JP2008013831A - Thick steel plate with high young's modulus for welded structure, and its manufacturing method - Google Patents

Thick steel plate with high young's modulus for welded structure, and its manufacturing method Download PDF

Info

Publication number
JP2008013831A
JP2008013831A JP2006188336A JP2006188336A JP2008013831A JP 2008013831 A JP2008013831 A JP 2008013831A JP 2006188336 A JP2006188336 A JP 2006188336A JP 2006188336 A JP2006188336 A JP 2006188336A JP 2008013831 A JP2008013831 A JP 2008013831A
Authority
JP
Japan
Prior art keywords
less
rolling
modulus
steel plate
thick steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006188336A
Other languages
Japanese (ja)
Inventor
Akio Omori
章夫 大森
Tomoyuki Yokota
智之 横田
Hirofumi Otsubo
浩文 大坪
Shigeru Endo
茂 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006188336A priority Critical patent/JP2008013831A/en
Publication of JP2008013831A publication Critical patent/JP2008013831A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thick steel plate for welded structures which has excellent weldability and low-temperature toughness and is increased in Young's modulus in an L direction and a C direction and also to provide its manufacturing method. <P>SOLUTION: A steel stock, containing 0.06 to 0.2% C and having ≤0.45 carbon equivalent Ceq, is subjected to: heating to a temperature range between 500°C and a temperature below the Ac<SB>3</SB>transformation point and then rolling while regulating, in a temperature range from ((Ac<SB>3</SB>transformation point)-40°C) to 500°C, a draft per pass and a cumulative draft to ≤10% on average and ≥50%, respectively; or heating to a temperature range between the Ac<SB>3</SB>transformation point and 1,180°C, primary rolling while regulating a cumulative draft in a temperature range between 900°C and ((Ar<SB>3</SB>transformation point)-20°C) to ≥30% and then secondary rolling while regulating, in a temperature range from ((Ar<SB>3</SB>transformation point)-20°C) to 500°C, a draft per pass and a cumulative draft to ≤10% on average and ≥50%, respectively. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、建築、橋梁、建設機械、産業機械、海洋構造物等の溶接鋼構造物用として好適な厚鋼板に係り、とくに、圧延方向(L方向)および圧延方向に垂直な方向(板幅方向:C方向)の弾性率(ヤング率)が共に高い厚鋼板に関する。なお、ここでいう「厚鋼板」とは、板厚:6mm以上の鋼板で、リバース圧延を施して1枚ずつ製造される鋼板をいうものとする。   The present invention relates to a thick steel plate suitable for use in welded steel structures such as buildings, bridges, construction machines, industrial machines, and marine structures, and in particular, the rolling direction (L direction) and the direction perpendicular to the rolling direction (sheet width). The direction (C direction) relates to a thick steel plate having a high elastic modulus (Young's modulus). Here, the “thick steel plate” is a steel plate having a plate thickness of 6 mm or more, and is manufactured by performing reverse rolling one by one.

近年の建築、橋梁、建設機械、産業機械、海洋構造物等の溶接鋼構造物の大型化に伴い、使用鋼板の薄肉化による構造物の軽量化が強く望まれている。しかし、使用する鋼板が薄肉化することにより、構造物の剛性が低下するという問題がある。構造物の剛性は、形状が一定であれば、使用する鋼板の弾性率(ヤング率)に比例する。このため、高いヤング率を有する鋼板が要望されている。   With the recent increase in size of welded steel structures such as buildings, bridges, construction machines, industrial machines, and marine structures, it is strongly desired to reduce the weight of the structures by reducing the thickness of the steel sheets used. However, there is a problem that the rigidity of the structure is lowered due to the thinned steel plate used. If the shape is constant, the rigidity of the structure is proportional to the elastic modulus (Young's modulus) of the steel sheet used. For this reason, a steel sheet having a high Young's modulus is desired.

高ヤング率鋼板を得る方法としては、従来から、
(1)集合組織を利用する方法、
(2)高ヤング率粒子を分散させる方法
等、が知られている。
例えば特許文献1〜特許文献6に、集合組織を制御して高ヤング率鋼板を得る技術が記載されている。特許文献1には、温度がAr3変態点以上1250℃以下の鋼片を、再結晶終了温度以下Ar3変態点以上の温度域で圧下率:20%以上の熱間圧延を行い、直ちに5℃/s以上の冷却速度で冷却し、Ar3変態点未満で圧下率:50%以上の二相域圧延を行う、低温靭性に優れた高ヤング率構造用鋼板の製造方法が記載されている。特許文献1に記載された技術によれば、低温靭性に優れ、特定方向(C方向)の剛性(ヤング率)が10%程度向上した構造用鋼板が得られるとしている。また、特許文献2には、温度がAr3変態点以上1250℃以下の鋼片を、再結晶終了温度以下Ar3変態点以上の温度域で圧下率:20%以上の熱間圧延を行い、直ちに5℃/s以上の冷却速度で冷却し、Ar3変態点未満で圧下率:50%以上の二相域圧延を行い、焼入れした後、焼戻処理を行う、低温靭性に優れた高ヤング率構造用鋼板の製造方法が記載されている。特許文献2に記載された技術によれば、低温靭性に優れ、特定方向(C方向)の剛性(ヤング率)が20%程度以上向上した構造用鋼板が得られるとしている。
As a method of obtaining a high Young's modulus steel sheet,
(1) A method of using a texture,
(2) A method for dispersing high Young's modulus particles is known.
For example, Patent Documents 1 to 6 describe a technique for obtaining a high Young's modulus steel sheet by controlling the texture. In Patent Document 1, a steel slab whose temperature is not lower than Ar 3 transformation point and not higher than 1250 ° C is hot-rolled at a reduction ratio of 20% or higher in a temperature range not higher than the recrystallization end temperature and not lower than Ar 3 transformation point, and immediately 5 It describes a method for producing a high Young's modulus structural steel sheet excellent in low temperature toughness, which is cooled at a cooling rate of at least ° C / s and performs two-phase rolling at a reduction ratio of less than 50% below the Ar 3 transformation point. . According to the technique described in Patent Document 1, a structural steel plate having excellent low-temperature toughness and improved rigidity (Young's modulus) in a specific direction (C direction) by about 10% is obtained. In Patent Document 2, a steel slab whose temperature is not lower than the Ar 3 transformation point and not higher than 1250 ° C. is hot-rolled at a reduction rate of 20% or higher in a temperature range not higher than the recrystallization end temperature and not lower than the Ar 3 transformation point. Immediately cool at a cooling rate of 5 ° C / s or more, perform two-phase rolling at a reduction ratio of 50% or more below the Ar 3 transformation point, quench, and then temper, high Young excellent in low temperature toughness A method of manufacturing a rate structural steel sheet is described. According to the technique described in Patent Document 2, a structural steel plate having excellent low-temperature toughness and improved rigidity (Young's modulus) in a specific direction (C direction) by about 20% or more is obtained.

特許文献1、2に記載された技術では、{211}〈110〉方位を主方位とする結晶粒を発達させ、これにより、圧延方向に垂直な方向(C方向)のヤング率を高めることができるが、しかし、特許文献1、2に記載された技術では、圧延方向(L方向)のヤング率を高めることができないという問題があった。
また、特許文献3には、C:0.02〜0.15%、Cr:0.60%以下、Cu:1.5%以下、Ni:3.0%以下、V:0.10%以下、Ti:0.10%以下、Ca:0.0050%以下を含み、さらにNb、Mo、Bのうちの2種以上を、所定の特定関係を満足するように含有する鋼片に、950℃〜Ar3変態点の温度域での累積圧下率を50%以上、Ar3変態点未満の累積圧下率を5%以下とする熱間圧延を施す、高ヤング率鋼板の製造方法が提案されている。特許文献3に記載された技術では、{211}〈110〉方位の結晶粒を発達させ、これにより、圧延方向に垂直な方向(C方向)のヤング率を高めることができるが、しかし、圧延方向(L方向)のヤング率を高めることができないという問題があった。
In the techniques described in Patent Documents 1 and 2, it is possible to develop crystal grains having the {211} <110> orientation as the main orientation, thereby increasing the Young's modulus in the direction perpendicular to the rolling direction (C direction). However, the techniques described in Patent Documents 1 and 2 have a problem that the Young's modulus in the rolling direction (L direction) cannot be increased.
In Patent Document 3, C: 0.02 to 0.15%, Cr: 0.60% or less, Cu: 1.5% or less, Ni: 3.0% or less, V: 0.10% or less, Ti: 0.10% or less, Ca: 0.0050% or less In addition, a steel piece containing two or more of Nb, Mo, and B so as to satisfy a predetermined specific relationship has a cumulative reduction ratio of 50% in the temperature range from 950 ° C. to Ar 3 transformation point. above, subjected to hot rolling to a cumulative reduction rate of Ar less than 3 transformation point and less than 5%, the method of producing a high Young's modulus steel sheet have been proposed. In the technique described in Patent Document 3, the {211} <110> orientation crystal grains are developed, thereby increasing the Young's modulus in the direction perpendicular to the rolling direction (C direction). There was a problem that the Young's modulus in the direction (L direction) could not be increased.

また、特許文献4には、Ac3変態点以上から圧延を開始し、Ar3変態点未満の温度域で圧下率50%以上の二相域圧延を、鋼板平均温度1200℃〜Ar1変態点の間で冷却時間と総圧延時間との比が0.2超えを満足し、表面の冷却速度が2℃/s以上の冷却速度で冷却しながら行う、スケール密着性に優れ、かつヤング率が高い構造用厚鋼板の製造方法が提案されている。特許文献4に記載された技術によれば、C方向のヤング率が10%以上向上するとしている。しかし、L方向ヤング率の増加が少なく、二相域温度域での圧下率を80%としても、L方向のヤング率は高々220GPa程度であるという問題があった。 Further, Patent Document 4, Ac 3 starts rolling from the above transformation point, Ar 3 the two-phase region rolling reduction rate of 50% or more in a temperature range of less than transformation point, steel sheet average temperature 1200 ° C. to Ar 1 transformation point The ratio between the cooling time and the total rolling time is over 0.2, the surface cooling rate is 2 ° C / s or more while cooling, the structure has excellent scale adhesion and high Young's modulus A method of manufacturing a heavy steel plate has been proposed. According to the technique described in Patent Document 4, the Young's modulus in the C direction is improved by 10% or more. However, there has been a problem that the Young's modulus in the L direction is at most about 220 GPa even when the increase in the Young's modulus in the L direction is small and the reduction rate in the two-phase temperature range is 80%.

また、特許文献5には、C:0.04〜0.15%、Mn:0.6〜2.0%を含み、Si、P、S、N、Alを適正量含有する鋼片を、950〜1200℃に加熱した後、800〜900℃で累積圧下量60%以上の圧延を行い、その後空冷し450〜600℃で累積圧下量5〜15%の軽圧下圧延する厚鋼板の製造方法が提案されている。特許文献5に記載された技術によれば、{111}〈110〉方位を発達させて、板面内に均一に高いヤング率を有する厚鋼板を製造することができるとしている。しかし、特許文献5に記載された技術によって達成されるヤング率は、L、C両方向とも高々220GPa程度であり、効果が十分とは言えない。   Patent Document 5 includes C: 0.04 to 0.15%, Mn: 0.6 to 2.0%, and after heating a steel slab containing appropriate amounts of Si, P, S, N, and Al to 950 to 1200 ° C. There has been proposed a method for producing a thick steel plate that is rolled at 800 to 900 ° C. with a cumulative reduction amount of 60% or more, and then air-cooled and lightly rolled at 450 to 600 ° C. with a cumulative reduction amount of 5 to 15%. According to the technique described in Patent Document 5, a {111} <110> orientation is developed, and a thick steel plate having a high Young's modulus uniformly in the plate surface can be manufactured. However, the Young's modulus achieved by the technique described in Patent Document 5 is at most about 220 GPa in both the L and C directions, and the effect is not sufficient.

