JP2008010020A - Optical element and optical pickup - Google Patents

Optical element and optical pickup Download PDF

Info

Publication number
JP2008010020A
JP2008010020A JP2006176198A JP2006176198A JP2008010020A JP 2008010020 A JP2008010020 A JP 2008010020A JP 2006176198 A JP2006176198 A JP 2006176198A JP 2006176198 A JP2006176198 A JP 2006176198A JP 2008010020 A JP2008010020 A JP 2008010020A
Authority
JP
Japan
Prior art keywords
light
optical
different
region
regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006176198A
Other languages
Japanese (ja)
Inventor
Junichi Asada
潤一 麻田
Seiji Nishiwaki
青児 西脇
Kazuo Momoo
和雄 百尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006176198A priority Critical patent/JP2008010020A/en
Publication of JP2008010020A publication Critical patent/JP2008010020A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Head (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the following problem: in an optical pickup for recording/reproducing information in/from different kinds of optical recording media such as a DVD and a CD, using light beams having different wavelengths, it is difficult for a polarizer used with two or more wavelengths in common to be compatible with both efficiency and measures against a birefringent disk with each other. <P>SOLUTION: About an area (area F) where an opening of a distributed wavelength plate 6 is large, areas (area D1 and area D2) with different properties in counter positions are arranged to oppose each other, and about an area (area E) where an opening is small, areas which have similarly the areas D1 and D2 and the same properties are arranged at counter angular positions. Thus, the efficiency is compatible with the measures against the birefringent disk without sacrificing a signal light quantity and signal quality. Moreover, since the arrangement requires only to change the arrangement pattern of the distributed wavelength plate, productivity is not spoiled either. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、異なる波長の光に対して異なる偏光変換を行う性質を持つ波長板および、波長の異なるレーザ光源を有し、CDやDVD、ブルーレイ・ディスク等、各種の仕様、規格が異なる光ディスクにそれぞれ信号を記録、または再生するために用いられる光ピックアップに関するものである。   The present invention has a wave plate having the property of performing different polarization conversion on light of different wavelengths and a laser light source of different wavelengths, and is used for optical discs having various specifications and standards such as CD, DVD, Blu-ray disc, etc. The present invention relates to an optical pickup used for recording or reproducing signals.

近年、コンピュータの外部記憶装置やビデオレコーダー等に用いられる光ディスク装置として、例えばCD(CD−ROMディスクやCD−R/RWディスク)、DVD(DVD−ROMディスクやDVD−RAMディスク、DVD−R/RWディスク)、ブルーレイ・ディスク等のように記録密度・容量および溝仕様・基材厚等、規格が異なる様々な記録媒体に1台の装置で対応したマルチディスク用途の製品が増えつつある。   In recent years, as an optical disk device used for an external storage device of a computer, a video recorder or the like, for example, a CD (CD-ROM disk or CD-R / RW disk), DVD (DVD-ROM disk, DVD-RAM disk, DVD-R / RW discs), Blu-ray discs, etc., products for multi-disc applications that support a variety of recording media with different standards, such as recording density / capacity, groove specifications, and substrate thickness, with a single device are increasing.

このような装置において、光ディスクへ情報を記録・再生する光ピックアップには波長の異なるレーザ光源や、光ディスクから反射した光を受光してRF信号やフォーカス、トラッキング等の制御信号を得るための光検出器などが複数個搭載されており、各々のレーザ光源、光検出器等を用いてそれが適した媒体への書き込みや消去、読み出しを行っている。   In such an apparatus, an optical pickup for recording / reproducing information on / from an optical disc uses a laser light source having a different wavelength, or light detection for receiving light reflected from the optical disc and obtaining control signals such as an RF signal, focus, and tracking. A plurality of devices are mounted, and writing, erasing, and reading are performed on a medium suitable for each using a laser light source, a photodetector, and the like.

様々な異なる規格のディスクに対して安定した性能を担いつつ装置の小型化・低コスト化を図るためには、種類が違うディスクに対する適応性と光ピックアップの光学系のコンパクト化を両立させる技術が重要となる。   In order to reduce the size and cost of the device while maintaining stable performance for discs of various different standards, there is a technology that balances adaptability to different types of discs and downsizing of the optical system of the optical pickup. It becomes important.

種類が違うディスクに対する適応性を得るための一つの条件として、例えばディスクの透明基材が厚く、複屈折がより大きいディスクに対して安定した信号再生性能を確保することが必要であり、光学系をコンパクトにするためには異なる波長の光に対して光学部品をできるだけ共用化して部品点数を極力減らし小さいスペースで構成することが必要である。   As one condition for obtaining adaptability to different types of discs, for example, it is necessary to ensure stable signal reproduction performance for discs with a thick transparent base material and larger birefringence, and optical systems. In order to make the system compact, it is necessary to share optical components for light of different wavelengths as much as possible to reduce the number of components as much as possible and to configure in a small space.

従来、複数の記録媒体に対応したコンパクトな光学系を有する光ピックアップとして、特許文献1で開示したものがある。   Conventionally, an optical pickup having a compact optical system corresponding to a plurality of recording media is disclosed in Patent Document 1.

図5は、特許文献1における光ピックアップ装置の全体構成を示している。   FIG. 5 shows the overall configuration of the optical pickup device in Patent Document 1.

図5の光ピックアップ装置は、種類の異なる光ディスクにデータを書き込む、または光ディスクからデータを読み出す目的で波長の異なる複数の光ビームを形成する光源と、光ビームを集光し、光ディスクの信号面上に光スポットを形成する対物レンズと、ホログラム素子および波長板とからなる偏光素子、光ディスクから反射された光ビームの強度を検出する光検出器とを備えている。光源から対物レンズに至るまでの光路と、光ディスクの信号面で反射されて光検出器に至るまでの光路とが共通する部分にホログラム素子と波長板とからなる偏光素子が配置されている。   The optical pickup device shown in FIG. 5 collects light beams having different wavelengths for the purpose of writing data to or reading data from different types of optical disks, and collects the light beams on the signal surface of the optical disk. An objective lens for forming a light spot, a polarizing element comprising a hologram element and a wave plate, and a photodetector for detecting the intensity of the light beam reflected from the optical disk. A polarizing element made up of a hologram element and a wave plate is disposed at a portion where the optical path from the light source to the objective lens and the optical path from the signal surface of the optical disk to the photodetector are common.

以下、特許文献1における光ピックアップ装置の構成および偏光素子の作用について図5および図6を用いて説明する。   Hereinafter, the configuration of the optical pickup device and the action of the polarizing element in Patent Document 1 will be described with reference to FIGS. 5 and 6.

図5において、光検出器103は、シリコンチップなどの半導体基板102に形成されており、波長λ1および波長λ2の2種類のレーザ光を出射するレーザチップ101が基板102にマウントされている。光検出器103は、光電効果によって光を電気信号に変換する複数のフォトダイオードから構成されている。レーザチップ101が放射するレーザ光のうち、例えば、波長λ1は約650nmであり、波長λ2は約800nmである。例えば波長λ1のレーザ光はDVD用、波長λ2のレーザ光はCD用に用いられる。   In FIG. 5, the photodetector 103 is formed on a semiconductor substrate 102 such as a silicon chip, and a laser chip 101 that emits two types of laser light having wavelengths λ <b> 1 and λ <b> 2 is mounted on the substrate 102. The photodetector 103 is composed of a plurality of photodiodes that convert light into an electrical signal by a photoelectric effect. Of the laser light emitted by the laser chip 101, for example, the wavelength λ1 is about 650 nm and the wavelength λ2 is about 800 nm. For example, laser light with a wavelength λ1 is used for DVD, and laser light with a wavelength λ2 is used for CD.

レーザチップ101から出射された波長λ1の光は、コリメートレンズ104によって平行光化された後、偏光素子107を透過する。偏光素子107は、偏光性のホログラム素子105と波長板106とが一体化された素子である。偏光素子107は、対物レンズ108とともに支持部材135に取り付けられており、アクチュエータ136によって対物レンズ108とともに一体的に駆動される。   The light of wavelength λ1 emitted from the laser chip 101 is converted into parallel light by the collimator lens 104 and then transmitted through the polarizing element 107. The polarizing element 107 is an element in which a polarizing hologram element 105 and a wave plate 106 are integrated. The polarizing element 107 is attached to the support member 135 together with the objective lens 108, and is driven integrally with the objective lens 108 by the actuator 136.

なお、以降の説明において光源からディスクへ向かう光の光路を光学系の往路と呼び、ディスクで反射して光検出器へ向かう光の光路を光学系の復路と呼ぶものとする。   In the following description, the optical path of light traveling from the light source to the disk is referred to as the forward path of the optical system, and the optical path of light reflected by the disk and directed to the photodetector is referred to as the return path of the optical system.

