   A pin with a light guide according to the present invention includes a cylindrical hollow shaft portion, a tubular spacer inscribed in the hollow shaft portion and fixed by a heat resistant adhesive, and a heat resistant adhesive inscribed in the tubular spacer. It has a columnar light guide to be fixed, and the light guide, the tubular spacer, and the front end surface of the hollow shaft portion substantially form the same surface.

また上記の本発明に係る導光体付ピンは導光体としてコア及びクラッド層を有する光ファイバを用いることができ、前記管状スペーサの熱膨張係数が前記中空軸の熱膨張係数より大きくな材料とすることができる。また本発明に係る導光体付ピンは成形用金型に組み込むことができる。   Moreover, the pin with a light guide according to the present invention can use an optical fiber having a core and a clad layer as a light guide, and a material in which the thermal expansion coefficient of the tubular spacer is larger than the thermal expansion coefficient of the hollow shaft. It can be. Moreover, the pin with a light guide according to the present invention can be incorporated into a molding die.

本発明によれば導光体付ピンを比較的単純な構造で実現するので細い径のピンを作ることができ、小形精密部品の成形管理に用いることを可能にする効果がある。
また価格も比較的安価にできるので一つの金型に複数の導光体付ピンを備えることが可能となり成形条件のより厳密な管理を可能にする効果がある。
According to the present invention, since the pin with a light guide is realized with a relatively simple structure, it is possible to make a pin with a small diameter, and there is an effect that it can be used for molding management of small precision parts.
Moreover, since the price can be made relatively low, it is possible to provide a plurality of pins with light guides in one mold, and there is an effect that enables more strict management of molding conditions.

また中空軸部はどの位置で切断しても同じ断面形状なので、予め中空軸部を長めの同一寸法とした長めの半完成品を準備し、顧客の注文に応じて長さ調整をしたピンの短納期での納入を可能にする効果がある。
更に光ファイバを中空軸部の中心に位置決めし、接着材層の気泡の発生を防ぐ効果がある。
Also, the hollow shaft part has the same cross-sectional shape regardless of where it is cut, so a long semi-finished product with a long hollow shaft part having the same dimensions is prepared in advance, and the length of the pin is adjusted according to the customer's order. This has the effect of enabling delivery with a short delivery time.
Further, the optical fiber is positioned at the center of the hollow shaft portion, and there is an effect of preventing the generation of bubbles in the adhesive layer.

本発明の実施の形態を図1、図2に基づいて説明する。ここで従来技術と共通する部分は同じ符号を用いる。図1の分図1(a)に上面図、分図1(b)にa‐a´部での断面図、分図1(c)に左側面図を示す。エジェクタピン300は円筒状の中空軸部6を有し、その下端に中空軸部6より拡径した鍔部11が設けられる。鍔部11の下面には蓋部材13が固定される。鍔部11の部分は高温に晒されることはないので、鍔部11への蓋部材13の固定はねじ止め、接着等の周知の方法で行うことができる。
本実施の形態では中空軸部6、鍔部11、蓋部材13で構成されるエジェクタピン本体部分には工具鋼(SKD61)を用いた。
An embodiment of the present invention will be described with reference to FIGS. Here, the same reference numerals are used for parts common to the prior art. 1A is a top view, FIG. 1B is a sectional view taken along the line aa ′, and FIG. 1C is a left side view. The ejector pin 300 has a cylindrical hollow shaft portion 6, and a flange portion 11 having a diameter larger than that of the hollow shaft portion 6 is provided at the lower end thereof. A lid member 13 is fixed to the lower surface of the flange portion 11. Since the part of the collar part 11 is not exposed to high temperature, the lid member 13 can be fixed to the collar part 11 by a known method such as screwing or bonding.
In the present embodiment, tool steel (SKD61) is used for the ejector pin main body portion constituted by the hollow shaft portion 6, the flange portion 11, and the lid member 13.

中空軸部6には内部を軸方向に貫通する断面が一様な円形断面の中空部1が設けられ、中空軸部6の長さ方向の中央付近より上側は断面が一様で中空部1より拡径した拡径部2が設けられている。なお本明細書で「断面が一様」とは当該部分の断面形状が実質的に同一であることをいう。   The hollow shaft portion 6 is provided with a hollow portion 1 having a uniform circular cross section passing through the inside in the axial direction. The hollow portion 1 has a uniform cross section above the center in the length direction of the hollow shaft portion 6. A diameter-expanded portion 2 having a larger diameter is provided. In this specification, “the cross section is uniform” means that the cross-sectional shape of the portion is substantially the same.

