JP2008013839A - Method for predicting material quality of heat-treated rolled-steel plate, and method for operating continuous annealing line utilizing this prediction - Google Patents

Method for predicting material quality of heat-treated rolled-steel plate, and method for operating continuous annealing line utilizing this prediction Download PDF

Info

Publication number
JP2008013839A
JP2008013839A JP2006188933A JP2006188933A JP2008013839A JP 2008013839 A JP2008013839 A JP 2008013839A JP 2006188933 A JP2006188933 A JP 2006188933A JP 2006188933 A JP2006188933 A JP 2006188933A JP 2008013839 A JP2008013839 A JP 2008013839A
Authority
JP
Japan
Prior art keywords
steel sheet
temper
continuous annealing
steel plate
prediction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006188933A
Other languages
Japanese (ja)
Other versions
JP4790516B2 (en
Inventor
Koichi Goto
貢一 後藤
Tadaaki Shikama
忠明 四釜
Ikuo Onishi
生男 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006188933A priority Critical patent/JP4790516B2/en
Publication of JP2008013839A publication Critical patent/JP2008013839A/en
Application granted granted Critical
Publication of JP4790516B2 publication Critical patent/JP4790516B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique with which even in the case of existing the unevenness of material quality caused by the former process, the material quality of a heat-treated rolled-steel plate can be stabilized. <P>SOLUTION: An extension ratio, tension, load value of rolling, thickness and width of the steel plate in a heat-treating rolling mill 2 disposed at the outlet side of a continuous annealing furnace 1 are obtained by measuring or from a host computer, and based on these values, the prediction of the material quality, such as the yield point YP and the tensile strength YS, etc., is performed. Based on the predicted values of these material qualities, the operational conditions of the continuous annealing furnace 1, are feedback-controlled and then, even in the case that the unevenness of the material quality caused by the former process, such as the variation of the steel plate composition, etc., exists, the occurrence of a non-standardized article can be prevented. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、連続焼鈍炉を持つ連続処理ライン、例えば連続焼鈍設備や溶融めっき設備の出側に調質圧延機を配置した連続処理ラインにおける調質圧延鋼板の材質予測方法及びこれを利用した連続焼鈍ラインの操業方法に関するものであり、特に780MPa以上の抗張力を有するハイテン鋼板の材質予測方法及び操業方法に有効なものである。   The present invention relates to a method for predicting the quality of a temper rolled steel sheet in a continuous processing line having a continuous annealing furnace, for example, a continuous processing line in which a temper rolling mill is disposed on the outlet side of a continuous annealing facility or a hot dipping plating facility, and a continuous process using the same. The present invention relates to an operation method of an annealing line, and is particularly effective for a material prediction method and an operation method of a high-tensile steel plate having a tensile strength of 780 MPa or more.

連続焼鈍炉の出側に調質圧延機を配置した連続焼鈍ラインにおいては、炉内における加熱・均熱板温または徐冷炉出側板温が調質圧延鋼板の材質に大きな影響を及ぼす。このため従来から連続焼鈍炉の内部における板温制御を高精度化し、材質を安定させる努力が行われていた。しかし例えば鋼板成分が変動するなどの前工程起因の材質バラツキが存在するような場合には、単に連続焼鈍炉の板温制御を高精度化しても、材質変動を避けることができなかった。特に近年、自動車部品の成形精度向上の観点からハイテン材(高強度鋼板)、特に780MPa以上の抗張力を持つハイテン材の材質バラツキ低減、特に引張強度の安定を求められているが、従来法では自動車メーカーの要求に完全に応えることができなかった。   In a continuous annealing line in which a temper rolling mill is arranged on the exit side of the continuous annealing furnace, the heating / soaking plate temperature in the furnace or the slow cooling furnace exit side plate temperature greatly affects the material of the temper rolled steel sheet. For this reason, conventionally, efforts have been made to make the temperature control inside the continuous annealing furnace highly accurate and stabilize the material. However, for example, in the case where there is a material variation due to the previous process such as a change in the steel plate component, even if the plate temperature control of the continuous annealing furnace is simply made highly accurate, the material variation cannot be avoided. Particularly in recent years, from the viewpoint of improving the molding accuracy of automobile parts, there has been a demand for reduction in material variation of high-tensile materials (high-strength steel plates), particularly high-tensile materials having a tensile strength of 780 MPa or more, and in particular, stabilization of tensile strength. The manufacturer's request could not be fully met.