また、特許文献6には、C:0.04〜0.15%、Mn:0.6〜2.0%を含み、Si、P、S、N、Alを適正量含有する鋼片を、950〜750℃に加熱した後、最終圧延方向に垂直な方向に累積圧下量10%以上の圧延を施した後、最終圧延方向の圧延を650〜800℃の温度範囲で終了する厚鋼板の製造方法が提案されている。特許文献6に記載された技術によれば、圧延方向および圧延方向に垂直な方向のヤング率を240GPa程度まで高めることができるとしている。しかし、特許文献6に記載された技術では、圧延途中で鋼材を90°転回する必要があり、鋼材のサイズが限定されること、また圧延方向に垂直な方向(C方向)での圧延負荷が大きいこと、などの制約条件が多く、生産性が低下するという問題があった。   Patent Document 6 includes C: 0.04 to 0.15%, Mn: 0.6 to 2.0%, and after heating a steel piece containing appropriate amounts of Si, P, S, N, and Al to 950 to 750 ° C. A method of manufacturing a thick steel sheet is proposed in which rolling with a cumulative reduction amount of 10% or more is performed in a direction perpendicular to the final rolling direction, and then rolling in the final rolling direction is finished in a temperature range of 650 to 800 ° C. According to the technique described in Patent Document 6, the Young's modulus in the rolling direction and the direction perpendicular to the rolling direction can be increased to about 240 GPa. However, in the technique described in Patent Document 6, it is necessary to turn the steel material by 90 ° during rolling, the size of the steel material is limited, and the rolling load in the direction perpendicular to the rolling direction (C direction) is reduced. There was a problem that productivity was reduced due to many constraints such as large size.

また、特許文献7には、C:0.0005〜0.30%、Mn:2.7〜5.0%、Mo:0.15〜1.5%を含むスラブを、950℃以上の温度に加熱し、800℃以下で、圧延ロールと鋼板との摩擦係数が0.2超、かつ圧下率の合計が50%以上となるように行い、Ar3変態点以上750℃以下の温度で熱間圧延を終了する、高ヤング率鋼板の製造方法が提案されている。特許文献7に記載された技術は、圧延時に、鋼板と圧延ロールとの間の摩擦力によって剪断歪を導入して、鋼板表層近傍に{110}〈223〉または{110}〈111〉の非常に先鋭な剪断集合組織を発達させてL方向のヤング率を高める方法である。 In Patent Document 7, a slab containing C: 0.0005 to 0.30%, Mn: 2.7 to 5.0%, Mo: 0.15 to 1.5% is heated to a temperature of 950 ° C or higher, and 800 ° C or lower, A method for producing a high Young's modulus steel sheet, in which the friction coefficient with the steel sheet exceeds 0.2 and the total rolling reduction is 50% or more, and the hot rolling is finished at a temperature of not less than Ar 3 transformation point and not more than 750 ° C. Proposed. The technique described in Patent Document 7 introduces a shear strain by the frictional force between the steel plate and the rolling roll during rolling, and {110} <223> or {110} <111> in the vicinity of the steel plate surface layer. This is a method of increasing the Young's modulus in the L direction by developing a sharp shear texture.

また、特許文献8には、C:0.2〜1.7%、B:0.5〜3.2%を含み、Si、Mn、Ti、Mo、N、V、Nb、Ta、Hf、Caの適正量を含む溶鋼の鋳造過程で、六方晶系硼化物、又は立方晶系炭窒化物を晶出させ、ついで残留溶鋼から六方晶系硼化物、立方晶系炭窒化物及びFeマトリックス相を晶出させた鋼塊を、所定温度以下で総減面率50%以上の熱間加工を行い、さらに焼きならし、および焼戻処理する、高強度高剛性鋼の製造方法が提案されている。   Patent Document 8 includes C: 0.2 to 1.7%, B: 0.5 to 3.2%, and a molten steel containing appropriate amounts of Si, Mn, Ti, Mo, N, V, Nb, Ta, Hf, and Ca. A steel ingot in which hexagonal boride or cubic carbonitride is crystallized in the casting process, and then hexagonal boride, cubic carbonitride and Fe matrix phase are crystallized from the residual molten steel. A method for producing high-strength, high-rigidity steel has been proposed in which hot working with a total area reduction of 50% or more is performed at a predetermined temperature or lower, and further normalized and tempered.

また、特許文献9には、C:0.03〜1.7%、V:1〜12%、B:0.5〜3.2%を含み、さらにSi、Mn、Nの適正量を含有し、あるいはさらにTi、および/または、Nb、Taのうちの1種以上、および/または、Mo、および/または、Ca、Mg、Ndのうちの1種、を含有する鋳片を1075℃以上に加熱し、950〜1050℃の範囲で10/s以下の歪速度、かつ圧下率5〜20%で熱間加工を行う、高剛性鋼の製造方法が提案されている。特許文献9に記載された技術によれば、鋼母地に、ヤング率が高い、斜方晶構造を有するMB型硼化物を体積率で5%以上分散させることができ、232GPa以上の高ヤング率と、良好な靭性を有する鋼材を容易に製造できるとしている。
特開平4−141519号公報 特開平4−293720号公報 特開平8−311541号公報 特開平6−73504号公報 特開平4−147915号公報 特開平4−147917号公報 特開2005−273001号公報 特開2004−33948号公報 特開2004−353063号公報
Patent Document 9 includes C: 0.03 to 1.7%, V: 1 to 12%, B: 0.5 to 3.2%, and further contains appropriate amounts of Si, Mn, and N, or further Ti, and / or Alternatively, a slab containing one or more of Nb and Ta and / or Mo and / or one of Ca, Mg and Nd is heated to 1075 ° C. or higher, and 950 to 1050 ° C. In this range, a method for producing high-rigidity steel has been proposed in which hot working is performed at a strain rate of 10 / s or less and a reduction rate of 5 to 20%. According to the technique described in Patent Document 9, MB type boride having an orthorhombic crystal structure with a high Young's modulus can be dispersed in a steel matrix at a volume ratio of 5% or more, and a high Young of 232 GPa or more. And steel material having good toughness can be easily manufactured.
JP-A-4-141519 JP-A-4-293720 Japanese Patent Laid-Open No. 8-311541 JP-A-6-73504 JP-A-4-147915 Japanese Patent Laid-Open No. 4-147917 JP-A-2005-273001 JP 2004-33948 A JP 2004-353063 A

しかしながら、特許文献7に記載された技術では、目的の集合組織が得られる範囲が板厚の表層近傍に限られるため、おおむね板厚6mm以上の厚鋼板においては、高いヤング率を達成することができないという問題があった。また、Mn、Mo、B等の含有量が多いため、溶接性が低下するという問題もあった。
また、特許文献8、9に記載された技術によれば、方向によらずに高いヤング率を有する鋼材が得られるが、高ヤング率粒子を体積率で数%以上含有させる必要があるため、靭性が低下したり、溶接性が低下したりするなどの問題があった。また、多量の合金元素の含有を必要とするため、材料コストが高騰するという問題もあった。
However, in the technique described in Patent Document 7, since the range in which the target texture can be obtained is limited to the vicinity of the surface layer of the plate thickness, a high Young's modulus can be achieved in a thick steel plate having a plate thickness of 6 mm or more. There was a problem that I could not. Moreover, since there is much content of Mn, Mo, B, etc., there also existed a problem that weldability fell.
In addition, according to the techniques described in Patent Documents 8 and 9, a steel material having a high Young's modulus can be obtained regardless of the direction, but it is necessary to contain high Young's modulus particles in a volume ratio of several percent or more. There have been problems such as reduced toughness and weldability. Further, since a large amount of alloy element is required, there is a problem that the material cost is increased.

本発明は、上記した従来技術の問題に鑑み、優れた溶接性および優れた低温靭性を有するとともに、圧延方向(L方向)のヤング率が220GPa以上、圧延方向と直角方向(C方向)のヤング率が230GPa以上と、L方向、C方向がともに高いヤング率を有する、安価な、溶接構造用厚鋼板およびその製造方法を提供することを目的とする。   The present invention has an excellent weldability and excellent low temperature toughness in view of the above-described problems of the prior art, and has a Young's modulus in the rolling direction (L direction) of 220 GPa or more and a Young in the direction perpendicular to the rolling direction (C direction). An object of the present invention is to provide an inexpensive thick steel plate for welded structure having a modulus of 230 GPa or higher and a high Young's modulus in both the L direction and the C direction, and a method for producing the same.

本発明者らは、上記した目的を達成するために、C方向に加えてL方向のヤング率向上に影響する種々の要因について、鋭意研究した。
本発明者らは、まず、(α+γ)二相域およびα単相域での圧延に着目した。スラブ等の鋼素材に、(α+γ)二相域および/またはα単相域で圧延を施し厚鋼板とすると、厚鋼板は、{100}〈110〉、{211}〈110〉、{111}〈110〉、{111}〈110〉、{111}〈211〉等の加工集合組織が強く発達した組織を呈する。このような厚鋼板について、L断面(長手方向断面、圧延方向に平行で圧延面に垂直な面)で組織観察すると、{100}、{211}、{111}面が圧延面にほぼ平行な(5°以内)フェライト粒の集団(以下、フェライト粒コロニーと称する)によって構成されていることがわかった。なお、フェライト粒コロニーは、圧延方向に伸長したフェライト粒単一あるいは複数のフェライト粒の集まりで、アスペクト比の高い形態を呈している。また、フェライト粒コロニーを構成するフェライト粒の内部には、サブグレイン、亜結晶を含んでいる。
In order to achieve the above-described object, the present inventors diligently studied various factors that affect the improvement of the Young's modulus in the L direction in addition to the C direction.
The inventors first focused on rolling in the (α + γ) two-phase region and the α single-phase region. When a steel material such as a slab is rolled into a (α + γ) two-phase region and / or an α single-phase region to obtain a thick steel plate, the thick steel plates are {100} <110>, {211} <110>, {111} <110>, {111} <110>, {111} <211> and the like exhibit a texture in which the processed texture is strongly developed. For such a thick steel plate, when the structure is observed in the L section (longitudinal section, plane parallel to the rolling direction and perpendicular to the rolling surface), the {100}, {211}, {111} planes are substantially parallel to the rolling surface. It was found that it was composed of a group of ferrite grains (within 5 °) (hereinafter referred to as ferrite grain colonies). The ferrite grain colony is a collection of single or a plurality of ferrite grains elongated in the rolling direction and has a high aspect ratio. Moreover, the inside of the ferrite grain which comprises a ferrite grain colony contains a subgrain and a subcrystal.