前記拡径部2にはステンレス(SUS)製の管状のスペーサ10が接着材で固着される。エジェクタピン300は管状スペーサ10の部分で切断されるので、管状スペーサ10の軸方向全長に渡り接着材により前記拡径部2に固着されるようにする。接着材としてはエポキシ樹脂を用いることもできるが、エジェクタピンは成形時に300℃を越える高温に晒されることがあるので500℃以上の温度まで耐熱性のある珪酸アルカリ系接着剤等の耐熱性接着材が好適である。   A stainless steel (SUS) tubular spacer 10 is fixed to the enlarged diameter portion 2 with an adhesive. Since the ejector pin 300 is cut at the portion of the tubular spacer 10, the ejector pin 300 is fixed to the enlarged diameter portion 2 by an adhesive over the entire axial length of the tubular spacer 10. Epoxy resin can be used as the adhesive, but since the ejector pins are exposed to high temperatures exceeding 300 ° C during molding, heat resistant adhesives such as alkali silicate adhesives that are heat resistant to temperatures above 500 ° C A material is preferred.

管状スペーサ10には単線の光ファイバ5が挿入され、管状スペーサ10の内面に光ファイバ5の表面が接着材14で固着される。この部分の接着にも耐熱性接着材が好適である。光ファイバ5は導光体として機能するようコアの表面に反射層としてのクラッド層を設けた2層構造にしてある。光ファイバ5はシリカガラス製であり、コアにはGe(ゲルマニウム)やP(リン)、クラッドにはB(ホウ素)やF(フッ素)などが添加される。   A single-wire optical fiber 5 is inserted into the tubular spacer 10, and the surface of the optical fiber 5 is fixed to the inner surface of the tubular spacer 10 with an adhesive 14. A heat-resistant adhesive is also suitable for the bonding of this portion. The optical fiber 5 has a two-layer structure in which a cladding layer as a reflective layer is provided on the surface of the core so as to function as a light guide. The optical fiber 5 is made of silica glass, Ge (germanium) or P (phosphorus) is added to the core, and B (boron) or F (fluorine) is added to the cladding.

光ファイバ5は鍔部11に対応する位置で所定の局率で90度曲げられ、鍔部11の下面に設けた溝12からエジェクタピン300の外部に導出される。
そして光ファイバ5は赤外線を受光する受光部21に接続され、受光部21はプリアンプ22、ゼロ調整器、ゲイン調整器としての可変抵抗器23・24を介してラップトップパソコンの表示部25に接続される。
エジェクタピン300の先端から光ファイバ5に入射した赤外線は光ファイバ5を通り受光部21で光電気変換された上、最終的に温度信号に変換され表示部25で温度表示される。或いは温度信号が射出成形機の制御部にフィードバックされて利用される。
The optical fiber 5 is bent 90 degrees at a predetermined ratio at a position corresponding to the flange portion 11, and is led out of the ejector pin 300 from the groove 12 provided on the lower surface of the flange portion 11.
The optical fiber 5 is connected to a light receiving unit 21 that receives infrared rays. The light receiving unit 21 is connected to a display unit 25 of a laptop personal computer through variable resistors 23 and 24 as a preamplifier 22, a zero adjuster, and a gain adjuster. Is done.
Infrared light incident on the optical fiber 5 from the tip of the ejector pin 300 passes through the optical fiber 5 and is photoelectrically converted by the light receiving unit 21 and finally converted into a temperature signal and displayed on the display unit 25. Alternatively, the temperature signal is fed back to the control unit of the injection molding machine and used.

本実施の形態では光ファイバー5はφ1mmの物を使用し、管状スペーサ10は内径φ1.1mm、外形φ3mm、長さ100mmの物を使用した。SUS製の管状スペーサは引抜き成形により形成され、比較的容易に内径の小さい管を得ることができた。中空軸部6は内径φ3.1mm、外形φ5mm、長さ200mmの物を使用した。鍔部11は径φ9mm厚さ5mm、蓋部材13はφ9mm厚さ3mmとした。   In this embodiment, the optical fiber 5 has a diameter of 1 mm, and the tubular spacer 10 has an inner diameter of 1.1 mm, an outer diameter of 3 mm, and a length of 100 mm. The SUS tubular spacer was formed by pultrusion, and a tube having a small inner diameter could be obtained relatively easily. The hollow shaft portion 6 used had an inner diameter of 3.1 mm, an outer diameter of 5 mm, and a length of 200 mm. The flange 11 has a diameter of 9 mm and a thickness of 5 mm, and the lid member 13 has a diameter of 9 mm and a thickness of 3 mm.