なお特許文献1には、連続焼鈍炉と調質圧延機との間に鋼板温度の制御手段を設け、環境温度の影響をなくして調質圧延鋼板の材質安定を図る技術が開示されている。しかしこの方法も、前工程起因の材質バラツキが存在するような場合には、効果がなかった。
また、特許文献2には、調質圧延装置の張力変動量によって焼鈍温度を制御する方法が提案されている。しかし、この方法は、単に張力変動にのみ着目したものであって、調質圧延荷重が一定条件の必要があり、圧延荷重が変動するような場合には、予測精度に問題があった。
しかも、調質圧延荷重を一定条件下で圧延するには、調質圧延装置の能力にも依るが、一般には、比較的低い抗張力の鋼板が対象となる極めて限定的な範囲でしか成立しない方法と考えられる。
更に、実施例にも具体的な抗張力レベルの記載が見当たらず、抗張力の高い鋼板への効果については、まったく証明されていない。従って、本発明とは技術内容が異なる上、特に提案している抗張力が780MPa以上のハイテン鋼板にも有効な方法と言えない。
Patent Document 1 discloses a technique for providing a steel plate temperature control means between a continuous annealing furnace and a temper rolling mill to stabilize the material quality of the temper rolled steel plate by eliminating the influence of the environmental temperature. However, this method also has no effect when there is material variation due to the previous process.
Patent Document 2 proposes a method of controlling the annealing temperature by the amount of tension fluctuation of the temper rolling apparatus. However, this method focuses only on the tension fluctuation, and the temper rolling load needs to be constant, and there is a problem in prediction accuracy when the rolling load fluctuates.
Moreover, in order to roll the temper rolling load under a certain condition, it depends on the ability of the temper rolling device, but generally it is a method that can be established only in a very limited range for a relatively low tensile strength steel plate. it is conceivable that.
Further, no specific description of the tensile strength level is found in the examples, and the effect on the steel plate having a high tensile strength is not proved at all. Therefore, the technical content is different from that of the present invention, and it cannot be said to be an effective method for a high-tensile steel plate having a tensile strength of 780 MPa or more.

このため、従来は製造された後の調質圧延鋼板の材質をオフラインで検査し、その結果を連続焼鈍ラインの製造条件にフィードバックする方法が採用されてきた。しかしこの方法ではフィードバックに時間がかかるため、大量の規格外れ品が発生してしまうことがあった。
特開平6−344019号公報 特開平6−10055号公報
For this reason, conventionally, a method has been adopted in which the material of the temper rolled steel sheet after being manufactured is inspected off-line and the result is fed back to the manufacturing conditions of the continuous annealing line. However, since this method takes time for feedback, a large amount of non-standard products may occur.
JP-A-6-344019 JP-A-6-10055

本発明は上記した従来の問題点を解決し、鋼板成分が変動するなどの前工程起因の材質バラツキが存在する場合にも、速やかに連続焼鈍ラインにフィードバックを行うことができ、規格外れ品の発生を最小限に抑制しつつ、調質圧延鋼板、特に780MPa以上の抗張力を持つハイテン鋼板の材質を安定させることができる技術を提供することを目的とするものである。   The present invention solves the above-mentioned conventional problems, and even when there is material variation due to the previous process such as fluctuation of the steel plate component, it is possible to promptly feed back to the continuous annealing line, An object of the present invention is to provide a technology capable of stabilizing the material of a temper rolled steel sheet, particularly a high-tensile steel sheet having a tensile strength of 780 MPa or more, while suppressing generation to a minimum.

上記の課題を解決するためになされた請求項1の発明は、連続焼鈍炉の出側に配置された調質圧延機における伸び率、張力、圧延荷重の値と、鋼板の板厚、板巾を測定または上位計算機より入手し、これらの値に基づいて調質圧延鋼板の材質予測を行うことを特徴とするものである。なお、前記伸び率、張力、圧延荷重の値と、鋼板の板厚、板巾を鋼板の全長にわたり連続的に測定または上位計算機より入手し、これらの値に基づいて調質圧延鋼板の材質予測を行うことが好ましく、調質圧延鋼板の材質予測を、調質圧延機における伸び率、張力、圧延荷重の値と、鋼板の板厚、板巾から鋼板の降伏点を算出する予測式を用いて行うことが好ましい。   In order to solve the above-mentioned problems, the invention of claim 1 is directed to the elongation rate, tension, rolling load value, steel plate thickness, and plate width in a temper rolling mill arranged on the outlet side of the continuous annealing furnace. Is obtained by measurement or obtained from a higher-order computer, and based on these values, the material prediction of the temper rolled steel sheet is performed. The elongation rate, tension, rolling load value, steel plate thickness and width are continuously measured over the entire length of the steel plate or obtained from a host computer, and the material prediction of the temper rolled steel plate is based on these values. It is preferable to use the prediction formula to calculate the yield point of the steel sheet from the values of elongation rate, tension, rolling load in the temper rolling mill, and the thickness and width of the steel sheet. It is preferable to carry out.

また請求項4の発明は、連続焼鈍ラインの操業方法に関するものであり、請求項1〜3の何れかの方法により調質圧延鋼板の材質予測を行い、予測結果に基づいて連続焼鈍炉の操業条件をフィードバック制御することを特徴とするものである。フィードバック制御する操業条件が、連続焼鈍炉の加熱炉板温、均熱炉板温、徐冷炉出側板温のうち、1種または2種以上であることが好ましい。   The invention of claim 4 relates to an operation method of the continuous annealing line, and predicts the material quality of the temper rolled steel sheet by any of the methods of claims 1 to 3, and operates the continuous annealing furnace based on the prediction result. It is characterized by feedback control of conditions. The operating conditions for feedback control are preferably one or more of the heating furnace plate temperature, the soaking furnace plate temperature, and the slow cooling furnace outlet plate temperature of the continuous annealing furnace.

