JP2008012452A - Agitator - Google Patents

Agitator Download PDF

Info

Publication number
JP2008012452A
JP2008012452A JP2006187179A JP2006187179A JP2008012452A JP 2008012452 A JP2008012452 A JP 2008012452A JP 2006187179 A JP2006187179 A JP 2006187179A JP 2006187179 A JP2006187179 A JP 2006187179A JP 2008012452 A JP2008012452 A JP 2008012452A
Authority
JP
Japan
Prior art keywords
stirring
blade
viscosity
solution
rotating shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006187179A
Other languages
Japanese (ja)
Inventor
Shuzo Fujiwara
秀三 藤原
Makoto Azusawa
誠 小豆澤
Kazuhisa Maeda
和久 前田
Batsu Hirose
閥 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2006187179A priority Critical patent/JP2008012452A/en
Publication of JP2008012452A publication Critical patent/JP2008012452A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mixers Of The Rotary Stirring Type (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an agitator which can generate a strong vertical circulation flow without stagnation of a solution in an agitation tank to enable the efficient vertical circulation mixture of the solution in a wide viscosity range. <P>SOLUTION: An agitation blade 12 attached to a rotary shaft 10 arranged in the center of the agitation tank 2 comprises: a plate blade member 13 attached to the lower part of the rotary shaft 10; a pair of ribbon blade members 14 installed along the inside wall surface of the agitation tank 2 from both ends of the plate blade member 13 in the direction opposite to the rotation direction R of the rotary shaft 10 and in the oblique upward direction; and a lattice blade member 15 attached to the rotary shaft 10 and connected to the respective ribbon blade members 14 through a pair of connection pieces 15C. In the case where a viscosity dispersion range of a solution fed into the agitation tank 2 is within 25 Pa s and the maximum viscosity is 45 Pa s or lower, at least 200 revolutions of the agitation blade 12 through the rotary shaft 10 decreases the viscosity dispersion range of the solution to 1 Pa s or lower. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は攪拌装置に関し、特に、撹拌槽内の溶液を滞留させることなく、強い上下循環流を発生させることが可能であり、もって広い粘度範囲で効率良く溶液の上下循環混合を行うことが可能な撹拌装置に関するものである。   The present invention relates to a stirrer, and in particular, it is possible to generate a strong vertical circulation flow without causing the solution in the stirring tank to stay, so that it is possible to efficiently perform the vertical circulation mixing of the solution in a wide viscosity range. The present invention relates to a stirrer.

従来より、上下に長い、所謂、立形バッチ式容器内で各種溶液の混合、分散及び反応操作を行う攪拌装置については、各種の装置が提案されている。例えば、数mPa・s〜数Pa・sの範囲の比較低粘度領域で使用されるディスクタービン、プロペラ形状の攪拌翼、更に数Pa・s〜数100Pa・sレベルの高い粘度範囲で使用されるヘリカルリボン翼等がある。また、近年では低粘度から比較的高粘度まで混合可能なマックスブレンド翼やフルゾーン翼等の様な広幅翼が多数市販されている。   Conventionally, various devices have been proposed for stirring devices that perform mixing, dispersion, and reaction operations of various solutions in a so-called vertical batch container that is long in the vertical direction. For example, a disk turbine used in a comparatively low viscosity region in the range of several mPa · s to several Pa · s, a propeller-shaped stirring blade, and further used in a high viscosity range of several Pa · s to several hundred Pa · s level. There are helical ribbon wings. In recent years, many wide blades such as Max blend blades and full zone blades that can be mixed from a low viscosity to a relatively high viscosity are commercially available.

ここに、この種の立形バッチ式容器内で溶液の溶液反応を行う場合、攪拌効率が反応生成物の特性や生産性に大きく影響する場合が多い。例えば、アクリルのエマルション重合では熱伝達効率の均一性がエマルション粒子分布へ大きく影響し、また、撹拌操作は生成粒子が破壊されない範囲のせん断速度で行われる必要がある。   Here, when the solution reaction of the solution is performed in this type of vertical batch container, the stirring efficiency often greatly affects the characteristics and productivity of the reaction product. For example, in the emulsion polymerization of acrylic, the uniformity of heat transfer efficiency greatly affects the emulsion particle distribution, and the stirring operation needs to be performed at a shear rate that does not destroy the generated particles.

また、例えば、ポリエステルの重縮合反応では還流効率を向上させる必要があり、これより気液界面での界面混合を良好に行う必要がある。更に、例えば、アクリルの塊状熱重合では、反応槽中に滞留部が生じると部分的に反応が急激に進行する可能性があるので、高粘度でも滞留部無く混合する必要がある。   Further, for example, in the polycondensation reaction of polyester, it is necessary to improve the reflux efficiency, and from this, it is necessary to perform interfacial mixing at the gas-liquid interface better. Furthermore, for example, in the bulk thermal polymerization of acrylic, if a staying part is generated in the reaction tank, the reaction may partially proceed rapidly. Therefore, it is necessary to mix without a staying part even at high viscosity.

前記した要請に応えるべく、例えば、高混合性能を有する攪拌機として、特開2003−159523号公報には、回転軸に沿って取り付けられた格子翼と、この格子翼の翼経よりも長く、邪魔板の下方まで延伸した翼経を有するパドル翼を回転軸の下部に備え、このパドル翼の下端と撹拌槽の底部との隙間を狭く設定し、パドル翼を斜め下がりの傾斜角を持たせるとともに、パドル翼を格子翼と交差姿勢にした攪拌機が記載されている
かかる攪拌機では、格子翼及びパドル翼を回転させると、撹拌槽の底部にある溶液はパドル翼によって勢いのある上昇流となり、底部から上部に向かう溶液は、格子翼によって分散・細分化されるものである。
特開2003−159523号公報
In order to meet the above requirements, for example, as a stirrer having high mixing performance, Japanese Patent Application Laid-Open No. 2003-159523 discloses a lattice blade attached along a rotation axis and a length longer than the length of the lattice blade. A paddle blade with a blade length extending to the bottom of the plate is provided at the lower part of the rotating shaft, the gap between the lower end of this paddle blade and the bottom of the stirring tank is set narrow, and the paddle blade has a slanting inclination angle. In such a stirrer, when the grid blade and the paddle blade are rotated, the solution at the bottom of the stirring tank becomes a vigorous upward flow by the paddle blade, and the bottom of the stirrer is described. The solution from the top to the top is dispersed and subdivided by the lattice blades.
JP 2003-159523 A

ここに、前記した特開2003−159523号公報に記載された攪拌機によっても、上記反応例の中で特にポリエステルの重縮合反応では、低粘度(数mPa・s)から高粘度(数10Pa・s)までの広い範囲で、上下方向の液循環攪拌を効率良く行うことがある程度は可能ではあるが、高粘度域では上下循環性が急激に弱まってしまう場合が多く、従って、溶液の還流効率が低下するという問題が残存している。これより、重縮合時間が長くなり生産性を低下させる原因となっている。   Here, even with the stirrer described in JP-A-2003-159523, among the above reaction examples, particularly in the polycondensation reaction of polyester, low viscosity (several mPa · s) to high viscosity (several tens Pa · s). Although it is possible to efficiently perform the liquid circulation stirring in the vertical direction in a wide range up to 2), the vertical circulation performance is often weakened rapidly in the high viscosity region. The problem of lowering remains. As a result, the polycondensation time becomes longer, which is a cause of lowering productivity.

本発明は前記従来技術における問題点を解消するためになされたものであり、撹拌槽内の溶液を滞留させることなく、強い上下循環流を発生させることが可能であり、もって広い粘度範囲で効率良く溶液の上下循環混合を行うことが可能な撹拌装置を提供することを目的とする。   The present invention has been made to solve the above-described problems in the prior art, and can generate a strong vertical circulation flow without causing the solution in the stirring tank to stay, so that it is efficient in a wide viscosity range. It is an object of the present invention to provide an agitator capable of well circulating the solution up and down.

前記目的を達成するため請求項1に係る撹拌装置は、溶液が投入される撹拌槽と、前記撹拌槽の中心部に配設された回転軸と、前記回転軸に取り付けられた撹拌翼とを備えた撹拌装置において、前記撹拌翼は、前記回転軸の下部に取り付けられた平板状翼部材と、前記平板状翼部材の両端部から回転軸の回転方向とは逆方向に且つ斜め上方向に向かって前記撹拌槽の内壁面に沿って設けられた一対のリボン状翼部材と、前記回転軸に取り付けられるとともに、一対の連結片を介して前記各リボン状翼部材に連結された格子状翼部材とを備え、前記撹拌槽内に投入された溶液の粘度バラツキ範囲が25Pa・s以内で且つ最大粘度が45Pa・s以下である場合に、前記回転軸を介して前記撹拌翼を少なくとも200回転させた時点で、溶液の粘度バラツキ範囲が1Pa・s以下になることを特徴とする。   In order to achieve the above object, a stirrer according to claim 1 includes a stirring tank into which a solution is charged, a rotating shaft disposed in a central portion of the stirring tank, and a stirring blade attached to the rotating shaft. In the stirring device provided, the stirring blade includes a flat blade member attached to a lower portion of the rotary shaft, and a direction opposite to the rotation direction of the rotary shaft from both ends of the flat blade member and in an obliquely upward direction. A pair of ribbon-like wing members provided along the inner wall surface of the stirring tank, and a lattice-like wing attached to the rotary shaft and connected to the ribbon-like wing members via a pair of connecting pieces And the stirring blade is rotated at least 200 times through the rotating shaft when the viscosity variation range of the solution charged in the stirring vessel is within 25 Pa · s and the maximum viscosity is 45 Pa · s or less. Of the solution Degree variation range is characterized by comprising the following 1 Pa · s.

