JP2008008885A - Magnetic substance concentration measuring instrument and magnetic substance concentration measuring method - Google Patents

Magnetic substance concentration measuring instrument and magnetic substance concentration measuring method Download PDF

Info

Publication number
JP2008008885A
JP2008008885A JP2007102171A JP2007102171A JP2008008885A JP 2008008885 A JP2008008885 A JP 2008008885A JP 2007102171 A JP2007102171 A JP 2007102171A JP 2007102171 A JP2007102171 A JP 2007102171A JP 2008008885 A JP2008008885 A JP 2008008885A
Authority
JP
Japan
Prior art keywords
signal
magnetic substance
fluid
coil
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007102171A
Other languages
Japanese (ja)
Other versions
JP5165269B2 (en
Inventor
Miki Fujii
幹 藤井
Shigeki Kagomiya
茂樹 籠宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiyo Electric Co Ltd
Diesel United Ltd
Original Assignee
Meiyo Electric Co Ltd
Diesel United Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiyo Electric Co Ltd, Diesel United Ltd filed Critical Meiyo Electric Co Ltd
Priority to JP2007102171A priority Critical patent/JP5165269B2/en
Publication of JP2008008885A publication Critical patent/JP2008008885A/en
Application granted granted Critical
Publication of JP5165269B2 publication Critical patent/JP5165269B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic substance concentration measuring instrument and a magnetic substance concentration measuring method, which measure precisely a concentration of a magnetic substance and also measure continuously the very low concentration of the magnetic substance in a fluid. <P>SOLUTION: The magnetic substance concentration measuring instrument provided with: an excitation coil 11a; and an output coil 11b for generating an excitation voltage when an alternating current flows through the excitation coil 11a, has a measuring means 6 for measuring a change of a phase difference between a voltage of the excitation coil 11a and a voltage of the output coil 11b, and measures the concentration of the magnetic substance, based on the change of the phase difference generated when an inspection object is approached to the excitation coil 11a or/and the output coil 11b. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、磁性体濃度計測装置及び磁性体濃度計測方法に関するものである。   The present invention relates to a magnetic substance concentration measuring device and a magnetic substance concentration measuring method.

例えば、ピストンのような往復動部品を有するエンジン等の原動機においては、ピストンとシリンダ等の摺動により、ピストン及びシリンダ等に磨耗が生じ、鉄粉等の磁性体が生じる。而して、このような磁性体が生じた際には、エンジンからのドレイン油が流通する流路にドレイン油と同伴して磁性体が流れるため、流路のドレイン油中に含まれる磁性体の濃度を適宜測定し、機器の磨耗状況を正確に把握する必要がある。   For example, in a prime mover such as an engine having a reciprocating component such as a piston, the piston and the cylinder are worn by sliding between the piston and the cylinder, and a magnetic material such as iron powder is generated. Thus, when such a magnetic substance is generated, the magnetic substance flows along with the drain oil in the flow path through which the drain oil from the engine flows. Therefore, the magnetic substance contained in the drain oil of the flow path It is necessary to measure the concentration of the water as needed to accurately grasp the wear status of the equipment.

一般に、機器の磨耗状態を把握する場合には、手作業で潤滑油やドレイン油をサンプリングして化学的な手法により磁性体の濃度を計測したり、又、潤滑油やドレイン油が流れる流路の近傍に磁性体濃度計測装置を配置して磁性体の濃度を計測している。   In general, when grasping the wear state of equipment, the lubricating oil or drain oil is sampled manually and the concentration of the magnetic material is measured by a chemical method, or the flow path through which the lubricating oil or drain oil flows A magnetic substance concentration measuring device is arranged in the vicinity of to measure the concentration of the magnetic substance.

ここで、磁性体の濃度計測装置の一例としては、ドレイン油が流下する流路の近傍に、磁場印加手段と、超電導量子干渉素子の磁気センサを含む磁気計測手段とを備え、磁化された磁性成分の磁場のみを検出するものがある(例えば特許文献1参照。)。又、他の例としては、ドレイン油の流路近傍に第一コイルを配する実測用のLC発振回路と、ドレイン油の磁性体の影響を受けない位置に第二コイルを配する補正用のLC発生回路とを備え、実測用のLC発生回路の発振周波数と、補正用のLC発生回路の発振周波数との差を利用して磁性体の濃度を検出するものがある(例えば特許文献2参照。)。
特開平10−268013号公報 特開2005−83897号公報
Here, as an example of a magnetic substance concentration measuring apparatus, a magnetized magnetic device including a magnetic field applying means and a magnetic measuring means including a magnetic sensor of a superconducting quantum interference element is provided in the vicinity of a flow path through which drain oil flows. Some detect only the magnetic field of the component (see, for example, Patent Document 1). As another example, an LC oscillation circuit for actual measurement in which the first coil is disposed near the drain oil flow path, and a correction coil in which the second coil is disposed at a position not affected by the magnetic substance of the drain oil. There is an LC generation circuit that detects the concentration of the magnetic substance by utilizing the difference between the oscillation frequency of the actual LC generation circuit and the oscillation frequency of the correction LC generation circuit (see, for example, Patent Document 2). .)
Japanese Patent Laid-Open No. 10-268013 JP 2005-83897 A

しかしながら、従来例の如く、化学的な手法、磁性成分の磁場、単なる発振周波数の差により磁性体の濃度を計測する方法では、磁性体の濃度を精度良く計測することができないという問題があった。   However, there is a problem that the concentration of the magnetic substance cannot be measured with high accuracy by the chemical method, the magnetic component magnetic field, and the method of measuring the concentration of the magnetic substance simply by the difference in the oscillation frequency as in the conventional example. .

又、手作業により潤滑油やドレイン油等の流体をサンプリングして磁性体の濃度を計測する場合には、手間がかかると共に一定の間隔でしか計測を行うことができないという問題があった。更に、従来の磁性体濃度計測装置を用いる場合には、固形分の堆積や流体の流量変化により、外乱を生じると共に、連続的に精度良く計測できないという問題があった。更に又、他の例の磁性体濃度計測装置を用いる場合であっても、ノイズを一層低減して微量な磁性体の濃度を精度良く計測することが求められていた。   Further, when the concentration of the magnetic material is measured by sampling a fluid such as lubricating oil or drain oil by manual work, there is a problem that it takes time and measurement can be performed only at a constant interval. Furthermore, in the case of using a conventional magnetic substance concentration measuring device, there is a problem that disturbance is generated due to accumulation of a solid content or a change in the flow rate of a fluid, and continuous and accurate measurement cannot be performed. Furthermore, even when using the magnetic substance concentration measuring apparatus of another example, it has been required to further reduce the noise and accurately measure the concentration of a small amount of magnetic substance.

本発明はこのような実情に鑑みてなしたもので、磁性体の濃度を精度良く計測し、更に流体に含まれる磁性体の微小な濃度を連続的に計測する磁性体濃度計測装置及び磁性体濃度計測方法を提供することを目的とするものである。   The present invention has been made in view of such circumstances, and measures a magnetic substance concentration with high accuracy, and further measures a magnetic substance concentration measuring apparatus and a magnetic substance for continuously measuring a minute concentration of a magnetic substance contained in a fluid. The object is to provide a concentration measurement method.

本発明は、励磁用コイルと、該励磁用コイルに交流電流が流れると励磁電圧を発生する出力用コイルとを備える磁性体濃度計測装置であって、前記励磁用コイルの電圧と前記出力用コイルの電圧との間の位相差の変化を計測する計測手段を有し、検査対象物と、前記励磁用コイル又は/及び出力用コイルとを接近させるときに発生する前記位相差の変化から磁性体の濃度を把握することを特徴とする磁性体濃度計測装置、にかかるものである。   The present invention is a magnetic concentration measuring apparatus comprising an excitation coil and an output coil that generates an excitation voltage when an alternating current flows through the excitation coil, wherein the voltage of the excitation coil and the output coil Measuring means for measuring a change in phase difference between the voltage and the magnetic material from the change in phase difference that occurs when the inspection object is brought close to the excitation coil and / or the output coil. The present invention relates to a magnetic substance concentration measuring apparatus characterized by grasping the concentration of the magnetic substance.

本発明において、前記計測手段にロックインアンプを使用することが好ましい。   In the present invention, it is preferable to use a lock-in amplifier for the measuring means.

本発明において、前記ロックインアンプのリファレンス信号として前記励磁用コイルの電圧を用いることが好ましい。   In the present invention, it is preferable to use the voltage of the exciting coil as a reference signal of the lock-in amplifier.

本発明において、検査対象物と前記励磁用コイル又は/及び出力用コイルとを接近させる手段として、磁性体を含む流体が流れる流路又は磁性体を含む流体が溜る溜り部から検査対象物を導入する駆動手段を有することが好ましい。   In the present invention, as a means for bringing the inspection object close to the exciting coil and / or the output coil, the inspection object is introduced from the flow path through which the fluid containing the magnetic material flows or from the reservoir where the fluid containing the magnetic material accumulates. It is preferable to have driving means for

本発明は、磁性体を含む流体が流下する流路、又は磁性体を含む流体が溜まる溜り部に接続されて流体導出入手段及び検出手段を配する検出部と、前記検出手段に接続されてロックインアンプを配する信号処理部とを備え、前記検出部は、流体導出入手段により流体を導出入し且つ検出手段を介して交流電圧の出力信号から流体導入時の磁性体の検出信号と流体排出時の補正用検出信号とを取得し、前記信号処理部は、同一周波数のリファレンス信号を用いてロックインアンプにより前記各信号からノイズ除去を行うと同時に、前記各信号とリファレンス信号との位相差を検出し、検出した位相差の量に応じて直流電圧信号に変換し、変換後の各値の差分を磁性体の濃度として検出するように構成されたことを特徴とする磁性体濃度計測装置、にかかるものである。   The present invention is connected to a flow path through which a fluid containing a magnetic body flows or a reservoir in which a fluid containing a magnetic body accumulates, and a fluid supply / removal means and a detection means are arranged, and connected to the detection means. A signal processing unit for disposing a lock-in amplifier, wherein the detection unit introduces fluid by the fluid introduction / introduction means, and detects the magnetic substance at the time of fluid introduction from the output signal of the AC voltage through the detection unit. A correction detection signal at the time of fluid discharge, and the signal processing unit performs noise removal from each signal by a lock-in amplifier using a reference signal of the same frequency, and at the same time, Magnetic substance concentration characterized by detecting a phase difference, converting it to a DC voltage signal according to the amount of the detected phase difference, and detecting the difference between the converted values as the magnetic substance concentration Measuring device It takes things.

本発明は、磁性体を含む流体が流下する流路、又は磁性体を含む流体が溜まる溜り部に接続されて流体導出入手段及び検出手段を配する検出部と、前記検出手段に接続されてロックインアンプを配する信号処理部とを備え、前記検出部は、流体導出入手段により流体を導出入し且つ検出手段を介して流体導入時の磁性体の検出信号と流体排出時の補正用検出信号とを取得し、前記信号処理部は、同一周波数のリファレンス信号を用いてロックインアンプにより前記各信号からノイズ除去を行ったのち直流電圧信号に変換し、変換後の各値の差分を磁性体の濃度として検出するように構成されたことを特徴とする磁性体濃度計測装置、にかかるものである。   The present invention is connected to a flow path through which a fluid containing a magnetic body flows or a reservoir in which a fluid containing a magnetic body accumulates, and a fluid supply / removal means and a detection means are arranged, and connected to the detection means. A signal processing unit for disposing a lock-in amplifier, wherein the detection unit detects and detects a magnetic substance when the fluid is introduced and introduced through the detection unit, and is corrected when the fluid is discharged. The signal processing unit obtains a detection signal, the signal processing unit performs noise removal from each signal by a lock-in amplifier using a reference signal having the same frequency, and then converts the signal to a DC voltage signal. The present invention relates to a magnetic substance concentration measuring apparatus configured to detect a magnetic substance concentration.

本発明において、前記信号処理部は、リファレンス信号の位相又は磁性体の検出信号の位相をずらし、磁性体の非検出時に、出力信号を直流電圧信号に変換した値をゼロに近づけるように構成されることが好ましい。   In the present invention, the signal processing unit is configured to shift the phase of the reference signal or the phase of the detection signal of the magnetic material so that the value obtained by converting the output signal into a DC voltage signal approaches zero when the magnetic material is not detected. It is preferable.

本発明において、前記検出手段は、磁性体の検出信号を取得する出力用コイルと、励磁用コイルとを備え、前記励磁用コイルに交流電圧を印加して出力用コイルに交流電圧の出力信号を生じさせ、前記出力信号から磁性体の検出信号又は補正用検出信号を取得すると共に、前記励磁用コイルに接続された発振回路からリファレンス信号を取得するように構成されることが好ましい。   In the present invention, the detection means includes an output coil for obtaining a detection signal of the magnetic material, and an excitation coil, and an AC voltage is applied to the excitation coil to output an AC voltage output signal to the output coil. It is preferable to generate the magnetic body detection signal or the correction detection signal from the output signal, and to acquire the reference signal from the oscillation circuit connected to the excitation coil.

本発明において、前記検出手段は、複数の励磁用コイルを互いに逆方向に巻いて配置すると共に、検出用コイルを複数の励磁用コイルの間に配置し、前記検出用コイルの出力信号が小さくなるように構成されることが好ましい。   In the present invention, the detection means is arranged by winding a plurality of excitation coils in opposite directions and arranging the detection coil between the plurality of excitation coils, so that the output signal of the detection coil becomes small. It is preferable to be configured as described above.

本発明において、前記流体導出入手段は、ピストンの往復動で流体を導出入するように構成されることが好ましい。   In the present invention, it is preferable that the fluid lead-in / out means is configured to lead in / out the fluid by reciprocation of a piston.

本発明において、磁性体を含む検査対象物、又は磁性体を含む流体から、磁性体の濃度、濃度の変化率、濃度変化の振幅、濃度変化の周期、多点計測時における濃度偏差のうち少なくとも一つ以上の情報を取得し、予め求めた磁性体の濃度と摺動物の状態との相関関係より、摺動物の状態を判断するように構成するように構成されることが好ましい。   In the present invention, from a test object containing a magnetic material or a fluid containing a magnetic material, at least one of the concentration of the magnetic material, the rate of change of concentration, the amplitude of concentration change, the period of concentration change, and the concentration deviation at the time of multipoint measurement. It is preferable that one or more pieces of information be acquired and configured so that the state of the sliding object is determined from the correlation between the magnetic substance concentration obtained in advance and the state of the sliding object.

本発明において、摺動物の状態に応じて警告又は/及び警報を発する警告手段を備えるように構成されることが好ましい。   In this invention, it is preferable to comprise so that the warning means which issues a warning or / and a warning according to the state of a sliding object may be provided.

本発明において、摺動物の状態に応じて、摺動物に対する潤滑流体の供給量、供給時期、供給圧力、供給温度、潤滑流体の噴射方法、潤滑流体の性状を制御するように構成するように構成されることが好ましい。   In the present invention, the configuration is such that the supply amount, supply timing, supply pressure, supply temperature, lubrication fluid injection method, and lubrication fluid properties of the lubricant are controlled according to the state of the slide. It is preferred that

本発明は、励磁用コイルと、該励磁用コイルに交流電流が流れると励磁電圧を発生する出力用コイルとを用いる磁性体濃度計測方法であって、検査対象物と、前記励磁用コイル又は/及び出力用コイルとを接近させたときの前記励磁用コイルの電圧と前記出力用コイルの電圧との間の位相差の変化を計測して、磁性体の濃度を把握することを特徴とする磁性体濃度計測方法、にかかるものである。   The present invention is a magnetic substance concentration measurement method using an excitation coil and an output coil that generates an excitation voltage when an alternating current flows through the excitation coil, the inspection object and the excitation coil or / And measuring the change in phase difference between the voltage of the exciting coil and the voltage of the output coil when the output coil is brought close to the magnet for grasping the concentration of the magnetic material. This relates to a method for measuring body concentration.

本発明において、前記出力用コイルの電圧信号を部分的に位相反転し、直流化して位相差の変化を計測することが好ましい。   In the present invention, it is preferable that the voltage signal of the output coil is partially inverted in phase and converted into a direct current to measure a change in phase difference.

本発明において、前記励磁用コイルの電圧信号を用いて、前記出力用コイルの電圧信号を部分的に位相反転させることが好ましい。   In the present invention, it is preferable to partially invert the phase of the voltage signal of the output coil using the voltage signal of the excitation coil.

本発明において、前記検査対象物は、磁性体を含む流体が流れる流路又は磁性体を含む流体が溜まる溜り部から導入されて前記励磁用コイル又は/及び出力用コイルに接近させることが好ましい。   In the present invention, it is preferable that the inspection object is introduced from a flow path in which a fluid containing a magnetic body flows or a reservoir portion in which a fluid containing a magnetic body is accumulated to approach the excitation coil and / or the output coil.