請求項1〜3の発明によれば、前工程起因の材質バラツキが存在する場合にも、調質圧延機における伸び率、張力、圧延荷重の値と、鋼板の板厚、板巾から直ちに材質予測を行うことができる。また請求項4〜5の発明によれば、予測材質が一定となるように連続焼鈍炉の操業条件をフィードバック制御することにより、規格外れ品の発生を最小限に抑制しつつ、調質圧延鋼板の材質を安定させることができる。このほか本発明によれば、連続焼鈍炉の板温計に異常が発生したような場合にも直ちに異常発生を検出でき、規格外れ品の発生を抑制することができる。   According to the inventions of claims 1 to 3, even when there is material variation due to the previous process, the material is immediately determined from the values of elongation rate, tension, rolling load in the temper rolling mill, the plate thickness of the steel plate, and the plate width. Predictions can be made. In addition, according to the inventions of claims 4 to 5, the temper rolled steel sheet is controlled while performing the feedback control of the operation condition of the continuous annealing furnace so that the predicted material becomes constant, thereby minimizing the occurrence of nonstandard products. The material can be stabilized. In addition, according to the present invention, even when an abnormality occurs in the plate thermometer of the continuous annealing furnace, the occurrence of the abnormality can be detected immediately, and the generation of nonstandard products can be suppressed.

以下に本発明の好ましい実施形態を説明する。
図1は鋼板の連続焼鈍ラインを模式的に示した図であり、1は連続焼鈍炉、2はその出側に配置された調質圧延機である。連続焼鈍炉1は昇温炉3、一次均熱炉4、二次均熱炉5、冷却炉6に大別されている。払出しリール7から払い出された鋼板はこれらの昇温炉3、一次均熱炉4、二次均熱炉5を順次走行する間に鋼板の材質に適した温度に加熱焼鈍されたうえ、二次均熱炉5の出口温度から冷却炉6で焼入れされ、調質圧延機2で調質圧延されたうえで巻き取りリール8に巻き取られる。なお、冷却炉6と調質圧延機2との間に過時効炉や冷却炉、表面処理鋼板を製造するための溶融メッキ設備、合金化設備、電気メッキ設備などの表面処理設備を付設してもよい。以上の構成は従来と変わるところはなく、各部分の板温は前記したように高精度の制御が行われている。
Hereinafter, preferred embodiments of the present invention will be described.
FIG. 1 is a diagram schematically showing a continuous annealing line of a steel sheet, wherein 1 is a continuous annealing furnace, and 2 is a temper rolling mill arranged on the outlet side thereof. The continuous annealing furnace 1 is roughly divided into a heating furnace 3, a primary soaking furnace 4, a secondary soaking furnace 5, and a cooling furnace 6. The steel sheet delivered from the delivery reel 7 is heated and annealed to a temperature suitable for the material of the steel sheet while traveling in the heating furnace 3, the primary soaking furnace 4, and the secondary soaking furnace 5 in sequence. The material is quenched in the cooling furnace 6 from the outlet temperature of the next soaking furnace 5, temper-rolled by the temper rolling mill 2, and wound on the take-up reel 8. In addition, surface treatment equipment such as an overaging furnace, a cooling furnace, a hot dipping equipment for manufacturing surface-treated steel sheets, an alloying equipment, and an electroplating equipment is attached between the cooling furnace 6 and the temper rolling mill 2. Also good. The above configuration is not different from the conventional one, and the plate temperature of each part is controlled with high accuracy as described above.

調質圧延機2では軽圧下による調質圧延が行われるが、本発明では調質圧延機2における圧延荷重、張力、伸び率を連続的に検出し、材質予測を行う。本発明では、特に780MPa以上の抗張力を持つハイテン鋼板の材質予測を正確に行うべく、調質圧延機の張力、伸び率のみならず、調質圧延機の圧延荷重をも取り入れて材質予測をすることに特徴がある。図2及び図3に780MPa以上の抗張力を持つハイテン鋼板での圧延荷重とハイテン鋼板との降伏点との相関を示す。また図4及び図5に当該ハイテン鋼板での圧延荷重と抗張力との相関を示す。すなわち実績データによれば、図2及び図3に示されるように伸び率が同じであれば圧延荷重、張力が増加すると調質圧延鋼板の降伏点(YP)が増加し、また図4及び図5に示すように抗張力(TS)も増加している。また圧延荷重もしくは張力が一定であっても、伸び率が低い方が降伏点(YP)及び抗張力(TS)が大きくなる。このことから、圧延荷重、張力、伸び率、調質圧延鋼板の材質(YP、TS)との間には強い相関があることが分る。   In the temper rolling mill 2, temper rolling is performed by light reduction, but in the present invention, the rolling load, tension, and elongation rate in the temper rolling mill 2 are continuously detected to predict the material. In the present invention, in order to accurately perform the material prediction of the high-tensile steel sheet having a tensile strength of 780 MPa or more in particular, the material prediction is performed by incorporating not only the tension and elongation of the temper rolling mill but also the rolling load of the temper rolling mill. There is a special feature. 2 and 3 show the correlation between the rolling load of a high-tensile steel sheet having a tensile strength of 780 MPa or more and the yield point of the high-tensile steel sheet. 4 and 5 show the correlation between the rolling load and tensile strength of the high-tensile steel plate. That is, according to the results data, if the elongation is the same as shown in FIGS. 2 and 3, the yield point (YP) of the temper rolled steel sheet increases as the rolling load and tension increase, and FIGS. As shown in FIG. 5, the tensile strength (TS) is also increased. Even if the rolling load or tension is constant, the yield point (YP) and the tensile strength (TS) increase as the elongation rate is lower. From this, it can be seen that there is a strong correlation between the rolling load, tension, elongation, and material (YP, TS) of the temper rolled steel sheet.