L方向のヤング率を向上させるために、本発明者らは、このような加工集合組織に加えて、表層に、板厚中央部とは異なる、{110}集合組織を発達させることが肝要であることに想到した。厚鋼板の表層に、板厚中央部とは異なる、{110}集合組織を発達させることにより、ヤング率のL方向/C方向差を小さくでき、かつL方向のヤング率を向上させることができる。また、本発明者らは、集合組織を形成するフェライト粒コロニーを微細化することにより、厚鋼板の巨視的なヤング率が高くなることをも見出した。フェライト粒コロニーが微細化されると、変形に際し、隣接するフェライト粒コロニー間に作用する拘束力が大きくなり、同じ弾性歪を与えるのに必要な応力が大きくなり、巨視的なヤング率が高くなると考えられる。   In order to improve the Young's modulus in the L direction, it is important for the inventors to develop a {110} texture different from the center of the plate thickness on the surface layer in addition to such a processed texture. I came up with something. By developing a {110} texture different from the central portion of the plate thickness on the surface layer of the thick steel plate, the L direction / C direction difference in Young's modulus can be reduced and the Young's modulus in the L direction can be improved. . The present inventors have also found that the macroscopic Young's modulus of the thick steel plate is increased by refining the ferrite grain colonies forming the texture. When the ferrite grain colony is refined, the restraining force acting between adjacent ferrite grain colonies increases during deformation, the stress necessary to give the same elastic strain increases, and the macroscopic Young's modulus increases. Conceivable.

そして、本発明者らは、表層に{110}集合組織を発達させるためには、少なくとも、(α+γ)二相域およびα単相域で、1パス当りの平均圧下率を10%以下、かつ累積圧下率を50%以上とする圧延を施すことが肝要であることを新規に見出した。1パス当たりの平均圧下率を小さくすることにより、鋼板表面付近に剪断歪が集中し、板厚中央部とは異なる集合組織({110}集合組織)が発達すると考えられる。これにより、フェライト粒コロニーも微細化し、靭性が向上することを知見した。   And in order to develop the {110} texture in the surface layer, the present inventors have an average reduction rate per pass of 10% or less in at least (α + γ) two-phase region and α single-phase region, and It was newly found out that rolling with a cumulative reduction ratio of 50% or more is essential. By reducing the average rolling reduction per pass, it is considered that the shear strain concentrates near the steel plate surface, and a texture ({110} texture) different from the central portion of the plate thickness develops. As a result, it was found that ferrite grain colonies were also refined and toughness was improved.

本発明は、上記した知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は、次のとおりである。
(1)溶接構造用の厚鋼板であって、該厚鋼板が、質量%で、C:0.06〜0.2%を含み、次(1)式
Ceq=C+Si/24+Mn/6+Ni/40+Cr/5+Mo/4+V/14 ……(1)
(ここで、Ceq:炭素当量(%)、C、Si、Mn、Ni、Cr、Mo、V:各元素の含有量(質量%))
で定義される炭素当量Ceqが0.45以下である組成を有し、かつ、板厚中央部における(200)面および(211)面のX線回折集積密度の合計が4.5以上、表面下1mmにおける(110)面のX線回折集積密度が1.5以上で、かつ{100}面、{211}面、{110}面、{111}面のうちのいずれかの面が、圧延面に対し5°以内に揃ったフェライト粒コロニーの平均長軸長さが、板厚中央部で60μm以下、表面下1mmで30μm以下である組織を有することを特徴とする高ヤング率溶接構造用厚鋼板。
The present invention has been completed based on the above findings and further studies. That is, the gist of the present invention is as follows.
(1) Thick steel plate for welded structure, and the thick steel plate contains C: 0.06 to 0.2% by mass, and the following (1) formula Ceq = C + Si / 24 + Mn / 6 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14 …… (1)
(Where Ceq: carbon equivalent (%), C, Si, Mn, Ni, Cr, Mo, V: content of each element (mass%))
The carbon equivalent Ceq defined by the formula (1) is 0.45 or less, and the sum of the X-ray diffraction integrated densities of the (200) plane and (211) plane at the center of the plate thickness is 4.5 or more, 110) X-ray diffraction integrated density is 1.5 or more, and any one of {100} plane, {211} plane, {110} plane, {111} plane is within 5 ° with respect to the rolling plane. A thick steel plate for welded structure with high Young's modulus, characterized in that the average major axis length of ferrite grain colonies arranged in a uniform thickness is 60 μm or less at the center of the plate thickness and 30 μm or less at 1 mm below the surface.

(2)(1)において、前記組成が、質量%で、C:0.06〜0.2%を含み、前記(1)式で定義される炭素当量Ceqが0.45以下で、かつ、Si:1%以下、Mn:2%以下、Al:0.1%以下を含み、残部Feおよび不可避的不純物からなる組成であることを特徴とする高ヤング率溶接構造用厚鋼板。
(3)(2)において、前記組成に加えてさらに、質量%で、Cu:1%以下、Ni:1.5%以下、Mo:1%以下、Cr:1%以下、B:0.01%以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする高ヤング率溶接構造用厚鋼板。
(2) In (1), the composition includes, in mass%, C: 0.06 to 0.2%, a carbon equivalent Ceq defined by the formula (1) is 0.45 or less, and Si: 1% or less. A steel plate for high Young's modulus welded structure characterized by having a composition comprising Mn: 2% or less, Al: 0.1% or less, the balance being Fe and inevitable impurities.
(3) In (2), in addition to the above composition, by mass%, Cu: 1% or less, Ni: 1.5% or less, Mo: 1% or less, Cr: 1% or less, B: 0.01% or less A thick steel plate for high Young's modulus welded structure characterized by comprising a composition containing one or more selected from

(4)(2)または(3)において、前記組成に加えてさらに、質量%で、V:0.1%以下、Nb:0.05%以下、Ti:0.05%以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする高ヤング率溶接構造用厚鋼板。
(5)(2)ないし(4)のいずれかにおいて、前記組成に加えてさらに、質量%で、Ca:0.01%以下、REM:0.01%以下のうちから選ばれた1種または2種を含有する組成とすることを特徴とする高ヤング率溶接構造用厚鋼板。
(4) In (2) or (3), in addition to the above-mentioned composition, in addition, by mass%, one or two selected from V: 0.1% or less, Nb: 0.05% or less, Ti: 0.05% or less A thick steel plate for welded structures having a high Young's modulus, characterized by comprising a composition containing at least a seed.
(5) In any one of (2) to (4), in addition to the above composition, the composition further contains one or two kinds selected from Ca: 0.01% or less and REM: 0.01% or less by mass%. A thick steel plate for a welded structure with a high Young's modulus, characterized by comprising

(6)鋼素材に圧延を施し厚鋼板とする溶接構造用厚鋼板の製造方法であって、前記鋼素材を質量%で、C:0.06〜0.2%を含み、次(1)式
Ceq=C+Si/24+Mn/6+Ni/40+Cr/5+Mo/4+V/14 ……(1)
(ここで、Ceq:炭素当量(%)、C、Si、Mn、Ni、Cr、Mo、V:各元素の含有量(質量%))
で定義される炭素当量Ceqが0.45以下である組成を有する鋼素材とし、前記圧延を、500℃以上Ac3変態点未満の温度に加熱したのち、(Ac3変態点−40℃)以下500℃以上の温度域において、1パス当りの圧下率が平均で10%以下、累積圧下率が50%以上とする圧延とすることを特徴とする高ヤング率溶接構造用厚鋼板の製造方法。
(6) A method of manufacturing a thick steel plate for welded structure by rolling a steel material to form a thick steel plate, wherein the steel material is contained in mass% and includes C: 0.06 to 0.2%, and the following formula (1) Ceq = C + Si / 24 + Mn / 6 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14 (1)
(Where Ceq: carbon equivalent (%), C, Si, Mn, Ni, Cr, Mo, V: content of each element (mass%))
A steel material having a composition with a carbon equivalent Ceq defined by ≦ 0.45 or less, heating the rolling to a temperature of 500 ° C. or more and less than the Ac 3 transformation point, and then (Ac 3 transformation point−40 ° C.) or less 500 ° C. A method for producing a thick steel sheet for a high Young's modulus welded structure, characterized in that rolling is performed such that the rolling reduction per pass is 10% or less on average and the cumulative rolling reduction is 50% or more in the above temperature range.

(7)(6)において、前記圧延に代えて、Ac3変態点以上1180℃以下の温度に加熱したのち、900℃以下(Ar3変態点−20℃)以上の温度域における累積圧下率が30%以上である一次圧延を行い、ついで、(Ar3変態点−20℃)以下500℃以上の温度域で1パス当りの圧下率が平均で10%以下で、該温度域での累積圧下率が50%以上である二次圧延を行なう圧延とすることを特徴とする高ヤング率溶接構造用厚鋼板の製造方法。 (7) In (6), instead of rolling, after heating to a temperature not lower than Ac 3 transformation point and not higher than 1180 ° C., the cumulative reduction ratio in a temperature range not lower than 900 ° C. (Ar 3 transformation point −20 ° C.) is obtained. The primary rolling is 30% or more, and then the (Ar 3 transformation point-20 ° C) or less is 500 ° C or more, and the average rolling reduction per pass is 10% or less, and the cumulative reduction in the temperature range. A method for producing a thick steel plate for a welded structure with high Young's modulus, characterized in that the rolling is performed by secondary rolling with a rate of 50% or more.

(8)(6)または(7)において、前記組成が、質量%で、C:0.06〜0.2%を含み、前記(1)式で定義される炭素当量Ceqが0.45以下で、かつ、Si:1%以下、Mn:2%以下、Al:0.1%以下を含み、残部Feおよび不可避的不純物からなる組成であることを特徴とする高ヤング率溶接構造用厚鋼板の製造方法。
(9)(8)において、前記組成に加えてさらに、質量%で、Cu:1%以下、Ni:1.5%以下、Mo:1%以下、Cr:1%以下、B:0.01%以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする高ヤング率溶接構造用厚鋼板の製造方法。
(8) In (6) or (7), the composition includes mass%, C: 0.06 to 0.2%, a carbon equivalent Ceq defined by the formula (1) is 0.45 or less, and Si: A method for producing a thick steel sheet for a high Young's modulus welded structure, comprising 1% or less, Mn: 2% or less, and Al: 0.1% or less, the balance being Fe and inevitable impurities.
(9) In (8), in addition to the above composition, by mass%, Cu: 1% or less, Ni: 1.5% or less, Mo: 1% or less, Cr: 1% or less, B: 0.01% or less A method for producing a thick steel plate for welded structures having a high Young's modulus, characterized in that the composition contains one or more selected from the above.

(10)(8)または(9)において、前記組成に加えてさらに、質量%で、V:0.1%以下、Nb:0.05%以下、Ti:0.05%以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする高ヤング率溶接構造用厚鋼板の製造方法。
(11)(8)ないし(10)のいずれかにおいて、前記組成に加えてさらに、質量%で、Ca:0.01%以下、REM:0.01%以下のうちから選ばれた1種または2種を含有する組成とすることを特徴とする高ヤング率溶接構造用厚鋼板の製造方法。
(10) In the above (8) or (9), in addition to the above-mentioned composition, by mass%, one or two selected from V: 0.1% or less, Nb: 0.05% or less, Ti: 0.05% or less The manufacturing method of the thick steel plate for high Young's modulus welded structures characterized by setting it as the composition containing seed | species or more.
(11) In any one of (8) to (10), in addition to the above-described composition, the composition further comprises one or two selected from Ca: 0.01% or less and REM: 0.01% or less by mass%. The manufacturing method of the thick steel plate for high Young's modulus welding structures characterized by the above-mentioned.

本発明によれば、優れた溶接性および優れた低温靭性を有するとともに、圧延方向(L方向)のヤング率が220GPa以上、圧延方向と直角方向(C方向)のヤング率が230GPa以上と、L方向、C方向がともに高いヤング率を有する溶接構造用厚鋼板を容易に、しかも生産性の低下を伴うことなく、安価に製造でき、産業上格段の効果を奏する。   According to the present invention, while having excellent weldability and excellent low temperature toughness, the Young's modulus in the rolling direction (L direction) is 220 GPa or more, and the Young's modulus in the direction perpendicular to the rolling direction (C direction) is 230 GPa or more. A steel plate for welded structure having a high Young's modulus in both the direction and the C direction can be easily manufactured at low cost without a reduction in productivity, and has a remarkable industrial effect.