本発明は、磁性体を含む流体が流下する流路、又は磁性体を含む流体が溜まる溜り部から検出部へ流体を導入し、検出部の流体から磁性体の検出信号を取得すると共に同一周波数のリファレンス信号を準備し、磁性体の検出信号と同一周波数のリファレンス信号とをあわせてロックインアンプによりノイズ除去を行い、磁性体の濃度用の出力値として直流電圧信号に変換するように処理される流体導入時の処理工程と、
前記検出部から流体を排出し、検出部内の補正用検出信号を取得すると共に同一周波数のリファレンス信号を準備し、補正用検出信号と同一周波数のリファレンス信号とをあわせてロックインアンプによりノイズ除去を行い、比較用の出力値として直流電圧信号に変換するように処理される流体排出時の処理工程とを備え、
前記磁性体の濃度用の出力値を、前記比較用の出力値により補正することを特徴とする磁性体濃度計測方法、にかかるものである。
The present invention introduces a fluid from a flow path through which a fluid containing a magnetic body flows or a reservoir in which a fluid containing a magnetic body accumulates to the detection unit, acquires a detection signal of the magnetic body from the fluid of the detection unit, and has the same frequency. The reference signal of the magnetic material is prepared, the noise detection signal is combined with the reference signal of the same frequency as the magnetic material, and noise is removed by a lock-in amplifier, which is processed to be converted into a DC voltage signal as an output value for the concentration of the magnetic material Treatment process at the time of fluid introduction,
The fluid is discharged from the detection unit, the detection signal for correction in the detection unit is acquired, and a reference signal having the same frequency is prepared, and noise is removed by a lock-in amplifier by combining the detection signal for correction and the reference signal of the same frequency. And a processing step at the time of fluid discharge processed so as to be converted into a DC voltage signal as an output value for comparison,
The present invention relates to a magnetic substance concentration measuring method, wherein the output value for concentration of the magnetic substance is corrected by the output value for comparison.

本発明において、流体導入時の処理工程及び流体排出時の処理工程で、交流電圧の、出力信号から磁性体の検出信号及び補正用検出信号を取得し、磁性体の検出信号及び補正用検出信号と、同一周波数のリファレンス信号とをあわせてロックインアンプにより前記各信号からノイズ除去を行うと同時に、前記各信号とリファレンス信号との位相差及び前記信号の実効値を検出し、検出した位相差の量に応じて磁性体の濃度用の出力値及び比較用の出力値に変換することが好ましい。   In the present invention, in the processing step at the time of fluid introduction and the processing step at the time of fluid discharge, the detection signal for magnetic substance and the detection signal for correction are obtained from the output signal of AC voltage, and the detection signal for magnetic substance and the detection signal for correction are obtained. Together with a reference signal of the same frequency, the noise is removed from each signal by a lock-in amplifier, and at the same time, the phase difference between each signal and the reference signal and the effective value of the signal are detected, and the detected phase difference is detected. It is preferable to convert the output value for the concentration of the magnetic substance and the output value for comparison according to the amount of the magnetic material.

本発明において、流体導入時の処理工程と、流体排出時の処理工程とを交互に連続的に繰り返すことにより、磁性体の濃度用の出力値と、比較用の出力値とから差分を更に直流電圧信号に変換し、予め求めた相関性によって前記差分を磁性体の濃度に変換し、外乱や経時変化による計測誤差を排除することが好ましい。   In the present invention, the difference between the output value for the concentration of the magnetic substance and the output value for comparison is further reduced by direct current by alternately repeating the treatment process at the time of fluid introduction and the treatment process at the time of fluid discharge. It is preferable to convert it into a voltage signal, convert the difference into the concentration of the magnetic material based on the correlation obtained in advance, and eliminate measurement errors due to disturbances and changes over time.

本発明において、前記リファレンス信号の位相又は磁性体の検出信号の位相をずらし、信号処理装置の出力信号を直流電圧信号に変換した値をゼロに近づけることは、後段のアンプで最大限の増幅する上で好ましい。   In the present invention, shifting the phase of the reference signal or the detection signal of the magnetic material to bring the value obtained by converting the output signal of the signal processing device into a DC voltage signal close to zero is maximized by the subsequent amplifier. Preferred above.

本発明において、磁性体を含む検査対象物、又は磁性体を含む流体から、磁性体の濃度、濃度の変化率、濃度変化の振幅、濃度変化の周期、多点計測時における濃度偏差のうち少なくとも一つ以上の情報を取得し、予め求めた磁性体の濃度と摺動物の状態との相関関係より、摺動物の状態を判断することが本装置の自己診断を行い、適切な状態で計測していることを常時確認する上で好ましい。   In the present invention, from a test object containing a magnetic material or a fluid containing a magnetic material, at least one of the concentration of the magnetic material, the rate of change of concentration, the amplitude of concentration change, the period of concentration change, and the concentration deviation at the time of multipoint measurement. Obtaining one or more pieces of information and judging the state of the sliding object from the correlation between the magnetic substance concentration obtained in advance and the state of the sliding object performs self-diagnosis of this device and measures it in an appropriate state. It is preferable to always confirm that

本発明において、摺動物の状態に応じて警告又は/及び警報を発することが適切な状態で計測していることを常時確認する上で好ましい。   In the present invention, it is preferable to always confirm that measurement is performed in an appropriate state by issuing a warning or / and warning according to the state of the sliding object.

本発明において、摺動物の状態に応じて、摺動物に対する潤滑流体の供給量、供給時期、供給圧力、供給温度、潤滑流体の噴射方法、潤滑流体の性状を制御することが好ましい。   In the present invention, it is preferable to control the supply amount, supply timing, supply pressure, supply temperature, lubrication fluid injection method, and lubrication fluid properties of the lubricant to the slide according to the state of the slide.

このように、本発明によれば、磁性体の濃度に応じて生じる励磁用コイルの電圧と出力用コイルの電圧とその信号の位相差の変化を利用するので、磁性体を含む検査対象物と、励磁用コイル又は/及び出力用コイルとを接近させることで、この電圧と位相差の変化を感度良く検出することができる。即ち、磁性体の濃度を精度良く計測することができる。又、本発明は、励磁用コイルの電圧と出力用コイルの電圧との間に生じる位相差及び出力用コイルの電圧変化を用いるので、磁性体の有無による励磁用コイルのリアクタンスの変化、磁性体の有無による出力用コイルのリアクタンスの変化、検査対象物に発生する渦電流の変化、渦電流によるジュール損失の変化、コイルの周辺物体に発生する渦電流の変化、渦電流によるジュール損失の変化等の様々な変化を総合的に捉え、磁性体の濃度を精度良く計測することができる。   As described above, according to the present invention, the voltage of the exciting coil, the voltage of the output coil, and the change in the phase difference between the signals generated according to the concentration of the magnetic material are utilized. By making the exciting coil and / or the output coil close to each other, this change in voltage and phase difference can be detected with high sensitivity. That is, the concentration of the magnetic material can be measured with high accuracy. In addition, since the present invention uses the phase difference generated between the excitation coil voltage and the output coil voltage and the output coil voltage change, the reactance change of the excitation coil due to the presence or absence of the magnetic substance, the magnetic substance Changes in the reactance of the output coil due to the presence or absence of the coil, changes in the eddy current generated in the inspection object, changes in the Joule loss due to the eddy current, changes in the eddy current generated in the surrounding objects of the coil, changes in the Joule loss due to the eddy current, etc. It is possible to measure the concentration of the magnetic substance with high accuracy by comprehensively capturing various changes in the magnetic field.

本発明によれば、励磁電圧と同一の周波数のリファレンス信号を準備し、検出部内の流体より磁性体の検出信号を取得してリファレンス信号との位相差及び出力用コイルの電圧変化を計測し、計測した位相差の量に応じて直流電圧信号に変換し、次に、流体が排出された検出部より、検出部内の補正用検出信号を取得してリファレンス信号との位相差を計測し、計測した位相差の量に応じて直流電圧信号に変換し、変換後の流体導入時の値と、変換後の流体排出時の値との差分を磁性体の濃度とするので、位相差の変化及び出力用コイルの電圧変化を利用して磁性体の濃度を極めて精度良く計測することができる。なお、位相差の変化及び出力用コイルの電圧変化は最終的に電圧の実効値に変換され、磁性体検出信号とする。   According to the present invention, a reference signal having the same frequency as the excitation voltage is prepared, the detection signal of the magnetic material is obtained from the fluid in the detection unit, the phase difference from the reference signal and the voltage change of the output coil are measured, It is converted into a DC voltage signal according to the measured amount of phase difference, and then the detection signal for correction in the detection unit is obtained from the detection unit from which the fluid is discharged, and the phase difference from the reference signal is measured and measured. The phase difference is converted into a DC voltage signal according to the amount of the phase difference, and the difference between the value at the time of fluid introduction after the conversion and the value at the time of fluid discharge after the conversion is used as the concentration of the magnetic substance. The concentration of the magnetic material can be measured with extremely high accuracy by using the voltage change of the output coil. Note that the change in phase difference and the voltage change in the output coil are finally converted into effective values of voltage, which are used as magnetic substance detection signals.

本発明によれば、励磁電圧と同一の周波数のリファレンス信号を準備し、検出部内の流体より取得された磁性体の検出信号をバンドパスフィルタでノイズを除去し、更に、リファレンス信号とあわせてノイズ除去し、磁性体の濃度用の直流電圧成分に変換し、次に、流体が排出された前記検出部より取得された補正用検出信号を、リファレンス信号とあわせてノイズ除去し、比較用の直流電圧成分に変換し、変換後の各直流成分の値の差分を流体の磁性体の濃度とするので、測定時の出力信号に重畳したノイズを除去すると共に、流体の導出入により堆積した固形分を排出し、流体の磁性体の微小な濃度を精度良く計測することができる。   According to the present invention, a reference signal having the same frequency as the excitation voltage is prepared, the noise of the magnetic substance detection signal acquired from the fluid in the detection unit is removed by the band-pass filter, and the noise is combined with the reference signal. This is removed and converted to a DC voltage component for the concentration of the magnetic substance. Next, the correction detection signal obtained from the detection unit from which the fluid has been discharged is noise-removed together with the reference signal, and a direct current for comparison is removed. Converts to voltage component, and the difference between each DC component value after conversion is used as the concentration of the magnetic substance of the fluid, so that noise superimposed on the output signal at the time of measurement is removed, and the solid content accumulated by introducing and removing the fluid The minute concentration of the fluid magnetic substance can be accurately measured.

流体の導出入を繰り返し行って各計測値の差分を複数取得するので、複数回分のデータを処理して経時変化による計測誤差を常に排除し、流体の磁性体の微小な濃度を連続的に計測することができる。   Repeated fluid derivation and acquisition of multiple differences in each measured value, so multiple measurement data are processed to constantly eliminate measurement errors due to changes over time and continuously measure minute concentrations of fluid magnetic materials can do.

本発明において、交流電圧の出力信号から流体導入時の磁性体の検出信号と流体排出時の補正用検出信号とを取得し、前記各信号とリファレンス信号との位相差を検出し、検出した位相差の量に応じた直流電圧信号に変換することにより、わずかな位相差を大きな出力値として得られ、磁性体の濃度を高感度に検出するので、流体の磁性体の微小な濃度を好適に精度良く計測することができる。   In the present invention, the detection signal of the magnetic body at the time of fluid introduction and the detection signal for correction at the time of fluid discharge are acquired from the output signal of the AC voltage, and the phase difference between each signal and the reference signal is detected and detected. By converting to a DC voltage signal according to the amount of phase difference, a slight phase difference can be obtained as a large output value, and the magnetic substance concentration can be detected with high sensitivity, so the minute concentration of the magnetic substance in the fluid is suitably It can measure with high accuracy.

以上説明したように、本発明によれば、位相差を利用するので、磁性体の濃度を精度良く、連続的に計測することができるという優れた種々の効果を奏し得る。   As described above, according to the present invention, since the phase difference is used, it is possible to achieve various excellent effects that the concentration of the magnetic material can be continuously measured with high accuracy.

本発明の実施の形態の第一例である磁性体濃度計測装置及び磁性体濃度計測方法を説明する。図1〜図8は本発明の実施の形態の第一例を示すものである。   A magnetic substance concentration measuring apparatus and a magnetic substance concentration measuring method, which are first examples of embodiments of the present invention, will be described. 1 to 8 show a first example of an embodiment of the present invention.

第一例の磁性体濃度計測装置及び磁性体濃度計測方法は、磁性体粉を含むドレイン油等の流体が流れる配管の流路1に、流体導出入手段(駆動手段)2及び検出手段3を備える検出部4を接続し、検出部4の検出手段3には、信号処理装置5を備える信号処理部(計測手段)6を接続し、更に信号処理部6には、計測値表示及び異常判定装置7を接続している。   The magnetic substance concentration measuring apparatus and the magnetic substance concentration measuring method of the first example include a fluid lead-in / out means (driving means) 2 and a detecting means 3 in a flow path 1 of a pipe through which a fluid such as drain oil containing magnetic powder flows. A detection unit 4 provided, a detection unit 3 of the detection unit 4 is connected to a signal processing unit (measurement unit) 6 provided with a signal processing device 5, and a measurement value display and abnormality determination are further connected to the signal processing unit 6. Device 7 is connected.

配管の流路1は、直線で水平方向に延在し、摺動物を備えた機器(図示せず)へ潤滑油を流出入するものである。ここで、配管の流路1は、直線で水平方向に延在する流路に限定されるものでなく、曲線状に延在する流路、角度を有して延在する流路、鉛直方向や斜め方向に延在する流路でも良い。又、流体は、潤滑油に限定されるものでなく、流体ならばどのようなものでも良い。更に、摺動物は、駆動用ピストン及び駆動用シリンダに限定されるものでなく、摺動するものならばどのようなものでも良い。   The pipe flow path 1 extends in a straight line in the horizontal direction, and allows the lubricating oil to flow into and out of a device (not shown) provided with a sliding object. Here, the flow path 1 of the pipe is not limited to a straight line extending in the horizontal direction, but is a flow path extending in a curved line, a flow path extending with an angle, and a vertical direction. Or a channel extending in an oblique direction. The fluid is not limited to lubricating oil, and any fluid may be used. Furthermore, the sliding object is not limited to the driving piston and the driving cylinder, and any sliding object may be used.

検出部4は、流路1に開口8を形成する筒状の検出部本体9と、検出部本体9の内部を摺動して潤滑油(検出流体)を導出入する流体導出入手段2のピストン2aと、流体導出入手段2のピストン2aを進退動させる駆動手段の回転部10と、検出部本体9の外周部に配置される検出手段3のコイル11を備えている。   The detection unit 4 includes a cylindrical detection unit main body 9 that forms an opening 8 in the flow path 1, and a fluid introduction / extraction means 2 that slides inside the detection unit main body 9 to introduce and introduce lubricating oil (detection fluid). A piston 2 a, a rotating part 10 of a driving means for moving the piston 2 a of the fluid lead-in / out means 2 forward and backward, and a coil 11 of the detecting means 3 disposed on the outer peripheral part of the detecting part main body 9 are provided.

又、検出手段3のコイル11は、互いに逆方向に巻かれて直列に接続された二個の励磁用コイル11a,11aと、二個の励磁用コイル11a,11aの間に近接配置される検出用コイル(出力用コイル)11bとを備え、励磁用コイル11aに交流電圧を印加した際には、検出用コイル11bに交流電圧(励磁電圧)の出力信号を生じさせるようになっている。又、二個の励磁用コイル11a,11aと、検出用コイル11bは、相互インダクタンスが略均等になるようにコイル11の巻き数、コイル11間の距離を調整して、相互インダクタンスが略同じとなるように調整している。又、励磁用コイル11aと検出用コイル11bの個数は特に限定されるものではない。更にコイル11の外方には、外部からノイズが入らないよう、アルミ製の筒等のシールドを設けることが好ましい。   In addition, the coil 11 of the detection means 3 is a detection coil disposed in proximity between two exciting coils 11a and 11a wound in opposite directions and connected in series. When an AC voltage is applied to the excitation coil 11a, an output signal of an AC voltage (excitation voltage) is generated in the detection coil 11b. Further, the two exciting coils 11a and 11a and the detecting coil 11b are adjusted so that the mutual inductance is substantially equal by adjusting the number of turns of the coil 11 and the distance between the coils 11 so that the mutual inductance is substantially equal. It is adjusted so that The number of exciting coils 11a and detecting coils 11b is not particularly limited. Furthermore, it is preferable to provide a shield such as an aluminum tube outside the coil 11 so that noise does not enter from the outside.