偏光素子107を透過した光(波長λ1)は、対物レンズ108によって光ディスクの記録面109上に集光され、反射される。反射光は、再び対物レンズ108を経て、ホログラム105の偏光依存性により偏光素子107によって回折される。偏光素子107で回折された光は、コリメートレンズ104を経て光検出器103に入射する。光検出器103は、光量変化に応じた電気信号を生成する。この電気信号は、フォーカス制御信号、トラッキング制御信号、およびRF信号である。   The light (wavelength λ 1) transmitted through the polarizing element 107 is collected and reflected on the recording surface 109 of the optical disk by the objective lens 108. The reflected light again passes through the objective lens 108 and is diffracted by the polarizing element 107 due to the polarization dependence of the hologram 105. The light diffracted by the polarizing element 107 enters the photodetector 103 through the collimator lens 104. The photodetector 103 generates an electrical signal corresponding to the change in the amount of light. This electric signal is a focus control signal, a tracking control signal, and an RF signal.

偏光性のホログラム素子105は往路の直線偏光(P偏光成分)は完全透過、復路のうち往路と直交する偏光方向成分(S偏光成分)は完全回折する。   The polarization hologram element 105 completely transmits the linearly polarized light in the forward path (P-polarized light component), and completely diffracts the polarization direction component (S-polarized light component) orthogonal to the forward path in the backward path.

このように光学系の往復路で偏光を異ならせて用いる光学系は一般に偏光光学系と呼ばれ、往復路の光伝達率が高いことから記録パワーと、反射率の低い記録メディアからの信号のS/Nとの両立が要求される記録光学系で採用されている。   Such an optical system that uses different polarizations in the round trip path of the optical system is generally called a polarization optical system. Since the optical transmission rate of the round trip path is high, the recording power and the signal from the recording medium with low reflectivity are transmitted. It is used in recording optical systems that are required to be compatible with S / N.

レーザチップ101を出射した波長λ2の光も、コリメートレンズ104によって平行光化され、偏光素子107を透過する。偏光素子107を透過した光は、対物レンズ108によって基材厚の異なる光ディスクの記録面110上に集光され、記録面110で反射される。反射光は、再び対物レンズ108を経て偏光素子107で回折される。回折された光は、コリメートレンズ104を経て光検出器103に入射する。光検出器103は、光量変化に応じた電気信号を生成し、この電気信号は、フォーカス制御信号、トラッキング制御信号、およびRF信号である。   The light having the wavelength λ 2 emitted from the laser chip 101 is also converted into parallel light by the collimator lens 104 and transmitted through the polarizing element 107. The light transmitted through the polarizing element 107 is collected on the recording surface 110 of the optical disk having a different substrate thickness by the objective lens 108 and reflected by the recording surface 110. The reflected light is diffracted by the polarizing element 107 again through the objective lens 108. The diffracted light enters the photodetector 103 through the collimating lens 104. The photodetector 103 generates an electrical signal corresponding to a change in the amount of light, and the electrical signal is a focus control signal, a tracking control signal, and an RF signal.

すなわち、特許文献1における光ピックアップは、DVD用とCD用の2種類の波長の光を出射する一つのレーザチップ101を有し、かつ異なる光情報媒体109または110からの反射情報から得られる波長の異なる光による信号光を共通の光検出器103で受光する。   That is, the optical pickup in Patent Document 1 has one laser chip 101 that emits light of two types of wavelengths for DVD and CD, and has a wavelength obtained from reflected information from different optical information media 109 or 110. The common light detector 103 receives signal light of different light.

このような構成によれば、異なる規格の光記録媒体に対応した光ピックアップをコンパクトにできる。なぜなら従来一般的に、異なる波長の光を光路の途中で分岐する分岐手段を用いてディスクからの光を互いに独立の光検出器に導いていたのに対し、この構成では同じ一つの分岐手段であるホログラム素子、同じ一つの光検出器で実現できるため、レーザ光源から光記録媒体に至る光路(往路)と光記録媒体から光検出器に至る光路(復路)とが異なる波長の光に対して完全に共通化でき、光学系の部品点数を削減できて小さなスペースで光学系が収納できるためである。   According to such a configuration, an optical pickup corresponding to optical recording media of different standards can be made compact. This is because, in general, the light from the disk is guided to independent photodetectors by using a branching unit that splits light of different wavelengths in the middle of the optical path, whereas in this configuration, the same one branching unit is used. Because it can be realized with a certain hologram element and the same photodetector, the optical path from the laser light source to the optical recording medium (outward path) and the optical path from the optical recording medium to the optical detector (return path) are different. This is because they can be completely shared, the number of parts of the optical system can be reduced, and the optical system can be stored in a small space.

図6(a)は、図5に示した波長板106の平面図を示し、図6(b)は光源側から光情報媒体110へ向かう光と光情報媒体110からの反射光とが波長板106および偏光性ホログラム105を往復する様子を示す図である。また、図6(c)は波長λ1の光に対する波長板106による偏光変換の一例を示す図、図6(d)は波長λ2の光に対する波長板106による偏光変換の一例を示す図である。   6A is a plan view of the wave plate 106 shown in FIG. 5, and FIG. 6B is a wave plate in which light traveling from the light source side to the optical information medium 110 and reflected light from the optical information medium 110 are reflected. FIG. 6 is a diagram showing a state in which the lens 106 and the polarization hologram 105 are reciprocated. FIG. 6C is a diagram illustrating an example of polarization conversion by the wavelength plate 106 with respect to light having the wavelength λ1, and FIG. 6D is a diagram illustrating an example of polarization conversion by the wavelength plate 106 with respect to light having the wavelength λ2.

図6(a)における波長板の平面図に示すように波長板は光軸中心を通る線(x軸、y軸)で4つの領域に分割されており、光軸中心に対象な位置にそれぞれ同じ性質の領域(領域Aと領域B)が形成されている。領域Aは図面上x軸方向に対してθ1の角度をなす方向に光学異方性の軸方向を有し、領域Bは図面上x軸方向に対してθ2の角度をなす方向に光学異方性の軸方向を有している。なお、波長板106に光源側から入射する直線偏光の方向はx軸と一致しているものとする。角度θ1およびθ2はそれぞれx軸方向に対して45°−α、45°+α、(0<α≦15°)の角度をなす。   As shown in the plan view of the wave plate in FIG. 6A, the wave plate is divided into four regions by lines (x-axis and y-axis) passing through the center of the optical axis. Regions of the same nature (region A and region B) are formed. Region A has an axial direction of optical anisotropy in a direction that forms an angle of θ1 with respect to the x-axis direction in the drawing, and region B is optically anisotropic in a direction that forms an angle of θ2 with respect to the x-axis direction in the drawing. Has an axial direction. It is assumed that the direction of linearly polarized light incident on the wave plate 106 from the light source side coincides with the x axis. The angles θ1 and θ2 are 45 ° −α, 45 ° + α, and (0 <α ≦ 15 °) with respect to the x-axis direction, respectively.

このように異なった性質を有している領域が分布している波長板を以降、分布波長板という言葉で表現する。   Hereinafter, a wave plate in which regions having different properties are distributed will be expressed as a distributed wave plate.

図6(a)に示した領域分割により、図6(b)に示すように光源からの光のうち領域Aを通る光はレンズ108により集光され光情報媒体110で反射されて光軸について対称な位置にある同じ性質の領域Aを通る。一方、領域Bの部分を通る光は同じく光情報媒体110で反射され対称な位置にある領域Bを復路で通過する。   By the area division shown in FIG. 6A, the light passing through the area A out of the light from the light source as shown in FIG. 6B is collected by the lens 108 and reflected by the optical information medium 110, and the optical axis. It passes through a region A having the same property at a symmetrical position. On the other hand, the light passing through the region B is reflected by the optical information medium 110 and passes through the region B at a symmetrical position on the return path.

反射した光のうち、往路の直線偏光と直交する方向(すなわちy軸)の偏光成分は偏光性ホログラム105により回折され信号光となり、それ以外の成分の光は0次光としてレーザ光源に戻る。   Of the reflected light, the polarization component in the direction orthogonal to the forward linear polarization (that is, the y-axis) is diffracted by the polarization hologram 105 to become signal light, and light of the other components returns to the laser light source as zero-order light.

ここで、波長板の屈折率異方性をΔn、厚みをd、波長をλ1(DVD用の波長)としたとき360°×Δnd/λ1で表される波長板のレタデーションは90°の奇数倍に等しい。具体的には例えば270°くらいが望ましい。   Here, when the refractive index anisotropy of the wave plate is Δn, the thickness is d, and the wavelength is λ1 (wavelength for DVD), the retardation of the wave plate represented by 360 ° × Δnd / λ1 is an odd multiple of 90 °. be equivalent to. Specifically, for example, about 270 ° is desirable.

