JP2008008388A - High-pressure gas supply method - Google Patents

High-pressure gas supply method Download PDF

Info

Publication number
JP2008008388A
JP2008008388A JP2006178785A JP2006178785A JP2008008388A JP 2008008388 A JP2008008388 A JP 2008008388A JP 2006178785 A JP2006178785 A JP 2006178785A JP 2006178785 A JP2006178785 A JP 2006178785A JP 2008008388 A JP2008008388 A JP 2008008388A
Authority
JP
Japan
Prior art keywords
pressure
gas
low
pressure side
side line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006178785A
Other languages
Japanese (ja)
Other versions
JP4886386B2 (en
Inventor
Shigeru Tsuchiya
茂 土屋
Ikuhisa Kano
郁久 加納
Nobuyuki Takahashi
伸之 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2006178785A priority Critical patent/JP4886386B2/en
Publication of JP2008008388A publication Critical patent/JP2008008388A/en
Application granted granted Critical
Publication of JP4886386B2 publication Critical patent/JP4886386B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of reliably supplying high pressure gas via an on-off valve partitioning a high pressure side line from a low-pressure side line from a high-pressure side to a low pressure side in supply facilities which supply the high-pressure gas such as oxygen or oxygen mixed gas to a filling container while securing safety and improving gas supply efficiency by suppressing the sudden temperature rise of the gas due to the previous adiabatic compression of pressure in the low-pressure side line with the supply of the high-pressure gas. <P>SOLUTION: The high-pressure gas is supplied to the low-pressure side pipe via the on-off valve partitioning a high-pressure side pipe from a low-pressure side pipe. In this case, a bypass line via which the high-pressure side pipe and the low-pressure side pipe are connected to each other over the on-off valve partitioning the high-pressure side pipe from the low-pressure side pipe and which has the on-off valve and a pressure rise control means on the upstream and/or downstream side of the on-off valve is used for controlling pressure in the low-pressure side pipe, or liquefied gas in a liquefied gas storage tank is gasified or heated, as it is, and supplied to the low-pressure side pipe on the downstream side of the on-off valve partitioning the high-pressure side pipe from the low-pressure side pipe to control the pressure in the low-pressure side pipe. Then, the high-pressure gas is introduced. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、酸素又は酸素混合ガス等の高圧ガスを充填容器に供給する供給設備において、高圧側ラインと低圧側ラインとを仕切る開閉弁を介して、高圧側ラインから低圧側ライン末端の充填容器に高圧ガスを供給、充填する高圧ガスを供給する方法に関する。   The present invention relates to a supply container for supplying a high-pressure gas such as oxygen or an oxygen mixed gas to a filling container, from a high-pressure side line to a filling container at the end of the low-pressure side line via an on-off valve that partitions the high-pressure side line and the low-pressure side line. The present invention relates to a method for supplying high-pressure gas to be supplied and filled.