また、請求項2に係る撹拌方法は、 撹拌槽の中心部に配設された回転軸の下部に取り付けられた平板状翼部材と、平板状翼部材の両端部から回転軸の回転方向とは逆方向に且つ斜め上方向に向かって撹拌槽の内壁面に沿って設けられた一対のリボン状翼部材と、回転軸に取り付けられるとともに一対の連結片を介して前記各リボン状翼部材に連結された格子状翼部材とを備えた撹拌翼を介して、撹拌槽に投入されるとともに粘度バラツキ範囲が25Pa・s以内で且つ最大粘度が45Pa・s以下である溶液を撹拌し、前記回転軸により撹拌翼を少なくとも200回転させた時点で、溶液の粘度バラツキ範囲が1Pa・s以下になることを特徴とする。   Further, the stirring method according to claim 2 includes: a flat wing member attached to a lower portion of the rotating shaft disposed in the central portion of the stirring tank; and a rotation direction of the rotating shaft from both ends of the flat wing member. A pair of ribbon-like wing members provided along the inner wall surface of the stirring tank in the reverse direction and obliquely upward, and attached to the rotary shaft and connected to each ribbon-like wing member via a pair of connecting pieces A solution having a viscosity variation range of 25 Pa · s or less and a maximum viscosity of 45 Pa · s or less is stirred through the stirring blade provided with the lattice-shaped blade member formed, and the rotating shaft Thus, when the stirring blade is rotated at least 200 times, the viscosity variation range of the solution becomes 1 Pa · s or less.

また、請求項3に係る生成物は、請求項1に記載の撹拌装置又は請求項2に記載の撹拌方法により得られたことを特徴とする。   A product according to claim 3 is obtained by the stirring device according to claim 1 or the stirring method according to claim 2.

前記した請求項1に係る撹拌装置では、撹拌槽の中心部に配設された回転軸に取り付けられた撹拌翼は、回転軸の下部に取り付けられた平板状翼部材と、平板状翼部材の両端部から回転軸の回転方向とは逆方向に且つ斜め上方向に向かって前記撹拌槽の内壁面に沿って設けられた一対のリボン状翼部材と、回転軸に取り付けられるとともに、一対の連結片を介して前記各リボン状翼部材に連結された格子状翼部材とを備えているので、広い粘度範囲で効率良く溶液の上下循環混合を行うことが可能となる。特に、溶液の気・液界面で反応・相変化を生じる現象を確実且つ効率的に解消することができ、従って、溶液の気・液界面で反応・相変化を生じる現象に対して非常に有用な攪拌装置を提供することができる。
特に、撹拌槽内に投入された溶液の粘度バラツキ範囲が25Pa・s以内で且つ最大粘度が45Pa・s以下である場合に、回転軸を介して撹拌翼を少なくとも200回転させた時点で、溶液の粘度バラツキ範囲が1Pa・s以下になるので、撹拌翼を200回転させる程度の少ない回転数で且つ短時間で溶液の粘度を撹拌槽全体に渡って均一化することができる。
In the stirring device according to claim 1, the stirring blade attached to the rotating shaft disposed in the central portion of the stirring tank includes the flat blade member attached to the lower portion of the rotating shaft, and the flat blade member. A pair of ribbon-like wing members provided along the inner wall surface of the agitation tank from both ends in a direction opposite to the rotation direction of the rotating shaft and obliquely upward, and attached to the rotating shaft and a pair of couplings Since the grid-like wing member is connected to each ribbon-like wing member via a piece, the solution can be efficiently circulated and mixed in a wide range of viscosity. In particular, it can reliably and efficiently eliminate the phenomenon that causes reaction and phase change at the gas-liquid interface of the solution, and is therefore very useful for the phenomenon that causes reaction and phase change at the gas-liquid interface of the solution. A simple stirring device can be provided.
In particular, when the viscosity variation range of the solution charged in the stirring tank is within 25 Pa · s and the maximum viscosity is 45 Pa · s or less, the solution is obtained when the stirring blade is rotated at least 200 times through the rotating shaft. Therefore, the viscosity of the solution can be made uniform over the entire stirring tank in a short time with a small number of rotations that rotate the stirring blade 200 times.

更に、請求項2に係る撹拌方法では、撹拌槽に投入された溶液は、撹拌槽の中心部に配設された回転軸の下部に取り付けられた平板状翼部材と、平板状翼部材の両端部から回転軸の回転方向とは逆方向に且つ斜め上方向に向かって撹拌槽の内壁面に沿って設けられた一対のリボン状翼部材と、回転軸に取り付けられるとともに一対の連結片を介して前記各リボン状翼部材に連結された格子状翼部材とを備えた撹拌翼を介して撹拌されるので、溶液の広い粘度範囲で効率良く上下循環混合を行うことが可能となる。特に、溶液の気・液界面で反応・相変化を生じる現象を確実且つ効率的に解消することができ、従って、溶液の気・液界面で反応・相変化を生じる現象に対して非常に有用な攪拌方法を提供することができる。
特に、撹拌槽内に投入された溶液の粘度バラツキ範囲が25Pa・s以内で且つ最大粘度が45Pa・s以下である場合に、回転軸を介して撹拌翼を少なくとも200回転させた時点で、溶液の粘度バラツキ範囲が1Pa・s以下になるので、撹拌翼を200回転させる程度の少ない回転数で且つ短時間で溶液の粘度を撹拌槽全体に渡って均一化することができる。
Further, in the agitation method according to claim 2, the solution charged into the agitation tank is divided into a flat wing member attached to the lower part of the rotating shaft disposed at the center of the agitation tank, and both ends of the flat wing member. A pair of ribbon-like wing members provided along the inner wall surface of the agitation tank in a direction opposite to the rotation direction of the rotary shaft from the portion and obliquely upward, and attached to the rotary shaft and via a pair of connecting pieces Thus, stirring is performed via a stirring blade provided with a lattice-like wing member connected to each ribbon-like wing member, so that it is possible to efficiently perform up-down circulation mixing in a wide viscosity range of the solution. In particular, it can reliably and efficiently eliminate the phenomenon that causes reaction and phase change at the gas-liquid interface of the solution, and is therefore very useful for the phenomenon that causes reaction and phase change at the gas-liquid interface of the solution. A simple stirring method can be provided.
In particular, when the viscosity variation range of the solution charged in the stirring tank is within 25 Pa · s and the maximum viscosity is 45 Pa · s or less, the solution is obtained when the stirring blade is rotated at least 200 times through the rotating shaft. Therefore, the viscosity of the solution can be made uniform over the entire stirring tank in a short time with a small number of rotations that rotate the stirring blade 200 times.

更に、請求項3に係る生成物は、請求項1に記載の撹拌装置又は請求項2に記載の撹拌方法により得られる。尚、かかる生成物として、例えば、粘着シート等に用いられる粘着剤がある。   Further, the product according to claim 3 is obtained by the stirring device according to claim 1 or the stirring method according to claim 2. In addition, there exists an adhesive used for an adhesive sheet etc. as this product, for example.

以下、本発明に係る撹拌装置について、本発明を具体化した本実施形態に基づき図面を参照しつつ詳細に説明する。
先ず、図1に基づき本実施形態に係る撹拌装置の構成について説明する。図1は撹拌装置を模式的に示す説明図である。
図1において、撹拌装置1は、基本的に、各種の溶液が投入される撹拌槽2、及び、撹拌槽2の上部を密閉する蓋3から構成されている。蓋3の上部にはモータ4が取り付けられており、かかるモータ4のモータ軸5は、蓋3の内部に挿通されている。モータ軸5の下端にはフランジ6が設けられている。
DESCRIPTION OF EMBODIMENTS Hereinafter, a stirrer according to the present invention will be described in detail with reference to the drawings based on this embodiment that embodies the present invention.
First, based on FIG. 1, the structure of the stirring apparatus which concerns on this embodiment is demonstrated. FIG. 1 is an explanatory view schematically showing a stirring device.
In FIG. 1, the stirring device 1 basically includes a stirring tank 2 into which various solutions are charged and a lid 3 that seals the upper part of the stirring tank 2. A motor 4 is attached to the top of the lid 3, and a motor shaft 5 of the motor 4 is inserted into the lid 3. A flange 6 is provided at the lower end of the motor shaft 5.

また、蓋3には、排気管7が連通されており、かかる排気菅7は、二股状に上方向及び下方向に分岐されている。上方向に分岐された排気菅7には、コンデンサ8が装着されるとともに、下方向に分岐された排気菅7には、ポット9が接続されている。
ここに、排気菅7は、例えば、撹拌槽2に投入される溶液が重縮合反応を行ってポリマー生成するポリマー重合溶液である場合に、重縮合反応に伴って生成される水蒸気を排出する作用を行う。また、排気菅7に導かれた水蒸気は、コンデンサ8により冷却されて液化し、このように液化した水は、下方のポット9に貯留される。
Further, an exhaust pipe 7 is communicated with the lid 3, and the exhaust rod 7 is bifurcated in an upward direction and a downward direction. A condenser 8 is attached to the exhaust pipe 7 branched upward, and a pot 9 is connected to the exhaust pipe 7 branched downward.
Here, for example, when the solution put into the stirring tank 2 is a polymer polymerization solution that generates a polymer by performing a polycondensation reaction, the exhaust tank 7 has an action of discharging water vapor that is generated along with the polycondensation reaction. I do. Further, the water vapor guided to the exhaust pipe 7 is cooled and liquefied by the condenser 8, and the liquefied water is stored in the lower pot 9.

前記したモータ軸5の下端に設けられたフランジ6には、回転軸10の上端に形成されたフランジ11とボルト等を介して連結され、これにより回転軸10は、図1に示すように、撹拌槽2の中心部に配設される。   The flange 6 provided at the lower end of the motor shaft 5 is connected to a flange 11 formed at the upper end of the rotating shaft 10 via a bolt or the like, whereby the rotating shaft 10 is, as shown in FIG. Arranged in the center of the stirring tank 2.

回転軸10の下部には、撹拌翼12が取り付けられおり、この撹拌翼12は、モータ4の回転軸5の回転に従い回転軸10が回転されることに基づき回転され、撹拌槽2内の溶液の撹拌を行う。   A stirring blade 12 is attached to the lower portion of the rotating shaft 10, and the stirring blade 12 is rotated based on the rotation of the rotating shaft 10 according to the rotation of the rotating shaft 5 of the motor 4, and the solution in the stirring tank 2 is rotated. Is stirred.