本発明の溶接構造用厚鋼板は、表層と板厚中央部とで異なった集合組織を有する。これにより、L方向およびC方向のヤング率を向上させることができる。本発明厚鋼板の板厚中央部では、(200)面および(211)面のX線回折集積密度の合計が4.5以上となる集合組織を有する。板厚中央部で、(200)面および(211)面のX線回折集積密度の合計を4.5以上とすることにより、C方向のヤング率が向上し、230GPa以上を確保できるようになる。しかし、これだけでは、C方向に高いヤング率が得られるだけで、L方向のヤング率を高めることができない。   The thick steel plate for welded structure of the present invention has different textures in the surface layer and the central portion of the plate thickness. Thereby, the Young's modulus in the L direction and the C direction can be improved. The central portion of the thick steel plate of the present invention has a texture where the sum of the X-ray diffraction integrated density of the (200) plane and the (211) plane is 4.5 or more. By setting the total X-ray diffraction integrated density of the (200) plane and (211) plane to 4.5 or more at the center of the plate thickness, the Young's modulus in the C direction is improved, and 230 GPa or more can be secured. However, this alone only provides a high Young's modulus in the C direction and cannot increase the Young's modulus in the L direction.

本発明厚鋼板では、さらに、表面下1mmの表層部で、(110)面のX線回折集積密度が1.5以上となる集合組織を有する。表面下1mmの表層部で、(110)面のX線回折集積密度を1.5以上とすることにより、板厚方向に集合組織の変化が生じ、L方向のヤング率が向上し220GPa以上を確保でき、C方向のヤング率とL方向のヤング率の差を小さくすることができる。   The thick steel plate of the present invention further has a texture in which the X-ray diffraction integrated density of the (110) plane is 1.5 or more at the surface layer portion 1 mm below the surface. By setting the X-ray diffraction integration density on the (110) plane to 1.5 or more at the surface layer 1mm below the surface, the texture changes in the plate thickness direction, the Young's modulus in the L direction is improved, and 220 GPa or more can be secured. The difference between the Young's modulus in the C direction and the Young's modulus in the L direction can be reduced.

上記した集合組織に加えてさらに、本発明厚鋼板は、板厚全域にわたって、フェライト粒コロニーが微細化した組織を有する。本発明でいう「フェライト粒コロニー」は、{100}面、{211}面、{110}面、{111}面のうちのいずれかの面が、圧延面に対し5°以内に揃ったフェライト粒の集まりを言うものとする。なお、圧延面と上記したフェライト各面との成す角度は、例えば、EBSP(Electron Back Scattering Pattern)法による結晶方位解析を用いて容易に測定することができる。図1に、本発明厚鋼板の圧延方向断面におけるEBSPによる結晶方位解析に基づく、フェライト粒コロニーの分布状況の一例を図示して、示す。図1(a)が表面下1mmの場合、(b)が板厚中央部の場合である。   In addition to the above-described texture, the thick steel plate of the present invention has a structure in which ferrite grain colonies are refined over the entire plate thickness. The “ferrite grain colony” referred to in the present invention is a ferrite in which any one of {100} plane, {211} plane, {110} plane, and {111} plane is aligned within 5 ° with respect to the rolling plane. Say a collection of grains. The angle formed between the rolled surface and each surface of the ferrite can be easily measured using, for example, crystal orientation analysis by an EBSP (Electron Back Scattering Pattern) method. FIG. 1 shows and shows an example of the distribution state of ferrite grain colonies based on the crystal orientation analysis by EBSP in the cross section in the rolling direction of the steel plate of the present invention. FIG. 1A shows the case of 1 mm below the surface, and FIG.

本発明でいう、フェライト粒コロニーの微細化とは、上記したフェライト粒コロニーの平均長軸長さが、板厚中央部で60μm以下、表面下1mmで30μm以下である場合をいうものとする。なお、フェライト粒コロニーの「平均長軸長さ」とは、厚鋼板の圧延方向断面の各位置において、EBSPによる結晶方位解析に基づき上記した定義に合致するフェライト粒コロニー領域を確定し、各フェライト粒コロニーの圧延方向長さ(長軸長さ)をそれぞれ測定し、それらの値を平均した平均値をいうものとする。   The refinement of the ferrite grain colony referred to in the present invention refers to the case where the average major axis length of the ferrite grain colony is 60 μm or less at the center of the plate thickness and 30 μm or less at 1 mm below the surface. The “average major axis length” of the ferrite grain colony is defined as a ferrite grain colony region that meets the above definition based on the crystal orientation analysis by EBSP at each position of the cross section in the rolling direction of the thick steel plate. The length in the rolling direction (major axis length) of the grain colony is measured, and an average value obtained by averaging these values is used.

このようなフェライト粒コロニーの微細化により、集合組織の種類(方位成分)や集積度が変わらなくても、ヤング率をさらに高めることができる。これは、巨視的な弾性変形を与える際に、隣接するフェライト粒コロニー間で応力および変形の連続性を保つために、微視的には複雑な応力場と弾性歪が導入され、単純にそれぞれの方位のもつ特性を平均した平均特性とは異なる応力−歪関係を示すためである。すなわち、フェライト粒コロニーを微細化するほど、隣接するフェライト粒コロニー間での変形に対する拘束度が高まり、同じ巨視的な弾性変形量を得るためにより大きな応力を与える必要が生じる。すなわちヤング率が増加する。なお、フェライト粒コロニーの微細化には靭性を向上する効果もある。フェライト粒コロニーの平均長軸長さが、上記した板厚中央部で60μm、表面下1mmで30μm、をそれぞれ超えると、ヤング率向上効果、靭性向上効果の程度が小さくなる。
フェライト粒コロニーの大きさは、圧延開始時の初期組織や、圧延条件に依存するが、初期組織の微細化、累積圧下率の増加、パス間時間と圧延温度との最適化によって、フェライト粒コロニーの微細化が可能となる。なお、{110}集合組織は、{100}、{111}、{211}などのフェライト粒コロニーを分断するように生成するため、鋼板表層付近に{110}集合組織を発達させることは、フェライト粒コロニーの微細化にも効果がある。
By refinement of such ferrite grain colonies, the Young's modulus can be further increased even if the type of texture (azimuth component) and the degree of accumulation do not change. In order to maintain the continuity of stress and deformation between adjacent ferrite grain colonies when macroscopic elastic deformation is applied, a microscopically complicated stress field and elastic strain are introduced. This is to show a stress-strain relationship different from the average characteristic obtained by averaging the characteristics of the orientations. That is, the finer the ferrite grain colonies, the higher the degree of restraint against deformation between adjacent ferrite grain colonies, and it becomes necessary to apply a larger stress to obtain the same macroscopic elastic deformation amount. That is, Young's modulus increases. Note that the refinement of ferrite grain colonies also has the effect of improving toughness. When the average major axis length of the ferrite grain colonies exceeds 60 μm at the center portion of the plate thickness and 30 μm at 1 mm below the surface, the degree of Young's modulus improvement effect and toughness improvement effect are reduced.
The size of the ferrite grain colony depends on the initial structure at the start of rolling and the rolling conditions, but the ferrite grain colony can be improved by reducing the initial structure, increasing the cumulative rolling reduction, and optimizing the time between passes and the rolling temperature. Can be miniaturized. In addition, since {110} texture is generated so as to sever ferrite grain colonies such as {100}, {111}, {211}, it is necessary to develop {110} texture near the steel sheet surface layer. It is also effective in making grain colonies finer.

上記した板厚方向で異なる集合組織の形成と、さらに板厚の各位置での、フェライト粒コロニーの微細化とを、同時に達成することにより、はじめてL方向およびC方向のヤング率を所定値以上に高めることができる。板厚各位置での、集合組織の形成およびフェライト粒コロニーの微細化のいずれかひとつでも、本発明範囲から外れると、L方向およびC方向のヤング率を所定値以上に高めることができなくなる。この状況を図2、図3に示す。表面下1mmでの(110)面の集積密度および板厚中央部での(200)および(211)面の集積密度の合計で代表される、所望の集合組織の形成、および、表面下1mmでのフェライト粒コロニーの平均長軸長さおよび板厚中央部でのフェライト粒コロニーの平均長軸長さが所定値以下となるフェライト粒コロニーの微細化、の条件のうち少なくとも1つの条件が本発明範囲を外れた、符号△、▲では、L方向および/またはC方向のヤング率が所定値未満となっている。   The Young's modulus in the L direction and the C direction is not less than a predetermined value for the first time by simultaneously achieving the formation of different textures in the plate thickness direction and further refinement of the ferrite grain colonies at each position of the plate thickness. Can be increased. If any one of texture formation and ferrite grain colony refinement at each position of the plate thickness is outside the scope of the present invention, the Young's modulus in the L direction and the C direction cannot be increased to a predetermined value or more. This situation is shown in FIGS. Formation of the desired texture, represented by the sum of the density of the (110) plane at 1 mm below the surface and the density of the (200) and (211) planes at the center of the plate thickness, and at 1 mm below the surface At least one of the conditions of the refinement of the ferrite grain colony in which the average major axis length of the ferrite grain colony and the average major axis length of the ferrite grain colony at the central portion of the plate thickness are equal to or less than a predetermined value is the present invention. At symbols Δ and ▲ outside the range, the Young's modulus in the L direction and / or the C direction is less than a predetermined value.

つぎに、本発明厚鋼板の組成限定理由について、説明する。
(α+γ)二相域圧延、α単相域圧延における所望の集合組織の発達には、とくに合金元素の影響は小さい。このため、所望の集合組織を発達させるために、特別な合金元素の含有は必要としないが、フェライト粒コロニーの微細化のためにC含有量の限定、またさらに、溶接構造用として優れた溶接性および低温靭性を確保するために、少なくともC含有量の限定および炭素当量の限定を必要とする。なお、以下、組成における質量%は、単に%で記す。
Next, the reason for limiting the composition of the thick steel plate of the present invention will be described.
In particular, the influence of alloying elements is small on the development of a desired texture in (α + γ) two-phase rolling and α single-phase rolling. For this reason, it is not necessary to contain a special alloy element in order to develop a desired texture. However, because of the refinement of ferrite grain colonies, the content of C is limited, and further, excellent welding for welded structures. In order to ensure the property and the low temperature toughness, at least the limitation of the C content and the limitation of the carbon equivalent are required. Hereinafter, the mass% in the composition is simply expressed as%.

C:0.06〜0.2%
Cは、固溶して鋼の強度を増加させる元素であり、溶接構造用として所望の強度を確保するために、含有する必要がある。(α+γ)2相域および/またはα単相域で圧延することにより、フェライト粒の再結晶が進行しフェライト粒が微細化するが、Cが0.06%未満では、再結晶の進行が遅く、集合組織を形成するフェライト粒コロニーの微細化が進行しないため、フェライト粒コロニーが粗大となる。このため、所望の高ヤング率が達成できない。また、0.2%を超える含有は、溶接性が急激に低下する。このようなことから、Cは0.06〜0.2%の範囲に限定した。なお、好ましくは0.08〜0.18%である。
C: 0.06-0.2%
C is an element that increases the strength of the steel by solid solution, and needs to be contained in order to secure a desired strength for the welded structure. By rolling in the (α + γ) two-phase region and / or the α single-phase region, the recrystallization of ferrite grains proceeds and the ferrite grains become finer. However, if C is less than 0.06%, the recrystallization progresses slowly and aggregates. Since the refinement of the ferrite grain colonies forming the structure does not proceed, the ferrite grain colonies become coarse. For this reason, a desired high Young's modulus cannot be achieved. On the other hand, if the content exceeds 0.2%, the weldability decreases rapidly. For these reasons, C is limited to a range of 0.06 to 0.2%. In addition, Preferably it is 0.08 to 0.18%.