一般的に酸素又は酸素混合ガス充填工場では、液化ガス貯槽内の液化ガスを圧縮機で昇圧したのち、蒸発器で気化させた高圧ガスを、開閉弁等の複数の弁類が設けられた供給ラインにより、酸素ボンベ等の充填容器に所要の圧力に充填する方法が採用されている。高圧側ラインから低圧側ラインへ高圧ガスを供給する供給ラインに設けられたこれらの弁類を介して供給するとき、高圧側ラインと低圧側ラインとを仕切る開閉弁(1次開閉弁)を閉止状態から開放して高圧ガスを供給する際、該1次開閉弁の上流側のガス圧力が高く、該1次開閉弁の下流側のガス圧力が低いときには、ガス圧力の差圧によりガスが急激に下流側ライン内へ流入し、下流側に設置されている圧力調整弁や開閉弁などの2次弁類が閉止状態となっているとき、前記弁類部分において生じる断熱圧縮に伴いガス温度が急激に上昇し、該2次弁類のガスケットやダイヤフラム等の有機材料で構成されている部材が劣化する虞がある。
これらの有機材料からなる部材はガス漏れを防止したり、ガス流量を調節するために設けられているものであるが、劣化によりその機能を十分に発揮することができなくなり、高圧ガスを安全かつ確実に充填容器へ供給することができなくなるトラブルを起こす虞がある。
Generally, in a factory filled with oxygen or oxygen mixed gas, after the pressure of the liquefied gas in the liquefied gas storage tank is increased by a compressor, the high-pressure gas vaporized by the evaporator is provided with a plurality of valves such as on-off valves. A method of filling a filling container such as an oxygen cylinder to a required pressure by a line is adopted. When supplying the high-pressure gas from the high-pressure side line to the low-pressure side line via these valves, the on-off valve (primary on-off valve) that separates the high-pressure side line from the low-pressure side line is closed. When the high pressure gas is supplied after being released from the state, when the gas pressure on the upstream side of the primary on-off valve is high and the gas pressure on the downstream side of the primary on-off valve is low, the gas rapidly increases due to the differential pressure of the gas pressure. When the secondary valves such as the pressure regulating valve and the on-off valve installed on the downstream side are closed, the gas temperature is increased due to adiabatic compression that occurs in the valve parts. There is a risk that the member may be rapidly raised and a member made of an organic material such as a gasket or a diaphragm of the secondary valve may deteriorate.
The members made of these organic materials are provided to prevent gas leakage or adjust the gas flow rate. There is a possibility of causing a trouble that it cannot be reliably supplied to the filling container.

また、酸素又は酸素混合ガスのごとき支燃性高圧ガスの場合、前記ガスケットやダイヤフラムなどの有機材料等が、前記断熱圧縮に伴う急激なガス温度の上昇により自然発火し、火災事故に至ることがあり、また急激な温度上昇に伴う発火により爆発を引き起こす危険性がある。   In addition, in the case of combustion-supporting high-pressure gas such as oxygen or oxygen mixed gas, organic materials such as gaskets and diaphragms may spontaneously ignite due to a sudden rise in gas temperature accompanying the adiabatic compression, resulting in a fire accident. In addition, there is a danger of causing an explosion due to ignition accompanying rapid temperature rise.

したがって、酸素又は酸素混合ガスのごとき支燃性高圧ガスを供給する設備において、高圧側ラインと低圧側ラインとを仕切る1次開閉弁を閉止状態から開放して低圧側ラインに高圧ガスを供給するに際して、低圧側ライン内圧を断熱圧縮に伴うガス温度の急激な上昇を抑制することが重要である。   Therefore, in a facility for supplying a combustion-supporting high-pressure gas such as oxygen or an oxygen mixed gas, the primary on-off valve that partitions the high-pressure side line and the low-pressure side line is opened from the closed state, and the high-pressure gas is supplied to the low-pressure side line. At this time, it is important to suppress a rapid increase in gas temperature accompanying adiabatic compression of the low-pressure line internal pressure.

高圧酸素、酸素を含有する高圧気体、あるいは例えば水素やアセチレン等の高圧可燃性気体などの危険性高圧気体を送給管へ供給する際に起こる自然発火の危険性を防ぐ高圧危険性気体の送給方法として、例えば、特許文献1に危険性高圧気体送給配管内に、危険性高圧気体を供給する前に供給配管内に高圧不活性ガスを供給し、次いで危険性高圧気体を供給して危険性高圧気体を不活性高圧気体で置換して発火を防止する方法が開示されている。   High-pressure oxygen, high-pressure gas containing oxygen, or high-pressure flammable gas such as hydrogen or acetylene Hazardous high-pressure gas that prevents the risk of spontaneous ignition that occurs when high-pressure gas is supplied to the supply pipe As a supply method, for example, in Patent Document 1, a high-pressure inert gas is supplied into a supply pipe before supplying a high-pressure gas, and then a high-pressure gas is supplied. A method for preventing ignition by replacing dangerous high pressure gas with inert high pressure gas is disclosed.