レタデーション270°というのは3/4波長板、すなわち1/4波長板と等しく、光学異方性軸方位45°±αのαが0であれば従来の均一な1/4波長板であり、x軸方向に平行な振動方向を持つ直線偏光(P偏光成分)が入射すると円偏光となって波長板を出射し、光情報媒体で反射した光が再び逆方向に波長板を通過した後、往路の直線偏光と直交するy軸方向に偏光方向を有する直線偏光(S偏光成分)となる。   The retardation 270 ° is equivalent to a 3/4 wavelength plate, that is, a 1/4 wavelength plate, and is a conventional uniform 1/4 wavelength plate if α of the optical anisotropy axis direction 45 ° ± α is 0, When linearly polarized light having a vibration direction parallel to the x-axis direction (P-polarized light component) is incident, it becomes circularly polarized light, exits the wave plate, and light reflected by the optical information medium passes through the wave plate in the opposite direction again. It becomes linearly polarized light (S-polarized light component) having a polarization direction in the y-axis direction perpendicular to the forward linearly polarized light.

図6(a)で示した波長板ではαが0でないため、光学異方性軸方位の異なる領域Aと領域Bとをそれぞれ往復透過する光の偏光変換は互いに異なる。   In the wave plate shown in FIG. 6A, since α is not 0, the polarization conversion of the light that reciprocates through the regions A and B having different optical anisotropy axis directions is different from each other.

図6(c)は分布波長板106を往復通過する際の波長λ1の光の偏光状態の変化を示す。   FIG. 6C shows a change in the polarization state of the light having the wavelength λ1 when it passes through the distributed wave plate 106 in a reciprocating manner.

波長λ1の光は光学系の往路に置いて偏光ホログラムを通過し波長板に入射する際にはIで示すような直線偏光の光(P波)である。分布波長板106のレタデーションと光学軸方位の条件が1/4波長板に近い性質を持つことから領域Aと領域Bとでやや楕円主軸の異なる円に近い楕円偏光に変換され(IIの状態)、これがディスク(複屈折はないものとする)を反射して光学系の復路で再び波長板を通過することで往路とほぼ直交した直線偏光に近い楕円偏光(IIIの状態)になる。このうちS波成分(図6(a)のy軸方向の振動成分の光)がホログラム105により回折される。   The light of wavelength λ1 is linearly polarized light (P wave) as indicated by I when passing through the polarization hologram and entering the wave plate in the outward path of the optical system. Since the conditions of the retardation and optical axis orientation of the distributed wave plate 106 are close to a quarter wave plate, the region A and the region B are converted into elliptically polarized light that is slightly close to a circle with a different ellipse principal axis (state II). This is reflected by the disk (assuming no birefringence) and passes through the wave plate again on the return path of the optical system, so that it becomes elliptically polarized light (state III) close to linearly polarized light almost orthogonal to the forward path. Among these, the S wave component (light of the vibration component in the y-axis direction in FIG. 6A) is diffracted by the hologram 105.

波長板のレタデーションはおおよそ波長に反比例するため、波長λ1(DVD用の波長)で270度とすると波長λ2(CD用の波長)の光に対しては約225°(270°×650/800≒270°×5/6=225°)程度のレタデーション、すなわち約5λ/8板相当になっている。   Since the retardation of the wave plate is approximately inversely proportional to the wavelength, assuming that the wavelength λ1 (wavelength for DVD) is 270 degrees, the light of wavelength λ2 (wavelength for CD) is about 225 ° (270 ° × 650 / 800≈ 270 ° × 5/6 = 225 °), that is, about 5λ / 8 plate.

すなわち波長λ2の光にすれば光が往復で2回分布波長板106を通過することで5λ/8×2=5/4波長板、すなわち、1/4波長板相当となる。   That is, if the light having the wavelength λ2 is used, the light reciprocates twice through the distributed wave plate 106, which is equivalent to a 5λ / 8 × 2 = 5/4 wave plate, that is, a quarter wave plate.

図6(d)は波長λ2の光(CD用の波長の光)に対する分布波長板106による偏光状態の変換の過程を示す。同様にx軸方向に偏光方向を持つ直線偏光Iは波長板106を透過することで領域Aと領域Bとで異なった偏光変換を受け、IIに示すような楕円偏光状態となってディスクに入射する。   FIG. 6D shows a process of converting the polarization state by the distributed wavelength plate 106 for the light of wavelength λ2 (light of the wavelength for CD). Similarly, linearly polarized light I having a polarization direction in the x-axis direction is transmitted through the wave plate 106, undergoes different polarization conversions in the regions A and B, and enters an elliptical polarization state as shown in II. To do.

ディスク基材の複屈折がなければ領域Aを往復する光と領域Bを往復透過する光とで主軸方位は異なるもののいずれもほぼ円偏光に近い状態(図6(d)のIII)となって光学系の復路で偏光ホログラム105に入射する。したがって、偏光ホログラム105により約半分の光(S波成分)が回折し、もう半分の光(P波成分)は回折せずにホログラム105を透過する。   If the disc substrate has no birefringence, the light traveling back and forth through the region A and the light traveling back and forth through the region B have different principal axis directions, but both are nearly circularly polarized (III in FIG. 6 (d)). The light enters the polarization hologram 105 along the return path of the optical system. Therefore, approximately half of the light (S wave component) is diffracted by the polarization hologram 105, and the other half of the light (P wave component) is transmitted through the hologram 105 without being diffracted.

一方、ディスク基材に大きな複屈折、例えば背景技術で説明したような往復で1/2波長板に相当する複屈折があった場合を考える。このとき、1/2波長板相当の偏光変換により偏光ホログラム5に入射する光が複屈折の無い場合の偏光状態に対して楕円主軸がちょうど直交する偏光(図6(d)のIII’)となるが、この場合も領域Aを往復する光と領域Bを往復透過する光とで主軸方位は異なるもののいずれもほぼ円偏光である。   On the other hand, consider the case where the disk base material has a large birefringence, for example, a birefringence equivalent to a half-wave plate by reciprocation as described in the background art. At this time, polarized light (III ′ in FIG. 6D) whose elliptical principal axis is just orthogonal to the polarization state in the case where the light incident on the polarization hologram 5 does not have birefringence by polarization conversion equivalent to a half-wave plate. In this case as well, although the principal axis direction differs between the light traveling back and forth through the region A and the light traveling back and forth through the region B, both are substantially circularly polarized.

すなわち、この場合も同様に偏光ホログラム105により約半分の光(S波成分)が回折し、もう約半分の光(P波成分)は回折せずに透過する。従って偏光ホログラム105によって回折される光の量、すなわち信号光量はディスク基材に複屈折がない場合と比べて変化が極めて小さい。   That is, in this case as well, about half of the light (S wave component) is diffracted by the polarization hologram 105 and about half of the light (P wave component) is transmitted without being diffracted. Therefore, the amount of light diffracted by the polarization hologram 105, that is, the amount of signal light, has a very small change compared to the case where the disk base material has no birefringence.

波長λ2の光に対しては基材に複屈折が無くても光学系の復路で完全回折条件からずれるため波長λ1の光に比べると信号光量は少ない。ただしCD用等の長波長のレーザは高出力化が容易なため効率低下の影響は少ない。   For light of wavelength λ2, the amount of signal is less than that of light of wavelength λ1 because it deviates from the perfect diffraction condition in the return path of the optical system even if the substrate has no birefringence. However, long wavelength lasers for CDs and the like are less affected by a decrease in efficiency because it is easy to increase the output.