本実施の形態に係るエジェクタピン300は長さ200mm、外径5mmとなるが、これは導光体を持たない規格品のエジェクタピンと変わらない寸法である。そのためエジェクタピン300は既存の小形精密部品用の金型においてもエジェクタピンと置き換えて用いることができる。   The ejector pin 300 according to the present embodiment has a length of 200 mm and an outer diameter of 5 mm, which is the same size as a standard ejector pin having no light guide. Therefore, the ejector pin 300 can be used in place of the ejector pin even in an existing mold for small precision parts.

図2は一般的な金型の断面図であるが、この金型はキャビティ31を設けた第1の型板としての固定側型板32とコア33を設けた第2の型板としての可動側型板34との界面で分かれて開閉される。エジェクタピン300はキャビティ内に樹脂が充填された際は導光体として樹脂温度の測定に関与し、金型が開いたときに前記コアから突出して成形品を金型外に突き出すエジェクタピンとして機能する。なお図2では光ファイバ5や受光部21等は省略している。   FIG. 2 is a cross-sectional view of a general mold. This mold is movable as a second mold plate provided with a fixed mold plate 32 provided with a cavity 31 and a fixed mold plate 32 provided with a core 33. They are opened and closed separately at the interface with the side mold plate 34. When the cavity is filled with resin, the ejector pin 300 functions as a light guide to measure the resin temperature, and functions as an ejector pin that protrudes from the core and protrudes out of the mold when the mold is opened. To do. In FIG. 2, the optical fiber 5, the light receiving unit 21, and the like are omitted.

中空軸部6は管状スペーサ10が固着された部分であればどの位置で切断しても同じ断面形状なので、予め中空軸部を長めの同一寸法とした半完成品を準備し、顧客の注文に応じて長さ調整をしたピンの納入を短期間で可能にする。
更に光ファイバ5と管状スペーサ10、管状スペーサ10と拡径部2の隙間はそれぞれ0.1mmと狭いので、耐熱性接着材層は薄くなり内部にボイドが発生する心配はない。また光ファイバ5が中空軸部6の中心からずれることもない。
The hollow shaft portion 6 has the same cross-sectional shape regardless of where it is cut as long as the tubular spacer 10 is fixed. Therefore, a semi-finished product having a long hollow shaft portion having the same dimensions is prepared in advance and ordered by the customer. The delivery of the pin with the length adjusted accordingly is made possible in a short period of time.
Further, since the gaps between the optical fiber 5 and the tubular spacer 10 and between the tubular spacer 10 and the enlarged diameter portion 2 are as narrow as 0.1 mm, the heat-resistant adhesive layer becomes thin and there is no fear that voids are generated inside. Further, the optical fiber 5 is not displaced from the center of the hollow shaft portion 6.

エジェクタピン300の構造を成形時の樹脂圧に対する耐圧力、樹脂から揮発したガスに対する耐食性の観点から検証する。上記実施の形態における中空軸部6の外形φ5mm、管状スペーサ10の外形φ3mm、光ファイバ5の直径φ1mmの場合、各部の断面積を比較すると中空軸部6が64%、管状スペーサ10が32%、光ファイバ5が4%となり、中空軸部6と管状スペーサ10が主に成形時の樹脂圧を受けることになる。本実施の形態では管状スペーサ10は中空軸部6の拡径部2と中空部1の段差で支持された上、拡径部2に接着されておりずれることはなく十分な耐圧力を有する。   The structure of the ejector pin 300 is verified from the viewpoint of the pressure resistance against the resin pressure during molding and the corrosion resistance against the gas volatilized from the resin. When the outer diameter of the hollow shaft portion 6 in the above embodiment is 5 mm, the outer diameter of the tubular spacer 10 is 3 mm, and the diameter of the optical fiber 5 is 1 mm, the hollow shaft portion 6 is 64% and the tubular spacer 10 is 32%. The optical fiber 5 is 4%, and the hollow shaft portion 6 and the tubular spacer 10 are mainly subjected to resin pressure during molding. In this embodiment, the tubular spacer 10 is supported by a step between the enlarged diameter portion 2 and the hollow portion 1 of the hollow shaft portion 6 and is bonded to the enlarged diameter portion 2 so that it does not shift and has a sufficient pressure resistance.