特許第3462099号公報Japanese Patent No. 3462099

しかしながら、上記の特許文献1に開示された方法は、危険性高圧ガスを不活性ガスで置換して発火を防止するものであり、酸素又は酸素混合ガス等の高圧ガスを充填容器に供給、充填する場合には充填する高圧ガスに不活性ガスが混入し高純度の酸素又は酸素混合ガス等をガスボンベ等の充填容易に充填する場合には適用できない。   However, the method disclosed in Patent Document 1 described above replaces a dangerous high-pressure gas with an inert gas to prevent ignition, and supplies and fills a filling container with a high-pressure gas such as oxygen or an oxygen mixed gas. In this case, the method cannot be applied to the case where an inert gas is mixed in the high-pressure gas to be filled and high-purity oxygen or an oxygen mixed gas is easily filled in a gas cylinder or the like.

本発明は、前記特許文献1に開示されたような不活性ガスを使用することなく、酸素又は酸素混合ガス等の高圧ガスを充填容器に供給する供給設備において、高圧側ラインと低圧側ラインとを仕切る開閉弁を介して高圧側から低圧側へ高圧ガスを供給するに際し、予め低圧側ライン内圧を昇圧し、高圧ガスの導入に伴う断熱圧縮による急激なガス温度の上昇を抑制して、安全性を確保してガス供給効率を高め確実に高圧ガスを供給する方法を提供するものである。   The present invention provides a high pressure side line and a low pressure side line in a supply facility for supplying a high pressure gas such as oxygen or an oxygen mixed gas to a filling container without using an inert gas as disclosed in Patent Document 1. When supplying high-pressure gas from the high-pressure side to the low-pressure side via the on-off valve that divides the pressure, the internal pressure of the low-pressure side is increased in advance, and a sudden increase in gas temperature due to adiabatic compression accompanying the introduction of high-pressure gas is suppressed to ensure safety. It is intended to provide a method of ensuring high performance and increasing gas supply efficiency to reliably supply high-pressure gas.

すなわち、本発明は、
(1)高圧ガスを充填容器に供給する供給設備において、前記高圧ガスが流通する高圧側ラインと前記充填容器に連なる低圧側ラインとを仕切る開閉弁を介して高圧ガスを低圧側ラインに供給するに際し、低圧側ラインの内圧を予め昇圧した後、前記開閉弁を開放し高圧ガスを供給することを特徴とする高圧ガス供給方法であり、
That is, the present invention
(1) In a supply facility for supplying high-pressure gas to a filling container, high-pressure gas is supplied to the low-pressure side line through an on-off valve that partitions a high-pressure side line through which the high-pressure gas flows and a low-pressure side line connected to the filling container. In this case, after increasing the internal pressure of the low-pressure side line in advance, the high-pressure gas supply method characterized in that the high-pressure gas is supplied by opening the on-off valve,

(2)前記開閉弁を跨いで高圧側ラインと低圧側ラインとを連結するとともに、流量調整手段及び/又は内圧調整手段が設けられたバイパスラインを介して低圧側ラインに高圧ガスを導入することにより前記低圧側ラインの昇圧を行うことを特徴とする前記(1)に記載の高圧ガス供給方法、 (2) Connecting the high-pressure side line and the low-pressure side line across the on-off valve, and introducing high-pressure gas into the low-pressure side line via a bypass line provided with flow rate adjusting means and / or internal pressure adjusting means The high-pressure gas supply method according to (1), wherein the low-pressure side line is boosted by

(3)前記流量調整手段及び/又は内圧調整手段が設けられたバイパスラインには前記低圧側ラインに導入される高圧ガスの流入を遮断する閉止弁を備えていることを特徴とする前記(2)に記載の高圧ガス供給方法、 (3) The bypass line provided with the flow rate adjusting means and / or the internal pressure adjusting means is provided with a closing valve for blocking inflow of high pressure gas introduced into the low pressure side line (2) ) High pressure gas supply method,