すなわちDVD等のように基材厚が薄く、基材の複屈折は製造過程で生じにくいが波長が短く高出力化が困難である波長λ1の光に対しては光学系の往復路とも高効率であって、その一方効率が低くても高出力のレーザで光量をカバーできるが基材厚が厚いために生産過程で光学的な複屈折量が多いものができやすいCD等に用いる波長λ2の光に対しては、基材の複屈折性のために偏光状態が変化した光がディスクから戻ってきたとしても、信号光が得られる。
特開2005−339766号公報
That is, the base material is thin like a DVD, and the birefringence of the base material is unlikely to occur during the manufacturing process, but it is highly efficient for both the return path of the optical system for light with a wavelength λ1 that is short in wavelength and difficult to achieve high output. On the other hand, even if the efficiency is low, the amount of light can be covered with a high-power laser, but since the base material is thick, a product having a large optical birefringence in the production process can be easily produced. For light, signal light can be obtained even if light whose polarization state has changed due to the birefringence of the substrate returns from the disk.
JP 2005-339766 A

背景技術で示したような波長板およびこれを用いた光ピックアップによれば、DVD等に用いる短波長のレーザの光に対して往復路の効率を確保しつつ、CD等の、より長波長のレーザの光に対して面内のいずれかの領域で常にホログラムで回折されることで、高出力化が困難な短波長のレーザ光に対しては素子の光伝達ロスを相対的に小さくしながら高出力化が容易な長波長のレーザを用いる光ディスク基材の光学特性ばらつきにも対応できるメリットがある。   According to the wave plate as shown in the background art and the optical pickup using the wave plate, while ensuring the efficiency of the round-trip path with respect to the light of a short wavelength laser used for a DVD or the like, a longer wavelength such as a CD or the like The laser beam is always diffracted by the hologram in any region in the plane, so that the optical transmission loss of the element is relatively small for short-wavelength laser light, which is difficult to achieve high output. There is a merit that it is possible to cope with variations in optical characteristics of an optical disk substrate using a long-wavelength laser that can easily achieve high output.

一方で、このような分布波長板を用いることで効率が大きくロスすることはないが、均一な波長板を用いる場合と比べると信号光量が低下するというデメリットもある。   On the other hand, the use of such a distributed wave plate does not significantly reduce the efficiency, but there is a demerit that the amount of signal light is reduced as compared with the case of using a uniform wave plate.

例えば図6に示したような2つの領域A,Bの波長板の光学異方性の軸の方位角がα=5°〜15°の分布波長板の場合、DVDの光波長に対して4%〜12%程度、均一な波長板に比べて信号光量は低くなる(ディスクに複屈折がない場合)。   For example, in the case of a distributed wave plate in which the azimuth angle of the optical anisotropy axis of the wave plates in the two regions A and B as shown in FIG. 6 is α = 5 ° to 15 °, it is 4 to the optical wavelength of the DVD. The amount of signal light is lower than that of a uniform wave plate by about% to 12% (when the disk has no birefringence).

すなわちCD等の複屈折が大きいディスクでの信号光量低下は分布波長板の光学軸方位のずらし量αの値を大きくした方が有利であるが、その一方でαの値をあまり大きくすると複屈折は小さいが反射率の低いDVD等の記録メディアに対する信号光量ロス分が問題になる。また、分布波長板により再生信号品質の低下もやや生ずる。   That is, it is advantageous to increase the shift amount α of the optic axis direction of the distributed wave plate in order to reduce the amount of signal light on a disk such as a CD having a large birefringence, but on the other hand, if the value of α is too large, the birefringence is increased. However, the amount of signal light loss for a recording medium such as a DVD having a low reflectivity becomes a problem. In addition, the quality of the reproduced signal is slightly reduced due to the distributed wave plate.

図7はDVDの波長の光についてディスクの複屈折に対する信号光量と光学ジッタの計算値を示す。すなわちディスクの複屈折が極端な場合λ/4相当ある場合、均一な波長板では信号が無くなるので光学ジッタは無限大になるが、一方分布波長板では信号光量が0にならない。ただし均一波長板では光学ジッタがある程度の複屈折に対してあまり変化しないのに対して分布波長板では複屈折量の増大に従って徐々に光学ジッタが劣化、すなわち信号品質が悪化する。   FIG. 7 shows calculated values of the signal light amount and the optical jitter with respect to the birefringence of the disc for the light having the wavelength of DVD. That is, when the birefringence of the disk is extreme, the optical jitter is infinite because there is no signal in the uniform wave plate, but the signal light quantity does not become zero in the distributed wave plate. However, in the uniform wavelength plate, the optical jitter does not change so much with respect to a certain amount of birefringence, whereas in the distributed wavelength plate, the optical jitter gradually deteriorates, that is, the signal quality deteriorates as the birefringence increases.

また、図5に示すような異なる波長の光で光学系を共有し、1つの対物レンズでそれぞれの波長に応じたディスクの記録再生をする光ピックアップでの別の問題点として迷光の問題がある。   Further, there is a problem of stray light as another problem in an optical pickup that shares an optical system with light of different wavelengths as shown in FIG. 5 and performs recording / reproduction of a disc according to each wavelength with one objective lens. .

すなわちこのような光ピックアップでは波長により対物レンズに入射する光の開口を制限することが多いが、このような開口制限手段(例えば波長選択性の開口制限膜)により反射された光が迷光となって検出器に入射し信号品質に悪影響を与える場合がある。   That is, in such an optical pickup, the aperture of light incident on the objective lens is often limited by the wavelength, but the light reflected by such aperture limiting means (for example, a wavelength-selective aperture limiting film) becomes stray light. May enter the detector and adversely affect the signal quality.

従来このような迷光が光ピックアップの組立・調整などの誤差でばらつき、サーボ信号やRF信号品質への影響を与える場合があった。   Conventionally, such stray light may vary due to errors such as assembly / adjustment of an optical pickup, which may affect the quality of servo signals and RF signals.

上記した問題点を解決するため本発明は、第1の発明として、少なくとも2種類の波長の光が往復通過する光路に配置する光学素子であって、素子が偏光ホログラムと波長板とを構成として有し、かつ波長板の光学異方性の軸方位が素子面内の複数の領域間で互いに異なっており、ある領域は素子を通過する光の光軸中心について対称に同じ異方性軸方位の領域が配置され、別の領域は光軸中心について対称に異なる異方性軸方位の領域が配置されていることを特徴とする。   In order to solve the above-described problems, the present invention provides, as a first invention, an optical element disposed in an optical path through which light of at least two types of wavelengths reciprocates, and the element comprises a polarization hologram and a wavelength plate. And the axial direction of the optical anisotropy of the wave plate is different from each other among a plurality of regions in the element plane, and a certain region is symmetrically the same with respect to the optical axis center of the light passing through the element. The other region is characterized in that regions having different anisotropic axis orientations are arranged symmetrically with respect to the optical axis center.

または、第2の発明として、少なくとも2種類の波長の光が往復通過する光路に配置する光学素子であって、素子が偏光ホログラムと波長板とを構成として有し、かつ波長板のレタデーションが素子面内の複数の領域間で互いに異なっており、ある領域は素子を通る光の光軸中心について対称に同じレタデーションの領域が配置され、別の領域は光軸中心について対称に異なるレタデーションの領域が配置されていることを特徴とする。   Or as 2nd invention, it is an optical element arrange | positioned in the optical path through which the light of at least 2 types of wavelength reciprocates, Comprising: An element has a polarization hologram and a wavelength plate as a structure, and the retardation of a wavelength plate is an element A plurality of in-plane regions are different from each other. In one region, the same retardation region is arranged symmetrically with respect to the optical axis center of light passing through the element, and in another region, different retardation regions are symmetrically arranged with respect to the optical axis center. It is arranged.

なお、第1の発明において、波長板の光学異方性の軸方位が素子面内の複数の領域間で互いに2通りに異なっており、それぞれ素子に入射する光の偏光方向に対して45°±α(0<α≦15°)になっていてもよい。   In the first invention, the axial direction of the optical anisotropy of the wave plate is different in two ways between a plurality of regions in the element plane, and each is 45 ° with respect to the polarization direction of light incident on the element. It may be ± α (0 <α ≦ 15 °).

また、第2の発明において、少なくとも2種類の波長の光が往復通過する光路に配置する波長板であって、波長板を透過する際に生ずる常光と異常光との位相差が素子面内の複数の領域間で互いに異なっており、かつ前記位相差が一方の波長の光に対して270°±δ(0°<δ≦30°)であってもよい。   In the second invention, the wave plate is disposed in an optical path through which light of at least two types of wavelengths reciprocates, and a phase difference between ordinary light and extraordinary light generated when passing through the wave plate is within the element plane. The plurality of regions may be different from each other, and the phase difference may be 270 ° ± δ (0 ° <δ ≦ 30 °) with respect to light of one wavelength.

また、上記発明において、異なる波長の光が往復通過する開口が異なっており、これらが共通する開口内には軸対称に同じ性質の領域が複数配置され、一部の波長のみ往復通過する開口部には軸対称に異なる性質の領域が一つないし複数配置されていてもよい。   Further, in the above invention, the openings through which light of different wavelengths reciprocate are different, and a plurality of regions having the same property are arranged in an axial symmetry within the common opening, and an opening through which only some wavelengths reciprocate One or a plurality of regions having different properties in axial symmetry may be disposed in the.