次に耐食性の観点では管状スペーサ10はSUS製としたのでSKDと比較してもそれ程耐食性が劣ることはない。また光ファイバ5も酸化物であり比較的良好な耐食性を有する。接着材として用いる耐熱性接着材も主に珪酸ソーダ、珪酸カリウムなどの無機バインダとアルミナ、酸化ジルコニアなどの充填剤から構成され比較的良好な耐食性を有する。従ってエジェクタピン300は耐食性の点でも問題はない。
管状スペーサ10の材質としてSUSの他、アルミニウムや表面に耐腐食コートした鉄・銅を用いてもよい。
Next, since the tubular spacer 10 is made of SUS from the viewpoint of corrosion resistance, the corrosion resistance is not so inferior to that of SKD. The optical fiber 5 is also an oxide and has a relatively good corrosion resistance. A heat-resistant adhesive used as an adhesive is also mainly composed of an inorganic binder such as sodium silicate and potassium silicate and a filler such as alumina and zirconia, and has relatively good corrosion resistance. Therefore, the ejector pin 300 has no problem in terms of corrosion resistance.
As a material for the tubular spacer 10, aluminum or iron / copper whose surface is corrosion-resistant coated may be used in addition to SUS.

次にエジェクタピン300の製造方法の概要を説明する。まず管状スペーサ10の外面に耐熱性接着材を塗布し、中空軸部6の拡径部2に挿入する。接着材は拡径部2に塗布してもよい。次に管状スペーサ10内面に耐熱性接着材を充填し、鍔部11の側から予め曲げ加工した光ファイバ5を管状スペーサ10に挿入する。光ファイバ5の曲げ加工は加熱成形等周知の方法で行うことができる。光ファイバ5を鍔部11に設けた溝12にはめ込んだ後、蓋部材13を鍔部11に固定する。そして加熱乾燥して半製品として完成する。   Next, an outline of a method for manufacturing the ejector pin 300 will be described. First, a heat-resistant adhesive is applied to the outer surface of the tubular spacer 10 and inserted into the enlarged diameter portion 2 of the hollow shaft portion 6. The adhesive may be applied to the enlarged diameter portion 2. Next, the inner surface of the tubular spacer 10 is filled with a heat-resistant adhesive, and the optical fiber 5 bent in advance from the side of the flange 11 is inserted into the tubular spacer 10. The bending process of the optical fiber 5 can be performed by a known method such as thermoforming. After the optical fiber 5 is fitted into the groove 12 provided in the flange 11, the lid member 13 is fixed to the flange 11. And it heat-drys and is completed as a semi-finished product.

エジェクタピン300は管状スペーサ10が設けられた範囲内で切断して長さを調整する。切断は切削液を用いつつ切断砥石により行う。そして先端を研削して平坦化し、光ファイバ5の表面を研磨して完成する。   The ejector pin 300 is cut within a range where the tubular spacer 10 is provided to adjust the length. Cutting is performed with a cutting grindstone while using a cutting fluid. Then, the tip is ground and flattened, and the surface of the optical fiber 5 is polished to complete.

図3に本発明の他の実施例としてエジェクタピン400を示す。図の構成や主要な点は図1に示したエジェクタピン300と同様である。エジェクタピン300との相違点は中空軸部6に拡径部2を設けていない点である。   FIG. 3 shows an ejector pin 400 as another embodiment of the present invention. The configuration and main points in the figure are the same as those of the ejector pin 300 shown in FIG. The difference from the ejector pin 300 is that the enlarged diameter portion 2 is not provided in the hollow shaft portion 6.

エジェクタピン300においては拡径部2を設けるために、中空部1のドリル加工および拡径部2のドリル加工を行い、両者の段の形状を整えるためリーマ加工等の仕上げ加工をする必要がある。
エジェクタピン400では拡径部2をなくしたため上記加工が中空部1のドリル加工だけとなり加工工数を削減できる。
In the ejector pin 300, in order to provide the enlarged diameter portion 2, it is necessary to perform drilling of the hollow portion 1 and drilling of the enlarged diameter portion 2, and finish processing such as reamer processing in order to adjust the shape of both steps. .
In the ejector pin 400, since the diameter-expanded portion 2 is eliminated, the above-described processing is only the drilling of the hollow portion 1, and the number of processing steps can be reduced.