更に、検出手段3のコイル11は、図2に示す如く、一個の励磁用コイル11cと、一個の励磁用コイル11cに近接して配置される検出用コイル(出力用コイル)11dとを備えても良く、この場合も同様に、励磁用コイル11cに交流電圧を印加した際には、検出用コイル11dに交流電圧(励磁電圧)の出力信号を生じるようになっており、磁性体の非検出時には、検出用コイル11dの交流電圧(励磁電圧)の出力信号が小さくなるように調整されている。   Further, as shown in FIG. 2, the coil 11 of the detection means 3 includes one excitation coil 11c and a detection coil (output coil) 11d arranged in the vicinity of the one excitation coil 11c. Similarly, in this case, when an AC voltage is applied to the excitation coil 11c, an output signal of an AC voltage (excitation voltage) is generated in the detection coil 11d, and the magnetic substance is not detected. Sometimes, the output signal of the AC voltage (excitation voltage) of the detection coil 11d is adjusted to be small.

信号処理部6は、図3に示す如く、検出用コイル11bの出力信号から磁性体の検出信号又は補正用検出信号を取得するよう、検出用コイル11bに接続されて微弱な波形信号を増幅する増幅回路12と、増幅回路12に接続されて波形信号のノイズを所定範囲で削除するバンドパスフィルタ13と、励磁用の正弦波を得る正弦波発振回路14と、正弦波発振回路14に接続されて正弦波の位相をずらす位相回路15と、位相回路15に接続されて正弦波を矩形波にするエッジトリガー回路16とを備えている。   As shown in FIG. 3, the signal processing unit 6 is connected to the detection coil 11 b and amplifies a weak waveform signal so as to obtain a magnetic detection signal or a correction detection signal from the output signal of the detection coil 11 b. An amplifying circuit 12, a band pass filter 13 connected to the amplifying circuit 12 for removing noise of the waveform signal within a predetermined range, a sine wave oscillating circuit 14 for obtaining a sine wave for excitation, and a sine wave oscillating circuit 14. A phase circuit 15 for shifting the phase of the sine wave, and an edge trigger circuit 16 connected to the phase circuit 15 to convert the sine wave into a rectangular wave.

ここで、位相回路15は、設定の際や調整の際に、磁性体非検出時の状態で位相を10°〜170°、好ましくは45°〜135°、更に好ましくは90°前後ずらすことが好ましい。なお、波形の電気的なずれにより多少前後してずらしても良い。又、位相回路15は、バンドパスフィルタ13と信号処理装置5との間に位置し、リファレンス信号の代わりに、磁性体の検出信号及び補正用検出信号をずらすようにしても良い。更に、信号処理装置5は、ロックインアンプが好ましいが、位相差の変化を計測できる構成ならばどのようなものでも良い。   Here, the phase circuit 15 may shift the phase by 10 ° to 170 °, preferably 45 ° to 135 °, and more preferably about 90 ° in the state of non-detection of the magnetic material at the time of setting or adjustment. preferable. Note that it may be shifted somewhat before and after due to the electrical shift of the waveform. Further, the phase circuit 15 may be located between the bandpass filter 13 and the signal processing device 5, and the detection signal of the magnetic material and the detection signal for correction may be shifted instead of the reference signal. Further, the signal processing device 5 is preferably a lock-in amplifier, but may be any device as long as it can measure a change in phase difference.

又、信号処理部6は、バンドパスフィルタ13とエッジトリガー回路16とに夫々接続される信号処理装置5と、信号処理装置5に接続されて出力信号を直流電圧信号に変換するローパスフィルタ17と、ローパスフィルタ17に接続されて直流電圧信号を増幅する増幅器18と、増幅器18に接続され且つ検出流体の導出入による直流電圧信号の変動量のみを透過させる交流信号透過回路19と、交流信号透過回路19に接続される増幅器20とを備えている。ここで、交流信号透過回路19と増幅器20の間には、図4に示す如く、ピストン2aの動きに応じた交流信号を直流信号に変換する直流変換回路21を備え、後の処理を容易にするようにしても良い。   The signal processing unit 6 includes a signal processing device 5 connected to the band-pass filter 13 and the edge trigger circuit 16, and a low-pass filter 17 connected to the signal processing device 5 for converting an output signal into a DC voltage signal. An amplifier 18 connected to the low-pass filter 17 for amplifying a DC voltage signal, an AC signal transmission circuit 19 connected to the amplifier 18 and transmitting only the fluctuation amount of the DC voltage signal due to the introduction and detection of the detection fluid, and AC signal transmission And an amplifier 20 connected to the circuit 19. Here, between the AC signal transmission circuit 19 and the amplifier 20, as shown in FIG. 4, a DC conversion circuit 21 that converts an AC signal corresponding to the movement of the piston 2 a into a DC signal is provided to facilitate subsequent processing. You may make it do.

更に計測値表示及び異常判定装置7は、図1〜図4に示す如く、信号処理部6の増幅器20に接続されて、信号を磁性体の濃度に変換するようになっており、内部には、摺動物の潤滑状態に対して潤滑制御や異常の警告等を為し得るよう、所定の制御を行う制御部22を備えている。   Further, the measurement value display and abnormality determination device 7 is connected to the amplifier 20 of the signal processing unit 6 as shown in FIGS. 1 to 4 and converts the signal into the concentration of the magnetic substance. A control unit 22 that performs predetermined control is provided so that lubrication control, warning of abnormality, and the like can be performed with respect to the lubrication state of the sliding object.

以下、本発明を実施する形態の第一例の作用を説明する。   Hereinafter, the operation of the first example of the embodiment of the present invention will be described.

潤滑油(流体)に含まれる磁性体粉の濃度を計測する際には、流体導出入手段2のピストン2aを引き込むことにより流路1から潤滑油を検出部4内に導入し、潤滑油のある状態で出力信号を計測処理する。ここで、流体導出入手段2のピストン2aは、励磁用コイル11aの一個、検出用コイル11bの半分程度にドレイン油が位置するまで潤滑油を引き込むことが好ましい。   When measuring the concentration of the magnetic powder contained in the lubricating oil (fluid), the lubricating oil is introduced into the detection unit 4 from the flow path 1 by pulling the piston 2a of the fluid lead-in / out means 2, and the lubricating oil The output signal is measured and processed in a certain state. Here, it is preferable that the piston 2a of the fluid lead-in / out means 2 draws in the lubricating oil until the drain oil is located at about one half of the exciting coil 11a and about half of the detecting coil 11b.

検出部4内にドレイン油を導入した状態で計測処理する際(流体導入時の処理工程)には、検出部4の潤滑油から、検出用コイル11b、増幅回路12及びバンドパスフィルタ13を介して磁性体の検出信号を取得する(図6では(A'))と共に、励磁用コイル11a、正弦波発振回路14、位相回路15及びエッジトリガー回路16により、所定の角度で位相をずらして励磁電圧と同一周波数で一定の位相差を生じる矩形波のリファレンス信号を準備し(図6では(B'))、信号処理装置5により、リファレンス信号をあわせてノイズ除去を行うと共に、磁性体の検出信号とリファレンス信号との位相差を検出し、ローパスフィルタ17により、磁性体の濃度用の出力値として平滑な直流電圧信号に変換し(図6では(D'))、増幅器18を介して交流信号透過回路19に入力する。なお、図6の(B')では位相を90°前後ずらして設定しており、図6の(C')は、リファレンス信号により、磁性体の検出信号を反転させた状態を示し、この面積を積分処理すると図6の(D')となっている。   When the measurement process is performed with the drain oil introduced into the detection unit 4 (processing step at the time of introducing the fluid), the lubricant oil from the detection unit 4 is passed through the detection coil 11b, the amplification circuit 12, and the band-pass filter 13. Thus, the detection signal of the magnetic material is acquired ((A ′) in FIG. 6), and the excitation coil 11a, the sine wave oscillation circuit 14, the phase circuit 15 and the edge trigger circuit 16 are used to excite the phase at a predetermined angle. A rectangular-wave reference signal that generates a constant phase difference at the same frequency as the voltage is prepared ((B ′) in FIG. 6), and the signal processing device 5 performs noise removal together with the reference signal, and also detects the magnetic material. The phase difference between the signal and the reference signal is detected and converted to a smooth DC voltage signal as an output value for the concentration of the magnetic substance by the low-pass filter 17 ((D ′) in FIG. 6), and the amplifier 1 Input to the AC signal transmission circuit 19 via the. In FIG. 6B ′, the phase is set so as to be shifted by about 90 °. FIG. 6C ′ shows a state in which the detection signal of the magnetic material is inverted by the reference signal, and this area. Is integrated (D ′) in FIG.

続いて、流体導出入手段2のピストン2aを押し出すことにより検出部4内の潤滑油を排出(導出)し、潤滑油がない状態(流体導出入手段2自体)の出力信号を計測処理する。ここで、流体導出入手段2の往復運動の時間間隔は、計測する流体の粘度等により変化するが、数秒間隔で行うことが好ましい。   Subsequently, the piston 2a of the fluid lead-in / out means 2 is pushed out to discharge (lead out) the lubricating oil in the detection unit 4, and the output signal in a state where there is no lubricating oil (the fluid lead-in / out means 2 itself) is measured. Here, the time interval of the reciprocating motion of the fluid lead-in / out means 2 varies depending on the viscosity of the fluid to be measured, but is preferably performed at intervals of several seconds.

検出部4内から潤滑油を排出(導出)した状態で計測処理する際(流体排出時の処理工程)には、検出部4から検出用コイル11b、増幅回路12及びバンドパスフィルタ13を介して補正用検出信号を取得する(図5では(A))と共に、励磁用コイル11a、正弦波発振回路14、位相回路15及びエッジトリガー回路16により、所定の角度で位相をずらして励磁電圧と同一周波数で一定の位相差を生じる矩形波のリファレンス信号を準備し(図5では(B))、信号処理装置5により、リファレンス信号をあわせてノイズ除去を行うと共に、補正用検出信号とリファレンス信号との位相差を検出し、ローパスフィルタ17により、比較用の出力値として平滑な直流電圧信号に変換し(図5では(D))、増幅器18を介して交流信号透過回路19に入力する。なお、図5の(B)では位相を90°前後ずらして設定しており、図5の(C)は、リファレンス信号により、磁性体の検出信号を反転させた状態を示し、この面積を積分処理すると図5の(D)となっている。   When the measurement process is performed in a state in which the lubricating oil is discharged (derived) from the detection unit 4 (processing step at the time of fluid discharge), the detection unit 4 passes through the detection coil 11b, the amplification circuit 12, and the bandpass filter 13. A correction detection signal is acquired ((A) in FIG. 5), and the excitation coil 11a, the sine wave oscillation circuit 14, the phase circuit 15 and the edge trigger circuit 16 are shifted in phase by a predetermined angle to be the same as the excitation voltage. A rectangular wave reference signal that generates a constant phase difference at a frequency is prepared ((B) in FIG. 5), and the signal processing device 5 performs noise removal together with the reference signal, and also detects the correction detection signal and the reference signal. Is converted into a smooth DC voltage signal as an output value for comparison by the low-pass filter 17 ((D) in FIG. 5), and the AC signal is passed through the amplifier 18. Input to the over circuit 19. In FIG. 5B, the phase is set so as to be shifted by about 90 °. FIG. 5C shows a state in which the detection signal of the magnetic material is inverted by the reference signal, and this area is integrated. When processed, it becomes (D) of FIG.

そして、交流信号透過回路19により、磁性体の濃度用の出力値を補正するよう、図6に示す如く、磁性体の濃度用の出力値と、比較用の出力値とから差分ΔVを求め、計測値表示及び異常判定装置7により、予め求めた濃度との相関性(関数処理)によって差分を磁性体の濃度に変換する。ここで、磁性体の濃度用の出力値(直流電圧信号)と、比較用の出力値(直流電圧信号)は、信号処理装置5により、磁性体の出力信号とリファレンス信号との位相差Δfと、及び補正用の出力信号とリファレンス信号と位相差(図示せず)とを検出し、検出した位相差の量に応じて変換されるものであっても良い。   Then, the AC signal transmission circuit 19 calculates a difference ΔV from the magnetic substance concentration output value and the comparison output value as shown in FIG. 6 so as to correct the magnetic substance concentration output value, The measured value display and abnormality determination device 7 converts the difference into the concentration of the magnetic substance by the correlation (function processing) with the concentration obtained in advance. Here, the output value (DC voltage signal) for concentration of the magnetic substance and the output value for comparison (DC voltage signal) are obtained by the signal processing device 5 from the phase difference Δf between the output signal of the magnetic substance and the reference signal. , And a correction output signal, a reference signal, and a phase difference (not shown) may be detected and converted according to the detected amount of phase difference.

続いて、流体導出入手段2のピストン2aを連続的に往復動することにより、検出部4内に潤滑油を導入した状態での計測処理(流体導入時の処理工程)と、検出部4内から潤滑油を排出(導出)した状態での計測処理(流体排出時の処理工程)とを交互に連続的に繰り返し、交流信号透過回路19等により、磁性体の濃度用の出力値と、比較用の出力値とから差分の信号を検出すると共に移動平均処理を行い、計測値表示及び異常判定装置7を介して磁性体の濃度の平均値を求める。なお、磁性体の濃度用の出力値は、図5の(D')の如く、流体導出入手段2の往復動により、比較用の出力値に対して上下動する交流信号となっている。又、この交流信号を直流変換回路21を用いて直流信号に変換しても良い。   Subsequently, by continuously reciprocating the piston 2 a of the fluid lead-in / out means 2, measurement processing (processing step at the time of fluid introduction) in a state where the lubricant is introduced into the detection unit 4, The measurement process in the state where the lubricating oil is discharged (derived) from the fluid (processing process at the time of fluid discharge) is repeated alternately and compared with the output value for the concentration of the magnetic substance by the AC signal transmission circuit 19 or the like. A difference signal is detected from the output value for use and a moving average process is performed, and an average value of the concentration of the magnetic substance is obtained via the measured value display and abnormality determination device 7. The output value for the concentration of the magnetic substance is an AC signal that moves up and down with respect to the output value for comparison by the reciprocating motion of the fluid lead-in / out means 2 as shown in FIG. Further, this AC signal may be converted into a DC signal by using the DC conversion circuit 21.

更に、計測表示及び異常判定装置7では、制御部22により、図7に示す如く、予め、原動機のピストン等における摺動物の摺動状態と磁性体の濃度との相関関係(基準データ)が入力される(ステップS1)と共に、磁性体を含む流体(検査対象物)から、信号処理部6等を介して磁性体の濃度、磁性体の濃度の変化率、磁性体の濃度変化の振幅、磁性体の濃度変化の周期、多点計測時における濃度偏差のうち少なくとも一つ以上の情報を取得し(ステップS2)、次いで、相関関係(基準データ)と磁性体を含む流体(検査対象物)から取得した情報を比較し(ステップS3)、ピストン等の摺動物の摺動状態を判定し(ステップS4)、ピストン等の摺動物の摺動状態に応じて、摺動物に対するドレイン油(潤滑流体)の供給量、供給時期、供給圧力、供給温度、ドレイン油(潤滑流体)の噴射方法、ドレイン油(潤滑流体)の性状を制御する(ステップS5)と共に、磁性体粉の濃度が一定の濃度を超えてピストン等の摺動物の磨耗量が大きいと判定した場合には、整備が必要な時期に達しているとして、計測値表示及び異常判定装置7より警告表示、警報、警告灯を介し管理者に告知する(ステップS6)。   Further, in the measurement display and abnormality determination device 7, as shown in FIG. 7, the correlation (reference data) between the sliding state of the sliding object in the piston of the prime mover and the concentration of the magnetic material is input in advance by the control unit 22. (Step S1), the concentration of the magnetic substance, the change rate of the concentration of the magnetic substance, the amplitude of the change in the concentration of the magnetic substance, the magnetic property from the fluid containing the magnetic substance (test object) via the signal processing unit 6 and the like At least one piece of information is acquired from the period of concentration change of the body and the concentration deviation at the time of multipoint measurement (step S2), and then from the correlation (reference data) and the fluid containing the magnetic substance (test object) The obtained information is compared (step S3), the sliding state of the sliding object such as the piston is determined (step S4), and the drain oil (lubricating fluid) for the sliding object is determined according to the sliding state of the sliding object such as the piston. Supply amount, supply Control of the period, supply pressure, supply temperature, drain oil (lubricating fluid) injection method, drain oil (lubricating fluid) properties (step S5), and the concentration of magnetic powder exceeds a certain concentration If it is determined that the amount of wear of the sliding object is large, it is notified that the maintenance time has been reached, from the measured value display / abnormality determination device 7 to the administrator via a warning display, warning, warning light (step) S6).