ここで、撹拌翼12の構成について、図2及び図3に基づき説明する。図2は撹拌翼を多面的に記載した説明図であり、図2(A)は撹拌翼を上側から見て示す平面図、図2(B)は撹拌翼の正面図、図2(C)は撹拌翼の側面図、図2(D)は撹拌翼におけるリボン状翼部材の先端部を示す説明図である。図3は撹拌翼を模式的に示す斜視図である。
図2及び図3において、撹拌翼12は回転軸10の下部に取り付けられており、かかる撹拌翼12は、平板状翼部材13、一対のリボン状翼部材14及び格子状翼部材15から構成されている。
Here, the structure of the stirring blade 12 is demonstrated based on FIG.2 and FIG.3. FIG. 2 is an explanatory diagram illustrating the agitating blade in a multifaceted manner. FIG. 2A is a plan view showing the agitating blade as viewed from above, FIG. 2B is a front view of the agitating blade, and FIG. Is a side view of the stirring blade, and FIG. 2 (D) is an explanatory view showing the tip of the ribbon-like blade member in the stirring blade. FIG. 3 is a perspective view schematically showing a stirring blade.
2 and 3, the stirring blade 12 is attached to the lower portion of the rotating shaft 10, and the stirring blade 12 includes a flat blade member 13, a pair of ribbon blade members 14, and a lattice blade member 15. ing.

平板状翼部材13は、その下端部が撹拌槽2の底部内壁面に沿った形状を有する半楕円状部13Aと、半楕円状部13Aの上方に一体に形成された矩形状部13Bとから構成されている。かかる平板状翼部材13は、撹拌槽2の底部に存在する溶液の撹拌を行う。
ここに、撹拌槽2の直径をDとした場合(図2(A)参照)、平板状翼部材13の厚さt1(図2(C)参照)は、0.007D〜0.02Dに設定されており、また、矩形状部13Bの高さh1は、0.1D〜0.25Dに設定されている。
The flat blade member 13 includes a semi-elliptical portion 13A having a lower end portion along the inner wall surface of the bottom of the stirring tank 2, and a rectangular portion 13B integrally formed above the semi-elliptical portion 13A. It is configured. The flat blade member 13 stirs the solution present at the bottom of the stirring tank 2.
When the diameter of the stirring tank 2 is D (see FIG. 2A), the thickness t1 (see FIG. 2C) of the flat blade member 13 is set to 0.007D to 0.02D. In addition, the height h1 of the rectangular portion 13B is set to 0.1D to 0.25D.

一対の各リボン状翼部材14は、図3に示すように、それぞれ平板状翼部材13の矩形状部13Bの両端部に一体に形成されている。リボン状翼部材14は、矩形状部13Bの両端部から回転軸10の回転方向R(図2(A)参照)とは逆方向に、且つ、斜め上方向に向かって撹拌槽2の内壁面に沿って設けられている。
ここに、前記と同様、撹拌槽2の直径をDとした場合(図2(A)参照)、各リボン状翼部材14の幅W1(図2(D)参照)は、0.05D〜0.2Dに設定されており、また、各リボン状翼部材14の外側楕円直径におけるd1:d2は、0.85D〜0.99D:1.1D〜5.8Dに設定され、更に、各リボン状翼部材14の厚さt2(図2(C)参照)は、0.007D〜0.02Dに設定されている。
また、前記のように形成された各リボン状翼部材14は、図2(C)に示すように、水平方向となす角度θ1が30°〜80°となるように、矩形状部13Bから斜め上方向に延出されている。
As shown in FIG. 3, the pair of ribbon-like wing members 14 are integrally formed at both ends of the rectangular portion 13 </ b> B of the flat plate-like wing member 13. The ribbon-shaped wing member 14 has an inner wall surface of the stirring tank 2 from both ends of the rectangular portion 13B in the direction opposite to the rotation direction R of the rotary shaft 10 (see FIG. 2A) and obliquely upward. It is provided along.
Here, similarly to the above, when the diameter of the stirring tank 2 is D (see FIG. 2A), the width W1 (see FIG. 2D) of each ribbon-shaped wing member 14 is 0.05D to 0. And d1: d2 at the outer ellipse diameter of each ribbon-like wing member 14 is set to 0.85D to 0.99D: 1.1D to 5.8D. The thickness t2 (see FIG. 2C) of the wing member 14 is set to 0.007D to 0.02D.
Further, as shown in FIG. 2C, each ribbon-shaped wing member 14 formed as described above is inclined from the rectangular portion 13B so that the angle θ1 formed with the horizontal direction is 30 ° to 80 °. It is extended upward.

格子状翼部材15は、平板状翼部材13の矩形状部13Bにおいて、その端部と回転軸10との略中央位置から立設された一対の棒状部15A、各棒状部15Aの上下方向における略中央位置から水平方向に延出されるとともに各棒状部15Aと回転軸10とを固定する一対の固定部15B、及び、各固定部15Bが形成された位置から水平方向に延出されるとともに各棒状部15Aと各リボン状翼部材14とを連結する一対の連結片15Cから構成されている。
ここに、前記と同様、撹拌槽2の直径をDとした場合(図2(A)参照)、各棒状部15Aの幅b1(図2(B)参照)は0.02D〜0.08Dに設定され、また、棒状部15Aの厚さt3(図2(C)参照)は0.007D〜0.02Dに設定されている。
The lattice-like wing member 15 is a pair of rod-like portions 15A erected from a substantially central position between the end portion and the rotary shaft 10 in the rectangular portion 13B of the flat plate-like wing member 13, and in the vertical direction of each rod-like portion 15A. A pair of fixing portions 15B that extend horizontally from a substantially central position and fix each rod-like portion 15A and the rotary shaft 10, and each rod-like shape that extends horizontally from the position where each fixing portion 15B is formed. It is comprised from a pair of connection piece 15C which connects 15A and each ribbon-like wing | blade member 14. FIG.
Here, similarly to the above, when the diameter of the stirring tank 2 is D (see FIG. 2A), the width b1 (see FIG. 2B) of each rod-shaped portion 15A is 0.02D to 0.08D. The thickness t3 (see FIG. 2C) of the rod-like portion 15A is set to 0.007D to 0.02D.

続いて、前記のように構成された撹拌装置1に設けられた撹拌翼12を使用して撹拌槽2内に投入された溶液の撹拌を行う場合に、撹拌翼12による撹拌性能を検証すべく、図4に示す本実施形態の撹拌装置1と同様の構成を有する解析モデルに基づき、撹拌槽2内における溶液の数値流動シミュレーション解析を行った。
このとき、数値流動シミュレーションは、次の条件下で行った。
解析ソフトプログラム:FLUENT6.2
回転軸の回転数:60rpm
溶液の粘度:20Pa・s
溶液密度:1g/cm3
Then, when stirring the solution thrown in the stirring tank 2 using the stirring blade 12 provided in the stirring apparatus 1 comprised as mentioned above, in order to verify the stirring performance by the stirring blade 12 Based on an analysis model having the same configuration as that of the stirring apparatus 1 of the present embodiment shown in FIG. 4, a numerical flow simulation analysis of the solution in the stirring tank 2 was performed.
At this time, the numerical flow simulation was performed under the following conditions.
Analysis software program: FLUENT 6.2
Number of rotations of rotating shaft: 60rpm
Solution viscosity: 20 Pa · s
Solution density: 1 g / cm3

図4は数値流動シミュレーションに使用した解析モデルを模式的に示す説明図である。図4に示す解析モデルは、図3に示す本実施形態の撹拌装置1と同様の構成を有している。   FIG. 4 is an explanatory diagram schematically showing an analysis model used in the numerical flow simulation. The analysis model shown in FIG. 4 has the same configuration as the stirring device 1 of the present embodiment shown in FIG.

前記した条件下で数値流動シミュレーションを行ったところ、図5及び図6に示すシミュレーション結果が得られた。
ここに、図5は回転軸方向に平行で回転軸を含む断面における速度ベクトルを示す説明図であり、図6は溶液の液面に配置した粒子が一定時間内に移動する軌跡を示す説明図である。
When the numerical flow simulation was performed under the above-described conditions, the simulation results shown in FIGS. 5 and 6 were obtained.
FIG. 5 is an explanatory diagram showing a velocity vector in a section parallel to the rotational axis direction and including the rotational axis. FIG. 6 is an explanatory diagram showing a trajectory in which particles arranged on the liquid surface of the solution move within a predetermined time. It is.

図5から明かなように、溶液は撹拌槽内で上部や下部に局在化することなく、撹拌槽の全体に渡って均一に流動していることが分かる。また同様に、図6から明かなように、液面上の粒子は、撹拌槽内の全体に渡って流動することが分かる。これより、解析モデルに基づく撹拌装置においては、撹拌槽内にて溶液の上下循環流を強く発生させることができることが分かる。   As is clear from FIG. 5, it can be seen that the solution flows uniformly over the entire stirring tank without being localized in the upper and lower parts in the stirring tank. Similarly, as is apparent from FIG. 6, it can be seen that the particles on the liquid surface flow throughout the stirring tank. From this, it can be seen that in the stirring device based on the analysis model, the vertical circulation flow of the solution can be generated strongly in the stirring tank.

ここで、前記図4に示す解析モデルに基づく数値流動シミュレーションとの比較を行うため、図7に示す比較解析モデルを使用して、前記と同様の条件下で数値流動シミュレーションを行った。
図7は比較解析モデルを模式的に示す説明図である。図7に示す比較解析モデルにおいては、回転軸10に取り付けられた撹拌翼12は、平板状翼部材13と、かかる平板状翼部材13とは独立して別体に構成された格子状翼部材15とから構成されており、本実施形態の撹拌翼12におけるようなリボン状翼部材14は設けられていない。
尚、格子状翼部材15は、本実施形態における格子状翼部材15よりも格子数が多く、また、平板状翼部材13は、格子状部材15と交叉状態で配設されている。
Here, in order to make a comparison with the numerical flow simulation based on the analysis model shown in FIG. 4, the numerical flow simulation was performed under the same conditions as described above using the comparative analysis model shown in FIG.
FIG. 7 is an explanatory diagram schematically showing a comparative analysis model. In the comparative analysis model shown in FIG. 7, the stirring blade 12 attached to the rotary shaft 10 includes a flat blade member 13 and a lattice blade member formed separately from the flat blade member 13. 15 and the ribbon-like blade member 14 as in the stirring blade 12 of the present embodiment is not provided.
Note that the lattice-shaped wing member 15 has a larger number of lattices than the lattice-shaped wing member 15 in the present embodiment, and the flat plate-shaped wing member 13 is disposed in an intersecting state with the lattice-shaped member 15.