炭素当量Ceq:0.45以下
炭素当量Ceqは、溶接性を評価する指数として、次(1)式
Ceq=C+Si/24+Mn/6+Ni/40+Cr/5+Mo/4+V/14 ……(1)
(ここで、Ceq:炭素当量(%)、C、Si、Mn、Ni、Cr、Mo、V:各元素の含有量(質量%))
で定義される。上記したC含有量に加えてさらに、本発明では、溶接構造用として所望の特性を確保するために、所望量の合金元素を含有することができるが、炭素当量Ceqが0.45を超えて大きくなるまでに多量に合金元素を含有すると、溶接性が顕著に低下し、溶接構造用として所望の溶接性を確保できなくなる。このため、本発明では、上記したC含有量の範囲内で、かつ炭素当量Ceqを0.45以下に限定した。なお、好ましくは0.4%以下である。
Carbon equivalent Ceq: 0.45 or less Carbon equivalent Ceq is an index for evaluating weldability, and the following equation (1): Ceq = C + Si / 24 + Mn / 6 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14 (1)
(Where Ceq: carbon equivalent (%), C, Si, Mn, Ni, Cr, Mo, V: content of each element (mass%))
Defined by In addition to the above-described C content, the present invention can further contain a desired amount of alloy element in order to ensure desired characteristics for a welded structure, but the carbon equivalent Ceq increases beyond 0.45. If the alloy element is contained in a large amount, the weldability is remarkably lowered, and a desired weldability for a welded structure cannot be ensured. For this reason, in the present invention, the carbon equivalent Ceq is limited to 0.45 or less within the range of the C content described above. In addition, Preferably it is 0.4% or less.

本発明厚鋼板では、上記したC、Ceqに加えて、Si:1%以下、Mn:2%以下、Al:0.1%以下を含み、残部Feおよび不可避的不純物からなる組成とすることが好ましい。
Si:1%以下
Siは、脱酸剤として作用するとともに、固溶強化により鋼の強度を増加させる作用を有する元素である。このような効果を得るためには、0.1%以上含有することが好ましいが、1%を超える含有は、表面性状を損なううえ、靭性が極端に低下する。このため、Siは1%以下に限定することが好ましい。
The thick steel plate of the present invention preferably contains Si: 1% or less, Mn: 2% or less, Al: 0.1% or less in addition to the above-described C and Ceq, and the balance Fe and inevitable impurities.
Si: 1% or less
Si is an element that acts as a deoxidizer and has the effect of increasing the strength of steel by solid solution strengthening. In order to obtain such an effect, the content is preferably 0.1% or more. However, if the content exceeds 1%, the surface properties are impaired and the toughness is extremely lowered. For this reason, it is preferable to limit Si to 1% or less.

Mn:2%以下
Mnは、鋼中では強化元素として作用する。このような効果を得るためには、0.2%以上含有することが望ましいが、2%を超える多量の含有は、溶接性を低下させるとともに、材料コストの高騰を招く。このため、Mnは2%以下に限定することが好ましい。
Al:0.1%以下
Alは、脱酸剤として作用する元素であるが、このような効果を得るためには、0.01%以上含有することが望ましい。一方、0.1%を超える含有は、介在物量を増加させるとともに、靭性をも低下させる。このため、Alは0.1%以下に限定することが好ましい。
Mn: 2% or less
Mn acts as a strengthening element in steel. In order to acquire such an effect, it is desirable to contain 0.2% or more. However, if it contains more than 2%, the weldability is lowered and the material cost is increased. For this reason, it is preferable to limit Mn to 2% or less.
Al: 0.1% or less
Al is an element that acts as a deoxidizer, but in order to obtain such an effect, it is desirable to contain 0.01% or more. On the other hand, the content exceeding 0.1% increases the amount of inclusions and also reduces toughness. For this reason, it is preferable to limit Al to 0.1% or less.

上記した成分以外に、Cu:1%以下、Ni:1.5%以下、Mo:1%以下、Cr:1%以下、B:0.01%以下のうちから選ばれた1種または2種以上、および/または、V:0.1%以下、Nb:0.05%以下、Ti:0.05%以下のうちから選ばれた1種または2種以上、および/または、Ca:0.01%以下、REM:0.01%以下のうちから選ばれた1種または2種を含有できる。   In addition to the above components, Cu: 1% or less, Ni: 1.5% or less, Mo: 1% or less, Cr: 1% or less, B: 0.01% or less, and / or Alternatively, V: 0.1% or less, Nb: 0.05% or less, Ti: 0.05% or less, and / or Ca: 0.01% or less, REM: 0.01% or less 1 type or 2 types selected can be contained.

Cu:1%以下、Ni:1.5%以下、Mo:1%以下、Cr:1%以下、B:0.01%以下のうちから選ばれた1種または2種以上
Cu、Ni、Mo、Cr、Bはいずれも、鋼の焼入れ性を高め、強度向上に直接寄与するとともに、靭性をも向上させる元素であり、必要に応じて選択して1種または2種以上含有できる。このような効果は、Cu:0.01%以上、Ni:0.01%以上、Mo:0.01%以上、Cr:0.01%以上、B:0.0005%以上、の含有で顕著となるが、Cu:1%、Ni:1.5%、Mo:1%、Cr:1%、B:0.01%をそれぞれ超える過度の含有は、靭性、溶接性を低下させる。このため、Cu:1%以下、Ni:1.5%以下、Mo:1%以下、Cr:1%以下、B:0.01%以下に、それぞれ限定することが好ましい。
Cu: 1% or less, Ni: 1.5% or less, Mo: 1% or less, Cr: 1% or less, B: 0.01% or less
Cu, Ni, Mo, Cr, and B are all elements that increase the hardenability of steel, contribute directly to improving strength, and also improve toughness. Can be contained. Such effects become significant when Cu: 0.01% or more, Ni: 0.01% or more, Mo: 0.01% or more, Cr: 0.01% or more, B: 0.0005% or more, Cu: 1%, Ni : 1.5%, Mo: 1%, Cr: 1%, B: Excessive content exceeding 0.01% decreases toughness and weldability. For this reason, it is preferable to limit to Cu: 1% or less, Ni: 1.5% or less, Mo: 1% or less, Cr: 1% or less, and B: 0.01% or less.

V:0.1%以下、Nb:0.05%以下、Ti:0.05%以下のうちから選ばれた1種または2種以上
V、Nb、Tiはいずれも、窒化物、炭化物、あるいは炭窒化物を形成し、結晶粒を微細化し、鋼を強化する効果を有する元素であり、必要に応じて選択して1種または2種以上を含有できる。このような効果を得るためには、V、Nb、Tiを、それぞれ0.003%以上含有することが望ましい。一方、V:0.1%、Nb:0.05%、Ti:0.05%を超えて多量に含有すると、鋳片に割れを生じ、製造コストの高騰を招く。このため、V:0.1%以下、Nb:0.05%以下、Ti:0.05%以下、の範囲にそれぞれ限定することが好ましい。
One or more selected from V: 0.1% or less, Nb: 0.05% or less, Ti: 0.05% or less V, Nb, and Ti all form nitrides, carbides, or carbonitrides. The element has the effect of refining the crystal grains and strengthening the steel, and can be selected as necessary to contain one or more kinds. In order to acquire such an effect, it is desirable to contain 0.003% or more of V, Nb, and Ti, respectively. On the other hand, if it contains more than V: 0.1%, Nb: 0.05%, Ti: 0.05%, the slab is cracked and the manufacturing cost rises. For this reason, it is preferable to limit to the ranges of V: 0.1% or less, Nb: 0.05% or less, and Ti: 0.05% or less.

Ca:0.01%以下、REM:0.01%以下のうちから選ばれた1種または2種
Ca、REMはいずれも、介在物の形状制御を介して、延性、靭性向上に寄与する元素であり、必要に応じて選択して1種または2種を含有できる。このような効果を得るためには、Ca:0.0005%以上、REM:0.001%以上含有することが好ましいが、Ca:0.01%、REM:0.01%を超える多量の含有は、靭性を低下させる。このため、Ca:0.01%以下、REM:0.01%以下に限定することが好ましい。
One or two selected from Ca: 0.01% or less, REM: 0.01% or less
Both Ca and REM are elements that contribute to the improvement of ductility and toughness through the shape control of inclusions, and can be selected as necessary to contain one or two kinds. In order to obtain such an effect, it is preferable to contain Ca: 0.0005% or more and REM: 0.001% or more, but a large content exceeding Ca: 0.01% and REM: 0.01% reduces toughness. For this reason, it is preferable to limit to Ca: 0.01% or less and REM: 0.01% or less.

上記した成分以外の残部は、Feおよび不可避的不純物からなる。不可避的不純物としては、P:0.1%以下、S:0.006%以下が許容できる。P:0.1%、S:0.006%をそれぞれ超える含有は、靭性を低下させる。
つぎに、本発明厚鋼板の好ましい製造方法について説明する。
上記した組成の溶鋼を、転炉等、常用の溶製方法で溶製し、連続鋳造法等の常用の鋳造方法で、スラブ等の鋼素材とすることが好ましい。
The balance other than the components described above consists of Fe and inevitable impurities. As unavoidable impurities, P: 0.1% or less and S: 0.006% or less are acceptable. If the content exceeds P: 0.1% and S: 0.006%, the toughness decreases.
Below, the preferable manufacturing method of this invention steel plate is demonstrated.
It is preferable that the molten steel having the above composition is melted by a conventional melting method such as a converter and used as a steel material such as a slab by a conventional casting method such as a continuous casting method.

得られた鋼素材は、ついで、圧延を施され、厚鋼板とされる。
本発明では、圧延は、鋼素材を、500℃以上Ac3変態点未満の温度に加熱したのち、(Ac3変態点−40℃)以下500℃以上の温度域において、1パス当りの圧下率が平均で10%以下、累積圧下率が50%以上とする圧延とすることが好ましい。
本発明では、鋼素材に、(α+γ)2相域および/またはα単相域で圧延を施し、{100}〈110〉、{211}〈110〉、{111}〈110〉、{111}〈110〉、{111}〈211〉等の加工集合組織が強く発達した組織を有する厚鋼板とする。そのため、鋼素材を、500℃以上Ac3変態点未満の温度に加熱する。加熱温度が500℃未満では、鋼素材の変形抵抗が大きくなりすぎて、圧延設備への負荷が大きくなりすぎ、圧延が困難となる場合が発生する。このようなことから、鋼素材の加熱温度は、500℃以上Ac3変態点未満の温度に限定することが好ましい。
The obtained steel material is then rolled into a thick steel plate.
In the present invention, rolling, a steel material, after heating to a temperature below 500 ° C. or higher Ac 3 transformation point, in (Ac 3 transformation point -40 ° C.) or less 500 ° C. or higher temperature range, the rolling reduction per one pass Is preferably a rolling with an average rolling reduction of 10% or less and a cumulative rolling reduction of 50% or more.
In the present invention, the steel material is rolled in the (α + γ) two-phase region and / or the α single-phase region, and {100} <110>, {211} <110>, {111} <110>, {111} A thick steel plate having a structure in which a processed texture such as <110> and {111} <211> is strongly developed. Therefore, the steel material is heated to a temperature of 500 ° C. or higher and lower than the Ac 3 transformation point. When the heating temperature is less than 500 ° C., the deformation resistance of the steel material becomes too large, the load on the rolling equipment becomes too large, and rolling may become difficult. For this reason, the heating temperature of the steel material is preferably limited to a temperature of 500 ° C. or higher and lower than the Ac 3 transformation point.