このように、実施の形態の第一例によれば、励磁用コイル11aの電圧と検出用コイル(出力用コイル)11bの電圧との間に生じる位相差を用いると共に、磁性体を含む検査対象物と、励磁用コイル11a又は/及び出力用コイル11bとを接近させた際に、磁性体の濃度に応じて生じる位相差の変化を利用するので、磁性体の濃度を精度良く計測することができる。又、実施の形態の第一例は、励磁用コイル11aの電圧と検出用コイル11bの電圧との間に生じる位相差及び出力用コイル11bの電圧変化を用いるので、磁性体の有無による励磁用コイル11aのリアクタンスの変化、磁性体の有無による検出用コイル(出力用コイル)11bのリアクタンスの変化、検査対象物に発生する渦電流の変化、渦電流によるジュール損失の変化、コイルの周辺物体に発生する渦電流の変化、渦電流によるジュール損失の変化等の様々な変化を総合的に捉え、磁性体の濃度を精度良く計測することができる。ここで、磁性体の濃度を計測する際に、磁性体の有無による励磁用コイル11aのリアクタンスの変化、磁性体の有無による検出用コイル(出力用コイル)11bのリアクタンスの変化、検査対象物に発生する渦電流の変化、渦電流によるジュール損失の変化、コイルの周辺物体に発生する渦電流の変化、渦電流によるジュール損失の変化等の中から一部の変化の位相差を利用して計測した場合には、電圧の位相差の場合と異なり、他の変化の影響を受けるので、磁性体の濃度を精度良く計測することができない。   As described above, according to the first example of the embodiment, the phase difference generated between the voltage of the excitation coil 11a and the voltage of the detection coil (output coil) 11b is used, and an inspection object including a magnetic material is used. When the object is brought close to the excitation coil 11a or / and the output coil 11b, the change in phase difference that occurs according to the concentration of the magnetic material is used, so that the concentration of the magnetic material can be accurately measured. it can. The first example of the embodiment uses the phase difference generated between the voltage of the excitation coil 11a and the voltage of the detection coil 11b and the voltage change of the output coil 11b. Changes in the reactance of the coil 11a, changes in the reactance of the detection coil (output coil) 11b depending on the presence or absence of a magnetic material, changes in eddy current generated in the inspection object, changes in Joule loss due to eddy current, Various changes such as changes in eddy currents generated and changes in Joule loss due to eddy currents can be comprehensively captured, and the concentration of the magnetic material can be accurately measured. Here, when measuring the concentration of the magnetic material, the change in reactance of the excitation coil 11a due to the presence or absence of the magnetic material, the change in reactance of the detection coil (output coil) 11b due to the presence or absence of the magnetic material, Measured using the phase difference of some of the changes in eddy currents generated, changes in Joule loss due to eddy currents, changes in eddy currents generated in surrounding objects of the coil, changes in Joule loss due to eddy currents, etc. In this case, unlike the case of the voltage phase difference, it is affected by other changes, and therefore the concentration of the magnetic substance cannot be measured with high accuracy.

事実、本発明者が行った実験結果によれば、図8のグラフで示す通り、実施の形態例で数百ppmの鉄粉を含む流体(検査対象)を測定した場合には、検査対象物の投入と同時に出力(濃度)が上昇し、更に検査対象物の排出に伴って出力(濃度)が低下しており、磁性体に対する反応が明瞭且つ迅速で、磁性体の濃度を精度良く計測できることが明らかである。   In fact, according to the results of experiments conducted by the present inventor, as shown in the graph of FIG. 8, when a fluid (inspection object) containing several hundred ppm of iron powder is measured in the embodiment, the inspection object The output (concentration) increases simultaneously with the input of the test substance, and the output (concentration) decreases as the test object is discharged. The response to the magnetic substance is clear and rapid, and the concentration of the magnetic substance can be accurately measured. Is clear.

又、第一例において、計測手段に信号処理装置5のロックインアンプを使用すると、ロックインアンプにより磁性体の検出信号とリファレンス信号との位相差を検出すると共にノイズ除去し、検出した位相差の量に応じた信号に変換するので、わずかな位相差で磁性体の濃度を高感度に検出し、潤滑油の磁性体の微小な濃度を好適に精度良く計測することができる。   In the first example, when the lock-in amplifier of the signal processing device 5 is used as the measuring means, the lock-in amplifier detects the phase difference between the detection signal of the magnetic material and the reference signal, removes noise, and detects the detected phase difference. Therefore, it is possible to detect the concentration of the magnetic body with high sensitivity with a slight phase difference and to measure the minute concentration of the magnetic body of the lubricating oil with good accuracy.

更に、第一例において、ロックインアンプのリファレンス信号として励磁用コイル11aの電圧を用いると、交流電圧の出力信号から潤滑油導入時の磁性体の検出信号と、潤滑油排出時の補正用検出信号とを取得するので、ロックインアンプにより位相差を容易に検出すると共にノイズ除去し、潤滑油の磁性体の微小な濃度を好適に精度良く計測することができる。   Further, in the first example, when the voltage of the exciting coil 11a is used as a reference signal of the lock-in amplifier, a detection signal of the magnetic material when the lubricating oil is introduced from the output signal of the AC voltage, and a detection for correction when the lubricating oil is discharged Since the signal is acquired, the phase difference can be easily detected by the lock-in amplifier and noise can be removed, and the minute concentration of the magnetic material of the lubricating oil can be measured with good accuracy.

又、第一例において、検査対象物と励磁用コイル11a又は/及び出力用コイル11bとを接近させる手段として、磁性体を含む流体が流れる流路又は磁性体を含む流体が溜る溜り部から検査対象物を導入する駆動手段を有すると、流体の検査対象を容易に取得若しくは排出するので、潤滑油の磁性体の微小な濃度を連続的に精度良く計測することができる。   In the first example, as a means for bringing the inspection object and the excitation coil 11a and / or the output coil 11b closer, an inspection is performed from a flow path through which a fluid containing a magnetic body flows or from a reservoir portion in which the fluid containing the magnetic body accumulates. When the driving means for introducing the object is provided, the inspection object of the fluid is easily acquired or discharged, so that the minute concentration of the magnetic substance of the lubricating oil can be continuously measured with high accuracy.

第一例によれば、検出部4内の流体より磁性体の検出信号を取得すると共に同一周波数のリファレンス信号を準備し、リファレンス信号との位相差の変化及び出力用コイル11bの電圧変化を計測し、計測した位相差の量に応じた信号に変換し、次に、流体が排出された検出部4より検出部4内の補正用検出信号を取得すると共にリファレンス信号との位相差の変化を計測し、計測した位相差の量に応じた信号に変換し、変換後の流体導入時の値と、変換後の流体排出時の値との差分を磁性体の濃度とするので、位相差の変化及び出力用コイル11bの電圧変化を利用して磁性体の濃度を極めて精度良く計測することができる。なお、位相差の変化及び出力用コイル11bの電圧変化は最終的に電圧の実効値に変換され、磁性体検出信号とする。   According to the first example, the detection signal of the magnetic material is acquired from the fluid in the detection unit 4 and a reference signal having the same frequency is prepared, and the change in phase difference from the reference signal and the voltage change in the output coil 11b are measured. Then, the signal is converted into a signal corresponding to the amount of the measured phase difference, and then the correction detection signal in the detection unit 4 is acquired from the detection unit 4 from which the fluid has been discharged, and the change in the phase difference from the reference signal is changed. It is measured and converted into a signal corresponding to the measured amount of phase difference, and the difference between the converted value at the time of fluid introduction and the converted value at the time of fluid discharge is used as the magnetic substance concentration. The concentration of the magnetic material can be measured with extremely high accuracy by using the change and the voltage change of the output coil 11b. Note that the change in phase difference and the voltage change in the output coil 11b are finally converted into an effective voltage value and used as a magnetic substance detection signal.

又、磁性体の濃度を、潤滑油の導出入の1回における変化幅を計測値として取得すると共に、潤滑油の導出入を連続して行って信号値を連続して取得するので、複数のデータを平均処理して、経時変化による基準点(ゼロ点)のドリフトや、オフセットの変化(揺らぎ)の影響を常に排除し、ドレイン油の磁性体の微小な濃度を連続的に計測することができる。   Further, the concentration of the magnetic material is acquired as a measured value of the change width in one time of the introduction / extraction of the lubricating oil, and the signal value is obtained continuously by continuously introducing / extracting the lubricating oil. By averaging the data, it is possible to continuously measure the minute concentration of the magnetic substance in the drain oil by constantly eliminating the effect of drift of the reference point (zero point) and offset change (fluctuation) due to changes over time. it can.

第一例において、リファレンス信号の位相又は磁性体の検出信号の位相は、他方の信号から、ずらして設定されると、増幅器18,25による信号の増幅を一層容易に行い得るので、ドレイン油の磁性体の微小な濃度を好適に計測することができる。ここで、位相を10°〜170°ずらした場合には磁性体の微小な濃度を計測でき、位相を45°〜135°ずらした場合には磁性体の微小な濃度を好適に計測でき、位相を90°前後ずらした場合には磁性体の微小な濃度を極めて好適に計測できる。   In the first example, when the phase of the reference signal or the phase of the detection signal of the magnetic material is set to be shifted from the other signal, the amplification of the signal by the amplifiers 18 and 25 can be performed more easily. The minute concentration of the magnetic material can be measured suitably. Here, when the phase is shifted by 10 ° to 170 °, the minute concentration of the magnetic material can be measured, and when the phase is shifted by 45 ° to 135 °, the minute concentration of the magnetic material can be suitably measured. Is shifted about 90 °, the minute concentration of the magnetic material can be measured very suitably.

第一例において、リファレンス信号の位相又は磁性体の検出信号の位相をずらし、磁性体の非検出時に、信号処理装置(ロックインアンプ)5の出力信号を直流電圧信号に変換した値をゼロに近づけると、信号の増幅を容易に行い得るので、ドレイン油の磁性体の微小な濃度を好適に計測することができる。   In the first example, the phase of the reference signal or the detection signal of the magnetic material is shifted, and when the magnetic material is not detected, the value obtained by converting the output signal of the signal processing device (lock-in amplifier) 5 into a DC voltage signal is set to zero. When approaching, the signal can be easily amplified, so that the minute concentration of the magnetic substance of the drain oil can be suitably measured.

第一例において、検出手段3は、磁性体の検出信号を取得する検出用コイル11bと、励磁用コイル11aとを備え、励磁用コイル11aに交流電圧を印加して検出用コイル11bに交流電圧の出力信号を生じさせ、出力信号から磁性体の検出信号又は補正用検出信号を取得すると共に、励磁用コイル11aに接続された発振回路14等からリファレンス信号を取得するように構成されると、交流電圧により磁性体の濃度に応じて電圧及び位相が変化するので、磁性体の濃度の計測を容易にし、潤滑油の磁性体の微小な濃度を好適に計測することができる。又、励磁用コイル11aを用いるので、検出用コイル11bの出力信号に対する同一周波数のリファレンス信号を容易に準備することができる。   In the first example, the detection means 3 includes a detection coil 11b that acquires a detection signal of a magnetic material, and an excitation coil 11a. An AC voltage is applied to the excitation coil 11a and an AC voltage is applied to the detection coil 11b. Is generated, and a magnetic detection signal or a correction detection signal is acquired from the output signal, and a reference signal is acquired from the oscillation circuit 14 or the like connected to the excitation coil 11a. Since the voltage and phase change according to the concentration of the magnetic material by the AC voltage, the concentration of the magnetic material can be easily measured, and the minute concentration of the magnetic material of the lubricating oil can be suitably measured. Further, since the exciting coil 11a is used, a reference signal having the same frequency as the output signal of the detecting coil 11b can be easily prepared.

第一例において、検出手段3は、複数の励磁用コイル11aを互いに逆方向に巻いて配置すると共に、検出用コイル11bを複数の励磁用コイル11aの間に配置し、検出用コイル11bの出力信号が小さくなるように構成されると、増幅器18,25を介して磁性体の濃度を高感度に検出するので、ドレイン油の磁性体の微小な濃度を精度良く計測することができる。   In the first example, the detection means 3 is arranged by winding a plurality of excitation coils 11a in opposite directions and arranging a detection coil 11b between the plurality of excitation coils 11a, and outputting the detection coil 11b. When the signal is configured to be small, the concentration of the magnetic substance is detected with high sensitivity via the amplifiers 18 and 25, so that the minute concentration of the magnetic substance of the drain oil can be accurately measured.

第一例において、流体導出入手段2は、ピストン2aの往復動でドレイン油を導出入するように構成されると、堆積した固形分を容易に排出すると共に計測を連続的に行い、外乱や経時変化による計測誤差を排除し、ドレイン油の磁性体の微小な濃度を連続的に精度良く計測することができる。又、ピストン2aの往復運動により固形分等の堆積物を好適に排除するので、定期的なエアブローや機械的な除去を不要にすることができる。更に、ドレイン油が高粘度の場合であってもピストン2aの往復運動により一定間隔でドレイン油を確実に導出入し得るので、ドレイン油の磁性体の濃度を連続的に精度良く計測することができる。   In the first example, when the fluid lead-in / out means 2 is configured to lead in and out the drain oil by the reciprocating motion of the piston 2a, the accumulated solid content is easily discharged and continuously measured, Measurement errors due to changes over time can be eliminated, and the minute concentration of the magnetic substance of the drain oil can be continuously measured with high accuracy. In addition, deposits such as solids are suitably eliminated by the reciprocating motion of the piston 2a, so that periodic air blowing and mechanical removal can be eliminated. Furthermore, even when the drain oil is highly viscous, the drain oil can be reliably led out at regular intervals by the reciprocating motion of the piston 2a, so that the concentration of the magnetic substance of the drain oil can be continuously and accurately measured. it can.

第一例において、信号処理部6は、同一周波数のリファレンス信号を用いて、流体導入時の磁性体の検出信号、又は流体排出時の補正用検出信号からノイズ除去を行う信号処理装置5を備えると、検出部4内の潤滑油より取得された磁性体の検出信号をバンドパスフィルタ13でノイズを除去し、更に、同一周波数のリファレンス信号とあわせて信号処理装置5によりノイズ除去し、次に、ドレイン油が排出された検出部4より取得された補正用検出信号を、リファレンス信号とあわせて信号処理装置5によりノイズ除去し、変換後の各信号の値の差分をドレイン油の磁性体の濃度とするので、測定時の出力信号に重畳したノイズを除去し、ドレイン油の磁性体の微小な濃度を精度良く計測することができる。   In the first example, the signal processing unit 6 includes a signal processing device 5 that performs noise removal from a detection signal of a magnetic body at the time of fluid introduction or a detection signal for correction at the time of fluid discharge using a reference signal having the same frequency. The noise of the magnetic body detection signal acquired from the lubricating oil in the detection unit 4 is removed by the band-pass filter 13, and the noise is removed by the signal processing device 5 together with the reference signal of the same frequency. The detection signal for correction acquired from the detection unit 4 from which the drain oil has been discharged is noise-removed by the signal processing device 5 together with the reference signal, and the difference between the values of the converted signals is determined by the magnetic material of the drain oil. Since the concentration is used, the noise superimposed on the output signal at the time of measurement can be removed, and the minute concentration of the magnetic substance of the drain oil can be measured with high accuracy.

第一例において、磁性体を含む流体(検査対象物)から、磁性体の濃度、濃度の変化率、濃度変化の振幅、濃度変化の周期、多点計測時における濃度偏差のうち少なくとも一つ以上の情報を取得し、予め求めた磁性体の濃度と摺動物の状態との相関関係より、摺動物の摺動状態を判断すると、ピストン等の摺動物の状態確認、メンテナンス、ドレイン油(潤滑流体)の制御を極めて容易且つ正確に行うことができる。   In the first example, from a fluid (inspection object) containing a magnetic material, at least one of the concentration of the magnetic material, the concentration change rate, the concentration change amplitude, the concentration change cycle, and the concentration deviation during multipoint measurement. If the sliding state of the sliding object is determined from the correlation between the magnetic substance concentration obtained in advance and the state of the sliding object, the state of the sliding object such as a piston is confirmed, maintenance, drain oil (lubricating fluid ) Can be controlled very easily and accurately.

第一例において、摺動物の状態に応じて警告又は/及び警報を発する計測表示及び異常判定装置(警告手段)7を備えると、ピストン等の摺動物の状態確認、メンテナンスを極めて容易且つ迅速に行うことができる。   In the first example, if a measurement display and an abnormality determination device (warning means) 7 that issues a warning or / and an alarm according to the state of the sliding object are provided, the state confirmation and maintenance of the sliding object such as a piston can be performed very easily and quickly. It can be carried out.

第一例において、摺動物の状態に応じて、摺動物に対するドレイン油(潤滑流体)の供給量、供給時期、供給圧力、供給温度、ドレイン油(潤滑流体)の噴射方法、潤滑流体の性状を制御すると、ピストン等の摺動物の摺動状態を好適に維持することができる。   In the first example, the amount of drain oil (lubricating fluid) supplied to the sliding object, the supply timing, the supply pressure, the supply temperature, the drain oil (lubricating fluid) injection method, and the properties of the lubricating fluid are determined according to the state of the sliding object. When controlled, the sliding state of the sliding object such as the piston can be suitably maintained.