前記した比較解析モデルに基づき数値流動シミュレーションを行ったところ、図8及び図9に示すシミュレーション結果が得られた。
ここに、図8は比較解析モデルにおける回転軸方向に平行で回転軸を含む断面における速度ベクトルを示す説明図であり、図9は比較解析モデルにおいて溶液の液面に配置した粒子が一定時間内に移動する軌跡を示す説明図である。
When the numerical flow simulation was performed based on the above comparative analysis model, the simulation results shown in FIGS. 8 and 9 were obtained.
FIG. 8 is an explanatory diagram showing velocity vectors in a cross section including the rotation axis parallel to the rotation axis direction in the comparative analysis model, and FIG. 9 shows the particles arranged on the liquid surface of the solution in the comparative analysis model within a certain time. It is explanatory drawing which shows the locus | trajectory which moves to.

前記図5に示した速度ベクト図と比較すると、図8に示す速度ベクトル図においては、溶液は撹拌槽内で上部の流動性が下部に比べて悪く、その流動性は若干不均一であることが分かる。また、前記図6に示した軌跡と比較すると、図9に示す軌跡からして、撹拌槽内における液面上の粒子の流動性は、若干劣っていることが分かる。   Compared to the velocity vector diagram shown in FIG. 5, in the velocity vector diagram shown in FIG. 8, the solution has a poorer fluidity in the upper part than the lower part in the stirring tank, and the fluidity is slightly uneven. I understand. Further, compared with the locus shown in FIG. 6, it can be seen from the locus shown in FIG. 9 that the fluidity of the particles on the liquid surface in the stirring tank is slightly inferior.

以上説明した通り、本実施形態に係る撹拌装置1では、撹拌槽2の中心部に配設された回転軸10に取り付けられた撹拌翼12は、回転軸10の下部に取り付けられた平板状翼部材13と、平板状翼部13材の両端部から回転軸10の回転方向Rとは逆方向に且つ斜め上方向に向かって撹拌槽2の内壁面に沿って設けられた一対のリボン状翼部材14と、回転軸10に取り付けられるとともに、一対の連結辺15Cを介して各リボン状翼部材14に連結された格子状翼部材15とを備えていることに基づき、効率良く溶液の上下循環混合を行うことが可能となる。特に、溶液の気・液界面で反応・相変化を生じる現象を確実且つ効率的に解消することができ、従って、溶液の気・液界面で反応・相変化を生じる現象に対して非常に有用な攪拌装置を提供することができる。   As described above, in the stirring device 1 according to the present embodiment, the stirring blade 12 attached to the rotating shaft 10 disposed in the central portion of the stirring tank 2 is a flat blade attached to the lower portion of the rotating shaft 10. A pair of ribbon-shaped blades provided along the inner wall surface of the stirring tank 2 from the both ends of the member 13 and the plate-shaped blade portion 13 in the direction opposite to the rotation direction R of the rotary shaft 10 and obliquely upward. Based on the fact that the member 14 and the lattice-like wing member 15 attached to the ribbon-like wing member 14 through the pair of connecting sides 15C are attached to the rotary shaft 10, the solution is efficiently circulated in the vertical direction. Mixing can be performed. In particular, it can reliably and efficiently eliminate the phenomenon that causes reaction and phase change at the gas-liquid interface of the solution, and is therefore very useful for the phenomenon that causes reaction and phase change at the gas-liquid interface A simple stirring device can be provided.

次に、前記のように構成された撹拌装置1を使用してポリエステル重縮合反応に適用した実施例1について説明する。尚、以下において、各成分量は重量部数で示す。   Next, Example 1 applied to the polyester polycondensation reaction using the stirring device 1 configured as described above will be described. In the following, the amount of each component is expressed in parts by weight.

先ず、図1に示す撹拌装置1内に、ポリカーボネートジオール[ダイセル化学(株)製の「PLACCEL CD220PL」、水酸基価:56.1KOHmg/g]50kg、セバシン酸5.05kg、触媒としてのテトラ−n−ブチルチタネート0.0175kgを仕込み、反応水排水溶剤としてキシレン10kgの存在下、攪拌回転数60rpmで180度まで昇温し、この温度を保持した。
しばらくすると、重縮合反応に伴い脱水反応により、水の流出分離が認められ、重縮合反応が進行し始めた。この後、約15時間で反応が終了し、ポリエステルが生成された。
First, in a stirrer 1 shown in FIG. 1, polycarbonate diol ["PLACCEL CD220PL" manufactured by Daicel Chemical Industries, Ltd., hydroxyl value: 56.1 KOHmg / g] 50 kg, sebacic acid 5.05 kg, tetra-n as a catalyst -0.0175 kg of butyl titanate was charged, and the temperature was raised to 180 degrees at a stirring rotational speed of 60 rpm in the presence of 10 kg of xylene as a reaction water drainage solvent, and this temperature was maintained.
After a while, outflow separation of water was recognized by the dehydration reaction accompanying the polycondensation reaction, and the polycondensation reaction started to proceed. Thereafter, the reaction was completed in about 15 hours, and polyester was produced.

(比較例1)
前記図7に示す比較解析モデルに基づき、撹拌翼12を平板状翼部材13と、かかる平板状翼部材13とは独立して別体に構成された格子状翼部材15とから構成された撹拌翼12に変更した以外は、前記実施例1の場合と同一配合、同一条件で重縮合反応を行ったところ、実施例1の場合と同様に、水の流出分離が認められ、反応が進行し始めてから約22時間で反応が終了し、実施例1にて得られたポリエステルと略同一物性を有するポリエステルが生成された。
(Comparative Example 1)
On the basis of the comparative analysis model shown in FIG. 7, the stirring blade 12 is composed of a flat blade member 13 and a stirring blade member 15 configured separately from the flat blade member 13 and separately. Except for the change to the blade 12, the polycondensation reaction was carried out under the same composition and the same conditions as in the case of Example 1. As in the case of Example 1, water outflow separation was observed, and the reaction proceeded. The reaction was completed in about 22 hours from the beginning, and a polyester having substantially the same physical properties as the polyester obtained in Example 1 was produced.

前記実施例1と比較例1とを比較すれば明かなように、本実施形態に係る撹拌翼12を使用することにより、気液界面の表面が効率的に撹拌され、この結果、短時間で反応を終了することができた。   As is clear from comparison between Example 1 and Comparative Example 1, the surface of the gas-liquid interface is efficiently stirred by using the stirring blade 12 according to this embodiment, and as a result, in a short time. The reaction could be completed.

実施例2においては、図10に示す撹拌装置が使用された。
ここで、図10に示す撹拌装置について説明する。図10は実施例2において使用された撹拌装置を模式的に示す説明図である。尚、図10に示す撹拌装置は、基本的に、図1に示す撹拌装置1と同一の構成を有しており、従って、以下においては図1の撹拌装置1と異なる構成のみにつき説明する。
In Example 2, the stirring apparatus shown in FIG. 10 was used.
Here, the stirring apparatus shown in FIG. 10 will be described. FIG. 10 is an explanatory view schematically showing the stirring device used in Example 2. The stirring device shown in FIG. 10 basically has the same configuration as that of the stirring device 1 shown in FIG. 1, and therefore only the configuration different from that of the stirring device 1 shown in FIG. 1 will be described below.

図10において、撹拌槽2の上部を密閉する蓋3には、紫外線照射装置20が配設されている。かかる紫外線照射装置20には、光ファイバ21の一端が接続されており、また、光ファイバ21の他端は紫外線光源22に接続されている。
ここに、撹拌装置1は、紫外線(UV)による光重合を行う際に使用される撹拌装置であり、紫外線光源22から発せられた紫外線は光ファイバ21を介して伝達され、紫外線照射装置20から撹拌槽2内に投入されている光重合溶液に照射されるものである。
In FIG. 10, an ultraviolet irradiation device 20 is disposed on the lid 3 that seals the upper part of the stirring tank 2. One end of an optical fiber 21 is connected to the ultraviolet irradiation device 20, and the other end of the optical fiber 21 is connected to an ultraviolet light source 22.
Here, the stirrer 1 is a stirrer used when photopolymerization with ultraviolet rays (UV) is performed, and the ultraviolet rays emitted from the ultraviolet light source 22 are transmitted through the optical fiber 21 and are transmitted from the ultraviolet irradiation device 20. The photopolymerization solution put in the stirring tank 2 is irradiated.

実施例2では、前記図10に示す撹拌装置2をUVプレ重合反応に適用したものである。
先ず、図10に示す撹拌装置1内に、2エチルヘキシルアクリレート45kg、アクリル酸5kg、イルガキュア651[日本チバ・ガイギー] 0.05kgを仕込み、攪拌回転数60rpm、外浴20℃、撹拌槽2の底部より窒素20L/minで窒素置換を1時間行った。
In Example 2, the stirring device 2 shown in FIG. 10 is applied to the UV prepolymerization reaction.
First, 45 kg of 2-ethylhexyl acrylate, 5 kg of acrylic acid, and 0.05 kg of Irgacure 651 [Nippon Ciba-Geigy] are charged in the stirring apparatus 1 shown in FIG. 10, the stirring rotational speed is 60 rpm, the outer bath is 20 ° C., and the bottom of the stirring tank 2 Further, nitrogen substitution was performed at 20 L / min for 1 hour.

続いて、紫外線照射装置20を介して液面照度約5mW/cm2でUV照射し、液粘度が20Pa・sになるまでUV重合を行った。重合完了後、大気開放状態で約1時間攪拌した。
前記のように撹拌を行っている間に、撹拌槽2における上面及び下面から溶液をサンプリングし、BH型粘度計によって粘度測定した。その結果が、図11に示されている。
Subsequently, UV irradiation was performed through the ultraviolet irradiation device 20 at a liquid surface illuminance of about 5 mW / cm 2, and UV polymerization was performed until the liquid viscosity reached 20 Pa · s. After completion of the polymerization, the mixture was stirred for about 1 hour in an open atmosphere.
While stirring as described above, the solution was sampled from the upper surface and the lower surface in the stirring tank 2, and the viscosity was measured with a BH viscometer. The result is shown in FIG.