そこで過去の操業実績に基づいて、調質圧延鋼板の材質予測式を作成した。調質圧延の理論式として知られるROBERTSの式には、材質(YP、TS)、伸び率、張力、摩擦係数、厚み、圧延速度、ロール径などの多くの影響因子が含まれており、これらの因子を精度よく用いることで、高精度な材質予測が可能になることから、本発明の一例として、下記の材質予測式を作成した。影響因子としては、調質圧延機の伸び率(%)、調質圧延機の張力(MPa)、鋼板の板厚(mm)、調質圧延機の圧延荷重と鋼板の板巾から算出される線荷重(ton/m)を用いている。   Therefore, based on past operational results, a material prediction formula for temper rolled steel sheet was created. The ROBERTS formula, known as the theoretical formula for temper rolling, includes many influential factors such as material (YP, TS), elongation, tension, friction coefficient, thickness, rolling speed, roll diameter, etc. Since the material can be accurately predicted by using the above factor with high accuracy, the following material prediction formula was created as an example of the present invention. The influential factors are calculated from the elongation (%) of the temper rolling mill, the tension (MPa) of the temper rolling mill, the sheet thickness (mm), the rolling load of the temper rolling mill and the sheet width of the steel sheet. Line load (ton / m) is used.

YP=a*伸び率(%)+b*(平均張力MPa)+c*(鋼板の板厚mm*線荷重ton/m)+d
この式中、YPは降伏点であって単位はMPa、SPM%は伸び率、線荷重は圧延荷重を鋼板の幅で割った値である。この式に含まれる係数は重回帰分析により定めるが、前記式のa, b, c, dの具体的な数値や式の形態は各ラインの特性や通板される鋼板の強度によって定められるものであり、上記に限定されるものではないことはいうまでもない。ちなみに軟鋼板でよく実施される圧延荷重を一定とした調質圧延を780MPa以上の高張力鋼板に実施した場合、鋼板の高張力ゆえ設備仕様の限界に近い過度な圧延荷重と張力バランスでの調質圧延となり、圧延そのものが極めて不安定になり、最悪、板破断などのトラブルを発生させることもあり得る。
YP = a * Elongation rate (%) + b * (Average tension MPa) + c * (Steel sheet thickness mm * Line load ton / m) + d
In this equation, YP is the yield point, the unit is MPa, SPM% is the elongation rate, and the line load is a value obtained by dividing the rolling load by the width of the steel sheet. The coefficients included in this equation are determined by multiple regression analysis, but the specific numerical values of a, b, c, d in the above equation and the form of the equation are determined by the characteristics of each line and the strength of the steel plate to be passed Needless to say, the present invention is not limited to the above. By the way, when temper rolling with a constant rolling load, which is often performed on mild steel sheets, is applied to high-tensile steel sheets of 780 MPa or more, adjustment with excessive rolling load and tension balance close to the limit of equipment specifications due to the high tension of the steel sheets. It becomes quality rolling, the rolling itself becomes extremely unstable, and in the worst case, troubles such as plate breakage may occur.

なお、前記張力について、実操業では調質圧延機の入側と出側の張力があるが、両者は概ね比例関係にあり、材質予測に用いる値は入側もしくは出側を用いるが、両者を平均化して用いるのが好ましい。鋼板の板厚、板巾についても、調質圧延機の入側での値または出側での値のいずれを測定もしくは上位計算機より入手して用いても構わないが、焼鈍炉内での鋼板の伸びの影響から調質圧延機出側での値を用いることが好ましい。   As for the tension, in actual operation, there is a tension on the entry side and the exit side of the temper rolling mill, but both are in a proportional relationship, and the values used for material prediction use the entry side or the exit side. It is preferable to use after averaging. As for the thickness and width of the steel sheet, either the value on the entry side or the value on the exit side of the temper rolling mill may be measured or obtained from the host computer, and the steel sheet in the annealing furnace may be used. It is preferable to use the value on the outlet side of the temper rolling mill from the influence of the elongation of the steel.