(4)前記流量調整手段は、前記閉止弁の上流側及び/又は下流側に設けられたオリフィスあるいは流量調整器であることを特徴とする前記(3)に記載の高圧ガス供給方法、 (4) The high-pressure gas supply method according to (3), wherein the flow rate adjusting means is an orifice or a flow rate adjuster provided on the upstream side and / or downstream side of the closing valve,

(5)前記内圧調整手段は、(イ)前記閉止弁の上流側及び/又は下流側に設けられた圧力調整器、あるいは(ロ)低圧側ライン内圧検知手段及び該検知手段と連動する閉止弁作動機構との組み合わせであることを特徴とする前記(3)に記載の高圧ガス供給方法、 (5) The internal pressure adjusting means includes: (a) a pressure regulator provided on the upstream side and / or downstream side of the shut-off valve; or (b) a low-pressure side line internal pressure detecting means and a shut-off valve interlocked with the detecting means. The high-pressure gas supply method according to (3), which is a combination with an operating mechanism,

(6)前記バイパスラインに、前記請求項4に記載の流量調整手段と前記請求項5に記載の(イ)あるいは(ロ)の内圧調整手段とを備えていることを特徴とする前記(3)に記載の高圧ガス供給方法、 (6) The bypass line is provided with the flow rate adjusting means according to claim 4 and the internal pressure adjusting means according to (a) or (b) according to claim 5. ) High-pressure gas supply method,

(7)前記高圧ガスとして用いられる液化ガスが充填された液化ガス貯槽から導出された液相ガスを気化し、この気化ガスを、低圧側ラインに供給することにより前記低圧側ラインの昇圧を行うことを特徴とする前記(1)に記載の高圧ガス供給方法、 (7) The liquid phase gas derived from the liquefied gas storage tank filled with the liquefied gas used as the high pressure gas is vaporized, and the vapor pressure gas is supplied to the low pressure side line to increase the pressure of the low pressure side line. The high-pressure gas supply method according to (1) above,

(8)前記高圧ガスとして用いられる液化ガスが充填された液化ガス貯槽内に存在する気相ガスを導出し、該気相ガスを加温して低圧側ラインに供給することにより前記低圧側ラインの昇圧を行うことを特徴とする前記(1)に記載の高圧ガス供給方法、 (8) Deriving a gas phase gas present in a liquefied gas storage tank filled with a liquefied gas used as the high pressure gas, heating the gas phase gas, and supplying the gas phase gas to the low pressure side line. The high-pressure gas supply method according to (1) above,

(9)前記低圧側ライン内圧が少なくとも0.3MPa以上であることを特徴とする前記(1)〜(8)のいずれかに記載の高圧ガス供給方法、 (9) The high-pressure gas supply method according to any one of (1) to (8), wherein the low-pressure side line internal pressure is at least 0.3 MPa or more,

(10)前記高圧ガスが酸素又は酸素混合ガスであることを特徴とする前記(1)〜(9)のいずれかに記載の高圧ガス供給方法、
を要旨とするものである。
(10) The high-pressure gas supply method according to any one of (1) to (9), wherein the high-pressure gas is oxygen or an oxygen mixed gas,
Is a summary.

本発明によれば、酸素又は酸素混合ガス等の高圧ガスを充填容器に供給する供給設備において、高圧側ラインと低圧側ラインとを仕切る開閉弁を介して高圧ガスを低圧側ラインに供給するに際し、高圧ガスの流入に伴う断熱圧縮による急激なガス温度の上昇を抑制することができるので、低圧側ラインに設けられた圧力調整弁や開閉弁などの弁類に設けられている有機材料の劣化を抑制することができるとともに、発火を防止することができる。
したがって、本発明によれば、酸素又は酸素混合ガス等の高圧ガスを、安全性を確保してガス供給効率を高めかつ確実に充填容器に供給、充填することができる。
According to the present invention, in the supply facility for supplying high pressure gas such as oxygen or oxygen mixed gas to the filling container, high pressure gas is supplied to the low pressure side line via the on-off valve that partitions the high pressure side line and the low pressure side line. Deterioration of organic materials provided in valves such as pressure control valves and on-off valves provided on the low-pressure side line, since a sudden increase in gas temperature due to adiabatic compression accompanying the inflow of high-pressure gas can be suppressed Can be suppressed, and ignition can be prevented.
Therefore, according to the present invention, high-pressure gas such as oxygen or oxygen mixed gas can be supplied and filled into the filling container with certainty, ensuring safety and improving gas supply efficiency.