エジェクタピン400では管状スペーサ10を拡径部2の段差で支えることができないので耐圧力の点でエジェクタピン300よりは不利となる。この対応として中空軸部6よりも熱膨張係数の大きな材料を管状スペーサ10に用いた。
エジェクタピン400に樹脂の射出圧がかかる際にはエジェクタピンを含む金型の温度は300℃近くになっている。中空軸部6と管状スペーサ10の間は高剛性の耐熱性接着材が充填されているので上記膨張係数の差により中空軸部6と管状スペーサ10の接触面に垂直方向の応力が発生する。これにより両者の接触面方向のずれを防止することができた。
In the ejector pin 400, the tubular spacer 10 cannot be supported by the step of the enlarged diameter portion 2, which is disadvantageous compared to the ejector pin 300 in terms of pressure resistance. As a countermeasure, a material having a larger thermal expansion coefficient than that of the hollow shaft portion 6 was used for the tubular spacer 10.
When resin injection pressure is applied to the ejector pin 400, the temperature of the mold including the ejector pin is close to 300 ° C. Since a highly rigid heat-resistant adhesive is filled between the hollow shaft portion 6 and the tubular spacer 10, a stress in the vertical direction is generated on the contact surface between the hollow shaft portion 6 and the tubular spacer 10 due to the difference in expansion coefficient. Thereby, the shift | offset | difference of both contact surface direction was able to be prevented.

本実施例では中空軸部6の材質として用いた工具鋼(SKD61)の熱膨張係数は125.4×10-7であり、管状スペーサ10として用いたSUSの熱膨張係数は173×10−7である。成形温度250℃での両者の膨張係数の差による歪は0.1%程度と想定されるがこの系で成形試験を行ったところ問題ないことが確認できた。 In this embodiment, the thermal expansion coefficient of tool steel (SKD61) used as the material of the hollow shaft portion 6 is 125.4 × 10 −7 , and the thermal expansion coefficient of SUS used as the tubular spacer 10 is 173 × 10 −7. It is. The strain due to the difference in expansion coefficient between the two at a molding temperature of 250 ° C. is assumed to be about 0.1%.

エジェクタピン400において中空軸部6よりも管状スペーサ10の熱膨張係数が大きいものであれば材質は上記例に限られるものではない。例えば中空軸部6の材質として用いた工具鋼(SKD61)を用いた場合には管状スペーサ10としてアルミニウム等も用いることができる。   As long as the thermal expansion coefficient of the tubular spacer 10 is larger than that of the hollow shaft portion 6 in the ejector pin 400, the material is not limited to the above example. For example, when tool steel (SKD61) used as the material of the hollow shaft portion 6 is used, aluminum or the like can be used as the tubular spacer 10.

本発明の一実施形態に係る導光体付エジェクタピンの構造を示す図である。It is a figure which shows the structure of the ejector pin with a light guide which concerns on one Embodiment of this invention. 本発明の一実施形態に係る導光体付エジェクタピンを金型に組み込んだ図である。It is the figure which incorporated the ejector pin with a light guide which concerns on one Embodiment of this invention in the metal mold | die. 本発明の一実施形態に係る導光体付エジェクタピンの構造を示す図である。It is a figure which shows the structure of the ejector pin with a light guide which concerns on one Embodiment of this invention. 従来の導光体付エジェクタピンの構造を示す図である。It is a figure which shows the structure of the conventional ejector pin with a light guide. 本発明に至る過程における導光体付エジェクタピンの構造を示す図である。It is a figure which shows the structure of the ejector pin with a light guide in the process leading to this invention. 本発明に至る過程における導光体付エジェクタピンの構造を示す図である。It is a figure which shows the structure of the ejector pin with a light guide in the process leading to this invention.