調質圧延鋼板、特に780MPa以上のTSを持つハイテン鋼板の材質予測が調質圧延機の圧延荷重を影響因子として採用した場合に後述のようにTSを極めて正確に予測できる理由は以下の理由が考えられる。一般的な軟質鋼板では鋼鈑が軟質ゆえと、その軟質な鋼板に対して調質圧延機の圧延荷重、張力の設備能力に余裕があることから、圧延荷重、張力のいずれか一方(例えば圧延荷重)が変動した場合、調質圧延機の圧延制御により伸び率一定とすべく他の一方(例えば張力)が制御できてしまい、張力のみを影響因子としても大きな差支えがない。ところが780MPa以上のTSを持つハイテン鋼板では、その高強度の鋼板に対し、調質圧延機の圧延荷重、張力の設備能力に余裕がなく、それぞれの設備能力限界で操業することが多い。圧延荷重、張力のいずれか一方が変動した場合、他の一方で吸収できない場合もあり、圧延荷重、張力のいずれか一方だけでは予測精度を向上させることができず、張力、圧延荷重(前述式の線荷重を算出)、伸び率から複合的に予測しなければならないものと思われる。 The reason why TS can be predicted extremely accurately as will be described later when the material prediction of a tempered rolled steel sheet, particularly a high-tensile steel sheet having a TS of 780 MPa or more, adopts the rolling load of the temper rolling mill as an influencing factor is as follows. Conceivable. In general soft steel plates, because the steel plate is soft, the rolling load of the temper rolling mill and the equipment capacity of the tension have room for the soft steel plate, so either one of the rolling load or tension (for example, rolling) When the (load) fluctuates, the other one (for example, tension) can be controlled to make the elongation constant constant by rolling control of the temper rolling mill, and there is no significant difference even if only tension is used as an influencing factor. However, a high-tensile steel sheet having a TS of 780 MPa or more has a margin in equipment capacity for rolling load and tension of a temper rolling mill compared to the high-strength steel sheet, and is often operated at the limit of each equipment capacity. If one of the rolling load and tension fluctuates, the other may not be able to absorb, and the prediction accuracy cannot be improved by using only one of the rolling load or tension. It is thought that it is necessary to predict the composite load from the elongation rate.

さらに材質を予測するための影響因子として、調質圧延機ワークロール径、調質圧延機ワークロールと鋼板との間の摩擦係数、調質圧延機圧延速度のうち1種以上を考慮して精度向上を図ることも好ましい。調質圧延機ワークロール径、調質圧延機ワークロールと鋼板との間の摩擦係数は鋼板圧延中に決定することが困難な場合、予め測定または決めておいた値を用いても構わない。調質圧延機圧延速度は調質圧延機の入側での値または出側での値の何れを用いても構わない。   In addition, as an influencing factor for predicting the material, the precision considering one or more of the temper rolling mill work roll diameter, the friction coefficient between the temper rolling mill work roll and the steel plate, and the temper rolling mill rolling speed are considered. It is also preferable to improve. When it is difficult to determine the temper rolling mill work roll diameter and the friction coefficient between the temper rolling mill work roll and the steel sheet, values determined or determined in advance may be used. The temper rolling mill rolling speed may be either the value on the entry side or the value on the exit side of the temper rolling mill.

この式により予測されたYPは図6に示すとおり実績YPとよく一致する(重相関係数0.925)ことが確認された。また調質圧延鋼板のYPとTSとの間には図7に示すとおり強い相関があるので、この図7に示されたTS=e*YP+fの関係を利用してTSを予測し、実績TSとの関係を確認すると図8にようになり、上記の材質予測式によって調質圧延鋼板の材質を正確に予測できることが確認された。なお当業者には自明であるが、TSとYPとの関係も鋼種によって変化するため、鋼種に応じた式、例えば高次の式や各種関数を用いた式を用いても構わず、前記式の形態に限定されない。また前記式の場合でも、式中のe,fは各ラインの特性や鋼種によって定められるもので特に限定されない。   As shown in FIG. 6, it was confirmed that the YP predicted by this equation was in good agreement with the actual YP (multiple correlation coefficient 0.925). Since there is a strong correlation between YP and TS of the temper rolled steel sheet as shown in FIG. 7, TS is predicted using the relationship of TS = e * YP + f shown in FIG. When the relationship with the record TS is confirmed, it is as shown in FIG. As is obvious to those skilled in the art, since the relationship between TS and YP also changes depending on the steel type, an expression corresponding to the steel type, for example, an expression using higher-order expressions or various functions may be used. It is not limited to the form. Also in the case of the above formula, e and f in the formula are not particularly limited as they are determined by the characteristics of each line and the steel type.

本発明の一例では、調質圧延機2において連続的に検出された圧延荷重、張力、伸び率
と、調質圧延機2の後方に位置する板厚計11、板巾計12において連続的に検出された板厚、板巾は図1に示すプロセスコンピュータ9に入力され、プロセスコンピュータ9に入力されている調質圧延鋼板のYP算出式、TS算出式に代入されて計算され、リアルタイムで現在圧延中の鋼板の材質を把握することができる。
In an example of the present invention, the rolling load, tension, and elongation rate continuously detected in the temper rolling mill 2, and the thickness gauge 11 and the sheet width meter 12 located behind the temper rolling mill 2 are continuously measured. The detected plate thickness and width are input to the process computer 9 shown in FIG. 1 and are calculated by substituting into the YP calculation formula and TS calculation formula of the tempered rolled steel sheet input to the process computer 9 and are calculated in real time. The material of the steel plate during rolling can be grasped.