本発明の方法を、図面を参照して詳細に説明する。なお、以下、単に「高圧ガス」と記す場合、特に断らない限り、酸素又は酸素混合ガスを指す。また、「高圧側ライン」を単に「高圧側」、「低圧側ライン」を単に「低圧側」ということがある。   The method of the present invention will be described in detail with reference to the drawings. Hereinafter, when simply referred to as “high pressure gas”, oxygen or an oxygen mixed gas is indicated unless otherwise specified. Further, the “high pressure side line” may be simply referred to as “high pressure side”, and the “low pressure side line” may be simply referred to as “low pressure side”.

従来、一般に行われている酸素又は酸素混合ガス等の高圧ガスを充填容器に供給、充填する供給設備における充填系統の概要の一例を図1に示す。
液化ガス貯槽1の液化ガスは圧縮機2で昇圧され、蒸発器3でガス化された高圧ガスは、供給ライン11、12に設けられた開閉弁等の各種の弁類10、20を介して充填容器4に供給され、所定のガス圧で充填される。
FIG. 1 shows an example of an outline of a filling system in a supply facility for supplying and filling high-pressure gas such as oxygen or oxygen mixed gas, which has been conventionally performed, into a filling container.
The liquefied gas in the liquefied gas storage tank 1 is pressurized by the compressor 2, and the high-pressure gas gasified by the evaporator 3 passes through various valves 10 and 20 such as on-off valves provided in the supply lines 11 and 12. It is supplied to the filling container 4 and filled with a predetermined gas pressure.

図1において、開閉弁10が閉止しており開閉弁10の下流側ライン12内が大気圧であって、開閉弁20が閉止状態にあるとき、開閉弁10を開放すると、高圧ガスが開閉弁10の下流側ライン12に急激に流入し、下流側ライン12の末端部(充填容器への充填部)に配設された開閉弁20の部位において断熱圧縮によるガス温度が急激に上昇し、開閉弁20に設けられたガスケットや圧調整ダイヤフラム等に使用されている構成部材の有機材料が劣化したり、または急激なガス温度の上昇にともなって発火を招く危険性がある。   In FIG. 1, when the on-off valve 10 is closed and the downstream line 12 of the on-off valve 10 is at atmospheric pressure and the on-off valve 20 is in a closed state, when the on-off valve 10 is opened, the high pressure gas is turned on. 10 rapidly flows into the downstream line 12 and the gas temperature due to adiabatic compression suddenly rises at the position of the on-off valve 20 disposed at the end of the downstream line 12 (filling part to the filling container), and opens and closes. There is a risk that the organic materials of the constituent members used in the gasket, the pressure adjusting diaphragm, etc. provided in the valve 20 are deteriorated or fire is caused with a rapid rise in gas temperature.