また、上記発明において、軸対称に異なる性質の領域が形成されている領域の分割面積が、軸対称に同じ性質の領域が複数配置されている領域での分割面積より相対的に大きいとしてもよい。   Further, in the above invention, the divided area of the region in which the regions having different properties in the axial symmetry are formed may be relatively larger than the divided area in the region in which the plurality of regions having the same properties in the axial symmetry are arranged. .

また、上記発明において、光学素子が別に波長選択性の開口制限膜を構成として有しており、波長選択性の開口制限膜が形成されている領域では波長板が軸対称に異なる性質の領域が配置され、それ以外の領域では軸対称に同じ性質の領域が形成されていてもよい。   In the above invention, the optical element has a wavelength-selective aperture limiting film as a configuration, and in the region where the wavelength-selective aperture limiting film is formed, the wavelength plate has an axially symmetric region having different properties. In other regions, regions having the same property may be formed in axial symmetry.

また、上記発明において、開口制限膜の形成された領域で波長板が微細な格子状または縞状に交互に異なる性質の領域が軸対称に形成されている光学素子が光軸に対して傾いて配置されており、波長選択性の開口制限膜により反射した光が波長板を再び通り一部は同じ性質の領域、一部は異なる性質の領域を往復で通過するとしてもよい。   Further, in the above invention, the optical element in which regions having different properties alternately arranged in a fine lattice or stripe shape are formed in an axially symmetrical manner in the region where the aperture limiting film is formed is inclined with respect to the optical axis. It is also possible that the light reflected by the wavelength-selective aperture limiting film passes through the wave plate again, partly passes through a region having the same property, and partly passes through a region having a different property.

また、上記発明において、波長板と開口制限膜との距離をd、波長板の分布パターンピッチをP、素子の光軸に対する傾きをθとしたとき、Sinθ=P/2d、の関係が成り立つようにしてもよい。   In the above invention, when the distance between the wave plate and the aperture limiting film is d, the distribution pattern pitch of the wave plate is P, and the inclination with respect to the optical axis of the element is θ, the relationship of Sin θ = P / 2d is established. It may be.

また、本発明は、少なくとも2種類以上の波長を出射する単数または複数のレーザ光源と、レーザ光源から出射した光を光情報媒体に集光する集光手段と、光情報媒体から反射された光を受光する光検出器とを有し、光源から光情報媒体に向かう光の光路と光情報媒体から光検出器に向かう光の光路とが共通する部分に上記発明のいずれかの光学素子を備えてもよい。また、光情報媒体からの光を受光する光検出器を異なる2種類以上の波長の光で共用するとしてもよい。   The present invention also provides one or a plurality of laser light sources that emit at least two or more wavelengths, condensing means for condensing light emitted from the laser light sources onto the optical information medium, and light reflected from the optical information medium. The optical element according to any one of the above inventions is provided in a portion where the optical path of light from the light source toward the optical information medium and the optical path of light from the optical information medium toward the optical detector are common. May be. Further, a photodetector that receives light from the optical information medium may be shared by light of two or more different wavelengths.

また、本発明は、異なる波長の光を出射するレーザと光情報媒体からの光を受光する2種類以上の波長の光で共用する光検出器とを一体化したユニットを備え、異なる波長の光が光源から光情報媒体に向かう光路と光情報媒体からの光が光検出器に至る光路の共通する部分に上記発明のいずれかの光学素子を備えてもよい。   In addition, the present invention includes a unit in which a laser that emits light of different wavelengths and a photodetector that is shared by two or more types of light that receives light from an optical information medium are integrated. The optical element according to any one of the above inventions may be provided in a common part of an optical path from the light source to the optical information medium and an optical path from which the light from the optical information medium reaches the photodetector.

本発明により異なる波長の光を用いて基材厚や面密度の異なる光情報媒体に対して記録再生を行う光ピックアップにおいて、一方の波長に対して基材の複屈折による影響低減効果を確保しつつもう一方の波長の光について光量ロスを防ぐことができ、簡素な構成で効率が高く、かつ性能がより安定した光ピックアップが実現できる。あるいは開口制限手段により生ずる迷光影響を低減することもできる。また背景技術の従来例で示したような生産性やコストの大幅な低減の効果を損なうこともない。   According to the present invention, in an optical pickup that records and reproduces information on optical information media having different substrate thicknesses and areal densities using light of different wavelengths, the effect of reducing the influence of birefringence of the substrate is ensured for one wavelength On the other hand, it is possible to prevent a loss of light quantity of the light of the other wavelength, and it is possible to realize an optical pickup having a simple configuration with high efficiency and more stable performance. Alternatively, it is possible to reduce the influence of stray light caused by the aperture limiting means. In addition, the productivity and cost reduction effects as shown in the background art are not impaired.

以下、本発明の実施の形態について、図面を用いて説明する。なお、背景技術で説明したものと同じ機能を有する構成要素は同一の符号で示す。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the component which has the same function as what was demonstrated by background art is shown with the same code | symbol.

(実施の形態1)
本発明の光ピックアップおよび光学素子の実施の形態1について、図1および図2を用いて説明する。なお、以下同一の構成体については同じ番号を付す。
(Embodiment 1)
Embodiment 1 of an optical pickup and an optical element according to the present invention will be described with reference to FIGS. Hereinafter, the same numbers are assigned to the same components.

図1は、本発明における光学素子を適用した光ピックアップの構成図を示す。図1において、偏光ホログラム5と一体に形成された波長板6が背景技術で説明した図6の光ピックアップと比べて特徴を有する。ただし、検出器2と一体化された2つの波長の光を出射する光源1からの光がディスク9もしくは10により反射されて光検出器2で信号光として検出されるに至る光学系レイアウトと光の伝達動作に関しては背景技術の図6のピックアップと同じなので詳細な説明は省略する。   FIG. 1 is a configuration diagram of an optical pickup to which an optical element according to the present invention is applied. In FIG. 1, the wave plate 6 formed integrally with the polarization hologram 5 has a feature as compared with the optical pickup of FIG. 6 described in the background art. However, the optical system layout and light in which light from the light source 1 that emits light of two wavelengths integrated with the detector 2 is reflected by the disk 9 or 10 and detected as signal light by the photodetector 2. Since the transmission operation is the same as that of the pickup shown in FIG. 6 of the background art, a detailed description thereof will be omitted.

なお、本実施形態では光源と検出器とが一体となったピックアップ構成を示しているが、これらが独立していても適用できる。さらに波長板6は偏光ホログラム5と一体化されているがこれらは別々であっても良く、またホログラムの代わりにPBS等の偏光性のフィルターであってもよい。   In the present embodiment, a pickup configuration in which the light source and the detector are integrated is shown, but the present invention can be applied even if they are independent. Further, the wave plate 6 is integrated with the polarization hologram 5, but these may be separate, or may be a polarizing filter such as PBS instead of the hologram.

図2(a)は本発明における光ピックアックの構成の一部、すなわち、偏光ホログラム5と分布波長板6と対物レンズ8の側面図、およびこれを往復透過する波長λ1(DVDの光波長)、波長λ2(CDの光波長)の光線を示す図である。   FIG. 2A shows a part of the configuration of the optical pick-up according to the present invention, that is, a side view of the polarization hologram 5, the distributed wavelength plate 6, and the objective lens 8, and a wavelength λ1 (DVD optical wavelength) that reciprocates through the hologram. It is a figure which shows the light ray of wavelength (lambda) 2 (light wavelength of CD).

図2(a)に示すように波長λ1および波長λ2の光は、光学系の往路において偏光ホログラム5をそのまま透過し、開口の大きいEとFとからなる領域の分布波長板6を通過して偏光状態が変化する。   As shown in FIG. 2A, the light of wavelength λ1 and wavelength λ2 passes through the polarization hologram 5 as it is in the outward path of the optical system, and passes through the distributed wavelength plate 6 in the region composed of E and F having a large aperture. The polarization state changes.

この光は対物レンズ8によりそれぞれ波長λ1の光は基材厚の薄いディスク9の記録面に、波長λ2の光は基材厚の厚いディスク10の記録面に集光される。   This light is focused by the objective lens 8 on the recording surface of the disk 9 having a thin substrate thickness, and the light having the wavelength λ2 is condensed on the recording surface of the disk 10 having a thick substrate thickness.

ここで、対物レンズ8は、波長λ1の光については全開口領域でディスク9の記録面上に理想的に集光されるように設計されており、その一方、波長λ2の光については開口率の小さいEの内周領域内では良く集光されるが開口率の高い外周領域Fでは極めて収差の大きい集光状態になるようになっている。   Here, the objective lens 8 is designed so that the light of wavelength λ1 is ideally condensed on the recording surface of the disk 9 in the entire aperture region, while the aperture ratio of light of wavelength λ2 is designed. Condensation is good in the inner peripheral area of E with a small A, but in the outer peripheral area F having a high aperture ratio, a condensing state with extremely large aberration is achieved.