本発明の実施の形態の第二例である磁性体濃度計測装置及び磁性体濃度計測方法を説明する。図9〜図11は本発明の実施の形態の第二例を示すものである。   A magnetic substance concentration measuring apparatus and a magnetic substance concentration measuring method as a second example of the embodiment of the present invention will be described. 9 to 11 show a second example of the embodiment of the present invention.

第二例の磁性体濃度計測装置及び磁性体濃度計測方法は、磁性体粉を含むドレイン油等の流体が流下する配管の流路31に、流体導出入手段32及び検出手段33を備える検出部34を接続し、検出部34の検出手段33には、ロックインアンプ35等を備える信号処理部36を接続し、更に信号処理部36には、計測値表示及び異常判定装置37を接続している。   The magnetic substance concentration measuring device and the magnetic substance concentration measuring method of the second example include a fluid extraction / introduction means 32 and a detection means 33 in a flow path 31 of a pipe through which a fluid such as drain oil containing magnetic powder flows down. 34, a signal processing unit 36 including a lock-in amplifier 35 and the like is connected to the detection means 33 of the detection unit 34, and a measurement value display and abnormality determination device 37 is further connected to the signal processing unit 36. Yes.

ここで、配管の流路31は、駆動用ピストンと駆動用シリンダ等を備えたディーゼルエンジン等の機器(図示せず)からドレイン油を排出するものであり、流路31の下流には、ドレイン油の溜め部38を形成する閉止手段の開閉弁39と、開閉弁39を回避するように配置される分岐流路40とを備えており、分岐流路40は、溜め部38の上流側に形成される分岐口41と、開閉弁39の下流側に形成される合流口42とを備え、溜め部38から溢れ出したドレイン油を下流側へ流すようになっている。又、流体は、ドレイン油に限定されるものでなく、磁性体を含む流体ならばどのようなものでも良い。   Here, the flow path 31 of the piping discharges drain oil from a device (not shown) such as a diesel engine provided with a drive piston, a drive cylinder, and the like. There is provided an on-off valve 39 as a closing means for forming an oil reservoir 38 and a branch passage 40 arranged so as to avoid the on-off valve 39. The branch passage 40 is located upstream of the reservoir 38. A branch port 41 formed and a junction port 42 formed on the downstream side of the on-off valve 39 are provided, and drain oil overflowing from the reservoir 38 is caused to flow downstream. Further, the fluid is not limited to drain oil, and any fluid may be used as long as it includes a magnetic material.

検出部34は、開閉弁39と分岐口41の間の流路31に配置されるように溜め部38に開口43を形成する筒状の検出部本体44と、検出部本体44の内部を摺動する流体導出入手段32のピストン32aと、流体導出入手段32のピストン32aを進退動させる駆動手段の回転部45と、検出部本体44の外周部に配置される検出手段33の複数のコイル46を備えている。   The detection unit 34 includes a cylindrical detection unit main body 44 that forms an opening 43 in the reservoir unit 38 so as to be disposed in the flow path 31 between the on-off valve 39 and the branch port 41, and a slide inside the detection unit main body 44. A plurality of coils of the detecting means 33 disposed on the outer peripheral portion of the detecting portion main body 44; a piston 32a of the fluid leading-in / out means 32 that moves; a rotating portion 45 of a driving means that causes the piston 32a of the fluid leading-in / out means 32 to move forward and backward; 46 is provided.

検出手段33の複数のコイル46は、互いに逆方向に巻かれて直列に接続された二個の励磁用コイル46a,46aと、二個の励磁用コイル46a,46aの間に配置された検出用コイル46bとを備え、励磁用コイル46aに交流電圧を印加した際には、検出用コイル46bに交流電圧の出力信号を生じさせると共に、磁性体の非検出時に検出用コイル46bの出力信号が小さくなるように調整されている。又、二個の励磁用コイル46a,46aと、検出用コイル46bは、相互インダクタンスが略均等になるようにコイル46の巻き数、コイル46間の距離を調整しており、相互インダクタンスが略均等になるように調整している。ここで、検出用コイル46bの出力信号は小さくなるように調整することが好ましい。又、励磁用コイル46aと検出用コイル46bの個数は特に限定されるものではない。更にコイル46の外方には、外部からノイズが入らないよう、アルミ製の筒等のシールドを設けることが好ましい。又、コイル46は、第一例と同様に、一個の励磁用コイルと、一個の励磁用コイルに近接して配置される検出用コイル(出力用コイル)とを備えても良い。   The plurality of coils 46 of the detection means 33 are two detection coils 46a and 46a that are wound in opposite directions and connected in series, and two detection coils 46a and 46a for detection. When an AC voltage is applied to the excitation coil 46a, an AC voltage output signal is generated in the detection coil 46b and the output signal of the detection coil 46b is small when no magnetic material is detected. It has been adjusted to be. In addition, the number of turns of the coil 46 and the distance between the coils 46 are adjusted so that the mutual inductances of the two exciting coils 46a and 46a and the detection coil 46b are substantially equal, and the mutual inductances are substantially uniform. It is adjusted to become. Here, it is preferable to adjust the output signal of the detection coil 46b to be small. Further, the number of exciting coils 46a and detecting coils 46b is not particularly limited. Furthermore, it is preferable to provide a shield such as an aluminum tube outside the coil 46 so that noise does not enter from the outside. Similarly to the first example, the coil 46 may include one excitation coil and a detection coil (output coil) disposed in proximity to one excitation coil.

信号処理部36は、検出用コイル46bの出力信号から磁性体の検出信号又は補正用検出信号を取得するよう、検出用コイル46bに接続されて微弱な波形信号を増幅する増幅回路47と、増幅回路47に接続されて波形信号のノイズを所定範囲で削除するバンドパスフィルタ48と、励磁用コイル46a,46aに接続されて励磁用の正弦波を得る正弦波発振回路49と、正弦波発振回路49に接続されて正弦波の位相をずらす位相回路50と、位相回路50に接続されて励磁用の正弦波を矩形波にするエッジトリガー回路51とを備えている。ここで、位相回路50は、バンドパスフィルタ48とロックインアンプ35の間に位置し、リファレンス信号の代わりに、磁性体の検出信号及び補正用検出信号を90°前後ずらすようにしても良い。又、位相回路50は、磁性体非検出時に位相を90°ずらすことが好ましいが、波形の電気的なずれにより多少前後してずらしても良い。更に、位相回路50は、位相のずれを第一例と略同様に、磁性体非検出時の状態で10°〜170°の範囲にしても良い。   The signal processing unit 36 is connected to the detection coil 46b and amplifies a weak waveform signal so as to obtain a magnetic detection signal or a correction detection signal from the output signal of the detection coil 46b. A band-pass filter 48 that is connected to the circuit 47 and eliminates noise of the waveform signal within a predetermined range, a sine wave oscillation circuit 49 that is connected to the excitation coils 46a and 46a to obtain an excitation sine wave, and a sine wave oscillation circuit 49, and a phase circuit 50 that shifts the phase of the sine wave, and an edge trigger circuit 51 that is connected to the phase circuit 50 and converts the exciting sine wave into a rectangular wave. Here, the phase circuit 50 may be positioned between the bandpass filter 48 and the lock-in amplifier 35, and the magnetic detection signal and the correction detection signal may be shifted by about 90 ° instead of the reference signal. The phase circuit 50 preferably shifts the phase by 90 ° when the magnetic material is not detected. However, the phase circuit 50 may shift the phase slightly back and forth due to an electrical shift of the waveform. Further, the phase circuit 50 may set the phase shift in a range of 10 ° to 170 ° in a state where no magnetic substance is detected, as in the first example.

又、信号処理部36は、バンドパスフィルタ48とエッジトリガー回路51とに夫々接続されるロックインアンプ35と、ロックインアンプ35に接続されて出力信号を直流電圧信号に変換するローパスフィルタ52と、ローパスフィルタ52に接続されて直流電圧信号を増幅する増幅器53と、増幅器53に接続される交流信号透過回路54と、交流信号透過回路54に接続される増幅器55とを備えている。ここで、交流信号透過回路54と増幅器55の間には、図11に示す如く、ピストン32aの動きに応じた交流信号を直流信号に変換する直流変換回路56を備え、後の処理を容易にするようにしても良い。   The signal processing unit 36 includes a lock-in amplifier 35 that is connected to the band-pass filter 48 and the edge trigger circuit 51, and a low-pass filter 52 that is connected to the lock-in amplifier 35 and converts the output signal into a DC voltage signal. , An amplifier 53 connected to the low-pass filter 52 for amplifying a DC voltage signal, an AC signal transmission circuit 54 connected to the amplifier 53, and an amplifier 55 connected to the AC signal transmission circuit 54. Here, between the AC signal transmission circuit 54 and the amplifier 55, as shown in FIG. 11, a DC conversion circuit 56 for converting an AC signal corresponding to the movement of the piston 32a into a DC signal is provided, and the subsequent processing is facilitated. You may make it do.

更に計測値表示及び異常判定装置37は、信号処理部36の増幅器55に接続されて、信号を磁性体の濃度に変換し且つ異常の警告を為し得るようになっている。更に計測値表示及び異常判定装置37は、第一例と同様に、ピストン等の摺動物の潤滑状態に対して潤滑制御や異常の警告等を為し得るよう、所定の制御を行う制御部(図示せず)を備えても良い。   Further, the measured value display / abnormality determination device 37 is connected to the amplifier 55 of the signal processing unit 36 so as to convert the signal into the concentration of the magnetic substance and to give an abnormality warning. Further, the measurement value display and abnormality determination device 37, like the first example, performs a predetermined control so as to perform lubrication control, warning of abnormality, etc. with respect to the lubrication state of a sliding object such as a piston ( (Not shown) may be provided.

以下、本発明を実施する形態の第二例の作用を説明する。   Hereinafter, the operation of the second example of the embodiment of the present invention will be described.

ドレイン油(流体)に含まれる磁性体粉の濃度を計測する際には、予め検出部34の流体導出入手段32のピストン32aを押し出した状態で流路31の開閉弁39を閉じ、溜め部38に一定量のドレイン油を溜める。次に、流体導出入手段32のピストン32aを引き込むことにより溜め部38のドレイン油を検出部34内に導入し、ドレイン油のある状態で出力信号を計測処理する。ここで、流体導出入手段32のピストン32aは、励磁用コイル46aの一個、検出用コイル46bの半分程度にドレイン油が位置するまでドレイン油を引き込むことが好ましい。   When measuring the concentration of the magnetic substance powder contained in the drain oil (fluid), the on-off valve 39 of the flow path 31 is closed in a state where the piston 32a of the fluid lead-in / out means 32 of the detection unit 34 is pushed in advance, and the reservoir unit A certain amount of drain oil is stored in 38. Next, by pulling in the piston 32a of the fluid lead-in / out means 32, the drain oil in the reservoir 38 is introduced into the detector 34, and the output signal is measured in a state where there is drain oil. Here, it is preferable that the piston 32a of the fluid lead-in / out means 32 draws in the drain oil until the drain oil is located at about one half of the excitation coil 46a and about half of the detection coil 46b.

検出部34内にドレイン油を導入した状態で計測処理する際(流体導入時の処理工程)には、検出部34のドレイン油から検出用コイル46b、増幅回路47及びバンドパスフィルタ48を介して磁性体の検出信号を取得する(図6では(A'))と共に、励磁用コイル46a、正弦波発振回路49、位相回路50及びエッジトリガー回路51を介して、磁性体の検出信号(励磁電圧)と同一周波数で90°前後ずらして設定された矩形波のリファレンス信号を準備し(図6では(B'))、ロックインアンプ35により、磁性体の出力信号と、同一周波数のリファレンス信号とをあわせてノイズ除去を行い、ローパスフィルタ52により、磁性体の濃度用の出力値として平滑な直流電圧信号に変換し(図6では(D'))、増幅器を介して交流信号透過回路54に入力する。なお、図6の(C')は、リファレンス信号により、磁性体の検出信号を反転させた状態を示し、この面積を積分処理すると図6の(D')となる。   When performing measurement processing with the drain oil introduced into the detection unit 34 (processing step when introducing fluid), the drain oil from the detection unit 34 is passed through the detection coil 46b, the amplification circuit 47, and the band-pass filter 48. A magnetic substance detection signal is acquired ((A ′ in FIG. 6)), and the magnetic substance detection signal (excitation voltage) is passed through the excitation coil 46a, the sine wave oscillation circuit 49, the phase circuit 50, and the edge trigger circuit 51. ) And a rectangular wave reference signal set at the same frequency and shifted by about 90 ° ((B ′) in FIG. 6), and by the lock-in amplifier 35, the output signal of the magnetic material and the reference signal of the same frequency And is converted into a smooth DC voltage signal as an output value for the concentration of the magnetic substance by the low-pass filter 52 ((D ′) in FIG. 6), and AC is passed through the amplifier. Input to No. transmission circuit 54. Note that (C ′) in FIG. 6 shows a state in which the detection signal of the magnetic material is inverted by the reference signal, and when this area is integrated, (D ′) in FIG. 6 is obtained.

続いて、流体導出入手段32のピストン32aを押し出すことにより検出部34内のドレイン油を排出(導出)し、ドレイン油がない状態(流体導出入手段32自体)の出力信号を計測処理する。ここで、流体導出入手段32の往復運動の時間間隔は、計測する流体の粘度等により変化するが、数秒間隔で行うことが好ましい。   Subsequently, the drain oil in the detection unit 34 is discharged (derived) by pushing out the piston 32a of the fluid introducing / introducing means 32, and the output signal in a state where there is no drain oil (fluid introducing / introducing means 32 itself) is measured. Here, although the time interval of the reciprocating motion of the fluid lead-in / out means 32 varies depending on the viscosity of the fluid to be measured, it is preferably performed at intervals of several seconds.

検出部34内からドレイン油を排出(導出)した状態で計測処理する際(流体排出時の処理工程)には、検出部34のドレイン油から検出用コイル46b、増幅回路47及びバンドパスフィルタ48を介して補正用検出信号を取得する(図5では(A))と共に、励磁用コイル46a、正弦波発振回路49、位相回路50及びエッジトリガー回路51を介して、補正用検出信号(励磁電圧)と同一周波数で90°前後ずらして設定された矩形波のリファレンス信号を準備し(図5では(B))、ロックインアンプ35により、補正用検出信号と、同一周波数のリファレンス信号とをあわせてノイズ除去を行い、ローパスフィルタ52により、比較用の出力値として平滑な直流電圧信号に変換し(図5では(D))、増幅器を介して交流信号透過回路54に入力する。なお、図5の(C)は、リファレンス信号により、磁性体の検出信号を反転させた状態を示し、この面積を積分処理すると図5の(D)となる。   When the measurement process is performed in a state in which the drain oil is discharged (derived) from the detection unit 34 (processing step at the time of fluid discharge), the detection coil 46b, the amplification circuit 47, and the bandpass filter 48 are extracted from the drain oil of the detection unit 34. (A in FIG. 5) and a correction detection signal (excitation voltage) via the excitation coil 46a, the sine wave oscillation circuit 49, the phase circuit 50, and the edge trigger circuit 51. ) And a rectangular-wave reference signal set at the same frequency and shifted by about 90 ° (FIG. 5B), the lock-in amplifier 35 combines the correction detection signal and the reference signal of the same frequency. The low-pass filter 52 converts the noise into a smooth DC voltage signal as a comparison output value ((D) in FIG. 5), and transmits the AC signal through an amplifier. The input to the circuit 54. FIG. 5C shows a state in which the detection signal of the magnetic material is inverted by the reference signal, and when this area is integrated, FIG. 5D is obtained.

そして、交流信号透過回路54により、磁性体の濃度用の出力値を補正するよう、図6に示す如く、磁性体の濃度用の出力値と、比較用の出力値とから差分ΔVを求めて直流電圧信号に変換し、計測値表示及び異常判定装置37により、予め求めた相関性(関数処理)によって差分を磁性体の濃度に変換する。ここで、磁性体の濃度用の出力値(直流電圧信号)と、比較用の出力値(直流電圧信号)は、ロックインアンプ35により、磁性体の出力信号とリファレンス信号との位相差Δfと、及び補正用の出力信号とリファレンス信号と位相差(図示せず)とを検出し、検出した位相差の量に応じて変換されるものであっても良い。   Then, a difference ΔV is obtained from the output value for the concentration of the magnetic substance and the output value for comparison so as to correct the output value for the concentration of the magnetic substance by the AC signal transmission circuit 54 as shown in FIG. It converts into a DC voltage signal, and the measured value display and abnormality determination device 37 converts the difference into the concentration of the magnetic material by the correlation (function processing) obtained in advance. Here, the output value for the concentration of the magnetic substance (DC voltage signal) and the output value for comparison (DC voltage signal) are obtained by the lock-in amplifier 35 from the phase difference Δf between the output signal of the magnetic substance and the reference signal. , And a correction output signal, a reference signal, and a phase difference (not shown) may be detected and converted according to the detected amount of phase difference.