特に、酸素充填工場等の大型設備においては取扱われるガス流量も多く、供給配管の径が大きいために主配管において、上記したような開閉弁10で示される1次開閉弁以降の下流側ライン内圧が大気圧の状態であるとき、高圧側と低圧側を仕切る1次開閉弁が開放され多量の高圧ガスが急激に下流側ライン内に導入された場合には、断熱圧縮によるガス温度の上昇が増大しその結果、前記ガスケットや圧調整ダイヤフラムの有機材料の劣化や発火を引き起こす危険性が高まる。
したがって、このような急激なガス温度の上昇に伴いガスケットや圧調整ダイヤフラムの有機材料の劣化や発火を抑制し、防止することが重要である。
Particularly in large facilities such as oxygen filling factories, the gas flow handled is large, and the diameter of the supply pipe is large, so in the main pipe, the downstream line internal pressure after the primary on-off valve shown by the on-off valve 10 as described above. When the primary on-off valve that separates the high-pressure side and the low-pressure side is opened and a large amount of high-pressure gas is suddenly introduced into the downstream line, the gas temperature rises due to adiabatic compression. As a result, the risk of causing deterioration or ignition of the organic material of the gasket or pressure adjusting diaphragm increases.
Therefore, it is important to suppress and prevent deterioration and ignition of the organic material of the gasket and the pressure adjusting diaphragm with such a rapid increase in gas temperature.

本発明においては、高圧側と低圧側とを仕切る開閉弁を介して高圧側から低圧側へ高圧ガスを供給するに際し、高圧ガスの導入に伴って生ずる断熱圧縮による低圧側ライン内におけるガス温度の急激な上昇を抑制し、発火等を防止するために、低圧側ライン内圧を、断熱圧縮による急激なガス温度の上昇を抑制するに足る圧力に予め昇圧し、前記の高圧側と低圧側とを仕切る開閉弁を開放し高圧ガスを導入する。   In the present invention, when the high-pressure gas is supplied from the high-pressure side to the low-pressure side through an on-off valve that partitions the high-pressure side and the low-pressure side, the gas temperature in the low-pressure side line due to adiabatic compression that occurs with the introduction of the high-pressure gas is controlled. In order to suppress a sudden rise and prevent ignition etc., the low-pressure line internal pressure is increased in advance to a pressure sufficient to suppress a sudden rise in gas temperature due to adiabatic compression, and the high pressure side and the low pressure side are Open the partition valve and introduce high-pressure gas.

本発明において、前記低圧側ラインの内圧を昇圧する方法の一例を図2に示す。
図2に示す方法は、前記開閉弁を跨いで設けられたバイパスライン110によって高圧側ライン11と低圧側ライン12とを連結し、該バイパスラインを介して低圧側ライン内圧を、前記高圧ガスの流入に伴う断熱圧縮による急激なガス温度の上昇を抑制するに足る圧力に昇圧し、所要の圧力に昇圧したところで前記開閉弁10を開放して高圧ガスを低圧側ラインに供給するものである。
FIG. 2 shows an example of a method for increasing the internal pressure of the low-pressure side line in the present invention.
In the method shown in FIG. 2, the high pressure side line 11 and the low pressure side line 12 are connected by a bypass line 110 provided across the on-off valve, and the internal pressure of the low pressure side line is reduced via the bypass line. The pressure is increased to a pressure sufficient to suppress an abrupt increase in gas temperature due to adiabatic compression accompanying inflow, and when the pressure is increased to a required pressure, the on-off valve 10 is opened and high pressure gas is supplied to the low pressure side line.

前記バイパスラインには高圧ガスの流量を調節する流量調整手段又は低圧側ライン内の圧力調整を行なうための内圧調整手段を設け、これにより低圧側ライン内圧を昇圧する。さらに該バイパスラインに閉止弁を設けバイパスラインに流通するガスを適宜遮断するように構成することができる。なお、流量調整手段と内圧調整手段をともにバイパスラインに設けてもよい。上記の閉止弁はバイパスライン内の他に高圧ガスが流通する高圧側ライン及び低圧側ラインを構成する主配管の前記開閉弁より高圧側(バイパスライン分岐部分よりも上流側)等に設けてあってもよく、また両ラインに設られていてもよい。   The bypass line is provided with a flow rate adjusting means for adjusting the flow rate of the high pressure gas or an internal pressure adjusting means for adjusting the pressure in the low pressure side line, thereby increasing the low pressure side line internal pressure. Furthermore, a shut-off valve can be provided in the bypass line so that the gas flowing through the bypass line can be appropriately shut off. Note that both the flow rate adjusting means and the internal pressure adjusting means may be provided in the bypass line. In addition to the bypass line, the above-mentioned stop valve is provided on the high-pressure side (upstream side of the bypass line branching portion) of the main pipe constituting the high-pressure side line and the low-pressure side line through which the high-pressure gas flows. It may be provided on both lines.