従って、波長λ1の光は全開口領域(E+F)の光がディスクで反射して光学系の復路で分布波長板6を透過する。このとき対物レンズ8の中心を通る軸と分布波長板6の面とが交差する点に対して互いに対角位置を往路と復路の光が通る。   Therefore, the light having the wavelength λ1 is reflected by the disk in the entire aperture region (E + F) and passes through the distributed wavelength plate 6 along the return path of the optical system. At this time, forward and backward light passes through diagonal positions with respect to a point where the axis passing through the center of the objective lens 8 and the surface of the distributed wave plate 6 intersect.

波長λ2の光は対物レンズ8で良く集光される低開口領域(Eの領域内)で往路と復路の光が互いに対角位置を通る。その外側(Fの領域)についてはディスクに良く集光されていないため十分拡散した光になっている。   The light of the wavelength λ2 is well focused by the objective lens 8 and the forward and backward light passes through diagonal positions in the low aperture region (in the region E). The outside (area F) is sufficiently diffused because it is not well focused on the disk.

図2(b)は本発明における分布波長板6の平面図を示す。   FIG. 2B is a plan view of the distributed wave plate 6 in the present invention.

図2(b)に示すように低開口領域(Eの領域)では中心点Oに対し互いに対角位置で同じ性質の領域D1、D2が配置されている。   As shown in FIG. 2B, in the low aperture region (E region), regions D1 and D2 having the same property are arranged diagonally with respect to the center point O.

なお、領域D1は光学軸の方位がx軸(往路の入射偏光方向と一致)に対して45°+α(0<α≦15°)になっており、領域D2は光学軸の方位がx軸(往路の入射偏光方向と一致)に対して45°−α(0<α≦15°)になっている。   In the region D1, the azimuth of the optical axis is 45 ° + α (0 <α ≦ 15 °) with respect to the x axis (coincident with the incident polarization direction of the forward path), and in the region D2, the azimuth of the optical axis is the x axis. It is 45 ° −α (0 <α ≦ 15 °) with respect to the incident polarization direction of the forward path.

また、波長板のレタデーションは波長λ1(DVDの光)に対して270°、波長λ2の光(CDの光)に対して225°になっている。   The retardation of the wave plate is 270 ° with respect to the wavelength λ1 (DVD light) and 225 ° with respect to the light with wavelength λ2 (CD light).

すなわち、低開口のCDの光の領域については背景技術で説明したものと全く等価である。   That is, the low aperture CD light region is completely equivalent to that described in the background art.

一方、高開口領域(Fの輪帯領域)では、中心点Oに対し互いに対角位置で異なる性質の領域D1、D2が配置されている。   On the other hand, in the high aperture region (the ring zone region of F), regions D1 and D2 having different properties with respect to the center point O at diagonal positions are arranged.

この場合、互いに波長λ1の光は往路で45°+α(または45°−α)の光学軸方位、復路では45°−α(または45°+α)の光学軸方位を通ることになるため、実質的に45度方位の、分布のない均一な波長板を往復透過しているのに等しい。   In this case, the light beams having the wavelength λ1 pass through the optical axis direction of 45 ° + α (or 45 ° -α) on the forward path and the optical axis direction of 45 ° -α (or 45 ° + α) on the return path. In other words, it is equivalent to passing through a uniform wave plate with 45 degrees orientation and no distribution.

図3は、図2に示した構成における波長λ1の光の信号光量(すなわち復路で偏光ホログラムにより回折される光量)と、この信号から得られる再生性能、すなわち光学ジッタの計算値を示す。   FIG. 3 shows the signal light amount of the light having the wavelength λ1 (that is, the light amount diffracted by the polarization hologram in the return path) in the configuration shown in FIG. 2, and the reproduction performance obtained from this signal, that is, the calculated value of the optical jitter.

図3で示すように、高開口領域での対向位置の領域を異なるペアとすることで全ての開口について対角の領域を同じにしていた従来例(全面対角同一)と比べて、信号振幅が増加し、ジッタ性能も改善されている。   As shown in FIG. 3, the signal amplitude is larger than that in the conventional example in which the diagonal regions are the same for all the openings by making the regions at the opposite positions in the high aperture region different from each other. And jitter performance is improved.

複屈折が大きい場合は信号光量、ジッタともに逆転するが、DVD等の基材が薄いディスクでは実際それほど大きい複屈折を持たないため改善効果の方が大きい。   When the birefringence is large, both the signal light quantity and the jitter are reversed. However, a thin disk such as a DVD does not actually have such a large birefringence, so that the improvement effect is greater.

また、CDの開口領域内での機能、性能としては、従来と全く同じ状態が保持されている。   Further, the function and performance in the opening area of the CD are kept exactly the same as in the prior art.

高開口領域を全て45°方位の均一波長板にすることも考えられるが、その場合、光学軸の方位が45°、45°+α、45°−αの3種類となり製造性が悪い。   Although it is conceivable to use a uniform wavelength plate with a 45 ° azimuth for all the high aperture regions, in that case, there are three types of azimuths of the optical axis: 45 °, 45 ° + α, and 45 ° -α, resulting in poor productivity.

対して本発明の構成では領域配置を変えるだけで良く、製造性も損なわれない。   On the other hand, in the configuration of the present invention, it is only necessary to change the region arrangement, and the manufacturability is not impaired.

また、本発明の構成で分布波長板の構成を、光学異方性軸方位を異ならせているが、代わりに波長板のレタデーションを異ならせるタイプでも効果は同じである。   Further, in the configuration of the present invention, the configuration of the distributed wave plate is made different in the optical anisotropy axis direction, but the effect is the same in the type in which the retardation of the wave plate is changed instead.

この場合、例えば光学軸方位を45°、レタデーションを270°+δ(0<δ≦30°)、270°−δとすることで同じ効果を得ることができる。   In this case, for example, the same effect can be obtained by setting the optical axis direction to 45 ° and the retardation to 270 ° + δ (0 <δ ≦ 30 °), 270 ° −δ.

また、波長板のパターンも図2(b)に示したものに限定されず、対向位置を同じ性質同士のペア、または異なる性質同士のペアになるように配置すれば形状は何でも良い。   Further, the pattern of the wave plate is not limited to that shown in FIG. 2B, and any shape may be used as long as the opposing positions are arranged so as to be a pair of the same properties or a pair of different properties.

さらに本実施の形態では、DVD用の光、CD用の光の2波長について説明したが、さらにレンズの高開口領域を用いるブルーレイやHD−DVDの波長の光を同時に用いる場合についても、この高開口領域を対角位置で異なる性質のペアの領域とすることで同じく光量のロス、信号品質の劣化を防ぐことが出来る。   Furthermore, in the present embodiment, two wavelengths of light for DVD and light for CD have been described. However, even in the case of simultaneously using light of the wavelength of Blu-ray or HD-DVD that uses a high aperture area of the lens, this high wavelength is also used. By making the aperture region a pair of regions having different properties at diagonal positions, it is possible to prevent the loss of light amount and the deterioration of signal quality.

(実施の形態2)
図4(a)は、本発明の実施の形態2における光ピックアップの構成の一部を示す図である。ここで、図2(a)と同じものについては説明を省略する。
(Embodiment 2)
FIG. 4A shows a part of the configuration of the optical pickup according to the second embodiment of the present invention. Here, the description of the same components as those in FIG.

本実施の形態では、波長選択性の開口制限膜13が構成として含まれており、これを含む偏光素子(偏光ホログラム5および分布波長板6および開口制限膜13とからなる)が光軸に対して所定角βだけ傾いているのが特徴である。   In the present embodiment, a wavelength-selective aperture limiting film 13 is included as a configuration, and a polarizing element (including the polarization hologram 5, the distributed wavelength plate 6, and the aperture limiting film 13) including the wavelength selective aperture limiting film 13 is arranged with respect to the optical axis. It is characteristic that it is inclined by a predetermined angle β.

実施形態1では外周側のFの領域を通る波長λ2の光が対物レンズで良く集光されず、したがってディスクに当たって反射する光は十分に拡散しているものとした。   In the first embodiment, it is assumed that the light having the wavelength λ2 passing through the region F on the outer peripheral side is not well collected by the objective lens, and thus the light reflected by the disk is sufficiently diffused.

しかしながら、レンズの設計によっては外周側における波長λ2の収差量が低く、したがってディスクに当たって反射し復路で信号光に混入する量が無視できない場合がある。   However, depending on the design of the lens, the amount of aberration of the wavelength λ2 on the outer peripheral side is low, so the amount reflected on the disk and mixed into the signal light on the return path may not be negligible.