なお、板厚、板巾の値はプロセスコンピュータ9の上位計算機であるビジコン10より入手しても構わない。さらに材質予測精度を向上させるために、前記調質圧延機ワークロール径、調質圧延機ワークロールと鋼板との間の摩擦係数、調質圧延機圧延速度のうち1種以上を追加した調質圧延鋼板のYP算出式、TS算出式を用いても構わない。前記調質圧延機ワークロール径、調質圧延機ワークロールと鋼板との間の摩擦係数の値はオペレータによるプロセスコンピュータ9への直接入力あるいは事前入力され、調質圧延機圧延速度は調質圧延機ワークロール回転速度または図示されていない調質圧延機前後に設置されたブライドルロール回転速度など、調質圧延機内またはその近傍で回転速度を検出可能なロールから検出し、プロセスコンピュータ9に入力すればよい。   Note that the values of the plate thickness and the plate width may be obtained from the vidicon 10 which is a host computer of the process computer 9. Furthermore, in order to further improve the material prediction accuracy, the temper rolling is added with one or more of the temper rolling mill work roll diameter, the friction coefficient between the temper rolling mill work roll and the steel plate, and the temper rolling mill rolling speed. You may use the YP calculation formula and TS calculation formula of a rolled steel plate. The temper rolling mill work roll diameter and the friction coefficient value between the temper rolling mill work roll and the steel sheet are directly input to the process computer 9 by the operator or pre-input, and the temper rolling mill rolling speed is temper rolling. Rotational speed of the work roll or bridle roll installed before and after the temper rolling mill (not shown) is detected from the roll capable of detecting the rotational speed in or near the temper rolling mill and input to the process computer 9 That's fine.

このため演算された調質圧延鋼板のYPやTSに変動が生じた場合には直ちに異常発生の警報を出すことができ、従来のように大量の規格外れ品を発生させることがない。また異常発生の原因が、鋼板成分変動などの前工程起因の材質バラツキである場合にも、圧延荷重、張力、伸び率の変動として現れるので、直ちに異常発生を把握することができる。このように調質圧延機2を材質変動のモニターとして利用するのは、従来に例を見ない新規な技術である。   For this reason, when fluctuations occur in the calculated YP and TS of the temper rolled steel sheet, an alarm of occurrence of abnormality can be immediately issued, and a large number of off-standard products are not generated as in the prior art. In addition, even when the cause of the abnormality is a material variation due to a previous process such as a steel plate component variation, it appears as a variation in rolling load, tension, and elongation rate, so that the occurrence of the abnormality can be immediately grasped. The use of the temper rolling mill 2 as a material fluctuation monitor in this way is a novel technique that has never been seen before.

上記したように、調質圧延機2をモニターとして調質圧延鋼板の材質を正確に把握することができるため、請求項4の発明では、請求項1乃至3の方法により得られた調質圧延鋼板の材質予測結果に基づいて、連続焼鈍炉1の内部における板温をフィードバック制御する。図1に示すプロセスコンピュータ9は工場全体の工程を制御するビジコン10からコイルの前工程情報を受け取り、材質の予測値に基づいて連続焼鈍炉1の加熱・均熱板温や徐冷炉出側板温等をフィードバック制御する。   As described above, since the material of the temper rolled steel sheet can be accurately grasped using the temper rolling mill 2 as a monitor, in the invention of claim 4, the temper rolling obtained by the method of claims 1 to 3 is used. Based on the result of predicting the material of the steel plate, the plate temperature inside the continuous annealing furnace 1 is feedback-controlled. The process computer 9 shown in FIG. 1 receives coil pre-process information from a vidicon 10 that controls the process of the entire factory, and based on the predicted value of the material, the heating / soaking plate temperature of the continuous annealing furnace 1, the temperature at the outlet side of the slow cooling furnace, etc. Feedback control.

具体的なフィードバック先は、次の通りである。
即ち、フェライト、マルテンサイト、ベイナイト、残留オーステナイト等の組織(相分率)制御を目的とする鋼板(一般的には引張強さが440〜1600Mpaの高張力鋼板及び超高張力鋼板で、特にTSが780MPa以上)については、フィードバック先は相分率を決定する加熱炉3や均熱炉4の板温と、焼入れ開始温度を決定する徐冷炉5の出側板温のうち、1種または2種以上とする。特に超高張力鋼板では、徐冷炉5の出側板温がYPの変動に最も大きく影響する鋼種があるので、これを制御することが有効である。
Specific feedback destinations are as follows.
That is, steel sheets intended to control the structure (phase fraction) of ferrite, martensite, bainite, retained austenite, etc. (generally, high-tensile steel sheets and ultra-high-strength steel sheets with a tensile strength of 440 to 1600 MPa, especially TS Is 780 MPa or more), the feedback destination is one or more of the plate temperature of the heating furnace 3 and the soaking furnace 4 for determining the phase fraction and the outlet side plate temperature of the slow cooling furnace 5 for determining the quenching start temperature. And In particular, in an ultra-high-strength steel sheet, since there is a steel type in which the outlet side plate temperature of the slow cooling furnace 5 has the greatest influence on the fluctuation of YP, it is effective to control this.

また極低炭素鋼や低炭素鋼および鋼の強化機構が固溶強化型や析出強化型ハイテンなどの冶金的に焼鈍(フェライト粒制御、集合組織制御等)や、析出物の形態、析出物の分散状態の制御等を目的とする鋼板(一般的にはTSが270〜980MPaの軟鋼板、高張力鋼板及び超高張力鋼板で、特にTSが780MPa以上)については、フィードバック先は加熱炉3、均熱炉4、徐冷炉5の板温の1種または2種以上とする。   In addition, the strengthening mechanism of ultra low carbon steel, low carbon steel and steel is metallurgically annealed (solid grain control, texture control, etc.) such as solid solution strengthening type and precipitation strengthening type high tensile strength, precipitate morphology, For steel plates for the purpose of controlling the dispersion state (generally, TS is 270 to 980 MPa mild steel plate, high-tensile steel plate and ultra-high strength steel plate, especially TS is 780 MPa or more), the feedback destination is the heating furnace 3, One or more plate temperatures of the soaking furnace 4 and the slow cooling furnace 5 are set.