前記バイパスラインを設けて低圧側ライン内圧を昇圧する実施態様の一例を、図2(1)、及び図2(2)に示す。図2(1)、図2(2)おいてガス流れ方向を矢印で示した。ここで、本発明におけるバイパスラインは、一般的には、高圧側ライン及び低圧側ラインを構成する主配管の内径よりも細い内径の配管で構成されている。
図2(1)は、バイパスラインの閉止弁100の下流側にオリフィス又流量調整器等の流量調整手段を設け、前記低圧側ライン内圧を昇圧する態様を示す部分説明図である。前記オリフィスは前記閉止弁の上流側に設けてもよい。
図2(1)では、バイパスライン110に設けられた、オリフィス201により高圧ガスの流量を調節して前記低圧側ライン内に高圧ガスを導入し、低圧側ライン内圧が所要の圧力に昇圧したところで、バイパスライン110の閉止弁100を閉止し、前記高圧側と低圧側とを仕切る開閉弁10を開放して高圧ガスが低圧側に供給される。このため閉止弁100を急激に開放しても緩やかに低圧側ライン内圧を昇圧することができる。
なお、前記流量調整手段としてオリフィスの代わりに例えばニードル弁のような市販の流量調整器を用いてガスの流量を調節して供給し低圧側ライン内圧を昇圧することができる。またオリフィスの開口径やニードル弁のニードル深さを適宜選択又は調節することにより低圧側ライン内の昇圧速度を調節可能にすることができる。
図2(1)においてはバイパスラインに設けられた前記流量調整手段を介して高圧ガスが供給されるので低圧側ライン内圧は緩やかに昇圧されるから、前記バイパスラインの閉止弁100の閉止及び前記開閉弁10の開放のタイミングを容易に図ることができる。
An example of an embodiment in which the bypass line is provided to increase the low-pressure line internal pressure is shown in FIGS. 2 (1) and 2 (2). 2 (1) and 2 (2), the gas flow direction is indicated by an arrow. Here, the bypass line in the present invention is generally configured by a pipe having an inner diameter smaller than the inner diameter of the main pipe constituting the high-pressure side line and the low-pressure side line.
FIG. 2 (1) is a partial explanatory view showing a mode in which a flow rate adjusting means such as an orifice or a flow rate adjuster is provided downstream of the bypass line closing valve 100 to increase the low pressure side line internal pressure. The orifice may be provided on the upstream side of the closing valve.
In FIG. 2 (1), when the flow rate of the high pressure gas is adjusted by the orifice 201 provided in the bypass line 110, the high pressure gas is introduced into the low pressure side line, and the low pressure side line internal pressure is increased to a required pressure. Then, the shutoff valve 100 of the bypass line 110 is closed, the on-off valve 10 that partitions the high pressure side and the low pressure side is opened, and high pressure gas is supplied to the low pressure side. For this reason, even if the closing valve 100 is opened rapidly, the low-pressure side line internal pressure can be gradually increased.
The flow rate adjusting means can be supplied by adjusting the flow rate of the gas using a commercially available flow rate regulator such as a needle valve instead of the orifice to increase the low pressure side line pressure. Further, by appropriately selecting or adjusting the opening diameter of the orifice and the needle depth of the needle valve, the pressure increase speed in the low pressure side line can be adjusted.
In FIG. 2 (1), since the high pressure gas is supplied through the flow rate adjusting means provided in the bypass line, the internal pressure of the low pressure side line is gently increased. The opening timing of the on-off valve 10 can be easily achieved.