図11に示すように、実施例2においては、撹拌槽2の上面からサンプリングした溶液の粘度及び撹拌槽2の下面からサンプリングした溶液の粘度は、いずれも撹拌開始から約5分間撹拌した時点で略28Pa・s程度の安定した値になっている。これより、実施例2では、撹拌槽2内の溶液の粘度は、撹拌槽2の全体に渡って短時間で略均一になることがわかる。   As shown in FIG. 11, in Example 2, the viscosity of the solution sampled from the upper surface of the stirring vessel 2 and the viscosity of the solution sampled from the lower surface of the stirring vessel 2 are both when stirring for about 5 minutes from the start of stirring. It is a stable value of about 28 Pa · s. From this, in Example 2, it turns out that the viscosity of the solution in the stirring tank 2 becomes substantially uniform in a short time throughout the stirring tank 2.

(比較例2)
続いて、比較例1の場合と同様、前記図7に示す比較解析モデルに基づき、撹拌翼12を平板状翼部材13と、かかる平板状翼部材13とは独立して別体に構成された格子状翼部材15とから構成された撹拌翼12に変更した以外は、前記実施例2の場合と同一配合、同一条件で光重合反応を行った。
即ち、実施例2の場合と同様、液粘度20Pa・sになるまでUV重合を行い、重合完了後に大気開放状態で約1時間攪拌し、かかる撹拌の間に撹拌槽2における上面及び下面から溶液をサンプリングし、BH型粘度計によって粘度測定した。その結果が、図11に示されている。
(Comparative Example 2)
Subsequently, as in the case of Comparative Example 1, based on the comparative analysis model shown in FIG. 7, the stirring blade 12 was configured separately from the flat blade member 13 and the flat blade member 13. The photopolymerization reaction was carried out under the same formulation and the same conditions as in Example 2 except that the stirring blade 12 was changed to the lattice blade member 15.
That is, as in the case of Example 2, UV polymerization is performed until the liquid viscosity reaches 20 Pa · s, and after completion of the polymerization, the mixture is stirred for about 1 hour in an open air state. Were sampled and the viscosity was measured with a BH viscometer. The result is shown in FIG.

図11に示されているように、比較例2においては、撹拌槽2の上面からサンプリングした溶液の粘度は、撹拌開始から約5分経過しても上下粘度差が10Pa・s以上あり、20分以上経過しても上下均一な粘度には到達しなかった。   As shown in FIG. 11, in Comparative Example 2, the viscosity of the solution sampled from the upper surface of the stirring tank 2 has a difference in the upper and lower viscosity of 10 Pa · s or more even after about 5 minutes from the start of stirring. Even after a lapse of more than minutes, a uniform viscosity was not reached.

前記実施例2と比較例2とを比較すれば明かなように、本実施形態に係る図4の撹拌翼を使用することにより、実施例2では、短時間でほぼ均一な反応物となるのに対して、比較解析モデルに基づく図7の撹拌翼を使用した比較例2においては、かなりの時間が経過した後であっても、反応物の粘度は不均一なままであることが分かる。
このように、本実施形態に係る図4の撹拌翼によれば、短時間の撹拌で溶液の粘度を均一にすることができる。
As is clear from the comparison between Example 2 and Comparative Example 2, in Example 2, by using the stirring blade of FIG. 4 according to this embodiment, a substantially uniform reaction product is obtained in a short time. On the other hand, in Comparative Example 2 using the stirring blade of FIG. 7 based on the comparative analysis model, it can be seen that the viscosity of the reactant remains non-uniform even after a considerable time has elapsed.
As described above, according to the stirring blade of FIG. 4 according to the present embodiment, the viscosity of the solution can be made uniform by stirring for a short time.

次に、実施例3にて行われた実験の概要について図12に基づき説明する。図12は実施例3にて行われた実験の概要を模式的に示す説明図である。
図12に示すように、先ず、撹拌槽の底部にの高粘度溶液を仕込み、更に、高粘度溶液の上部に低粘度溶液を仕込む。この後、回転軸10を介して撹拌翼12を所定回転速度で一定時間回転させ、撹拌槽2内の溶液を撹拌する。このように撹拌を行った後、撹拌槽2の上部及び下部から溶液をサンプリングするとともに、そのサンプリングした各溶液の粘度をBH型粘度計により測定する。そして、撹拌槽1の下部における溶液の粘度から上部における溶液の粘度を差し引いて得られる粘度差と撹拌翼の回転数との関係を調べる。
Next, the outline of the experiment performed in Example 3 will be described with reference to FIG. FIG. 12 is an explanatory view schematically showing the outline of the experiment conducted in Example 3.
As shown in FIG. 12, first, a high-viscosity solution is charged at the bottom of the stirring tank, and a low-viscosity solution is charged above the high-viscosity solution. Thereafter, the stirring blade 12 is rotated at a predetermined rotational speed for a predetermined time via the rotating shaft 10 to stir the solution in the stirring tank 2. After stirring in this way, the solution is sampled from the upper part and the lower part of the stirring tank 2, and the viscosity of each sampled solution is measured with a BH viscometer. Then, the relationship between the viscosity difference obtained by subtracting the viscosity of the solution in the upper part from the viscosity of the solution in the lower part of the stirring tank 1 and the rotation speed of the stirring blade is examined.

実施例3においては、100L(リットル)スケールの撹拌槽2を備えた撹拌装置1を使用し、かかる撹拌槽2の底部に、前記実施例2にて製造されて粘度45Pa・sを有するプレポリマー33.3Lを仕込むとともに、撹拌槽2の上部に、実施例2にて製造されて粘度20Pa・sを有するプレポリマー66.7Lを仕込んだ。   In Example 3, a stirrer 1 having a 100 L (liter) scale stirring tank 2 is used, and a prepolymer produced in Example 2 and having a viscosity of 45 Pa · s is provided at the bottom of the stirring tank 2. While charging 33.3 L, 66.7 L of the prepolymer produced in Example 2 and having a viscosity of 20 Pa · s was charged in the upper part of the stirring tank 2.

この後、撹拌翼12を43rpmの回転速度でプレポリマーの撹拌を行い、所定時間毎に撹拌槽2の上部及び下部からプレポリマーをサンプリングするとともに、そのサンプリングした各プレポリマーの粘度をBH型粘度計により測定した。そして、このように測定した撹拌槽2の下部におけるプレポリマーから測定された粘度値から撹拌槽2の上部におけるプレポリマーから測定された粘度値を差し引いた粘度差と、撹拌翼12の回転数(回転速度に撹拌時間を乗じた数値)との関係を調べた。この結果が図14のグラフG1(●で示す)に示されている。   Thereafter, the prepolymer is stirred with the stirring blade 12 at a rotation speed of 43 rpm, the prepolymer is sampled from the upper part and the lower part of the stirring tank 2 every predetermined time, and the viscosity of each sampled prepolymer is set to the BH type viscosity. It was measured by a meter. And the viscosity difference which deducted the viscosity value measured from the prepolymer in the upper part of the stirring tank 2 from the viscosity value measured from the prepolymer in the lower part of the stirring tank 2 thus measured, and the rotational speed of the stirring blade 12 ( The relationship between the rotational speed and the numerical value obtained by multiplying the stirring time was investigated. The result is shown in a graph G1 (indicated by ●) in FIG.

(比較例3)
比較例3においては、比較例1及び比較例2の場合と同様、前記図7に示す比較解析モデルに基づき、撹拌翼12を平板状翼部材13と、かかる平板状翼部材13とは独立して別体に構成された格子状翼部材15とから構成された撹拌翼12に変更し、かかる撹拌翼12の回転速度を50rpmに変更した以外は、前記実施例3の場合と同一の条件に従ってプレポリマーの撹拌を行った。
尚、比較例3における撹拌翼12の回転速度は、比較例3において撹拌翼12を介して撹拌槽2内のプレポリマーを撹拌する動力が前記実施例3の場合と同一となる条件に基づき、設定した。
(Comparative Example 3)
In Comparative Example 3, as in Comparative Examples 1 and 2, based on the comparative analysis model shown in FIG. 7, the stirring blade 12 is made independent of the flat blade member 13 and the flat blade member 13. According to the same conditions as in the case of Example 3 except that the stirring blade 12 is composed of the lattice-shaped blade member 15 configured separately and the rotation speed of the stirring blade 12 is changed to 50 rpm. The prepolymer was stirred.
The rotational speed of the stirring blade 12 in Comparative Example 3 is based on the condition that the power for stirring the prepolymer in the stirring tank 2 through the stirring blade 12 in Comparative Example 3 is the same as in Example 3. Set.

前記比較例3において、撹拌槽2の下部におけるプレポリマーから測定された粘度値から撹拌槽2の上部におけるプレポリマーから測定された粘度値を差し引いた粘度差と、撹拌翼12の回転数(回転速度に撹拌時間を乗じた数値)との関係を示す測定結果は、図14のグラフG2(▲で示す)に示されている。   In the comparative example 3, the viscosity difference obtained by subtracting the viscosity value measured from the prepolymer in the upper part of the stirring tank 2 from the viscosity value measured from the prepolymer in the lower part of the stirring tank 2 and the rotation speed (rotation) of the stirring blade 12 The measurement result showing the relationship between the speed and a numerical value obtained by multiplying the stirring time by a speed is shown in a graph G2 (indicated by a triangle) in FIG.

(比較例4)
比較例4においては、図13に示す撹拌装置を使用して撹拌槽内のプレポリマーを撹拌した。
ここで、図13に基づき比較例4にて使用される撹拌装置の概略構成につき説明する。図13は比較例4において使用される撹拌装置を模式的に示す説明図であり、図13(A)は撹拌翼の平面状態を示す平面図、図13(B)は撹拌装置を模式的に示す説明図である。 尚、図13に示す撹拌装置は、株式会社ニッセン製のビスター攪拌機であり、一般に市販されていることから、その詳細な説明は省略することとして、概略構成の説明を行うだけとする。また、前記した実施例1、実施例2にて使用された撹拌装置におけると同一の要素、部材については同一の符号を付して説明する。
(Comparative Example 4)
In Comparative Example 4, the prepolymer in the stirring tank was stirred using the stirring device shown in FIG.
Here, based on FIG. 13, it demonstrates per schematic structure of the stirring apparatus used in the comparative example 4. FIG. FIG. 13 is an explanatory view schematically showing a stirring device used in Comparative Example 4. FIG. 13 (A) is a plan view showing a planar state of the stirring blade, and FIG. 13 (B) is a schematic view of the stirring device. It is explanatory drawing shown. The stirrer shown in FIG. 13 is a Bicester stirrer manufactured by Nissen Co., Ltd., and is generally commercially available. Therefore, the detailed description is omitted and only the schematic configuration is described. Moreover, the same code | symbol is attached | subjected and demonstrated about the same element and member as in the stirring apparatus used in above-mentioned Example 1 and Example 2. FIG.