このようなフィードバック制御を行えば、前工程起因の材質バラツキや、連続焼鈍炉内における板温の変動に起因する材質バラツキが発生しても直ちに自動修正を加え、調質圧延鋼板の材質安定を図ることができる。これにより自動車メーカーからのハイテン材(高強度鋼板)の材質バラツキ低減の要求にも応えることが可能となった。   If such feedback control is performed, even if material variations due to the previous process or material variations due to fluctuations in the plate temperature in the continuous annealing furnace occur, automatic correction is made immediately and the material stability of the temper rolled steel sheet is improved. Can be planned. This has made it possible to meet the demands from automobile manufacturers for reducing material variations in high-tensile materials (high-strength steel plates).

連続焼鈍ラインの模式図である。It is a schematic diagram of a continuous annealing line. 圧延荷重とYPとの相関を示すグラフである。It is a graph which shows the correlation of rolling load and YP. 圧延張力とYPとの相関を示すグラフである。It is a graph which shows the correlation between rolling tension and YP. 圧延荷重とTSとの相関を示すグラフである。It is a graph which shows the correlation with a rolling load and TS. 圧延張力とTSとの相関を示すグラフである。It is a graph which shows the correlation between rolling tension and TS. 予測YPと実績YPとの相関を示すグラフである。It is a graph which shows the correlation with prediction YP and performance YP. YPとTSの関係を示すグラフである。It is a graph which shows the relationship between YP and TS. 予測TSと実績TSとの相関を示すグラフである。It is a graph which shows the correlation with prediction TS and track record TS.

符号の説明Explanation of symbols

1 連続焼鈍炉
2 調質圧延機
3 加熱炉
4 均熱炉
5 徐冷炉
6 冷却炉
7 払出しリール
8 巻き取りリール
9 プロセスコンピュータ
10 ビジコン
11 板厚計
12 板巾計
DESCRIPTION OF SYMBOLS 1 Continuous annealing furnace 2 Temper rolling mill 3 Heating furnace 4 Soaking furnace 5 Slow cooling furnace 6 Cooling furnace 7 Dispensing reel 8 Take-up reel 9 Process computer 10 Vidicon 11 Thickness gauge 12 Sheet width gauge

Claims (5)

連続焼鈍炉の出側に配置された調質圧延機における伸び率、張力、圧延荷重の値と、鋼板の板厚、板巾を測定または上位計算機より入手し、これらの値に基づいて調質圧延鋼板の材質予測を行うことを特徴とする調質圧延鋼板の材質予測方法。   Measure the elongation rate, tension, and rolling load values of the temper rolling mill located on the outlet side of the continuous annealing furnace, and measure the thickness and width of the steel plate from a higher-level computer, or obtain a temper based on these values. A method for predicting the material of a tempered rolled steel sheet, wherein the material prediction of the rolled steel sheet is performed. 前記伸び率、張力、圧延荷重の値と、鋼板の板厚、板巾を鋼板の全長にわたり連続的に測定または上位計算機より入手し、これらの値に基づいて調質圧延鋼板の材質予測を行うことを特徴とする請求項1記載の調質圧延鋼板の材質予測方法。   The elongation rate, tension, rolling load value, steel plate thickness, and plate width are continuously measured over the entire length of the steel plate or obtained from a host computer, and the material prediction of the temper rolled steel plate is performed based on these values. The method for predicting material quality of a temper rolled steel sheet according to claim 1. 調質圧延鋼板の材質予測を、調質圧延機における伸び率、張力、圧延荷重の値と、鋼板の板厚、板巾から鋼板の降伏点を算出する予測式を用いて行うことを特徴とする請求項1または2記載の調質圧延鋼板の材質予測方法。   Predicting the material quality of temper rolled steel sheet by using the prediction formula to calculate the yield point of steel sheet from the values of elongation rate, tension, rolling load in temper rolling mill and the thickness and width of steel sheet The method for predicting the material of a temper rolled steel sheet according to claim 1 or 2. 請求項1〜3の何れかの方法により調質圧延鋼板の材質予測を行い、予測結果に基づいて連続焼鈍炉の操業条件をフィードバック制御することを特徴とする連続焼鈍ラインの操業方法。   A method for operating a continuous annealing line, wherein the material prediction of the temper rolled steel sheet is performed by the method according to any one of claims 1 to 3, and the operation conditions of the continuous annealing furnace are feedback controlled based on the prediction result. フィードバック制御する操業条件が、連続焼鈍炉の加熱炉板温、均熱炉板温、徐冷炉出側板温のうち、1種または2種以上であることを特徴とする請求項4記載の連続焼鈍ラインの操業方法。   5. The continuous annealing line according to claim 4, wherein the operating condition for feedback control is one or more of a heating furnace plate temperature, a soaking furnace plate temperature, and a slow cooling furnace outlet temperature of the continuous annealing furnace. Operating method.
JP2006188933A 2006-07-10 2006-07-10 Method for predicting material quality of temper rolled steel sheet and method for operating continuous annealing line using the same Active JP4790516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006188933A JP4790516B2 (en) 2006-07-10 2006-07-10 Method for predicting material quality of temper rolled steel sheet and method for operating continuous annealing line using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006188933A JP4790516B2 (en) 2006-07-10 2006-07-10 Method for predicting material quality of temper rolled steel sheet and method for operating continuous annealing line using the same