続いて、流体導出入手段のピストン32aを連続的に往復動することにより、検出部34内にドレイン油を導入した状態での計測処理(流体導入時の処理工程)と、検出部34内からドレイン油を排出(導出)した状態での計測処理(流体排出時の処理工程)とを交互に連続的に繰り返し、交流信号透過回路54等により、磁性体の濃度用の出力値と、比較用の出力値とから差分の信号を検出すると共に移動平均処理を行い、計測値表示及び異常判定装置37を介して磁性体の濃度の平均値を求める。なお、磁性体の濃度用の出力値は、図6の(D')の如く、流体導出入手段の往復動により、比較用の出力値に対して上下動する交流信号となっている。又、この交流信号を直流変換回路56を用いて直流信号に変換しても良い。   Subsequently, by continuously reciprocating the piston 32a of the fluid lead-in / out means, a measurement process in a state in which the drain oil is introduced into the detection unit 34 (a processing step at the time of introducing the fluid), and from the detection unit 34 The measurement process (process at the time of fluid discharge) with the drain oil discharged (derived) is alternately and continuously repeated, and the output value for the concentration of the magnetic material is compared with the AC signal transmission circuit 54 and the like. A difference signal is detected from the output value and a moving average process is performed, and an average value of the concentration of the magnetic substance is obtained via the measured value display and abnormality determination device 37. Note that the output value for the concentration of the magnetic substance is an AC signal that moves up and down with respect to the output value for comparison by the reciprocating motion of the fluid lead-in / out means, as shown in FIG. 6 (D ′). Further, this AC signal may be converted into a DC signal by using the DC conversion circuit 56.

ここでドレイン油を計測する状態において、磁性体粉の濃度が一定の濃度を超えた場合には、駆動用流体導出入手段と駆動用シリンダ等を備えた機器の磨耗量が大きく、整備が必要な時期に達しているとして、計測値表示及び異常判定装置37より警告表示、警告音、警告灯を介し管理者に告知する。又、制御部(図示せず)を備えた場合には、第一例と同様に、ピストン等の摺動物の摺動状態と磁性体の濃度との相関関係(基準データ)と、磁性体を含む流体(検査対象物)から取得した情報とを比較し、ピストン等の摺動物の摺動状態を判定し、摺動物に対するドレイン油(潤滑流体)の制御や、警報等の発令を行っても良い。   If the concentration of the magnetic powder exceeds a certain level in the state where the drain oil is measured, the amount of wear of the equipment including the drive fluid inlet / outlet means and the drive cylinder is large, and maintenance is required. It is notified that the time has arrived, the measured value display and abnormality determination device 37 notifies the administrator via a warning display, a warning sound, and a warning light. When a control unit (not shown) is provided, as in the first example, the correlation (reference data) between the sliding state of the sliding object such as the piston and the concentration of the magnetic body, and the magnetic body Compared with the information obtained from the fluid (inspection object) that is included, the sliding state of the sliding object such as a piston is judged, drain oil (lubricating fluid) is controlled for the sliding object, and an alarm is issued. good.

このように実施の形態の第二例によれば、検出部34内のドレイン油より取得された磁性体の検出信号を、同一周波数のリファレンス信号とあわせてロックインアンプ35によりノイズ除去し、磁性体の濃度用の直流電圧成分に変換し、次に、ドレイン油が排出された検出部34より取得された補正用検出信号を、同一周波数のリファレンス信号とあわせてロックインアンプ35によりノイズ除去し、比較用の直流電圧成分に変換し、変換後の各直流成分の値の差分をドレイン油の磁性体の濃度とするので、測定時の出力信号に重畳したノイズを除去すると共に、流体導出入手段によりドレイン油を導出入して、堆積した固形分を排出し、ドレイン油の磁性体の微小な濃度を精度良く計測することができる。又、実施の形態の第二例は、第一例と同様に、励磁用コイル46aの電圧と検出用コイル46bの電圧との間に生じる位相差を用いるので、磁性体の有無による励磁用コイル46aのリアクタンスの変化、磁性体の有無による検出用コイル(出力用コイル)46bのリアクタンスの変化、検査対象物に発生する渦電流の変化、渦電流によるジュール損失の変化、コイルの周辺物体に発生する渦電流の変化、渦電流によるジュール損失の変化等の様々な変化を総合的に捉え、磁性体の濃度を精度良く計測することができる。ここで、磁性体の濃度を計測する際に、磁性体の有無による励磁用コイル46aのリアクタンスの変化、磁性体の有無による検出用コイル(出力用コイル)46bのリアクタンスの変化、検査対象物に発生する渦電流の変化、渦電流によるジュール損失の変化、コイルの周辺物体に発生する渦電流の変化、渦電流によるジュール損失の変化等の中から一部の変化の位相差を利用して計測した場合には、電圧の位相差の場合と異なり、他の変化の影響を受けるので、磁性体の濃度を精度よく計測することができない。   As described above, according to the second example of the embodiment, the magnetic body detection signal obtained from the drain oil in the detection unit 34 is noise-removed by the lock-in amplifier 35 together with the reference signal of the same frequency, and the magnetic The signal is converted into a DC voltage component for body concentration, and then the correction detection signal acquired from the detection unit 34 from which the drain oil has been discharged is removed by the lock-in amplifier 35 together with the reference signal of the same frequency. Because it converts to a DC voltage component for comparison, and the difference between the DC component values after conversion is the concentration of the magnetic substance of the drain oil, noise superimposed on the output signal at the time of measurement is removed and fluid derivation is performed. The drain oil can be led in and out by means, the accumulated solid content can be discharged, and the minute concentration of the magnetic substance of the drain oil can be measured with high accuracy. In addition, the second example of the embodiment uses a phase difference generated between the voltage of the excitation coil 46a and the voltage of the detection coil 46b, as in the first example. Change in reactance of 46a, change in reactance of detection coil (output coil) 46b depending on the presence or absence of magnetic material, change in eddy current generated in test object, change in Joule loss due to eddy current, generated in surrounding objects of coil It is possible to comprehensively capture various changes such as changes in eddy currents and joule loss due to eddy currents, and accurately measure the concentration of the magnetic material. Here, when measuring the concentration of the magnetic material, the change in the reactance of the excitation coil 46a due to the presence or absence of the magnetic material, the change in the reactance of the detection coil (output coil) 46b due to the presence or absence of the magnetic material, Measured using the phase difference of some of the changes in eddy currents generated, changes in Joule loss due to eddy currents, changes in eddy currents generated in surrounding objects of the coil, changes in Joule loss due to eddy currents, etc. In this case, unlike the case of the voltage phase difference, it is affected by other changes, so that the concentration of the magnetic substance cannot be measured with high accuracy.

又、磁性体の濃度を、ドレイン油の導出入の1回における各直流成分として取得すると共に、ドレイン油の導出入を繰り返し行って各直流成分の値の差分を複数取得するので、複数のデータを平均処理して、経時変化による基準点(ゼロ点)のドリフトや、オフセットの変化(揺らぎ)の影響を常に排除し、ドレイン油の磁性体の微小な濃度を連続的に計測することができる。   In addition, the concentration of the magnetic material is acquired as each DC component in one drain oil introduction / removal operation, and the drain oil is repeatedly introduced / removed to obtain a plurality of differences in the value of each DC component. Can be continuously measured to eliminate the influence of drift of reference point (zero point) and offset change (fluctuation) due to changes over time, and continuously measure the minute concentration of magnetic substance in drain oil. .

第二例において、交流電圧の出力信号からドレイン油導入時の磁性体の検出信号とドレイン油排出時の補正用検出信号とを取得し、ロックインアンプ35により各信号とリファレンス信号との位相差を検出し、検出した位相差の量に応じた信号に変換すると、わずかな位相差で磁性体の濃度を高感度に検出するので、ドレイン油の磁性体の微小な濃度を好適に精度良く計測することができる。   In the second example, the detection signal of the magnetic body when drain oil is introduced and the detection signal for correction when drain oil is discharged are obtained from the output signal of the AC voltage, and the phase difference between each signal and the reference signal is obtained by the lock-in amplifier 35. Is detected and converted into a signal corresponding to the detected amount of phase difference, the magnetic substance concentration is detected with high sensitivity with a slight phase difference, so the minute concentration of the magnetic substance in the drain oil is measured accurately and suitably. can do.

第二例において、リファレンス信号の位相又は磁性体の検出信号の位相をずらし、磁性体の非検出時に、ロックインアンプ35の出力信号を直流電圧信号に変換した値をゼロに近づけると、信号の増幅を容易に行い得るので、ドレイン油の磁性体の微小な濃度を好適に計測することができる。   In the second example, when the phase of the reference signal or the detection signal of the magnetic material is shifted, and the value obtained by converting the output signal of the lock-in amplifier 35 to a DC voltage signal is close to zero when the magnetic material is not detected, Since the amplification can be easily performed, the minute concentration of the magnetic substance of the drain oil can be suitably measured.

第二例において、リファレンス信号の位相又は磁性体の検出信号の位相は、他方の信号から90°前後ずらすと、増幅器53,55による信号の増幅を一層容易に行い得るので、ドレイン油の磁性体の微小な濃度を極めて好適に計測することができる。   In the second example, if the phase of the reference signal or the phase of the detection signal of the magnetic material is shifted by about 90 ° from the other signal, the signal amplification by the amplifiers 53 and 55 can be performed more easily. Can be measured very suitably.

第二例において、検出手段は、磁性体の検出信号を取得する検出用コイル46bと、励磁用コイル46aとを備え、励磁用コイル46aに交流電圧を印加して検出用コイル46bに交流電圧の出力信号を生じさせ、出力信号から磁性体の検出信号又は補正用検出信号を取得すると共に、励磁用コイル46aに接続された発振回路49等からリファレンス信号を取得するように構成されると、交流電圧により磁性体の濃度に応じて電圧及び位相が変化するので、磁性体の濃度の計測を容易にし、ドレイン油の磁性体の微小な濃度を好適に計測することができる。又、励磁用コイル46aを用いるので、検出用コイル46bの出力信号に対する同一周波数のリファレンス信号を容易に準備することができる。   In the second example, the detection means includes a detection coil 46b for obtaining a detection signal of the magnetic material, and an excitation coil 46a. An AC voltage is applied to the excitation coil 46a, and an AC voltage is applied to the detection coil 46b. When an output signal is generated, a magnetic substance detection signal or a correction detection signal is acquired from the output signal, and a reference signal is acquired from the oscillation circuit 49 or the like connected to the excitation coil 46a. Since the voltage and the phase change according to the concentration of the magnetic body due to the voltage, the concentration of the magnetic body can be easily measured, and the minute concentration of the magnetic body of the drain oil can be preferably measured. Further, since the exciting coil 46a is used, a reference signal having the same frequency as the output signal of the detecting coil 46b can be easily prepared.

第二例において、検出手段は、複数の励磁用コイル46aを互いに逆方向に巻いて配置すると共に、検出用コイル46bを複数の励磁用コイル46aの間に配置し、検出用コイル46bの出力信号が小さくなるように構成されると、増幅器53,55を介して磁性体の濃度を高感度に検出するので、ドレイン油の磁性体の微小な濃度を精度良く計測することができる。   In the second example, the detection means arranges the plurality of excitation coils 46a wound in opposite directions, arranges the detection coil 46b between the plurality of excitation coils 46a, and outputs an output signal of the detection coil 46b. Since the concentration of the magnetic substance is detected with high sensitivity via the amplifiers 53 and 55, the minute concentration of the magnetic substance of the drain oil can be accurately measured.

第二例において、流体導出入手段は、ピストン32aの往復動でドレイン油を導出入するように構成されると、堆積した固形分を容易に排出すると共に計測を連続的に行い、外乱や経時変化による計測誤差を排除し、ドレイン油の磁性体の微小な濃度を連続的に精度良く計測することができる。又、ピストン32aの往復運動により固形分等の堆積物を好適に排除するので、定期的なエアブローや機械的な除去を不要にすることができる。更に、ドレイン油が高粘度の場合であってもピストン32aの往復運動により一定間隔でドレイン油を確実に導出入し得るので、ドレイン油の磁性体の濃度を連続的に精度良く計測することができる。更に、第二例は、第一例と略同様な作用効果を得ることができる。   In the second example, when the fluid lead-in / out means is configured to lead out / inject the drain oil by the reciprocating motion of the piston 32a, the accumulated solid content is easily discharged and continuously measured, so that the disturbance and time Measurement errors due to changes can be eliminated, and the minute concentration of the magnetic material of the drain oil can be continuously measured with high accuracy. Moreover, since deposits such as solids are suitably eliminated by the reciprocating motion of the piston 32a, periodic air blow and mechanical removal can be eliminated. Furthermore, even if the drain oil is highly viscous, the drain oil can be reliably led out at regular intervals by the reciprocating motion of the piston 32a, so that the concentration of the magnetic substance in the drain oil can be continuously measured with high accuracy. it can. Furthermore, the second example can obtain substantially the same operational effects as the first example.

以下、本発明の実施の形態の第三例である磁性体濃度計測装置を説明する。図12は本発明の実施の形態の第三例を示すものである。なお、図中図9と同一の符号を付した部分は同一物を表わしている。   Hereinafter, a magnetic substance concentration measuring apparatus which is a third example of the embodiment of the present invention will be described. FIG. 12 shows a third example of the embodiment of the present invention. In the figure, the same reference numerals as those in FIG. 9 denote the same components.

第三例の磁性体濃度計測装置は、ドレイン油等の流体が流下する配管の流路31を変形したものであり、第三例の流路61には第一例と略同じ検出部34を接続している。   The magnetic substance concentration measuring device of the third example is a modification of the flow path 31 of the pipe through which a fluid such as drain oil flows, and the flow path 61 of the third example has a detection unit 34 that is substantially the same as the first example. Connected.

第二例の配管の流路61は、駆動用ピストンと駆動用シリンダ等を備えたディーゼルエンジン等の機器(図示せず)からドレイン油を排出するものであり、流路61の下流には、水平方向から鉛直方向に湾曲して延在するメイン流路62と、メイン流路62の鉛直方向の部分に配置される閉止手段の開閉弁63と、開閉弁63を回避するよう第一例と略同様に分岐口64と合流口65を形成して配置される分岐流路66と、開閉弁63と分岐口64の間から所定長さで水平方向に延在する延在流路67と、延在流路67の端側とメイン流路62の水平方向の部分とを接続する小径の連絡流路68とを備えている。   The flow path 61 of the pipe of the second example discharges drain oil from a device (not shown) such as a diesel engine provided with a drive piston and a drive cylinder. A main flow path 62 that is curved and extended in the vertical direction from the horizontal direction, an opening / closing valve 63 of the closing means disposed in a vertical portion of the main flow path 62, and the first example to avoid the opening / closing valve 63; A branch channel 66 arranged to form a branch port 64 and a junction port 65 in substantially the same manner, an extended channel 67 extending in a horizontal direction at a predetermined length from between the on-off valve 63 and the branch port 64, A small-diameter communication channel 68 that connects the end side of the extension channel 67 and the horizontal portion of the main channel 62 is provided.

ここで、分岐口64から閉止手段の開閉弁63までのメイン流路62は、古いドレイン油の流体を溜める第一の溜め部69となり、延在流路67と連絡流路68は、新たなドレイン油の流体を受け入れて溜める第二の溜め部70となっている。又、分岐流路66は、第一例と同様に第一の溜め部69から溢れ出したドレイン油を下流側へ流すようになっている。更に、連絡流路68は、メイン流路62の鉛直方向の部分よりも、ドレイン油が最初に流入されるように配置されている。   Here, the main flow path 62 from the branch port 64 to the opening / closing valve 63 of the closing means serves as a first reservoir 69 for accumulating old drain oil fluid, and the extended flow path 67 and the communication flow path 68 are newly provided. The second reservoir 70 receives and stores the drain oil fluid. Further, the branch flow channel 66 is configured to flow the drain oil overflowing from the first reservoir 69 to the downstream side as in the first example. Further, the connecting flow path 68 is arranged so that the drain oil flows in first than the vertical portion of the main flow path 62.