図13に示す撹拌装置1において、基台30にはモータ4が設置されており、かかるモータ4には減速機構31が付設されている。減速機構31には駆動軸32が設けられており、また、駆動軸32の端部にはクランクギア33が固着されている。更に、基台30には、回転軸10が回転可能に支持されており、回転軸10の上端部には、クランク33の回転を直角方向に伝動させるカサ歯車34が固着されている。尚、回転軸10は、その回転時に、図示しない上下動機構を介して、撹拌槽2内で上下動される。   In the stirring apparatus 1 shown in FIG. 13, a motor 4 is installed on the base 30, and a speed reduction mechanism 31 is attached to the motor 4. The speed reduction mechanism 31 is provided with a drive shaft 32, and a crank gear 33 is fixed to the end of the drive shaft 32. Further, the rotating shaft 10 is rotatably supported on the base 30, and a bevel gear 34 that transmits the rotation of the crank 33 in a right angle direction is fixed to the upper end portion of the rotating shaft 10. The rotating shaft 10 is moved up and down in the agitation tank 2 through a vertical movement mechanism (not shown) during rotation.

回転軸10の下端部には、第1撹拌翼35が固定されるとともに、第1撹拌翼35よりも上部位置に第2撹拌翼36が固定されている。第1撹拌翼35は、主として撹拌槽2の下部に存在する溶液を撹拌する作用を行う。
また、第1撹拌翼35及び第2撹拌翼36は、それぞれ回転軸10に対して固定された2つの支持部材37を有しており、第2撹拌翼36の支持部材37(図13(A)中水平方向に延びた支持部材37、図13(B)の支持部材37)には、それぞれ回転軸側から内側翼38、外側翼39が配設されており、また、第1撹拌翼35の2つの支持部材37(図13(A)中上下方向に延びた支持37)には、内側翼38のみが配設されている。このように構成された第1撹拌翼35及び第2撹拌翼36は、図13(B)に示すように、それぞれ撹拌槽2内で回転軸10の上下方向における下端位置及び中央位置に設けられており、撹拌槽2内の溶液を撹拌して上方向及び下方向に循環させ、上下循環対流を促進する作用を行う。
A first stirring blade 35 is fixed to the lower end portion of the rotating shaft 10, and a second stirring blade 36 is fixed at an upper position than the first stirring blade 35. The first stirring blade 35 mainly performs an action of stirring the solution existing in the lower portion of the stirring tank 2.
Further, each of the first stirring blade 35 and the second stirring blade 36 includes two support members 37 fixed to the rotating shaft 10, and the support member 37 of the second stirring blade 36 (FIG. 13A). ) An inner blade 38 and an outer blade 39 are provided on the support member 37 extending in the middle horizontal direction and the support member 37 in FIG. 13B from the rotating shaft side, respectively, and the first stirring blade 35 is provided. These two support members 37 (supports 37 extending in the vertical direction in FIG. 13A) are provided with only the inner wings 38. As shown in FIG. 13B, the first stirring blade 35 and the second stirring blade 36 configured as described above are provided at the lower end position and the center position in the vertical direction of the rotary shaft 10 in the stirring tank 2, respectively. The solution in the agitation tank 2 is agitated and circulated in the upward and downward directions to promote the vertical circulation convection.

比較例4では、前記のように構成された撹拌装置1が使用された。このとき、第1及び第2撹拌翼35、36の回転速度は56rpmに設定され、また、上下動機構による回転軸10の上下動は50ストローク/minに設定された。これらの条件以外については、前記実施例3の場合と同一の条件に従ってプレポリマーの撹拌を行った。
尚、比較例4における第1及び第2撹拌翼35、36の回転速度は、比較例4において第1及び第2撹拌翼35、36を介して撹拌槽2内のプレポリマーを撹拌する動力が前記実施例3の場合と同一となる条件に基づき、設定した。
In Comparative Example 4, the stirring device 1 configured as described above was used. At this time, the rotational speed of the first and second stirring blades 35 and 36 was set to 56 rpm, and the vertical movement of the rotary shaft 10 by the vertical movement mechanism was set to 50 strokes / min. Except for these conditions, the prepolymer was stirred according to the same conditions as in Example 3.
The rotation speed of the first and second stirring blades 35 and 36 in Comparative Example 4 is such that the power for stirring the prepolymer in the stirring tank 2 via the first and second stirring blades 35 and 36 in Comparative Example 4 is as follows. The conditions were set based on the same conditions as in Example 3.

前記比較例4において、撹拌槽2の下部におけるプレポリマーから測定された粘度値から撹拌槽2の上部におけるプレポリマーから測定された粘度値を差し引いた粘度差と、第1及び第2撹拌翼35、36の回転数(回転速度に撹拌時間を乗じた数値)との関係を示す測定結果は、図14のグラフG3(■で示す)に示されている。   In the comparative example 4, the viscosity difference obtained by subtracting the viscosity value measured from the prepolymer in the upper part of the stirring tank 2 from the viscosity value measured from the prepolymer in the lower part of the stirring tank 2, and the first and second stirring blades 35 The measurement results showing the relationship with the number of rotations of 36 (a value obtained by multiplying the rotation speed by the stirring time) are shown in a graph G3 (indicated by ■) in FIG.

続いて、実施例3、比較例3及び比較例4において得られた測定結果について図14に基づき説明する。図14は、実施例3、比較例3及び比較例4において、撹拌槽の下部におけるプレポリマーから測定された粘度値から撹拌槽の上部におけるプレポリマーから測定された粘度値を差し引いた粘度差と、撹拌翼の回転数(回転速度に撹拌時間を乗じた数値)との関係を示すグラフである。   Next, measurement results obtained in Example 3, Comparative Example 3, and Comparative Example 4 will be described with reference to FIG. FIG. 14 shows the difference in viscosity obtained by subtracting the viscosity value measured from the prepolymer in the upper part of the stirring tank from the viscosity value measured from the prepolymer in the lower part of the stirring tank in Example 3, Comparative Example 3 and Comparative Example 4. It is a graph which shows the relationship with the rotation speed (The numerical value which multiplied the stirring time to the rotational speed) of a stirring blade.

実施例3において得られた測定結果はグラフG1で示されており、撹拌翼の回転数が0の時点では粘度差は25Pa・sであるが、撹拌翼の回転数が10回程度になった時点で粘度差は−8程度になっている。これは、撹拌翼によるプレポリマーの撹拌効率が高いことに基づき、撹拌槽の下部におけるプレポリマーの粘度が急激に低くなり、一方、撹拌槽の上部におけるプレポリマーの粘度が急激に高くなったことに起因する現象である。   The measurement result obtained in Example 3 is shown by a graph G1, and the viscosity difference is 25 Pa · s when the rotation speed of the stirring blade is 0, but the rotation speed of the stirring blade is about 10 times. At that time, the viscosity difference is about -8. This is because the prepolymer viscosity in the lower part of the stirring tank suddenly decreased, while the prepolymer viscosity in the upper part of the stirring tank suddenly increased based on the high stirring efficiency of the prepolymer by the stirring blade. It is a phenomenon caused by

そして、撹拌翼の回転数が30回程度になると、撹拌槽の下部におけるプレポリマーの粘度が高くなり、また、撹拌槽の上部におけるプレポリマーの粘度が低くなって、粘度差は3Pa・s程度になる。この後、撹拌翼の回転数が70回程度になると、粘度差は徐々に落ち着き始め、撹拌翼の回転数が160回程度になると、粘度差は1Pa・s程度になる。更に、撹拌翼の回転数が増加していくと、粘度差は漸減していき、回転数が200回に到達する以前に粘度差は1Pa・s以下になる。その後は、撹拌翼の回転数を更に増加しても、粘度差は殆ど変化せず、1Pa・s以下の値を維持していく。
このように、実施例3で使用される撹拌装置では、撹拌槽内に投入されたプレポリマーの粘度バラツキ範囲が25Pa・s以内で且つ最大粘度が45Pa・s以下である場合に、回転軸を介して撹拌翼を少なくとも200回転させた時点で、プレポリマーの粘度バラツキ範囲が1Pa・s以下になるので、撹拌翼を200回転させる程度の少ない回転数で且つ短時間でプレポリマーの粘度を撹拌槽全体に渡って均一化することができる。
And when the rotation speed of the stirring blade is about 30 times, the viscosity of the prepolymer at the lower part of the stirring tank becomes high, and the viscosity of the prepolymer at the upper part of the stirring tank becomes low, and the viscosity difference is about 3 Pa · s. become. Thereafter, when the rotation speed of the stirring blade becomes about 70 times, the viscosity difference gradually starts to settle, and when the rotation speed of the stirring blade becomes about 160 times, the viscosity difference becomes about 1 Pa · s. Furthermore, as the rotation speed of the stirring blade increases, the viscosity difference gradually decreases, and the viscosity difference becomes 1 Pa · s or less before the rotation speed reaches 200 times. Thereafter, even if the number of revolutions of the stirring blade is further increased, the viscosity difference hardly changes and the value of 1 Pa · s or less is maintained.
Thus, in the stirring apparatus used in Example 3, when the viscosity variation range of the prepolymer charged into the stirring tank is within 25 Pa · s and the maximum viscosity is 45 Pa · s or less, the rotating shaft is When the stirring blade is rotated at least 200 times, the viscosity variation range of the prepolymer becomes 1 Pa · s or less, so that the viscosity of the prepolymer is stirred in a short time with a small number of rotations that rotate the stirring blade 200 times. It can be made uniform throughout the bath.

また、比較例3において得られた測定結果はグラフG2で示されており、撹拌翼の回転数が0の時点では、実施例3の場合と同様、粘度差は25Pa・sであるが、撹拌翼の回転数が10回程度になった時点で粘度差は10Pa・s程度になっている。これは、撹拌翼によるプレポリマーの撹拌効率があまり高くなく、従って、撹拌槽の下部におけるプレポリマーの粘度は低くなり、一方、撹拌槽の上部におけるプレポリマーの粘度は高くなるものの、プレポリマーの流動性はそれ程顕著でないことに起因する現象である。   Further, the measurement result obtained in Comparative Example 3 is shown by a graph G2, and when the rotation speed of the stirring blade is 0, the viscosity difference is 25 Pa · s as in the case of Example 3. When the blade speed reaches about 10 times, the viscosity difference is about 10 Pa · s. This is because the stirring efficiency of the prepolymer by the stirring blade is not so high, and therefore the viscosity of the prepolymer in the lower part of the stirring tank is low, while the viscosity of the prepolymer in the upper part of the stirring tank is high, The fluidity is a phenomenon caused by the fact that it is not so remarkable.