符号の説明Explanation of symbols

1 中空部
2 拡径部
3 支持スリーブ
4 サファイアコーン
5 光ファイバ
6 中空軸部
7 エポキシ系接着剤
8 ボイド
10 管状スペーサ
11 鍔部
12 溝
13 蓋部材
14 耐熱性接着材
21 受光部
22 プリアンプ
23 ゼロ調整器
24 ゲイン調整器
25 表示部
31 キャビティ
32 固定側型板
33 コア
34 可動側型板
DESCRIPTION OF SYMBOLS 1 Hollow part 2 Expanded diameter part 3 Support sleeve 4 Sapphire cone 5 Optical fiber
6 hollow shaft portion 7 epoxy adhesive 8 void 10 tubular spacer 11 flange portion 12 groove 13 lid member 14 heat-resistant adhesive material 21 light receiving portion 22 preamplifier 23 zero adjuster 24 gain adjuster 25 display portion 31 cavity 32 fixed side template 33 Core 34 Movable side template

Claims (4)

円筒状の中空軸部と、
前記中空軸部に内接して耐熱性接着材で固着される管状スペーサと、
前記管状スペーサに内接して耐熱性接着材で固着される円柱状の導光体を有し、
前記導光体と、前記管状スペーサと前記中空軸部先端面が実質的に同一面を構成していることを特徴とする導光体付ピン。
A cylindrical hollow shaft,
A tubular spacer inscribed in the hollow shaft portion and fixed with a heat-resistant adhesive;
A cylindrical light guide that is inscribed in the tubular spacer and fixed with a heat-resistant adhesive,
The pin with a light guide, wherein the light guide, the tubular spacer, and the front end surface of the hollow shaft portion constitute substantially the same surface.
前記導光体がコア及びクラッド層を有する光ファイバであることを特徴とする請求項1記載の導光体付ピン。 2. The pin with a light guide according to claim 1, wherein the light guide is an optical fiber having a core and a clad layer. 前記管状スペーサの熱膨張係数が前記中空軸の熱膨張係数より大きいことを特徴とする請求項1記載の導光体付ピン。 The pin with a light guide according to claim 1, wherein a thermal expansion coefficient of the tubular spacer is larger than a thermal expansion coefficient of the hollow shaft. キャビティを有する第1の形板と、コアを有し前記第1の型板に対して相対的に移動可能とされた第2の型板とを組合わせ、前記キャビティと前記コアの間に樹脂を充填して成形品を成形する成形用金型において、
円筒状の中空軸部と、
前記中空軸部に内接して耐熱性接着材で固着される管状スペーサと、
前記管状スペーサに内接して耐熱性接着材で固着される円柱状の導光体を有し、
前記導光体と、前記管状スペーサと前記中空軸部先端面が実質的に同一面を構成している導光体付ピンを備えたことを特徴とする成形用金型。
A first template having a cavity and a second template having a core and being movable relative to the first template are combined, and a resin is provided between the cavity and the core. In a mold for molding a molded product by filling
A cylindrical hollow shaft,
A tubular spacer inscribed in the hollow shaft portion and fixed with a heat-resistant adhesive;
A cylindrical light guide that is inscribed in the tubular spacer and fixed with a heat-resistant adhesive,
A molding die, comprising: the light guide, a pin with a light guide, the tubular spacer, and a tip end surface of the hollow shaft portion forming substantially the same surface.
JP2006184009A 2006-07-04 2006-07-04 Pin with light conductor member and injection molding die provided with the pin with light conductor member Pending JP2008014686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006184009A JP2008014686A (en) 2006-07-04 2006-07-04 Pin with light conductor member and injection molding die provided with the pin with light conductor member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006184009A JP2008014686A (en) 2006-07-04 2006-07-04 Pin with light conductor member and injection molding die provided with the pin with light conductor member

Publications (1)

Publication Number Publication Date
JP2008014686A true JP2008014686A (en) 2008-01-24

Family

ID=39071849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006184009A Pending JP2008014686A (en) 2006-07-04 2006-07-04 Pin with light conductor member and injection molding die provided with the pin with light conductor member

Country Status (1)