Publications (2)

Publication Number Publication Date
JP2008013839A true JP2008013839A (en) 2008-01-24
JP4790516B2 JP4790516B2 (en) 2011-10-12

Family

ID=39071140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006188933A Active JP4790516B2 (en) 2006-07-10 2006-07-10 Method for predicting material quality of temper rolled steel sheet and method for operating continuous annealing line using the same

Country Status (1)

Country Link
JP (1) JP4790516B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017033222A1 (en) * 2015-08-21 2017-03-02 新日鐵住金株式会社 Steel sheet
US10077942B2 (en) 2013-05-22 2018-09-18 Sms Group Gmbh Device and method for controlling and/or regulating an annealing or heat treatment furnace of a production line processing metal material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02170924A (en) * 1988-12-23 1990-07-02 Sumitomo Metal Ind Ltd Manufacture of continuously annealed material
JPH04327310A (en) * 1991-04-30 1992-11-16 Kawasaki Steel Corp Skinpass rolling method
JPH0610055A (en) * 1992-06-26 1994-01-18 Kawasaki Steel Corp Annealing temperature controller of continuous annealing equipment
JP2002294351A (en) * 2001-03-29 2002-10-09 Nkk Corp Manufacturing method for high-strength cold-rolled steel plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02170924A (en) * 1988-12-23 1990-07-02 Sumitomo Metal Ind Ltd Manufacture of continuously annealed material
JPH04327310A (en) * 1991-04-30 1992-11-16 Kawasaki Steel Corp Skinpass rolling method
JPH0610055A (en) * 1992-06-26 1994-01-18 Kawasaki Steel Corp Annealing temperature controller of continuous annealing equipment
JP2002294351A (en) * 2001-03-29 2002-10-09 Nkk Corp Manufacturing method for high-strength cold-rolled steel plate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10077942B2 (en) 2013-05-22 2018-09-18 Sms Group Gmbh Device and method for controlling and/or regulating an annealing or heat treatment furnace of a production line processing metal material
WO2017033222A1 (en) * 2015-08-21 2017-03-02 新日鐵住金株式会社 Steel sheet
JPWO2017033222A1 (en) * 2015-08-21 2018-07-12 新日鐵住金株式会社 steel sheet

Also Published As

Publication number Publication date
JP4790516B2 (en) 2011-10-12

Similar Documents

Publication Publication Date Title
AU2008289837C1 (en) Material information providing method for outgoing steel plate, and material information using method
US20170002440A1 (en) Method for optimally producing metal steel and iron alloys in hot-rolled and thick plate factories using a microstructure simulator, monitor, and/or model
JP5350579B2 (en) Material stabilization method for hot-rolled steel sheet for continuous hot-dip plating
JP2008115426A (en) Method for predicting width-directional quality of skin-pass rolled steel sheet, and method for operating continuous annealing line used for above method
JP4790516B2 (en) Method for predicting material quality of temper rolled steel sheet and method for operating continuous annealing line using the same
JP5251427B2 (en) Metal plate thickness control device and plastic coefficient estimation function setting method
JP2009142879A (en) Temper rolling method
JP3979023B2 (en) Manufacturing method of high strength cold-rolled steel sheet
EP4306665A1 (en) Continuous annealing equipment, continuous annealing method, cold-rolled steel sheet manufacturing method, and plated steel sheet manufacturing method
KR100838842B1 (en) Control method for preventing center mark in skin pass mill of continuous annealing line
KR20030053621A (en) Hot strip cooling control mothode for chage target temperature
JP5381740B2 (en) Thickness control method of hot rolling mill
JP4162622B2 (en) Edge drop control method in cold rolling
JP4926883B2 (en) Method for providing material information of shipped steel plate and method for using material information of shipped steel plate
JP2011189368A (en) Tandem finishing mill, operation control method therefor, and apparatus and method for manufacturing hot rolled steel sheet
JP7280506B2 (en) Cold tandem rolling equipment and cold tandem rolling method
WO2023042795A1 (en) Quenching apparatus, continuous annealing facility, quenching method, steel sheet production method, and plated steel sheet production method
WO2024070278A1 (en) Continuous annealing equipment, continuous annealing method, cold-rolled steel sheet manufacturing method, and plated steel sheet manufacturing method
JP4164306B2 (en) Edge drop control method in cold rolling
JP5376330B2 (en) Hot rolled sheet shape control method, manufacturing method, and manufacturing apparatus
US20220195558A1 (en) Method for the heat treatment of a metal product
JP2005271025A (en) Cold-rolling method
Jelali et al. Performance monitoring of metal processing control systems
JP2006274404A (en) Annealing method for cold-rolled steel plate
JP2007260738A (en) Method for predicting variation of hardness difference and shape control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110506

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110720

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4790516

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350