あるいは回折形の対物レンズの場合、低開口領域で発生する高次の回折光がディスクに反射して対物レンズの外周部を通って信号に混入する場合がある。   Alternatively, in the case of a diffractive objective lens, high-order diffracted light generated in the low aperture region may be reflected by the disk and mixed into the signal through the outer periphery of the objective lens.

このような場合、波長選択性の開口パターン膜を素子の高開口領域に形成し、波長λ1の光については往復透過し、波長λ2の光については復路で外周側から侵入する分を遮光することが行われる。   In such a case, a wavelength-selective aperture pattern film is formed in the high aperture region of the device, and the light having the wavelength λ1 is reciprocally transmitted, and the light having the wavelength λ2 is shielded from entering from the outer peripheral side in the return path. Is done.

但しこの場合、開口パターン膜は、波長λ2の光を反射するため、光学系の往路で外周側の光が反射され、同じ波長板領域を復路で通過して偏光変換されホログラムパターンにより回折する。これがノイズ成分となる。   However, in this case, since the aperture pattern film reflects the light having the wavelength λ2, the light on the outer peripheral side is reflected in the outward path of the optical system, passes through the same wavelength plate region in the return path, and is polarized and diffracted by the hologram pattern. This becomes a noise component.

図4(b)は、本実施の形態での分布波長板6のパターンを示す平面図である。   FIG. 4B is a plan view showing a pattern of the distributed wavelength plate 6 in the present embodiment.

本実施の形態においても内周側領域(Eの領域)では中心Oについて対角位置は互いに同じ性質の領域(D1同士のペア、またはD2同士のペア)が配置されており、外周領域(Fの領域)では中心Oについて対角位置は互いに異なる性質の領域(D1とD2のペア)が配置されている。   Also in the present embodiment, in the inner peripheral side region (E region), regions having the same properties (a pair of D1 or a pair of D2) are arranged with respect to the center O, and the outer peripheral region (F In the region (2), regions (D1 and D2 pairs) having different properties in the diagonal position with respect to the center O are arranged.

なお、分布波長板6はy軸まわりにβだけ傾いているものとする。本実施形態では外周側のFの領域においてx軸方向に沿って周期的に異なる性質のD1、D2領域が交互に形成されている。   It is assumed that the distributed wave plate 6 is inclined by β around the y axis. In this embodiment, D1 and D2 regions having different properties periodically along the x-axis direction are alternately formed in the F region on the outer peripheral side.

図4(c)はこのFの領域での光の進行を示す模式図である。図の実線矢印はD2領域を往路で通過し、傾斜を持つ開口制限膜13で反射して隣のD1領域を復路で通過する。一方、波線矢印はD1領域を往路で透過し、傾斜を持つ開口制限膜13で反射するが同じD1領域を復路でも通過する。   FIG. 4C is a schematic diagram showing the progress of light in the F region. The solid line arrow in the figure passes through the D2 region in the forward path, reflects off the opening limiting film 13 having an inclination, and passes through the adjacent D1 region in the return path. On the other hand, the wavy arrow passes through the D1 region in the forward path and is reflected by the opening limiting film 13 having an inclination, but passes through the same D1 region in the return path.

分布波長板6と開口制限膜13との距離をd、分布波長板6の分布パターンピッチをP、素子の光軸に対する傾きをθとしたとき、Sunθ=P/2d、の関係が成り立つようにしてやれば、ちょうど波長板パターンの半ピッチずつ往復路で同じ性質を通過する領域と異なる性質を通過する領域とが周期的に並ぶ。   When the distance between the distributed wavelength plate 6 and the aperture limiting film 13 is d, the distribution pattern pitch of the distributed wavelength plate 6 is P, and the inclination with respect to the optical axis of the element is θ, the relationship of Sunθ = P / 2d is established. If it does so, the area | region which passes the same property and the area | region which passes a different property will be located in a line periodically by the half-pitch of a wavelength plate pattern.

このような偏光状態の異なる光が小さいピッチで周期的に存在する状態の光を、偏光性ホログラムを通してみると、図4(c)で示すようなコントラストの高い明暗パターンとなる。   When such light with different polarization states periodically present at a small pitch is viewed through a polarizing hologram, a bright and dark pattern with high contrast as shown in FIG. 4C is obtained.

すなわち、外周側領域で開口パターンにより反射された光は微細なピッチの周期的な明暗フィルターを通過するのと同じ作用を受け拡散する。   That is, the light reflected by the aperture pattern in the outer peripheral region is diffused under the same action as passing through a periodic bright and dark filter with a fine pitch.

以上、本実施の形態2によれば、検出器に戻る光が拡散され信号に与える影響をなくすことができる。   As described above, according to the second embodiment, it is possible to eliminate the influence that the light returning to the detector is diffused on the signal.

本発明による光ピックアップは、1台の装置で複数の異なる光記録媒体への記録再生を行う光情報記録装置のデバイスとして、特に異なる波長の光源と光検出器とを一体化して形成することで、小型で低コストであることが要求されるCD、DVD、ブルーレイといった記録型の光ディスク装置等の用途に適用できる。   The optical pickup according to the present invention is a device of an optical information recording apparatus that performs recording / reproduction on a plurality of different optical recording media with one apparatus, in particular by integrally forming a light source and a photodetector with different wavelengths. Therefore, the present invention can be applied to applications such as CD, DVD, and Blu-ray recording type optical disc apparatuses that are required to be small and low cost.

本発明の実施の形態1における光ピックアップの構成図Configuration diagram of an optical pickup according to Embodiment 1 of the present invention 同実施の形態1における波長板を含むピックアップの一部側面図と、波長板の平面図A partial side view of a pickup including the wave plate in the first embodiment and a plan view of the wave plate 同実施の形態1の光学素子による光ピックアップでのディスク基材複屈折に対する信号レベルおよびジッタ値の特性図Characteristic diagram of signal level and jitter value with respect to disc base birefringence in optical pickup by optical element of embodiment 1 同実施の形態2における波長板を含むピックアップの一部側面図、波長板の平面図、及び開口膜によるCD光の反射の様子を示す模式図The partial side view of the pick-up containing the wave plate in Embodiment 2, the top view of a wave plate, and the schematic diagram which shows the mode of reflection of CD light by an aperture film 従来の光ピックアップの構成図Configuration of conventional optical pickup 従来の光学素子の平面図、光学素子を含むピックアップの一部側面図、波長板によるDVDの波長の光の偏光状態の変化を表す模式図、及び波長板によるCDの波長の光の偏光状態の変化を表す模式図A plan view of a conventional optical element, a partial side view of a pickup including the optical element, a schematic diagram showing a change in the polarization state of the DVD wavelength light by the wave plate, and a polarization state of the CD wavelength light by the wave plate Schematic diagram showing changes 従来の分布波長板を搭載した光ピックアップによるディスク複屈折に対する信号レベルおよびジッタ値の特性図Characteristics of signal level and jitter value for disc birefringence by an optical pickup equipped with a conventional distributed wave plate

符号の説明Explanation of symbols

1 レーザ光源
3 光検出器
4 コリメートレンズ
5 偏光ホログラム
6 分布波長板
8 対物レンズ
13 開口制限膜
DESCRIPTION OF SYMBOLS 1 Laser light source 3 Photodetector 4 Collimate lens 5 Polarization hologram 6 Distribution wavelength plate 8 Objective lens 13 Aperture restriction film

Claims (12)