上記した加熱温度に加熱された鋼素材はついで、(Ac3変態点−40℃)以下500℃以上の温度域において、1パス当りの圧下率が平均で10%以下、累積圧下率が50%以上となる圧延を施される。これにより、フェライト相に所望の加工集合組織を発達させることができる。
上記した所望の圧下を施す圧延温度が、(Ac3変態点−40℃)を超えて高温となると、フェライト相分率が低くため、所望の加工集合組織が発達しにくく、十分なヤング率向上効果が期待できない。一方、圧延温度が500℃未満では、表層部の{110}集合組織の発達が抑制されるため、十分なヤング率向上効果が期待できない。また、さらに圧延温度が500℃未満では、板厚中心部の{100}集合組織は発達するものの、フェライト粒の再結晶による細粒化が進まないため、靭性が低下する。このようなことから、所望の圧下を施す圧延温度は、(Ac3変態点−40℃)以下500℃以上の温度域とすることが好ましい。
The steel material heated to the above-mentioned heating temperature is then (Ac 3 transformation point −40 ° C.) or lower and in the temperature range of 500 ° C. or higher, the average rolling reduction per pass is 10% or less, and the cumulative rolling reduction is 50%. The above rolling is performed. As a result, a desired texture can be developed in the ferrite phase.
When the rolling temperature at which the desired reduction is performed exceeds (Ac 3 transformation point −40 ° C.) and becomes high, since the ferrite phase fraction is low, the desired texture is difficult to develop and the Young's modulus is sufficiently improved. The effect cannot be expected. On the other hand, when the rolling temperature is less than 500 ° C., the development of the {110} texture in the surface layer portion is suppressed, so that a sufficient Young's modulus improvement effect cannot be expected. Further, when the rolling temperature is less than 500 ° C., the {100} texture at the center of the plate thickness develops, but the toughness decreases because the refining of ferrite grains does not proceed. For this reason, the rolling temperature at which the desired reduction is performed is preferably (Ac 3 transformation point −40 ° C.) or less and a temperature range of 500 ° C. or more.

また、本発明では、上記した圧延温度で、1パス当りの圧下率が平均で10%以下、累積圧下率が50%以上の圧延を行う。
上記した圧延温度範囲での、1パス当たりの圧下率が平均で10%を超えると、{110}集合組織がほとんど発達しなくなる。1パス当たりの圧下率は、圧延により鋼材内部に導入される塑性歪の板厚方向分布に影響する。1パス当りの圧下率が増加すると、板厚方向歪分布はより均一になり、板厚方向の集合組織変化は小さくなる。1パス当りの圧下率を小さくすると、鋼板表層付近に塑性歪が集中し、表層付近の{110}集合組織が発達する。このようなことから、本発明では、上記した圧延温度範囲での1パス当りの圧下率を平均で10%以下に限定した。なお、好ましくは3〜8%である。
Further, in the present invention, rolling is performed at the rolling temperature described above with an average rolling reduction per pass of 10% or less and a cumulative rolling reduction of 50% or more.
If the rolling reduction per pass in the above rolling temperature range exceeds 10% on average, the {110} texture is hardly developed. The rolling reduction per pass affects the thickness direction distribution of plastic strain introduced into the steel material by rolling. As the rolling reduction per pass increases, the strain distribution in the thickness direction becomes more uniform, and the texture change in the thickness direction becomes smaller. When the rolling reduction per pass is reduced, plastic strain concentrates near the steel sheet surface layer, and a {110} texture near the surface layer develops. Therefore, in the present invention, the rolling reduction per pass in the rolling temperature range described above is limited to 10% or less on average. In addition, Preferably it is 3 to 8%.

また、上記した圧延温度範囲での、累積圧下率が50%未満では、板厚中央部で十分な強度の集合組織が発達しないうえ、フェライト粒コロニーの微細化も不十分となるため、十分なヤング率向上効果が期待できないうえ、優れた低温靭性を確保できなくなる。このため、上記した圧延温度範囲での累積圧下率を50%以上に限定した。なお、好ましくは75%以上である。   In addition, if the cumulative rolling reduction is less than 50% in the rolling temperature range described above, a sufficiently strong texture does not develop at the central portion of the plate thickness, and the ferrite grain colonies are not sufficiently refined. The effect of improving Young's modulus cannot be expected, and excellent low temperature toughness cannot be secured. For this reason, the cumulative rolling reduction in the rolling temperature range described above is limited to 50% or more. In addition, Preferably it is 75% or more.

なお、圧延終了後に、直接焼入や加速冷却を行ってもよい。
また、本発明では、上記した圧延に代えて、Ac3変態点以上1180℃以下の温度に加熱したのち、900℃以下(Ar3変態点−20℃)以上の温度域における累積圧下率が30%以上である一次圧延を行い、ついで、二次圧延を行なう圧延としてもよい。
本発明では、(α+γ)2相域および/またはα単相域で圧延する前に、鋼素材をAc変態点以上1180℃以下の温度に加熱してもよい。しかし、この場合には、(α+γ)2相域および/またはα単相域で圧延する二次圧延の前に、加熱により形成されたオーステナイト粒をできるだけ微細化しておく必要がある。このため、加熱後、900℃以下(Ar3変態点−20℃)以上の温度域における累積圧下率が30%以上である一次圧延を行う。これにより、オーステナイト粒が微細化され、その後のγ→α変態により微細なフェライト粒が得られる。なお、加熱温度が1180℃を超えて高温となると、オーステナイト粒が粗大化しすぎて、その後の圧延によっても微細なフェライト粒が得られなくなる。
In addition, you may perform quenching and accelerated cooling directly after completion | finish of rolling.
In the present invention, instead of the rolling described above, after heating to a temperature not lower than Ac 3 transformation point and not higher than 1180 ° C., the cumulative rolling reduction in a temperature range not lower than 900 ° C. (Ar 3 transformation point −20 ° C.) is 30 It is good also as the rolling which performs primary rolling which is% or more, and then performs secondary rolling.
In the present invention, the steel material may be heated to a temperature not lower than the Ac 3 transformation point and not higher than 1180 ° C. before rolling in the (α + γ) two-phase region and / or the α single-phase region. However, in this case, it is necessary to make the austenite grains formed by heating as fine as possible before the secondary rolling that rolls in the (α + γ) two-phase region and / or the α single-phase region. For this reason, after the heating, primary rolling is performed in which the cumulative rolling reduction in a temperature range of 900 ° C. or lower (Ar 3 transformation point −20 ° C.) or higher is 30% or higher. Thereby, austenite grains are refined, and fine ferrite grains are obtained by the subsequent γ → α transformation. When the heating temperature is higher than 1180 ° C., the austenite grains become too coarse and fine ferrite grains cannot be obtained even by subsequent rolling.

一次圧延の圧延温度が900℃を超えて高温となると、圧延により加工されたオーステナイト粒が再結晶し粗大化するため、組織の微細化効果が少なくなる。また、一次圧延の上記した圧延温度域における累積圧下率が30%未満では、オーステナイト粒の微細化効果が少なく、その後のγ→α変態により微細なフェライト粒が得られない。なお、γ→α変態により更なる微細なフェライト粒を得るためには、一次圧延途中のAr3変態点付近の温度域で水冷処理を施してもよい。 When the rolling temperature of primary rolling exceeds 900 ° C., the austenite grains processed by rolling are recrystallized and coarsened, so that the effect of refining the structure is reduced. In addition, when the cumulative rolling reduction in the rolling temperature range described above for primary rolling is less than 30%, the effect of refining austenite grains is small, and fine ferrite grains cannot be obtained by subsequent γ → α transformation. In order to obtain further fine ferrite grains by the γ → α transformation, water cooling treatment may be performed in a temperature range near the Ar 3 transformation point during the primary rolling.

上記した一次圧延に引続いて、本発明では、(Ar3変態点−20℃)以下500℃以上の温度域で1パス当りの圧下率が平均で10%以下で、該温度域での累積圧下率が50%以上である二次圧延を施す。これにより、上記した所望の集合組織が十分に発達するとともに、最終的に形成されるフェライト粒コロニーが微細化される。
二次圧延の圧延温度が、(Ar3変態点−20℃)を超えて高温となると、フェライト相分率が少なく、フェライト粒に上記した所望の集合組織を十分に発達させることができない。また、二次圧延の圧延温度が500℃未満では、板厚中心部の{100}集合組織は発達するものの、フェライト粒の再結晶による細粒化が進まないため、靭性が低下する。このようなことから、二次圧延の圧延温度は、(Ac3変態点−20℃)以下500℃以上の温度域とすることが好ましい。
Following the above-described primary rolling, in the present invention, the average reduction rate per pass is 10% or less in the temperature range of (Ar 3 transformation point −20 ° C.) or less and 500 ° C. or more, and the accumulation in that temperature range is performed. Secondary rolling with a rolling reduction of 50% or more is performed. As a result, the desired texture described above is sufficiently developed, and the finally formed ferrite grain colony is refined.
When the rolling temperature of the secondary rolling exceeds (Ar 3 transformation point−20 ° C.) and becomes a high temperature, the ferrite phase fraction is small and the desired texture described above cannot be sufficiently developed in the ferrite grains. Further, when the rolling temperature of the secondary rolling is less than 500 ° C., the {100} texture at the center of the plate thickness develops, but the toughness decreases because the refining of ferrite grains does not proceed. For this reason, the rolling temperature of the secondary rolling is preferably (Ac 3 transformation point −20 ° C.) or lower and 500 ° C. or higher.

また、上記した二次圧延の圧延温度範囲での、1パス当たりの圧下率が平均で10%を超えると、{110}集合組織がほとんど発達しなくなる。このため、上記した二次圧延の圧延温度範囲での1パス当たりの圧下率は平均で10%以下に限定した。なお、好ましくは3〜8%である。
また、上記した圧延温度範囲での、累積圧下率が50%未満では、板厚中央部で十分な強度の集合組織が発達しないうえ、フェライト粒コロニーの微細化も不十分となるため、十分なヤング率向上効果が期待できないうえ、優れた低温靭性を確保できなくなる。このため、上記した圧延温度範囲での累積圧下率を50%以上に限定した。なお、好ましくは75%以上である。
Further, when the rolling reduction per pass in the secondary rolling temperature range exceeds 10% on average, the {110} texture is hardly developed. For this reason, the rolling reduction per pass in the rolling temperature range of the secondary rolling described above is limited to 10% or less on average. In addition, Preferably it is 3 to 8%.
In addition, if the cumulative rolling reduction is less than 50% in the rolling temperature range described above, a sufficiently strong texture does not develop at the central portion of the plate thickness, and the ferrite grain colonies are not sufficiently refined. The effect of improving Young's modulus cannot be expected, and excellent low temperature toughness cannot be secured. For this reason, the cumulative rolling reduction in the rolling temperature range described above is limited to 50% or more. In addition, Preferably it is 75% or more.

なお、二次圧延終了後に、直接焼入や加速冷却を行ってもよい。   In addition, you may perform direct hardening and accelerated cooling after completion | finish of secondary rolling.