一方、検出部34は、延在流路67と連絡流路68の合流部分に配置されるように第二の溜め部70に開口43を形成する筒状の検出部本体44と、検出部本体44の内部を摺動する流体導出入手段32のピストン32aと、流体導出入手段32のピストン32aを駆動させる駆動手段(図示せず)と、検出部本体44の外周部に配置される検出手段33の複数のコイル46と、コイル46の信号を制御する検出手段33の信号処理部36と、信号処理部36に接続された計測値表示及び異常判定装置37とを備えている。又、検出部34の検出部本体44は、流体の導出入の確実性を高めるために、延在流路67の端部から延在するように配置されている。   On the other hand, the detection unit 34 includes a cylindrical detection unit main body 44 that forms an opening 43 in the second reservoir 70 so as to be disposed at a joining portion of the extension channel 67 and the communication channel 68, and a detection unit main body. The piston 32a of the fluid lead-in / out means 32 that slides inside the 44, the drive means (not shown) for driving the piston 32a of the fluid lead-in / out means 32, and the detection means disposed on the outer periphery of the detection unit main body 44 33, a plurality of coils 46, a signal processing unit 36 of the detection means 33 that controls the signal of the coil 46, and a measurement value display and abnormality determination device 37 connected to the signal processing unit 36. In addition, the detection unit main body 44 of the detection unit 34 is disposed so as to extend from the end of the extension flow path 67 in order to increase the reliability of fluid introduction / extraction.

以下、本発明を実施する形態の第三例の作用を説明する。   Hereinafter, the operation of the third example of the embodiment of the present invention will be described.

ドレイン油に含まれる磁性体粉の濃度を計測する際には、予め検出部34の流体導出入手段32のピストン32aを押し出した状態で配管のメイン流路62の開閉弁63を閉じ、第一の溜め部69及び第二の溜め部70に一定量のドレイン油を溜め、流体導出入手段32を用いて第二の溜め部70のドレイン油を導出入することにより、実施の形態の第一例と略同様に、磁性体の濃度を計測する。   When measuring the concentration of the magnetic powder contained in the drain oil, the on-off valve 63 of the main flow path 62 of the pipe is closed with the piston 32a of the fluid lead-in / out means 32 of the detection unit 34 pushed out in advance. A certain amount of drain oil is stored in the reservoir portion 69 and the second reservoir portion 70, and the drain oil of the second reservoir portion 70 is led in and out using the fluid lead-in / out means 32. As in the example, the concentration of the magnetic material is measured.

このように実施の形態の第三例によれば、第一例と略同様な作用効果を得ることができる。又、実施の形態の第三例において、溜め部は、古い流体を溜める第一の溜め部69と、新たな流体を受け入れて溜める第二の溜め部70を備え、検出部34を第二の溜め部70に接続すると、流体導出入手段32により検出部34内に新たなドレイン油の流体を導入するので、古い流体と新たな流体が混ざることを防止し、流体の磁性体の濃度を連続的に精度良く計測することができる。更に、検出部34の配置と共に第一の溜め部69及び第二の溜め部70により流体へのエアの混入を好適に防止するので、流体の磁性体粉の濃度を連続的に且つ極めて精度良く計測することができる。   As described above, according to the third example of the embodiment, substantially the same operational effects as the first example can be obtained. In the third example of the embodiment, the reservoir includes a first reservoir 69 for storing an old fluid and a second reservoir 70 for receiving and storing a new fluid. When connected to the reservoir 70, a new drain oil fluid is introduced into the detector 34 by the fluid lead-in / out means 32, so that the old fluid and the new fluid are prevented from being mixed and the concentration of the magnetic substance in the fluid is continuously increased. Can be measured accurately. Further, since the first reservoir 69 and the second reservoir 70 together with the arrangement of the detector 34 suitably prevent air from being mixed into the fluid, the concentration of magnetic powder in the fluid is continuously and extremely accurate. It can be measured.

なお、本発明の磁性体濃度計測装置及び磁性体濃度計測方法は、上述の形態例にのみ限定されるものではなく、磁性体の濃度を連続的に測定して外乱や経時変化の影響を排除するものならば、形態例に限定されるものでなく、他の構成や信号処理でも良いこと、流体はドレイン油に限定されるものでなく、他の油、水溶液、水、粉体等でも良いこと、流体導入時の処理工程の信号と、流体排出時の処理工程の信号との差分を求めることができるものならば、手段は限定されるものでなく、他の処理手段でも良いこと、流体導出入手段はピストンの代わりに偏心回転体でも良いこと、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   In addition, the magnetic substance concentration measuring apparatus and the magnetic substance concentration measuring method of the present invention are not limited only to the above-described embodiments. The magnetic substance concentration is continuously measured to eliminate the influence of disturbance and changes with time. If it does, it is not limited to a form example, Other configurations and signal processing may be used, the fluid is not limited to drain oil, and other oil, aqueous solution, water, powder, etc. may be used. The means is not limited as long as the difference between the signal of the processing step at the time of introducing the fluid and the signal of the processing step at the time of discharging the fluid can be obtained, and other processing means may be used. Of course, the lead-in / out means may be an eccentric rotator instead of the piston, and various modifications can be made without departing from the scope of the present invention.

本発明の実施の形態の第一例を示す概念図である。It is a conceptual diagram which shows the 1st example of embodiment of this invention. 本発明の実施の形態の第一例において他の例を示す概念図である。It is a conceptual diagram which shows another example in the 1st example of embodiment of this invention. 本発明の実施の形態における流体導出入手段及び信号処理部の構成を示すブロック図である。It is a block diagram which shows the structure of the fluid extraction / introduction means and signal processing part in embodiment of this invention. 本発明の実施の形態における流体導出入手段及び信号処理部の構成を示す他の例のブロック図である。It is a block diagram of the other example which shows the structure of the fluid extraction / introduction means and signal processing part in embodiment of this invention. 磁性体の影響のない状態で出力信号から比較用の出力値(直流電圧信号)までの処理を示す概念図である。It is a conceptual diagram which shows the process from an output signal to the output value (DC voltage signal) for a comparison in the state which does not have the influence of a magnetic body. 磁性体の影響のある状態で出力信号から磁性体の濃度用の出力値(直流電圧信号)までの処理を示す概念図である。It is a conceptual diagram which shows the process from an output signal to the output value (DC voltage signal) for the density | concentration of a magnetic body in the state which has the influence of a magnetic body. 磁性体(検査対象物)の濃度等を求めて摺動物の摺動状態を判定するフロー図である。It is a flowchart which calculates | requires the density | concentration etc. of a magnetic body (inspection object), and determines the sliding state of a sliding object. 実際に検査対象物を測定した際の検出状態を示すグラフである。It is a graph which shows the detection state at the time of actually measuring a test object. 本発明の実施の形態の第二例を示す概略図である。It is the schematic which shows the 2nd example of embodiment of this invention. 本発明の実施の形態の第二例における流体導出入手段及び信号処理部の構成を示すブロック図である。It is a block diagram which shows the structure of the fluid extraction / introduction means and signal processing part in the 2nd example of embodiment of this invention. 本発明の実施の形態の第二例における流体導出入手段及び信号処理部の構成を示す他の例のブロック図である。It is a block diagram of the other example which shows the structure of the fluid extraction / introduction means and signal processing part in the 2nd example of embodiment of this invention. 本発明の実施の形態の第三例を示す概略図である。It is the schematic which shows the 3rd example of embodiment of this invention.

符号の説明Explanation of symbols

1 流路
2 流体導出入手段(駆動手段)
2a ピストン
3 検出手段
4 検出部
5 信号処理装置
6 信号処理部(計測手段)
7 計測値表示及び異常判定装置(警告手段)
11 コイル
11a 励磁用コイル
11b 検出用コイル(出力用コイル)
11c 励磁用コイル
11d 検出用コイル(出力用コイル)
14 正弦波発振回路(発振回路)
31 流路
32 流体導出入手段
32a ピストン
33 検出手段
34 検出部
35 ロックインアンプ
36 信号処理部
37 計測値表示及び異常判定装置(警告手段)
46 コイル
46a 励磁用コイル
46b 検出用コイル(出力用コイル)
49 正弦波発振回路(発振回路)
61 流路
70 第二の溜め部
1 channel 2 fluid lead-in / out means (drive means)
2a Piston 3 Detection means 4 Detection section 5 Signal processing device 6 Signal processing section (measurement means)
7 Measurement value display and abnormality determination device (warning means)
11 Coil 11a Excitation coil 11b Detection coil (Output coil)
11c Excitation coil 11d Detection coil (Output coil)
14 Sine wave oscillation circuit (oscillation circuit)
Reference Signs List 31 Flow path 32 Fluid lead-in / out means 32a Piston 33 Detection means 34 Detection section 35 Lock-in amplifier 36 Signal processing section 37 Measurement value display and abnormality determination device (warning means)
46 Coil 46a Excitation coil 46b Detection coil (Output coil)
49 Sine wave oscillator (oscillator)
61 Flow path 70 Second reservoir

Claims (24)