そして、撹拌翼の回転数が30回程度になると、撹拌槽の下部におけるプレポリマーの粘度が高くなり、また、撹拌槽の上部におけるプレポリマーの粘度が低くなるものの、粘度差は13Pa・s程度に増加している。これより、撹拌槽内のプレポリマーの撹拌は、まだ殆ど進んでいない状態にある。この後、撹拌翼の回転数が80回程度になると、粘度差は徐々に落ち着き始め、撹拌翼の回転数が190回程度になると、粘度差は8Pa・s程度になる。更に、撹拌翼の回転数が増加していくと、粘度差は漸減していくが、回転数が380回に到達しても、粘度差はまだ7Pa・s程度もあり、その後は、撹拌翼の回転数を更に増加しても、粘度差は殆ど変化せず、7Pa・s程度の値を維持していく。
前記したように、比較例3の場合には、撹拌翼の回転開始時に25Pa・sであった粘度差は、撹拌翼の回転数が380回程度になっても、7Pa・s程度もあり、プレポリマーの撹拌は、それ程効率良く行われていない。
And when the rotation speed of the stirring blade is about 30 times, the viscosity of the prepolymer in the lower part of the stirring tank becomes high, and the viscosity of the prepolymer in the upper part of the stirring tank becomes low, but the viscosity difference is about 13 Pa · s. Has increased. From this, the stirring of the prepolymer in the stirring tank is still in a state of little progress. Thereafter, when the rotation speed of the stirring blade becomes about 80 times, the viscosity difference gradually starts to settle, and when the rotation speed of the stirring blade becomes about 190 times, the viscosity difference becomes about 8 Pa · s. Furthermore, as the rotation speed of the stirring blade increases, the viscosity difference gradually decreases, but even when the rotation speed reaches 380 times, the viscosity difference is still about 7 Pa · s. Even if the number of rotations is further increased, the viscosity difference hardly changes, and the value of about 7 Pa · s is maintained.
As described above, in the case of Comparative Example 3, the viscosity difference that was 25 Pa · s at the start of the rotation of the stirring blade was about 7 Pa · s even when the number of rotations of the stirring blade was about 380 times. Agitation of the prepolymer has not been performed as efficiently.

更に、比較例4において得られた測定結果はグラフG3で示されており、撹拌翼の回転数が0の時点では、実施例3及び比較例3の場合と同様、粘度差は25Pa・sであるが、撹拌翼の回転数が10回程度になった時点で粘度差は6Pa・s程度になっている。これより、撹拌翼によるプレポリマーの撹拌効率が比較例3の場合よりも若干高いが、実施例3の場合と比較すると格段に劣り、従って、撹拌槽の下部におけるプレポリマーの粘度は低くなり、一方、撹拌槽の上部におけるプレポリマーの粘度は高くなるものの、プレポリマーの流動性はまだ不十分であることが分かる。   Further, the measurement result obtained in Comparative Example 4 is shown by a graph G3. When the rotation speed of the stirring blade is 0, the viscosity difference is 25 Pa · s as in Example 3 and Comparative Example 3. However, the viscosity difference is about 6 Pa · s when the rotational speed of the stirring blade reaches about 10 times. From this, the stirring efficiency of the prepolymer by the stirring blade is slightly higher than in the case of Comparative Example 3, but is significantly inferior to that in Example 3, and therefore the viscosity of the prepolymer in the lower part of the stirring tank is low, On the other hand, although the viscosity of the prepolymer in the upper part of a stirring tank becomes high, it turns out that the fluidity | liquidity of a prepolymer is still inadequate.

そして、撹拌翼の回転数が40回程度になると、撹拌槽の下部におけるプレポリマーの粘度が高くなり、また、撹拌槽の上部におけるプレポリマーの粘度が低くなるものの、粘度差は10Pa・s程度に増加している。これより、撹拌槽内のプレポリマーの撹拌は、まだ殆ど進んでいない状態にある。この後、撹拌翼の回転数が90回程度になると、粘度差は徐々に落ち着き始め、撹拌翼の回転数が210回程度になると、粘度差は3Pa・s程度になる。更に、撹拌翼の回転数が増加していくと、粘度差は漸減していくが、回転数が430回程度になって初めて粘度差が1Pa・s程度になる。その後は、撹拌翼の回転数を更に増加しても、粘度差は殆ど変化せず、1Pa・s程度の値を維持していく。   When the number of revolutions of the stirring blade is about 40 times, the viscosity of the prepolymer at the lower part of the stirring tank increases and the viscosity of the prepolymer at the upper part of the stirring tank decreases, but the viscosity difference is about 10 Pa · s. Has increased. From this, the stirring of the prepolymer in the stirring tank is still in a state of little progress. Thereafter, when the rotation speed of the stirring blade becomes about 90 times, the viscosity difference gradually begins to settle, and when the rotation speed of the stirring blade becomes about 210 times, the viscosity difference becomes about 3 Pa · s. Furthermore, as the rotational speed of the stirring blade increases, the viscosity difference gradually decreases. However, the viscosity difference becomes about 1 Pa · s only after the rotational speed reaches about 430 times. Thereafter, even if the number of revolutions of the stirring blade is further increased, the viscosity difference hardly changes and the value of about 1 Pa · s is maintained.

前記したように、比較例4の場合には、撹拌翼の回転開始時に25Pa・sであった粘度差は、撹拌翼の回転数が200回程度では、粘度差はまだ7Pa・s程度もあり、撹拌翼の回転数が430回程度になってやっと粘度差が1Pa・s程度になるものである。従って、比較例4に使用される撹拌翼は、前記比較例3に使用される撹拌翼よりもプレポリマーの撹拌効率は高いものではあるが、プレポリマーの粘度バラツキ範囲を1Pa・s程度にするについて、撹拌翼を400回以上回転させる必要があり、実施例3の撹拌装置と比較すると、プレポリマーの撹拌効率は、まだなお不十分である。   As described above, in the case of Comparative Example 4, the viscosity difference that was 25 Pa · s at the start of the rotation of the stirring blade is still about 7 Pa · s when the rotation speed of the stirring blade is about 200 times. The viscosity difference finally becomes about 1 Pa · s when the rotation speed of the stirring blade is about 430 times. Therefore, the stirring blade used in Comparative Example 4 has a higher prepolymer stirring efficiency than the stirring blade used in Comparative Example 3, but the viscosity variation range of the prepolymer is about 1 Pa · s. Therefore, it is necessary to rotate the stirring blade 400 times or more, and compared with the stirring device of Example 3, the stirring efficiency of the prepolymer is still insufficient.

撹拌装置を模式的に示す説明図である。It is explanatory drawing which shows a stirring apparatus typically. 撹拌翼を多面的に記載した説明図であり、図2(A)は撹拌翼を上側から見て示す平面図、図2(B)は撹拌翼の正面図、図2(C)は撹拌翼の側面図、図2(D)は撹拌翼におけるリボン状翼部材の先端部を示す説明図である。FIG. 2A is a plan view showing the stirring blade as viewed from above, FIG. 2B is a front view of the stirring blade, and FIG. 2C is a stirring blade. FIG. 2D is an explanatory view showing the tip of the ribbon-like blade member in the stirring blade. 撹拌翼を模式的に示す斜視図である。It is a perspective view which shows a stirring blade typically. 数値流動シミュレーションに使用した解析モデルを模式的に示す説明図である。It is explanatory drawing which shows typically the analysis model used for the numerical flow simulation. 回転軸方向に平行で回転軸を含む断面における速度ベクトルを示す説明図である。It is explanatory drawing which shows the velocity vector in the cross section which is parallel to a rotating shaft direction and contains a rotating shaft. 溶液の液面に配置した粒子が一定時間内に移動する軌跡を示す説明図である。It is explanatory drawing which shows the locus | trajectory which the particle | grains arrange | positioned on the liquid level of a solution move within fixed time. 比較解析モデルを模式的に示す説明図である。It is explanatory drawing which shows a comparative analysis model typically. 比較解析モデルにおける回転軸方向に平行で回転軸を含む断面における速度ベクトルを示す説明図である。It is explanatory drawing which shows the velocity vector in the cross section which is parallel to the rotating shaft direction in a comparative analysis model, and contains a rotating shaft. 比較解析モデルにおいて溶液の液面に配置した粒子が一定時間内に移動する軌跡を示す説明図である。It is explanatory drawing which shows the locus | trajectory which the particle | grains arrange | positioned on the liquid level of a solution move within a fixed time in a comparative analysis model. 実施例2において使用された撹拌装置を模式的に示す説明図である。It is explanatory drawing which shows typically the stirring apparatus used in Example 2. FIG. 実施例2及び比較例2の重合溶液における粘度変化の測定結果を示すグラフである。It is a graph which shows the measurement result of the viscosity change in the polymerization solution of Example 2 and Comparative Example 2. 実施例3にて行われた実験の概要を模式的に示す説明図である。It is explanatory drawing which shows typically the outline | summary of the experiment conducted in Example 3. FIG. 比較例4において使用される撹拌装置を模式的に示す説明図であり、図13(A)は撹拌翼の平面状態を示す平面図、図13(B)は撹拌装置を模式的に示す説明図である。It is explanatory drawing which shows typically the stirring apparatus used in the comparative example 4, FIG. 13 (A) is a top view which shows the planar state of a stirring blade, FIG.13 (B) is explanatory drawing which shows a stirring apparatus typically It is. 実施例3、比較例3及び比較例4において、撹拌槽の下部におけるプレポリマーから測定された粘度値から撹拌槽の上部におけるプレポリマーから測定された粘度値を差し引いた粘度差と、撹拌翼の回転数(回転速度に撹拌時間を乗じた数値)との関係を示すグラフである。In Example 3, Comparative Example 3 and Comparative Example 4, the viscosity difference obtained by subtracting the viscosity value measured from the prepolymer in the upper part of the stirring tank from the viscosity value measured from the prepolymer in the lower part of the stirring tank, and the stirring blade It is a graph which shows the relationship with the rotation speed (the numerical value which multiplied the stirring time to the rotation speed).