表1に示す組成の溶鋼を真空溶解炉で溶製し、小型鋼塊としたのち、粗圧延により120mm厚のスラブ(鋼素材)とした。得られた鋼素材に、表2に示す条件の圧延を施し、厚鋼板(板厚:12mm)とした。なお、厚鋼板はすべて、圧延終了後、室温まで空冷した。
得られた厚鋼板について、組織観察、引張試験、シャルピー衝撃試験、ヤング率測定を実施し、組織、引張特性、低温靭性、ヤング率を評価した。測定・試験方法は次の通りとした。
Molten steel having the composition shown in Table 1 was melted in a vacuum melting furnace to form a small steel ingot, and then slab (steel material) having a thickness of 120 mm was obtained by rough rolling. The obtained steel material was rolled under the conditions shown in Table 2 to obtain a thick steel plate (plate thickness: 12 mm). All thick steel plates were air-cooled to room temperature after the end of rolling.
The obtained thick steel plate was subjected to a structure observation, a tensile test, a Charpy impact test, and a Young's modulus measurement to evaluate the structure, tensile properties, low temperature toughness, and Young's modulus. Measurement and test methods were as follows.

(1)組織観察
得られた厚鋼板から、圧延面に平行に、板状試験片(大きさ:25×25mm)を、測定面が表面下1mm、あるいは板厚中央部(但し、中心偏析部から外れるように採取)となるように、採取した。そして、板状試験片の測定面を、バフ研磨により鏡面に仕上げたのち、電解研磨または化学研磨により測定面の残留歪を除去し、測定用試験片とした。得られた測定用試験片を用いて、X線回折測定を行い、正極点図または逆極点図を測定し、(200)面および(211)面のX線回折強度比を求めた。この(200)面および(211)面のX線回折強度比を、(200)面および(211)面の集積密度とし、加工集合組織の形成状態の指標とした。なお、X線回折強度比は、測定用試験片を用いて得られた各面のX線回折強度と、結晶方位がランダムな試験片を用いて得られた各面のX線回折強度との比である。
(1) Structure observation From the obtained thick steel plate, parallel to the rolling surface, a plate-shaped test piece (size: 25 × 25mm), the measurement surface is 1mm below the surface, or the center of the plate thickness (however, the center segregation portion) The sample was collected so that the sample was separated from the sample. Then, the measurement surface of the plate-like test piece was finished to a mirror surface by buffing, and then residual strain on the measurement surface was removed by electrolytic polishing or chemical polishing to obtain a measurement test piece. Using the obtained test specimen for measurement, X-ray diffraction measurement was performed to measure a positive pole figure or a reverse pole figure, and an X-ray diffraction intensity ratio between the (200) plane and the (211) plane was obtained. The X-ray diffraction intensity ratio between the (200) plane and the (211) plane was defined as the integrated density of the (200) plane and (211) plane, which was used as an index of the formation state of the processed texture. The X-ray diffraction intensity ratio is the difference between the X-ray diffraction intensity of each surface obtained using the measurement specimen and the X-ray diffraction intensity of each face obtained using a test piece having a random crystal orientation. Is the ratio.

また、同一の測定用試験片を用いて、EBSP法による結晶方位解析を行い、{100}面、{211}面、{110}面、{111}面のうちのいずれかの面が、圧延面に対し5°以内に揃った領域である、フェライト粒コロニーを定めた。そして、各フェライト粒コロニーの圧延方向長さ(長軸長さ)を、EBSP解析結果を1000倍に拡大した映像を紙面に印刷し、測定した。そして、得られたフェライト粒コロニーの圧延方向長さ(長軸長さ)を平均し、その値を、各厚鋼板の各位置におけるフェライト粒コロニーの平均長軸長さとした。なお、各厚鋼板の各位置で、測定したフェライト粒コロニーの数は各20個とした。   Also, using the same test specimen for measurement, crystal orientation analysis was performed by the EBSP method, and any one of {100} plane, {211} plane, {110} plane, and {111} plane was rolled. Ferrite grain colonies, which are regions aligned within 5 ° with respect to the surface, were determined. The length of each ferrite grain colony in the rolling direction (major axis length) was measured by printing an image obtained by enlarging the EBSP analysis result 1000 times on paper. And the length (major axis length) of the rolling direction of the obtained ferrite grain colony was averaged, and the value was made into the average major axis length of the ferrite grain colony in each position of each thick steel plate. The number of ferrite grain colonies measured at each position of each thick steel plate was 20 each.

(2)引張試験
得られた厚鋼板から、JIS Z 2201の規定に準拠して、板厚中央部から、引張方向が圧延方向に直交する方向(C方向)となるように、14号引張試験片(平行部:6mmφ)を採取し、JIS Z 2241の規定に準拠して引張試験を実施し、引張特性(降伏強さYS、引張強さTS)を求めた。
(2) Tensile test No. 14 tensile test from the thick steel plate obtained in accordance with JIS Z 2201 so that the tensile direction is in the direction (C direction) perpendicular to the rolling direction from the center of the plate thickness. A piece (parallel portion: 6 mmφ) was collected and subjected to a tensile test in accordance with the provisions of JIS Z 2241 to determine tensile properties (yield strength YS, tensile strength TS).

(3)シャルピー衝撃試験
得られた厚鋼板から、JIS Z 2242の規定に準拠して、板厚中央部から、圧延方向に垂直な方向(C方向)に、Vノッチ試験片を採取し、シャルピー衝撃試験を実施し、破面遷移温度vTrs(℃)を求めた。
(4)ヤング率測定
得られた厚鋼板の板厚1/4位置から、試験片の長手方向が圧延方向に平行に(L方向)、および試験片の長手方向が圧延方向に垂直に(C方向)、ヤング率測定用試験片(厚さ1.0mm×幅6.4mm×長さ105mm)を採取し、JIS Z 2208の規定に準拠した常温での共振法を用いて、ヤング率を測定した。なお、共振法とは、試験片に加える振動の振動数を徐々に変化させ、一次共振周波数を測定し、次式
E=0.946×L4/h2×ρ×f2
(ここで、E:ヤング率(GPa)、L:試験片の振動部長さ(m),h:試験片厚さ(m)、ρ:密度(g/mm3)、f:一次共振周波数(s−1))
からヤング率Eを算出する方法である。
(3) Charpy impact test V-notch test specimens were collected from the obtained thick steel plate in the direction perpendicular to the rolling direction (C direction) from the center of the plate thickness in accordance with JIS Z 2242. An impact test was performed to determine the fracture surface transition temperature vTrs (° C.).
(4) Young's modulus measurement From the 1/4 thickness position of the obtained steel plate, the longitudinal direction of the specimen is parallel to the rolling direction (L direction), and the longitudinal direction of the specimen is perpendicular to the rolling direction (C Direction), a Young's modulus test specimen (thickness 1.0 mm × width 6.4 mm × length 105 mm) was collected, and the Young's modulus was measured using a resonance method at room temperature in accordance with the provisions of JIS Z 2208. In the resonance method, the frequency of the vibration applied to the test piece is gradually changed, the primary resonance frequency is measured, and the following equation E = 0.946 × L 4 / h 2 × ρ × f 2
(Where E: Young's modulus (GPa), L: vibration part length (m) of the test piece, h: test piece thickness (m), ρ: density (g / mm 3 ), f: primary resonance frequency ( s- 1 ))
The Young's modulus E is calculated from

得られた結果を表2、表3に示す。  The obtained results are shown in Tables 2 and 3.

Figure 2008013831
Figure 2008013831

Figure 2008013831
Figure 2008013831

Figure 2008013831
Figure 2008013831

Figure 2008013831
Figure 2008013831

本発明例はいずれも、板厚中央部における(200)面および(211)面のX線回折集積密度の合計が4.5以上、表面下1mmにおける(110)面のX線回折集積密度が1.5以上となる集合組織と、かつフェライト粒コロニーの平均長軸長さが、板厚中央部で60μm以下、表面下1mmで30μm以下を満足する微細化されたフェライト粒コロニーを有する組織を有し、L方向で220GPa以上、C方向で230GPa以上の高いヤング率と、vTrs:−60℃以下の優れた低温靭性を有する厚鋼板となっている。一方、本発明範囲を外れる比較例は、所望の集合組織が得られていないか、および/または、フェライト粒コロニーが微細化されていないか、のため、所望の高いヤング率が得られていない。   In all of the examples of the present invention, the total of X-ray diffraction integration density of (200) plane and (211) plane at the center of the plate thickness is 4.5 or more, and X-ray diffraction integration density of (110) plane at 1 mm below the surface is 1.5 or more And a structure having a refined ferrite grain colony satisfying an average major axis length of the ferrite grain colony of 60 μm or less at the center of the plate thickness and 30 μm or less at 1 mm below the surface. This steel plate has a high Young's modulus of 220 GPa or more in the direction and 230 GPa or more in the C direction and excellent low temperature toughness of vTrs: −60 ° C. or less. On the other hand, the comparative example out of the scope of the present invention does not provide the desired high Young's modulus because the desired texture is not obtained and / or the ferrite grain colonies are not refined. .

EBSP法による結晶方位解析結果をもとに、フェライト粒コロニーの分布状況の一例を図示した説明図である。It is explanatory drawing which illustrated an example of the distribution condition of a ferrite grain colony based on the crystal orientation analysis result by EBSP method. LおよびC方向のヤング率に及ぼす、板厚中央部での(200)面および(211)面集積密度の合計方向と表面下1mmでの(110)面集積密度との関係を示すグラフである。It is a graph which shows the relationship between the total direction of the (200) plane and (211) plane integration density in the plate | board thickness center part, and the (110) plane integration density in 1 mm below the surface which affects the Young's modulus of L and C direction. . LおよびC方向のヤング率に及ぼす、板厚中央部でのフェライト粒コロニーの平均長軸長さと表面下1mmでのフェライト粒コロニーの平均長軸長さとの関係を示すグラフである。It is a graph which shows the relationship between the average major axis length of the ferrite grain colony in the plate | board thickness center part, and the average major axis length of the ferrite grain colony 1 mm below the surface which has on the Young's modulus of L and C direction.

Claims (11)

溶接構造用の厚鋼板であって、該厚鋼板が、質量%で、C:0.06〜0.2%を含み、下記(1)式で定義される炭素当量Ceqが0.45以下である組成を有し、かつ、板厚中央部における(200)面および(211)面のX線回折集積密度の合計が4.5以上、表面下1mmにおける(110)面のX線回折集積密度が1.5以上で、かつ{100}面、{211}面、{110}面、{111}面のうちのいずれかの面が、圧延面に対し5°以内に揃ったフェライト粒コロニーの平均長軸長さが、板厚中央部で60μm以下、表面下1mmで30μm以下である組織を有することを特徴とする高ヤング率溶接構造用厚鋼板。