Country Link
JP (1) JP2008014686A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232753A (en) * 2007-03-19 2008-10-02 Futaba Corp Pin with light guide, temperature sensor having pin with light guide, and die for injection molding
JP2012233821A (en) * 2011-05-06 2012-11-29 Futaba Corp Pin with light guide
JP2014128881A (en) * 2012-12-27 2014-07-10 Futaba Corp Light-guide-provided pin for injection molding mold
JP2020051990A (en) * 2018-09-28 2020-04-02 マツダ株式会社 Casting mold device
JP2021089181A (en) * 2019-12-03 2021-06-10 双葉電子工業株式会社 Sensor
US11858187B2 (en) 2022-04-18 2024-01-02 Chung Yuan Christian University Mold apparatus including mold sensor cooling structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58137721A (en) * 1982-02-02 1983-08-16 ヴアンゼツテイ・インフラレツド・アンド・コンピユ−タ・システムズ・インコ−ポレ−テツド Measuring instrument for temperature of infrared ray
JPS61196207A (en) * 1985-02-26 1986-08-30 Sumitomo Electric Ind Ltd Preparation of terminal part of heat resistant optical fiber
JPH08136348A (en) * 1994-11-14 1996-05-31 Babcock Hitachi Kk Gas temperature measuring device
JPH1183657A (en) * 1997-09-10 1999-03-26 Futaba Corp Ejector pin with pressure sensor
JP2008014716A (en) * 2006-07-04 2008-01-24 Futaba Corp Light guide for temperature sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58137721A (en) * 1982-02-02 1983-08-16 ヴアンゼツテイ・インフラレツド・アンド・コンピユ−タ・システムズ・インコ−ポレ−テツド Measuring instrument for temperature of infrared ray
JPS61196207A (en) * 1985-02-26 1986-08-30 Sumitomo Electric Ind Ltd Preparation of terminal part of heat resistant optical fiber
JPH08136348A (en) * 1994-11-14 1996-05-31 Babcock Hitachi Kk Gas temperature measuring device
JPH1183657A (en) * 1997-09-10 1999-03-26 Futaba Corp Ejector pin with pressure sensor
JP2008014716A (en) * 2006-07-04 2008-01-24 Futaba Corp Light guide for temperature sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232753A (en) * 2007-03-19 2008-10-02 Futaba Corp Pin with light guide, temperature sensor having pin with light guide, and die for injection molding
JP2012233821A (en) * 2011-05-06 2012-11-29 Futaba Corp Pin with light guide
JP2014128881A (en) * 2012-12-27 2014-07-10 Futaba Corp Light-guide-provided pin for injection molding mold
JP2020051990A (en) * 2018-09-28 2020-04-02 マツダ株式会社 Casting mold device
JP2021089181A (en) * 2019-12-03 2021-06-10 双葉電子工業株式会社 Sensor
US11858187B2 (en) 2022-04-18 2024-01-02 Chung Yuan Christian University Mold apparatus including mold sensor cooling structure

Similar Documents

Publication Publication Date Title
JP2008014686A (en) Pin with light conductor member and injection molding die provided with the pin with light conductor member
KR101554373B1 (en) Multimode fiber
US10073217B2 (en) Multicore optical fiber and method for manufacturing multicore optical fiber
Zhang et al. 3D printing of all-glass fiber-optic pressure sensor for high temperature applications
CN101634728A (en) Anti-bending multimode fiber and manufacturing method thereof
CN103204629B (en) Chirality coupling core diameter optical fiber and manufacturing method thereof
US9733424B2 (en) Multicore fiber and method of manufacturing the same
CN102540367A (en) Resin coated optical fiber
JP6291885B2 (en) Multi-core optical fiber manufacturing method
CN109362229A (en) The manufacturing method of optical fiber wire
JP5103029B2 (en) Light guide pin, temperature sensor having light guide pin, and injection mold
JP4874444B2 (en) Light guide pin, temperature sensor having light guide pin, and injection mold
Cooper et al. Design and performance of multicore fiber optimized towards communications and sensing applications
JP5851947B2 (en) Optical fiber guide parts
EP2689710B1 (en) Method for producing optical fiber, optical fiber, and endoscope
US20210146418A1 (en) A tube structure and a method for manufacturing a tube structure
JP5636145B2 (en) Pin with light guide for injection mold
CN114631002A (en) Special optical fiber for measuring three-dimensional curve shape, manufacturing method thereof and system for measuring three-dimensional curve shape by using special optical fiber
JP5551108B2 (en) Pin with light guide
JP2008014716A (en) Light guide for temperature sensor
CN100334023C (en) Large scale optical fibre prefabricated rod preparation and optical fibre drawing method
JP2010128069A (en) Method of manufacturing coated optical fiber ribbon
JP4184302B2 (en) Multi-core fiber and manufacturing method thereof
JP6366040B2 (en) Pigtail fiber module
CN210922534U (en) High-temperature-resistant large-strain distributed optical fiber sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110308