励磁用コイルと、該励磁用コイルに交流電流が流れると励磁電圧を発生する出力用コイルとを備える磁性体濃度計測装置であって、前記励磁用コイルの電圧と前記出力用コイルの電圧との間の位相差の変化を計測する計測手段を有し、検査対象物と、前記励磁用コイル又は/及び出力用コイルとを接近させるときに発生する前記位相差の変化から磁性体の濃度を把握することを特徴とする磁性体濃度計測装置。   A magnetic substance concentration measuring device comprising an excitation coil and an output coil that generates an excitation voltage when an alternating current flows through the excitation coil, wherein the voltage of the excitation coil and the voltage of the output coil Measuring means for measuring the change in phase difference between them, and grasping the concentration of the magnetic material from the change in phase difference generated when the inspection object is brought close to the excitation coil and / or the output coil A magnetic substance concentration measuring device. 前記計測手段にロックインアンプを使用したことを特徴とする請求項1に記載の磁性体濃度計測装置。   2. The magnetic substance concentration measuring apparatus according to claim 1, wherein a lock-in amplifier is used as the measuring means. 前記ロックインアンプのリファレンス信号として前記励磁用コイルの電圧を用いたことを特徴とする請求項2に記載の磁性体濃度計測装置。   3. The magnetic substance concentration measuring apparatus according to claim 2, wherein a voltage of the exciting coil is used as a reference signal for the lock-in amplifier. 検査対象物と前記励磁用コイル又は/及び出力用コイルとを接近させる手段として、磁性体を含む流体が流れる流路又は磁性体を含む流体が溜る溜り部から検査対象物を導入する駆動手段を有することを特徴とする請求項1〜3のいずれかに記載の磁性体濃度計測装置。   As means for bringing the inspection object close to the exciting coil and / or the output coil, driving means for introducing the inspection object from a flow path through which the fluid containing the magnetic body flows or a reservoir in which the fluid containing the magnetic body accumulates. The magnetic substance concentration measuring apparatus according to claim 1, wherein the magnetic substance concentration measuring apparatus is provided. 磁性体を含む流体が流下する流路、又は磁性体を含む流体が溜まる溜り部に接続されて流体導出入手段及び検出手段を配する検出部と、前記検出手段に接続されてロックインアンプを配する信号処理部とを備え、前記検出部は、流体導出入手段により流体を導出入し且つ検出手段を介して交流電圧の出力信号から流体導入時の磁性体の検出信号と流体排出時の補正用検出信号とを取得し、前記信号処理部は、同一周波数のリファレンス信号を用いてロックインアンプにより前記各信号からノイズ除去を行うと同時に、前記各信号とリファレンス信号との位相差を検出し、検出した位相差の量に応じて直流電圧信号に変換し、変換後の各値の差分を磁性体の濃度として検出するように構成されたことを特徴とする磁性体濃度計測装置。   A flow path through which a fluid containing magnetic material flows, or a detection section that is connected to a reservoir section in which fluid containing the magnetic body is accumulated to provide fluid lead-in / out means and detection means; and a lock-in amplifier connected to the detection means A signal processing unit arranged, wherein the detection unit derives and introduces the fluid by the fluid introduction / extraction means and detects the detection signal of the magnetic substance at the time of fluid introduction from the output signal of the AC voltage via the detection unit and The correction processing signal is acquired, and the signal processing unit removes noise from each signal by a lock-in amplifier using a reference signal having the same frequency and simultaneously detects a phase difference between each signal and the reference signal. Then, the magnetic substance concentration measuring apparatus is configured to convert the converted value into a DC voltage signal according to the detected amount of phase difference, and to detect the difference between the converted values as the concentration of the magnetic substance. 磁性体を含む流体が流下する流路、又は磁性体を含む流体が溜まる溜り部に接続されて流体導出入手段及び検出手段を配する検出部と、前記検出手段に接続されてロックインアンプを配する信号処理部とを備え、前記検出部は、流体導出入手段により流体を導出入し且つ検出手段を介して流体導入時の磁性体の検出信号と流体排出時の補正用検出信号とを取得し、前記信号処理部は、同一周波数のリファレンス信号を用いてロックインアンプにより前記各信号からノイズ除去を行ったのち直流電圧信号に変換し、変換後の各値の差分を磁性体の濃度として検出するように構成されたことを特徴とする磁性体濃度計測装置。   A flow path through which a fluid containing magnetic material flows, or a detection section that is connected to a reservoir section in which fluid containing the magnetic body is accumulated to provide fluid lead-in / out means and detection means; and a lock-in amplifier connected to the detection means A signal processing unit arranged, wherein the detection unit extracts a fluid detection signal when the fluid is introduced and fluid is introduced by the fluid introduction / extraction unit, and a correction detection signal when the fluid is discharged via the detection unit. The signal processing unit obtains noise from each signal by a lock-in amplifier using a reference signal having the same frequency, converts the signal into a DC voltage signal, and converts the difference between the converted values to the concentration of the magnetic material. A magnetic substance concentration measuring device configured to detect as: 前記信号処理部は、リファレンス信号の位相又は磁性体の検出信号の位相をずらし、磁性体の非検出時に、出力信号を直流電圧信号に変換した値をゼロに近づけるように構成されたことを特徴とする請求項5又は6に記載の磁性体濃度計測装置。   The signal processing unit is configured to shift a phase of a reference signal or a phase of a detection signal of a magnetic material so that a value obtained by converting an output signal into a DC voltage signal is close to zero when the magnetic material is not detected. The magnetic substance concentration measuring device according to claim 5 or 6. 前記検出手段は、磁性体の検出信号を取得する出力用コイルと、励磁用コイルとを備え、前記励磁用コイルに交流電圧を印加して出力用コイルに交流電圧の出力信号を生じさせ、前記出力信号から磁性体の検出信号又は補正用検出信号を取得すると共に、前記励磁用コイルに接続された発振回路からリファレンス信号を取得するように構成されたことを特徴とする請求項5又は6に記載の磁性体濃度計測装置。   The detection means includes an output coil for obtaining a detection signal of a magnetic material, and an excitation coil, and an AC voltage is applied to the excitation coil to generate an output signal of the AC voltage in the output coil. 7. The configuration according to claim 5, wherein a detection signal for magnetic substance or a detection signal for correction is obtained from the output signal, and a reference signal is obtained from an oscillation circuit connected to the excitation coil. The magnetic substance concentration measuring apparatus described. 前記検出手段は、複数の励磁用コイルを互いに逆方向に巻いて配置すると共に、検出用コイルを複数の励磁用コイルの間に配置し、前記検出用コイルの出力信号が小さくなるように構成されたことを特徴とする請求項5、6、8のいずれかに記載の磁性体濃度計測装置。   The detection means is configured such that a plurality of excitation coils are wound in opposite directions and the detection coil is disposed between the plurality of excitation coils so that the output signal of the detection coil is reduced. The magnetic substance concentration measuring apparatus according to claim 5, wherein the magnetic substance concentration measuring apparatus is a magnetic substance concentration measuring apparatus according to claim 5. 前記流体導出入手段は、ピストンの往復動で流体を導出入するように構成されたことを特徴とする請求項5又は6に記載の磁性体濃度計測装置。   The magnetic substance concentration measuring device according to claim 5 or 6, wherein the fluid lead-in / out means is configured to lead in / out the fluid by a reciprocating motion of a piston. 磁性体を含む検査対象物、又は磁性体を含む流体から、磁性体の濃度、濃度の変化率、濃度変化の振幅、濃度変化の周期、多点計測時における濃度偏差のうち少なくとも一つ以上の情報を取得し、予め求めた磁性体の濃度と摺動物の状態との相関関係より、摺動物の状態を判断するように構成したことを特徴とする請求項1〜10のいずれかに記載の磁性体濃度計測装置。   From a test object containing a magnetic substance or a fluid containing a magnetic substance, at least one of the concentration of the magnetic substance, the change rate of the density, the amplitude of the density change, the period of the density change, and the concentration deviation during multipoint measurement The information is obtained, and the state of the sliding object is determined from the correlation between the magnetic substance concentration obtained in advance and the state of the sliding object. Magnetic substance concentration measuring device. 摺動物の状態に応じて警告又は/及び警報を発する警告手段を備えたことを特徴とする請求項11に記載の磁性体濃度計測装置。   12. The magnetic substance concentration measuring device according to claim 11, further comprising warning means for issuing a warning or / and a warning according to the state of the sliding object. 摺動物の状態に応じて、摺動物に対する潤滑流体の供給量、供給時期、供給圧力、供給温度、潤滑流体の噴射方法、潤滑流体の性状を制御するように構成したことを特徴とする請求項11に記載の磁性体濃度計測装置。   The lubricating fluid supply amount, the supply timing, the supply pressure, the supply temperature, the lubricating fluid injection method, and the properties of the lubricating fluid are controlled in accordance with the state of the sliding object. 11. The magnetic substance concentration measuring apparatus according to 11. 励磁用コイルと、該励磁用コイルに交流電流が流れると励磁電圧を発生する出力用コイルとを用いる磁性体濃度計測方法であって、検査対象物と、前記励磁用コイル又は/及び出力用コイルとを接近させたときの前記励磁用コイルの電圧と前記出力用コイルの電圧との間の位相差の変化を計測して、磁性体の濃度を把握することを特徴とする磁性体濃度計測方法。   A magnetic substance concentration measurement method using an excitation coil and an output coil that generates an excitation voltage when an alternating current flows through the excitation coil, the inspection object and the excitation coil or / and the output coil And measuring the change in phase difference between the voltage of the exciting coil and the voltage of the output coil when approaching each other, and grasping the concentration of the magnetic material, . 前記出力用コイルの電圧信号を部分的に位相反転し、直流化して位相差の変化を計測することを特徴とする請求項14に記載の磁性体濃度計測方法。   The magnetic substance concentration measuring method according to claim 14, wherein a phase difference of the voltage signal of the output coil is partially inverted and converted into a direct current to measure a change in phase difference. 前記励磁用コイルの電圧信号を用いて、前記出力用コイルの電圧信号を部分的に位相反転させることを特徴とする請求項14又は15に記載の磁性体濃度計測方法。   The magnetic substance concentration measuring method according to claim 14 or 15, wherein a phase of the voltage signal of the output coil is partially inverted using a voltage signal of the excitation coil. 前記検査対象物は、磁性体を含む流体が流れる流路又は磁性体を含む流体が溜まる溜り部から導入されて前記励磁用コイル又は/及び出力用コイルに接近させることを特徴とする請求項14〜16のいずれかに記載の磁性体濃度計測方法。   15. The inspection object is introduced from a flow path through which a fluid containing a magnetic body flows or a reservoir portion in which a fluid containing a magnetic body is accumulated, and is brought close to the exciting coil and / or the output coil. The magnetic substance density | concentration measuring method in any one of -16. 磁性体を含む流体が流下する流路、又は磁性体を含む流体が溜まる溜り部から検出部へ流体を導入し、検出部の流体から磁性体の検出信号を取得すると共に同一周波数のリファレンス信号を準備し、磁性体の検出信号と同一周波数のリファレンス信号とをあわせてロックインアンプによりノイズ除去を行い、磁性体の濃度用の出力値として直流電圧信号に変換するように処理される流体導入時の処理工程と、
前記検出部から流体を排出し、検出部内の補正用検出信号を取得すると共に同一周波数のリファレンス信号を準備し、補正用検出信号と同一周波数のリファレンス信号とをあわせてロックインアンプによりノイズ除去を行い、比較用の出力値として直流電圧信号に変換するように処理される流体排出時の処理工程とを備え、
前記磁性体の濃度用の出力値を、前記比較用の出力値により補正することを特徴とする磁性体濃度計測方法。
The fluid is introduced from the flow path through which the fluid containing the magnetic material flows or the reservoir containing the fluid containing the magnetic material to the detection unit, and the detection signal of the magnetic material is acquired from the fluid of the detection unit and the reference signal of the same frequency is obtained. At the time of introducing a fluid that is prepared and processed so that the detection signal of the magnetic substance and the reference signal of the same frequency are combined to remove noise by a lock-in amplifier and converted to a DC voltage signal as an output value for the concentration of the magnetic substance Processing steps of
The fluid is discharged from the detection unit, the detection signal for correction in the detection unit is acquired, and a reference signal having the same frequency is prepared, and noise is removed by a lock-in amplifier by combining the detection signal for correction and the reference signal of the same frequency. And a processing step at the time of fluid discharge processed so as to be converted into a DC voltage signal as an output value for comparison,
A magnetic substance concentration measuring method, wherein an output value for concentration of the magnetic substance is corrected by the output value for comparison.
流体導入時の処理工程及び流体排出時の処理工程で、交流電圧の出力信号から磁性体の検出信号及び補正用検出信号を取得し、磁性体の検出信号及び補正用検出信号と、同一周波数のリファレンス信号とをあわせてロックインアンプにより前記各信号からノイズ除去を行うと同時に、前記各信号とリファレンス信号との位相差を検出し、検出した位相差の量に応じて磁性体の濃度用の出力値及び比較用の出力値に変換することを特徴とする請求項18に記載の磁性体濃度計測方法。   In the processing step at the time of introducing the fluid and the processing step at the time of discharging the fluid, the detection signal of the magnetic material and the detection signal for correction are obtained from the output signal of the alternating voltage, and the detection signal of the magnetic material and the detection signal for correction have the same frequency. At the same time, noise is removed from each signal by a lock-in amplifier together with the reference signal, and at the same time, the phase difference between each signal and the reference signal is detected. 19. The magnetic substance concentration measuring method according to claim 18, wherein the magnetic substance concentration measuring method is converted into an output value and an output value for comparison. 流体導入時の処理工程と、流体排出時の処理工程とを交互に連続的に繰り返すことにより、磁性体の濃度用の出力値と、比較用の出力値とから差分を更に直流電圧信号に変換し、予め求めた相関性によって前記差分を磁性体の濃度に変換し、外乱や経時変化による計測誤差を排除することを特徴とする請求項18又は19に記載の磁性体濃度計測方法。   By alternately and alternately repeating the treatment process at the time of fluid introduction and the treatment process at the time of fluid discharge, the difference is further converted into a DC voltage signal from the output value for the concentration of the magnetic substance and the output value for comparison. 20. The magnetic substance concentration measuring method according to claim 18 or 19, wherein the difference is converted into a magnetic substance concentration according to a correlation obtained in advance to eliminate a measurement error due to a disturbance or a change with time. 前記リファレンス信号の位相又は磁性体の検出信号の位相をずらし、信号処理装置の出力信号を直流電圧信号に変換した値をゼロに近づけることを特徴とする請求項18〜20のいずれかに記載の磁性体濃度計測方法。   The phase of the reference signal or the detection signal of the magnetic material is shifted, and the value obtained by converting the output signal of the signal processing device into a DC voltage signal is brought close to zero. Magnetic substance concentration measurement method. 磁性体を含む検査対象物、又は磁性体を含む流体から、磁性体の濃度、濃度の変化率、濃度変化の振幅、濃度変化の周期、多点計測時における濃度偏差のうち少なくとも一つ以上の情報を取得し、予め求めた磁性体の濃度と摺動物の状態との相関関係より、摺動物の状態を判断することを特徴とする請求項18〜21のいずれかに記載の磁性体濃度計測方法。   From a test object containing a magnetic substance or a fluid containing a magnetic substance, at least one of the concentration of the magnetic substance, the change rate of the density, the amplitude of the density change, the period of the density change, and the concentration deviation at the time of multipoint measurement. The magnetic substance concentration measurement according to any one of claims 18 to 21, wherein information is obtained, and the state of the sliding object is determined from a correlation between the magnetic substance concentration obtained in advance and the state of the sliding object. Method. 摺動物の状態に応じて警告又は/及び警報を発することを特徴とする請求項22に記載の磁性体濃度計測方法。   23. The magnetic substance concentration measuring method according to claim 22, wherein a warning or / and a warning are issued according to the state of the sliding object. 摺動物の状態に応じて、摺動物に対する潤滑流体の供給量、供給時期、供給圧力、供給温度、潤滑流体の噴射方法、潤滑流体の性状を制御することを特徴とする請求項22に記載の磁性体濃度計測方法。
23. The lubrication fluid supply amount, supply timing, supply pressure, supply temperature, lubrication fluid injection method, and lubrication fluid properties to the slide are controlled according to the state of the slide. Magnetic substance concentration measurement method.
JP2007102171A 2006-05-30 2007-04-09 Magnetic substance concentration measuring device and magnetic substance concentration measuring method Active JP5165269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007102171A JP5165269B2 (en) 2006-05-30 2007-04-09 Magnetic substance concentration measuring device and magnetic substance concentration measuring method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006149383 2006-05-30
JP2006149383 2006-05-30
JP2007102171A JP5165269B2 (en) 2006-05-30 2007-04-09 Magnetic substance concentration measuring device and magnetic substance concentration measuring method

Publications (2)

Publication Number Publication Date
JP2008008885A true JP2008008885A (en) 2008-01-17
JP5165269B2 JP5165269B2 (en) 2013-03-21

Family

ID=39067210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007102171A Active JP5165269B2 (en) 2006-05-30 2007-04-09 Magnetic substance concentration measuring device and magnetic substance concentration measuring method

Country Status (1)

Country Link
JP (1) JP5165269B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010054199A (en) * 2008-08-26 2010-03-11 Japan Steel Works Ltd:The Method of inspecting deterioration of ball screw mechanism
WO2010103824A1 (en) * 2009-03-12 2010-09-16 株式会社Ihi Hard particle concentration detection method, particle concentration detection method, and device therefor
JP2010210566A (en) * 2009-03-12 2010-09-24 Ihi Corp Method for detecting concentration of hard particle
JP2011133292A (en) * 2009-12-24 2011-07-07 Ihi Corp Method and device for detecting concentration of particles
JP2011220204A (en) * 2010-04-08 2011-11-04 Diesel United:Kk State monitoring operation method for diesel engine
KR101307298B1 (en) * 2011-10-24 2013-09-11 한국건설생활환경시험연구원 Concrete recovery water concentration measuring apparatus using inductance and measuring method using the same
EP2772754A1 (en) * 2011-10-24 2014-09-03 JFE Steel Corporation Measuring method and measuring device for apparent density of metallic powder, production method and production device for mixed powder, and production method and production device for powder compact
EP3220168A1 (en) * 2016-03-14 2017-09-20 Safran Aero Booster S.A. Particle sensor in a fluid of a lubrication system
JP2019066212A (en) * 2017-09-29 2019-04-25 オムロン株式会社 State determination unit, detection device, state determination method, and state determination program
CN112014889A (en) * 2019-05-31 2020-12-01 株式会社日立大厦系统 Metal impurity inspection device
WO2021033238A1 (en) * 2019-08-19 2021-02-25 株式会社Ihi原動機 Magnetic body concentration measurement device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5529734A (en) * 1978-08-24 1980-03-03 Mitsubishi Heavy Ind Ltd Defacement measuring method of piston ring
JPH0726758U (en) * 1992-02-07 1995-05-19 東京瓦斯株式会社 Receiver coil for remote field eddy current flaw detector
JP2001023833A (en) * 1999-07-13 2001-01-26 Hitachi Metals Ltd Coil block and toner sensor
JP2002296893A (en) * 2001-03-30 2002-10-09 Ricoh Co Ltd Toner concentration detector, image forming apparatus or digital copying machine using the detector, magnetic body detector, and conductor detector
JP2003232776A (en) * 2002-02-08 2003-08-22 Marktec Corp Eddy current flaw detecting apparatus and method
JP2005299459A (en) * 2004-04-09 2005-10-27 Diesel United:Kk Engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5529734A (en) * 1978-08-24 1980-03-03 Mitsubishi Heavy Ind Ltd Defacement measuring method of piston ring
JPH0726758U (en) * 1992-02-07 1995-05-19 東京瓦斯株式会社 Receiver coil for remote field eddy current flaw detector
JP2001023833A (en) * 1999-07-13 2001-01-26 Hitachi Metals Ltd Coil block and toner sensor
JP2002296893A (en) * 2001-03-30 2002-10-09 Ricoh Co Ltd Toner concentration detector, image forming apparatus or digital copying machine using the detector, magnetic body detector, and conductor detector
JP2003232776A (en) * 2002-02-08 2003-08-22 Marktec Corp Eddy current flaw detecting apparatus and method
JP2005299459A (en) * 2004-04-09 2005-10-27 Diesel United:Kk Engine

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010054199A (en) * 2008-08-26 2010-03-11 Japan Steel Works Ltd:The Method of inspecting deterioration of ball screw mechanism
US8659287B2 (en) 2009-03-12 2014-02-25 Ihi Corporation Hard particle concentration detecting method
WO2010103824A1 (en) * 2009-03-12 2010-09-16 株式会社Ihi Hard particle concentration detection method, particle concentration detection method, and device therefor
JP2010210566A (en) * 2009-03-12 2010-09-24 Ihi Corp Method for detecting concentration of hard particle
KR101196251B1 (en) 2009-03-12 2012-11-05 가부시키가이샤 디젤 유나이티드 Hard particle concentration detection method
JP2011133292A (en) * 2009-12-24 2011-07-07 Ihi Corp Method and device for detecting concentration of particles
JP2011220204A (en) * 2010-04-08 2011-11-04 Diesel United:Kk State monitoring operation method for diesel engine
EP2772754A1 (en) * 2011-10-24 2014-09-03 JFE Steel Corporation Measuring method and measuring device for apparent density of metallic powder, production method and production device for mixed powder, and production method and production device for powder compact
KR101307298B1 (en) * 2011-10-24 2013-09-11 한국건설생활환경시험연구원 Concrete recovery water concentration measuring apparatus using inductance and measuring method using the same
EP2772754A4 (en) * 2011-10-24 2015-01-07 Jfe Steel Corp Measuring method and measuring device for apparent density of metallic powder, production method and production device for mixed powder, and production method and production device for powder compact
US10092952B2 (en) 2011-10-24 2018-10-09 Jfe Steel Corporation Method and apparatus for measuring apparent density of metal powder, method and apparatus for producing mixed powder, and method and apparatus for producing powder compact
EP3220168A1 (en) * 2016-03-14 2017-09-20 Safran Aero Booster S.A. Particle sensor in a fluid of a lubrication system
WO2017157855A1 (en) * 2016-03-14 2017-09-21 Safran Aero Boosters S.A. Sensor for detecting particles in a fluid of a lubrication system
JP2019066212A (en) * 2017-09-29 2019-04-25 オムロン株式会社 State determination unit, detection device, state determination method, and state determination program
CN112014889A (en) * 2019-05-31 2020-12-01 株式会社日立大厦系统 Metal impurity inspection device
WO2021033238A1 (en) * 2019-08-19 2021-02-25 株式会社Ihi原動機 Magnetic body concentration measurement device
JPWO2021033238A1 (en) * 2019-08-19 2021-02-25
JP7245916B2 (en) 2019-08-19 2023-03-24 株式会社Ihi原動機 Magnetic concentration measuring device
US11906465B2 (en) 2019-08-19 2024-02-20 Mitsui E&S Du Co., Ltd. Magnetic material concentration measuring device

Also Published As

Publication number Publication date
JP5165269B2 (en) 2013-03-21

Similar Documents

Publication Publication Date Title
JP5165269B2 (en) Magnetic substance concentration measuring device and magnetic substance concentration measuring method
KR101351287B1 (en) Magnetic substance concentration measuring device and Magnetic substance concentration measuring method
US7956601B2 (en) Device and process for detecting particles in a flowing liquid
US9651411B2 (en) Electromagnetic flowmeter and self-diagnosing method of exciting circuit unit thereof
US8354836B2 (en) Device and process for detecting particles in a flowing liquid
US20150219731A1 (en) Magnetic field detecting device
EP2998758A3 (en) Magnetometer without servo control and with compensation of fluctuations of the weak field resonance slope, array of magnetometers and measurement method
US9797851B2 (en) Integrated ultrasonic-inductive pulse sensor for wear debris detection
WO2010103824A1 (en) Hard particle concentration detection method, particle concentration detection method, and device therefor
JP2012177612A (en) Signal processing apparatus and laser measurement instrument
JP5155588B2 (en) Conductor concentration measuring apparatus and conductor concentration measuring method
US10132747B2 (en) Absorption spectrometer
WO2007129462A1 (en) Conductive material concentration measuring device and magnetic material concentration measuring material
EP3144644B1 (en) Method and apparatus for interference reduction
MX2021002335A (en) Method and device for measuring a flow velocity of a gas stream.
JP4389033B2 (en) Phase monitoring metal detector
US20060283235A1 (en) Leak rate measuring device
WO2012115150A1 (en) Signal processing device and laser measurement device
JP6777452B2 (en) Conductor concentration measuring device
RU2642148C1 (en) Displacement controller
JP5129974B2 (en) Conductor concentration measuring apparatus and magnetic substance concentration measuring apparatus
Zhan A new on-line wear debris detector in lubrication oil
KR101651045B1 (en) Pipe nondestructive inspection system using parallel signal processing structure and inspection method using the same
dos Santos et al. Capacitive measuring system for two-phase flow monitoring
RU2191360C2 (en) Device testing condition of object

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5165269

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250