Ceq=C+Si/24+Mn/6+Ni/40+Cr/5+Mo/4+V/14 ……(1)
ここで、Ceq:炭素当量(%)、
C、Si、Mn、Ni、Cr、Mo、V:各元素の含有量(質量%)
A thick steel plate for welded structure, the thick steel plate having a composition in which C: 0.06 to 0.2% in mass% and a carbon equivalent Ceq defined by the following formula (1) is 0.45 or less, In addition, the total X-ray diffraction density of the (200) plane and (211) plane at the center of the plate thickness is 4.5 or more, the X-ray diffraction density of the (110) plane at 1 mm below the surface is 1.5 or more, and {100 } Plane, {211} plane, {110} plane, {111} plane, the average major axis length of the ferrite grain colony aligned within 5 ° with respect to the rolling plane is the thickness center A steel plate for a high Young's modulus welded structure characterized by having a structure of 60 μm or less at the part and 30 μm or less at 1 mm below the surface.
Ceq = C + Si / 24 + Mn / 6 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14 (1)
Where Ceq: carbon equivalent (%),
C, Si, Mn, Ni, Cr, Mo, V: Content of each element (% by mass)
前記組成が、質量%で、C:0.06〜0.2%を含み、前記(1)式で定義される炭素当量Ceqが0.45以下で、かつ、Si:1%以下、Mn:2%以下、Al:0.1%以下を含み、残部Feおよび不可避的不純物からなる組成であることを特徴とする請求項1に記載の高ヤング率溶接構造用厚鋼板。   The composition contains, by mass%, C: 0.06 to 0.2%, the carbon equivalent Ceq defined by the formula (1) is 0.45 or less, Si: 1% or less, Mn: 2% or less, Al: The thick steel sheet for high Young's modulus welded structure according to claim 1, wherein the steel sheet contains 0.1% or less and the balance is Fe and inevitable impurities. 前記組成に加えてさらに、質量%で、Cu:1%以下、Ni:1.5%以下、Mo:1%以下、Cr:1%以下、B:0.01%以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする請求項2に記載の高ヤング率溶接構造用厚鋼板。   In addition to the above composition, one or two selected by mass% from Cu: 1% or less, Ni: 1.5% or less, Mo: 1% or less, Cr: 1% or less, B: 0.01% or less The thick steel plate for high Young's modulus welded structure according to claim 2, wherein the steel plate has a composition containing at least a seed. 前記組成に加えてさらに、質量%で、V:0.1%以下、Nb:0.05%以下、Ti:0.05%以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする請求項2または3に記載の高ヤング率溶接構造用厚鋼板。   In addition to the above composition, the composition further contains, by mass%, one or more selected from V: 0.1% or less, Nb: 0.05% or less, Ti: 0.05% or less. The thick steel plate for high Young's modulus welded structure according to claim 2 or 3. 前記組成に加えてさらに、質量%で、Ca:0.01%以下、REM:0.01%以下のうちから選ばれた1種または2種を含有する組成とすることを特徴とする請求項2ないし4のいずれかに記載の高ヤング率溶接構造用厚鋼板。   5. The composition according to claim 2, wherein the composition further comprises one or two selected from Ca: 0.01% or less and REM: 0.01% or less by mass% in addition to the composition. The thick steel plate for high Young's modulus welded structure according to any one of the above. 鋼素材に圧延を施し厚鋼板とする溶接構造用厚鋼板の製造方法であって、前記鋼素材を質量%で、C:0.06〜0.2%を含み、下記(1)式で定義される炭素当量Ceqが0.45以下である組成を有する鋼素材とし、前記圧延を、500℃以上Ac3変態点未満の温度に加熱したのち、(Ac3変態点−40℃)以下500℃以上の温度域において、1パス当りの圧下率が平均で10%以下、累積圧下率が50%以上とする圧延とすることを特徴とする請求項5に記載の高ヤング率溶接構造用厚鋼板の製造方法。

Ceq=C+Si/24+Mn/6+Ni/40+Cr/5+Mo/4+V/14 ……(1)
ここで、Ceq:炭素当量(%)、
C、Si、Mn、Ni、Cr、Mo、V:各元素の含有量(質量%)
A method for producing a steel plate for welded structure which is rolled into a steel material to form a thick steel plate, wherein the steel material is contained in mass%, C: 0.06 to 0.2%, and a carbon equivalent defined by the following formula (1) Ceq is a steel material having a composition less than or equal to 0.45, the rolling, after heating to a temperature below 500 ° C. or higher Ac 3 transformation point, in a temperature range of (Ac 3 transformation point -40 ° C.) or less 500 ° C. or higher, 6. The method for producing a thick steel sheet for a high Young's modulus welded structure according to claim 5, wherein rolling is performed such that the rolling reduction per pass is 10% or less on average and the cumulative rolling reduction is 50% or more.
Ceq = C + Si / 24 + Mn / 6 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14 (1)
Where Ceq: carbon equivalent (%),
C, Si, Mn, Ni, Cr, Mo, V: Content of each element (% by mass)
前記圧延に代えて、Ac3変態点以上1180℃以下の温度に加熱したのち、900℃以下(Ar3変態点−20℃)以上の温度域における累積圧下率が30%以上である一次圧延を行い、ついで、(Ar3変態点−20℃)以下500℃以上の温度域で1パス当りの圧下率が平均で10%以下で、該温度域での累積圧下率が50%以上である二次圧延を行なう圧延とすることを特徴とする請求項6に記載の高ヤング率溶接構造用厚鋼板の製造方法。 In place of the rolling, after heating to a temperature not lower than the Ac 3 transformation point and not higher than 1180 ° C., primary rolling in which the cumulative rolling reduction in a temperature range not lower than 900 ° C. (Ar 3 transformation point −20 ° C.) is 30% or higher is performed. Next, the average reduction rate per pass is 10% or less in the temperature range of (Ar 3 transformation point -20 ° C) or less and 500 ° C or more, and the cumulative reduction rate in the temperature range is 50% or more. 7. The method for producing a thick steel plate for high Young's modulus welded structure according to claim 6, wherein the rolling is performed by next rolling. 前記組成が、質量%で、C:0.06〜0.2%を含み、前記(1)式で定義される炭素当量Ceqが0.45以下で、かつ、Si:1%以下、Mn:2%以下、Al:0.1%以下を含み、残部Feおよび不可避的不純物からなる組成であることを特徴とする請求項6または7に記載の高ヤング率溶接構造用厚鋼板の製造方法。   The composition contains, by mass%, C: 0.06 to 0.2%, the carbon equivalent Ceq defined by the formula (1) is 0.45 or less, Si: 1% or less, Mn: 2% or less, Al: The method for producing a thick steel sheet for high Young's modulus welded structure according to claim 6 or 7, characterized in that the composition contains 0.1% or less, the balance being Fe and inevitable impurities. 前記組成に加えてさらに、質量%で、Cu:1%以下、Ni:1.5%以下、Mo:1%以下、Cr:1%以下、B:0.01%以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする請求項8に記載の高ヤング率溶接構造用厚鋼板の製造方法。   In addition to the above composition, one or two selected by mass% from Cu: 1% or less, Ni: 1.5% or less, Mo: 1% or less, Cr: 1% or less, B: 0.01% or less The method for producing a thick steel sheet for high Young's modulus welded structure according to claim 8, wherein the composition contains a seed or more. 前記組成に加えてさらに、質量%で、V:0.1%以下、Nb:0.05%以下、Ti:0.05%以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする請求項8または9に記載の高ヤング率溶接構造用厚鋼板の製造方法。   In addition to the above composition, the composition further comprises, in mass%, one or more selected from V: 0.1% or less, Nb: 0.05% or less, and Ti: 0.05% or less. The manufacturing method of the thick steel plate for high Young's modulus welded structures of Claim 8 or 9. 前記組成に加えてさらに、質量%で、Ca:0.01%以下、REM:0.01%以下のうちから選ばれた1種または2種を含有する組成とすることを特徴とする請求項8ないし10のいずれかに記載の高ヤング率溶接構造用厚鋼板の製造方法。   The composition according to any one of claims 8 to 10, wherein the composition further comprises one or two kinds selected from Ca: 0.01% or less and REM: 0.01% or less in mass% in addition to the composition. The manufacturing method of the thick steel plate for high Young's modulus welded structures in any one.
JP2006188336A 2006-07-07 2006-07-07 Thick steel plate with high young's modulus for welded structure, and its manufacturing method Pending JP2008013831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006188336A JP2008013831A (en) 2006-07-07 2006-07-07 Thick steel plate with high young's modulus for welded structure, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006188336A JP2008013831A (en) 2006-07-07 2006-07-07 Thick steel plate with high young's modulus for welded structure, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2008013831A true JP2008013831A (en) 2008-01-24

Family

ID=39071133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006188336A Pending JP2008013831A (en) 2006-07-07 2006-07-07 Thick steel plate with high young's modulus for welded structure, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2008013831A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012108543A1 (en) * 2011-02-08 2012-08-16 Jfeスチール株式会社 Thick steel plate of at least 50mm in thickness with superior long brittle fracture propagation stopping properties, manufacturing method for same, and method for evaluating long brittle fracture propagation stopping performance and test apparatus for same
WO2019093399A1 (en) * 2017-11-10 2019-05-16 国立研究開発法人物質・材料研究機構 Steel material having high toughness, method for producing same, and structural steel plate using said steel material
KR20220136612A (en) * 2021-04-01 2022-10-11 한국조선해양 주식회사 Thick steel plate and method for fabricating the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012108543A1 (en) * 2011-02-08 2012-08-16 Jfeスチール株式会社 Thick steel plate of at least 50mm in thickness with superior long brittle fracture propagation stopping properties, manufacturing method for same, and method for evaluating long brittle fracture propagation stopping performance and test apparatus for same
JP2012180590A (en) * 2011-02-08 2012-09-20 Jfe Steel Corp Thick steel sheet of at least 50 mm in thickness with excellent long brittle fracture propagation stopping property, method for production thereof, method for evaluating long brittle fracture propagation stopping performance, and test apparatus
JP2014145131A (en) * 2011-02-08 2014-08-14 Jfe Steel Corp Not less than 50 mm-thick thick steel plate excellent in long brittle crack propagation stop property, and method of producing the same
WO2019093399A1 (en) * 2017-11-10 2019-05-16 国立研究開発法人物質・材料研究機構 Steel material having high toughness, method for producing same, and structural steel plate using said steel material
KR20220136612A (en) * 2021-04-01 2022-10-11 한국조선해양 주식회사 Thick steel plate and method for fabricating the same
KR102599986B1 (en) * 2021-04-01 2023-11-08 에이치디한국조선해양 주식회사 Manufacturing method of thick steel plate for ships

Similar Documents

Publication Publication Date Title
EP2759615B1 (en) High-strength hot-rolled steel sheet having excellent bending characteristics and low-temperature toughness and method for producing same
JP3504560B2 (en) High-strength hot-rolled steel sheet with good shape-freezing properties and excellent formability
CA2941202C (en) Method for producing a high-strength flat steel product
JP4855553B2 (en) High-strength ultra-thick H-section steel and its manufacturing method
JP5363922B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP4283757B2 (en) Thick steel plate and manufacturing method thereof
JP2012077336A (en) High-strength hot-rolled steel sheet excellent in bending characteristics and low temperature toughness, and method for production thereof
JP2017179540A (en) Hot rolled steel sheet and manufacturing method therefor
JP4682805B2 (en) Ferritic stainless steel cold-rolled steel sheet excellent in press formability and manufacturing method thereof
JP6879378B2 (en) Hot-rolled steel sheet and its manufacturing method
JP2007291511A (en) High-tensile strength thick steel plate having excellent toughness and its production method
JP4324226B1 (en) High-strength cold-rolled steel sheet with excellent yield stress, elongation and stretch flangeability
JP5483562B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP6835294B2 (en) Hot-rolled steel sheet and its manufacturing method
JP2008013831A (en) Thick steel plate with high young&#39;s modulus for welded structure, and its manufacturing method
JP2008013812A (en) High toughness and high tensile strength thick steel plate and its production method
JP2016132821A (en) High strength stainless thick steel plate excellent in low temperature toughness and manufacturing method therefor
JP5743382B2 (en) Steel material for earthquake-resistant structure and manufacturing method thereof
JP7473792B2 (en) Hot-rolled steel sheet, square steel pipe, and manufacturing method thereof
JP2007177293A (en) Ultrahigh-strength steel sheet and manufacturing method therefor
EP4074854A1 (en) Hot-rolled steel sheet
JP7201136B1 (en) Steel sheet pile and its manufacturing method
WO2024095532A1 (en) Hot rolled steel sheet
WO2022149365A1 (en) Steel sheet pile and manufacturing method therefor
JP2012229455A (en) High strength steel product having excellent strength, ductility and impact energy absorbability, and method for producing the same