符号の説明Explanation of symbols

1 撹拌装置
2 撹拌槽
4 モータ
10 回転軸
12 撹拌翼
13 平板状翼部材
13A 半楕円状部
13B 矩形状部
14 リボン状翼部材
15 格子状翼部材
15A 棒状部
15B 固定部
15C 連結片
20 紫外線照射装置
21 光ファイバ
22 紫外線光源
DESCRIPTION OF SYMBOLS 1 Stirring apparatus 2 Stirrer tank 4 Motor 10 Rotating shaft 12 Stirring blade 13 Flat blade member 13A Semi-elliptical portion 13B Rectangular portion 14 Ribbon blade member 15 Grid blade member 15A Rod portion 15B Fixed portion 15C Connecting piece 20 UV irradiation Device 21 Optical fiber 22 Ultraviolet light source

Claims (3)

溶液が投入される撹拌槽と、
前記撹拌槽の中心部に配設された回転軸と、
前記回転軸に取り付けられた撹拌翼とを備えた撹拌装置において、
前記撹拌翼は、
前記回転軸の下部に取り付けられた平板状翼部材と、
前記平板状翼部材の両端部から回転軸の回転方向とは逆方向に且つ斜め上方向に向かって前記撹拌槽の内壁面に沿って設けられた一対のリボン状翼部材と、
前記回転軸に取り付けられるとともに、一対の連結片を介して前記各リボン状翼部材に連結された格子状翼部材とを備え、
前記撹拌槽内に投入された溶液の粘度バラツキ範囲が25Pa・s以内で且つ最大粘度が45Pa・s以下である場合に、前記回転軸を介して前記撹拌翼を少なくとも200回転させた時点で、溶液の粘度バラツキ範囲が1Pa・s以下になることを特徴とする撹拌装置。
A stirred tank into which the solution is charged;
A rotating shaft disposed in a central portion of the stirring tank;
In a stirring device comprising a stirring blade attached to the rotating shaft,
The stirring blade is
A flat wing member attached to the lower portion of the rotating shaft;
A pair of ribbon-like wing members provided along the inner wall surface of the stirring tank in the opposite direction to the rotation direction of the rotation shaft from both ends of the flat plate-like wing member and obliquely upward,
A lattice-like wing member attached to the rotating shaft and connected to each ribbon-like wing member via a pair of connecting pieces;
When the viscosity variation range of the solution charged in the stirring vessel is within 25 Pa · s and the maximum viscosity is 45 Pa · s or less, when the stirring blade is rotated at least 200 times through the rotating shaft, A stirrer characterized in that the viscosity variation range of the solution is 1 Pa · s or less.
撹拌槽の中心部に配設された回転軸の下部に取り付けられた平板状翼部材と、平板状翼部材の両端部から回転軸の回転方向とは逆方向に且つ斜め上方向に向かって撹拌槽の内壁面に沿って設けられた一対のリボン状翼部材と、回転軸に取り付けられるとともに一対の連結片を介して前記各リボン状翼部材に連結された格子状翼部材とを備えた撹拌翼を介して、撹拌槽に投入されるとともに粘度バラツキ範囲が25Pa・s以内で且つ最大粘度が45Pa・s以下である溶液を撹拌し、前記回転軸により撹拌翼を少なくとも200回転させた時点で、溶液の粘度バラツキ範囲が1Pa・s以下になることを特徴とする撹拌方法。   A flat blade member attached to the lower part of the rotating shaft disposed in the center of the stirring tank, and stirring from both ends of the flat blade member in a direction opposite to the rotation direction of the rotating shaft and obliquely upward Stirring provided with a pair of ribbon-like wing members provided along the inner wall surface of the tank, and a lattice-like wing member attached to the rotary shaft and connected to each ribbon-like wing member via a pair of connecting pieces When a solution having a viscosity variation range within 25 Pa · s and a maximum viscosity of 45 Pa · s or less is stirred through a blade and the stirring blade is rotated at least 200 times by the rotating shaft, The stirring method is characterized in that the viscosity variation range of the solution is 1 Pa · s or less. 請求項1に記載の撹拌装置又は請求項2に記載の撹拌方法により得られた生成物。   The product obtained by the stirring apparatus of Claim 1, or the stirring method of Claim 2.
JP2006187179A 2006-07-06 2006-07-06 Agitator Pending JP2008012452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006187179A JP2008012452A (en) 2006-07-06 2006-07-06 Agitator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006187179A JP2008012452A (en) 2006-07-06 2006-07-06 Agitator

Publications (1)

Publication Number Publication Date
JP2008012452A true JP2008012452A (en) 2008-01-24

Family

ID=39070015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006187179A Pending JP2008012452A (en) 2006-07-06 2006-07-06 Agitator

Country Status (1)

Country Link
JP (1) JP2008012452A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009268981A (en) * 2008-05-08 2009-11-19 Nitto Denko Corp Stirring device and viscosity measuring method in stirring device
JP2010042359A (en) * 2008-08-13 2010-02-25 Kao Corp Method of controlling agitated vessel equipped with high-speed rotary shearing type agitator
EP3498365A1 (en) * 2017-12-13 2019-06-19 EKATO Rühr- und Mischtechnik GmbH Stirrer device
RU2779133C2 (en) * 2017-12-13 2022-09-01 Экато Рюр- Унд Миштехник Гмбх Mixer device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06154573A (en) * 1992-11-18 1994-06-03 Shinko Pantec Co Ltd Stirring device and bottom ribbon blade used for the device
JPH06166707A (en) * 1992-12-01 1994-06-14 Unitika Ltd Production of composite globular particle
JPH09168731A (en) * 1995-12-20 1997-06-30 Asahi Glass Co Ltd Agitator
JPH11267485A (en) * 1998-03-20 1999-10-05 Sumitomo Heavy Ind Ltd Vertical agitator
JP2000233122A (en) * 1999-02-15 2000-08-29 Nippon Zeon Co Ltd Mixing blade and mixer using the same
JP2002348304A (en) * 2001-05-29 2002-12-04 Mitsubishi Rayon Co Ltd Polymerizer and polymerization method
JP2004025146A (en) * 2002-06-28 2004-01-29 Fukuoka Seimai Kiki Kk Grain washing device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06154573A (en) * 1992-11-18 1994-06-03 Shinko Pantec Co Ltd Stirring device and bottom ribbon blade used for the device
JPH06166707A (en) * 1992-12-01 1994-06-14 Unitika Ltd Production of composite globular particle
JPH09168731A (en) * 1995-12-20 1997-06-30 Asahi Glass Co Ltd Agitator
JPH11267485A (en) * 1998-03-20 1999-10-05 Sumitomo Heavy Ind Ltd Vertical agitator
JP2000233122A (en) * 1999-02-15 2000-08-29 Nippon Zeon Co Ltd Mixing blade and mixer using the same
JP2002348304A (en) * 2001-05-29 2002-12-04 Mitsubishi Rayon Co Ltd Polymerizer and polymerization method
JP2004025146A (en) * 2002-06-28 2004-01-29 Fukuoka Seimai Kiki Kk Grain washing device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009268981A (en) * 2008-05-08 2009-11-19 Nitto Denko Corp Stirring device and viscosity measuring method in stirring device
JP2010042359A (en) * 2008-08-13 2010-02-25 Kao Corp Method of controlling agitated vessel equipped with high-speed rotary shearing type agitator
EP3498365A1 (en) * 2017-12-13 2019-06-19 EKATO Rühr- und Mischtechnik GmbH Stirrer device
JP2019104008A (en) * 2017-12-13 2019-06-27 エカート リューア− ウント ミッシュテヒニク ゲーエムベーハーEKATO Ruehr− und Mischtechnik GmbH Agitator
CN109999691A (en) * 2017-12-13 2019-07-12 艾卡多搅拌及混合工程有限公司 Rabbling mechanism equipment
US11305246B2 (en) * 2017-12-13 2022-04-19 EKATO Rühr- und Mischtechnik GmbH Agitator device
RU2779133C2 (en) * 2017-12-13 2022-09-01 Экато Рюр- Унд Миштехник Гмбх Mixer device
CN109999691B (en) * 2017-12-13 2022-11-29 艾卡多搅拌及混合工程有限公司 Stirring mechanism equipment
TWI806939B (en) * 2017-12-13 2023-07-01 德商艾卡多攪拌及混合工程有限公司 Agitator device
JP7422486B2 (en) 2017-12-13 2024-01-26 エカート リューア- ウント ミッシュテヒニク ゲーエムベーハー stirring equipment

Similar Documents

Publication Publication Date Title
JP4614893B2 (en) Stirring apparatus and stirring method
JP5413243B2 (en) Stirring apparatus and stirring method
EP0402317B1 (en) Apparatus for mixing viscous materials
JP5013428B2 (en) Stirrer
JP2008012452A (en) Agitator
JP3224498B2 (en) Stirrer
JP2000325068A (en) Agitator vessel for storing yeast liquid, production of fermented food such as beer using the agitator vessel, and agitating element installed in the agitator vessel
JP3586685B2 (en) Vertical stirrer
JP2853605B2 (en) Method and apparatus for producing highly viscous substance
WO2000055295A1 (en) Agitation tank for storing yeast solution, method of producing fermented foods such as beer using the agitation tank, and agitating vanes provided in the agitation tank
JP5062696B2 (en) Stirrer
CN217042134U (en) High-efficient making beating device for modified starch production
JP5134468B2 (en) Stirrer
JP3592472B2 (en) Stirrer
CN109289579A (en) Double-layer convection formula agitating paddle
CN211659772U (en) Coating stirring device
JP4735203B2 (en) Urethane (meth) acrylate production apparatus and production method
CN204073996U (en) A kind of wide ribbon sawtooth agitator
JP4628232B2 (en) Slurry impeller
CN205253091U (en) Height glues material reaction agitator
CN211886352U (en) Inclined horizontal type stirring device
JPH07136483A (en) Stirring device
CN109092143A (en) High borofloat glass standby raw material mixed stirring device
JP4561017B2 (en) Stirring apparatus for molten glass and glass manufacturing method
CN215387662U (en) N-acetylneuraminic acid crystallizer agitating unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100714

A131 Notification of reasons for refusal

Effective date: 20100720

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101130