少なくとも2種類の波長の光が往復通過する光路に配置する光学素子であって、素子が偏光ホログラムと波長板とを構成として有し、かつ波長板の光学異方性の軸方位が素子面内の複数の領域間で互いに異なっており、ある領域は素子を通過する光の光軸中心について対角位置に同じ異方性軸方位の領域が配置され、別の領域は光軸中心について対角位置に異なる異方性軸方位の領域が配置されていることを特徴とする光学素子。 An optical element disposed in an optical path through which light of at least two types of wavelengths passes reciprocally, the element having a polarization hologram and a wave plate, and the axis direction of the optical anisotropy of the wave plate is in the element plane A plurality of regions are different from each other, and in one region, a region having the same anisotropic axis orientation is arranged at a diagonal position with respect to the optical axis center of the light passing through the element, and another region is diagonal with respect to the optical axis center. An optical element, wherein regions having different anisotropic axis orientations are arranged at positions. 少なくとも2種類の波長の光が往復通過する光路に配置する光学素子であって、素子が偏光ホログラムと波長板とを構成として有し、かつ波長板のレタデーションが素子面内の複数の領域間で互いに異なっており、ある領域は素子を通る光の光軸中心について対角位置に同じレタデーションの領域が配置され、別の領域は光軸中心について対角位置に異なるレタデーションの領域が配置されていることを特徴とする光学素子。 An optical element disposed in an optical path through which light of at least two types of wavelengths reciprocates, the element having a polarization hologram and a wave plate, and the retardation of the wave plate between a plurality of regions in the element surface Different regions are located in the same retardation region in the diagonal position with respect to the optical axis center of the light passing through the element, and different regions are disposed in the diagonal position in the diagonal position with respect to the optical axis center. An optical element. 波長板の光学異方性の軸方位が素子面内の複数の領域間で互いに2通りに異なっており、それぞれ素子に入射する光の偏光方向に対して45°±α(0<α≦15°)になっていることを特徴とする請求項1記載の光学素子。 The axial direction of the optical anisotropy of the wave plate is different in two ways between a plurality of regions in the element plane, and each is 45 ° ± α (0 <α ≦ 15 with respect to the polarization direction of the light incident on the element. The optical element according to claim 1, wherein 少なくとも2種類の波長の光が往復通過する光路に配置する波長板であって、波長板を透過する際に生ずる常光と異常光との位相差が素子面内の複数の領域間で互いに異なっており、かつ前記位相差が一方の波長の光に対して270°±δ(0°<δ≦30°)であることを特徴とする請求項2記載の光学素子。 A wave plate arranged in an optical path through which light of at least two types of wavelengths reciprocates, and the phase difference between ordinary light and extraordinary light generated when passing through the wave plate is different among a plurality of regions in the element plane. 3. The optical element according to claim 2, wherein the phase difference is 270 ° ± δ (0 ° <δ ≦ 30 °) with respect to light of one wavelength. 異なる波長の光が往復通過する開口が異なっており、これらが共通する開口内には軸対称に同じ性質の領域が複数配置され、一部の波長のみ往復通過する開口部には軸対称に異なる性質の領域が一つないし複数配置されていることを特徴とする請求項1ないし4のいずれかに記載の光学素子。 The apertures through which light of different wavelengths reciprocate are different, and a plurality of regions having the same property are arranged in an axial symmetry within the common aperture, and the apertures through which only a part of the wavelengths pass are different in axisymmetric manner. 5. The optical element according to claim 1, wherein one or a plurality of property regions are arranged. 軸対称に異なる性質の領域が形成されている領域の分割面積が、軸対称に同じ性質の領域が複数配置されている領域での分割面積より相対的に大きいことを特徴とする請求項1ないし5のいずれかに記載の光学素子。 2. A divided area of a region in which regions having different properties in axial symmetry are formed is relatively larger than a divided area in a region in which a plurality of regions having the same properties are arranged in axial symmetry. The optical element according to any one of 5. 光学素子が別に波長選択性の開口制限膜を構成として有しており、波長選択性の開口制限膜が形成されている領域では波長板が軸対称に異なる性質の領域が配置され、それ以外の領域では軸対称に同じ性質の領域が形成されていることを特徴とする請求項1ないし6のいずれかに記載の光学素子。 The optical element has a wavelength-selective aperture limiting film as a configuration, and in the region where the wavelength-selective aperture limiting film is formed, regions having different properties of the wavelength plate are arranged in an axial symmetry. 7. The optical element according to claim 1, wherein a region having the same property is formed in an axial symmetry in the region. 開口制限膜の形成された領域で波長板が微細な格子状または縞状に交互に異なる性質の領域が軸対称に形成されている光学素子が光軸に対して傾いて配置されており、波長選択性の開口制限膜により反射した光が波長板を再び通り一部は同じ性質の領域、一部は異なる性質の領域を往復で通過することを特徴とする請求項7記載の光学素子。 In the region where the aperture limiting film is formed, an optical element in which regions having different properties alternately arranged in a fine lattice pattern or stripe pattern are arranged in an axially symmetrical manner is arranged with an inclination relative to the optical axis. 8. The optical element according to claim 7, wherein the light reflected by the selective aperture limiting film passes through the wave plate again and partially passes through a region having the same property and partly having a different property. 波長板と開口制限膜との距離をd、波長板の分布パターンピッチをP、素子の光軸に対する傾きをθとしたとき、Sinθ=P/2d、の関係が成り立つことを特徴とする請求項8記載の光学素子。 The relationship of Sinθ = P / 2d is established, where d is the distance between the waveplate and the aperture limiting film, P is the distribution pattern pitch of the waveplate, and θ is the inclination with respect to the optical axis of the element. 8. The optical element according to 8. 少なくとも2種類以上の波長の光を出射する単数または複数のレーザ光源と、前記レーザ光源から出射した光を光情報媒体に集光する集光手段と、光情報媒体から反射された光を受光する光検出器とを有し、前記レーザ光源から前記光情報媒体に向かう光の光路と、前記光情報媒体から光検出器に向かう光の光路とが共通する部分に請求項1ないし9のいずれかに記載の光学素子を備えたことを特徴とする光ピックアップ。 One or a plurality of laser light sources that emit light of at least two types of wavelengths, light collecting means for condensing the light emitted from the laser light source onto an optical information medium, and light reflected from the optical information medium are received 10. The optical detector according to claim 1, wherein the optical path of light from the laser light source toward the optical information medium and the optical path of light from the optical information medium toward the photodetector are common. An optical pickup comprising the optical element described in 1. 光情報媒体からの光を受光する光検出器を異なる2種類以上の波長の光で共用することを特徴とする請求項10記載の光ピックアップ。 11. The optical pickup according to claim 10, wherein a photodetector for receiving light from the optical information medium is shared by light of two or more different wavelengths. 異なる波長の光を出射するレーザ光源と光情報媒体からの光を受光する2種類以上の波長の光で共用する光検出器とを一体化したユニットを備え、異なる波長の光が前記レーザ光源から前記光情報媒体に向かう光路と、前記光情報媒体からの光が前記光検出器に至る光路の共通する部分に請求項1ないし9のいずれかに記載の光学素子を備えたことを特徴とする光ピックアップ。 A unit comprising a laser light source that emits light of different wavelengths and a photodetector shared by light of two or more wavelengths that receives light from an optical information medium is provided, and light of different wavelengths is emitted from the laser light source. The optical element according to any one of claims 1 to 9 is provided in a common part of an optical path toward the optical information medium and an optical path where light from the optical information medium reaches the photodetector. Optical pickup.
JP2006176198A 2006-06-27 2006-06-27 Optical element and optical pickup Pending JP2008010020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006176198A JP2008010020A (en) 2006-06-27 2006-06-27 Optical element and optical pickup

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006176198A JP2008010020A (en) 2006-06-27 2006-06-27 Optical element and optical pickup

Publications (1)

Publication Number Publication Date
JP2008010020A true JP2008010020A (en) 2008-01-17

Family

ID=39068097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006176198A Pending JP2008010020A (en) 2006-06-27 2006-06-27 Optical element and optical pickup

Country Status (1)

Country Link
JP (1) JP2008010020A (en)

Similar Documents

Publication Publication Date Title
US7463569B2 (en) Optical disk apparatus with a wavelength plate having a two-dimensional array of birefringent regions
US20090052301A1 (en) Optical system for detecting data signal and tracking error signal including polarizing optical element
US20020064121A1 (en) Optical pickup device applicable to two kinds of recording media with minimized deterioration of a beam spot
KR100459108B1 (en) Optical pickup and optical device used therefor
WO2004097819A1 (en) Optical diffraction device and optical information processing device
JP4296662B2 (en) Optical head device
US7738342B2 (en) Optical pickup device
JP2002279683A (en) Optical pickup device
US7450477B2 (en) Optical pickup having a polarization beam splitter
JP2008010020A (en) Optical element and optical pickup
JP2001028145A (en) Optical head device and disk recording/reproducing device
JP2007188577A (en) Optical pickup and optical information storage device provided with same
JP2006040359A (en) Laminated quarter wave plate, and optical pickup using it
JPH097191A (en) Optical pickup device
JP2005317063A (en) Hologram element and optical pickup
KR100234306B1 (en) An optical pickup
KR100477680B1 (en) Optical pickup
JP4742159B2 (en) Optical information reproduction method
JP2004133074A (en) Diffraction grating and optical pickup
JP2004103145A (en) Optical pickup and optical information recording and reproducing device
KR19990049993A (en) Dual Focus Optical Pickup Device using Light Control
JP2006202423A (en) Multiwavelength compatible optical pickup device and optical information recording/reproducing device
KR19990050003A (en) Dual Focus Optical Pickup
KR19990050001A (en) Dual Focus Optical Pickup Device Using Light Transmissive Reflection
KR19990050021A (en) Dual Focus Optical Pickup Device Using Optical Control Liquid Crystal Panel