図2(2)は、バイパスラインの閉止弁100の上流側に導入する高圧ガス圧力を調整する圧力調整器202、例えば圧力弁等の所謂市販の調圧弁等の内圧調整手段を設け、前記低圧側ライン内圧を昇圧する態様を示す部分説明図である。前記内圧調整手段は前記閉止弁の下流側に設けてもよい。
図2(2)では、バイパスライン110に設けられた圧力調整器202により低圧側ライン内の昇圧を行う。低圧側ライン内圧が所要の圧力に昇圧したところで、バイパスラインの閉止弁を閉止する。その後任意のタイミングで開閉弁10を開放することにより高圧ガスが低圧側に供給される。
FIG. 2 (2) shows a pressure regulator 202 for adjusting the high-pressure gas pressure introduced to the upstream side of the closing valve 100 of the bypass line, for example, an internal pressure adjusting means such as a so-called commercially available pressure regulating valve such as a pressure valve. It is a partial explanatory view showing a mode of raising the side line internal pressure. The internal pressure adjusting means may be provided on the downstream side of the stop valve.
In FIG. 2B, the pressure in the low pressure side line is boosted by the pressure regulator 202 provided in the bypass line 110. When the low-pressure line internal pressure is increased to the required pressure, the bypass line closing valve is closed. Thereafter, by opening the on-off valve 10 at an arbitrary timing, the high pressure gas is supplied to the low pressure side.

また、内圧調整手段による場合には、(イ)前記閉止弁の上流側又は下流側に設けられた市販の調圧弁などの所謂圧力調整器により、所要の圧力に昇圧したところで、高圧ガスの導入を停止するように構成する。あるいは(ロ)市販の圧力センサーなどの低圧側ライン内圧検知手段及び該検知手段と連動して作動する電磁弁などの閉止弁作動機構とを組み合わせて、低圧側ライン内圧検知手段により低圧側ラン内圧を検出し、所要の圧力に昇圧したところで、閉止弁100を閉止して高圧ガスの導入を停止するように構成することができる。   In the case of using the internal pressure adjusting means, (a) when the pressure is increased to a required pressure by a so-called pressure regulator such as a commercially available pressure regulating valve provided upstream or downstream of the closing valve, the high pressure gas is introduced. Configure to stop. Or (b) a low pressure side line internal pressure detecting means such as a commercially available pressure sensor and a closing valve operating mechanism such as an electromagnetic valve that operates in conjunction with the detecting means, and the low pressure side line internal pressure detecting means When the pressure is increased to a required pressure, the shutoff valve 100 can be closed to stop the introduction of the high pressure gas.

前記のバイパスラインを設けて低圧側ライン内圧を昇圧し所要の圧力に昇圧したところで、前記閉止弁100を閉じて、前記開閉弁10を開放して高圧ガスを低圧側ラインに導入する。前記閉止弁の閉止及び前記開閉弁の開放は手動で行ってもよいが、工業的にはこれらの作動が連動して行われるように構成することが好ましい。具体的には、例えば、流量調整手段により低圧側ラインに緩やかに高圧ガスを導入するとともに、内圧調整手段を併用することにより、低圧側ライン内圧検知手段により低圧側ライン内圧を検知し、所要の圧力に昇圧したところで、前記低圧側ライン内圧検知手段からの信号を受け作動する電磁弁などの閉止弁作動機構により閉止弁100の閉止をする。   When the bypass line is provided and the low-pressure line internal pressure is increased to the required pressure, the shut-off valve 100 is closed, the on-off valve 10 is opened, and high-pressure gas is introduced into the low-pressure line. Although the closing of the closing valve and the opening of the opening / closing valve may be performed manually, it is preferable that the operations are industrially performed in conjunction with each other. Specifically, for example, the high pressure gas is gradually introduced into the low pressure side line by the flow rate adjusting means, and the low pressure side line internal pressure detecting means is used to detect the low pressure side line internal pressure by using the internal pressure adjusting means together. When the pressure is increased, the closing valve 100 is closed by a closing valve operating mechanism such as an electromagnetic valve that operates in response to a signal from the low-pressure side line internal pressure detecting means.

図3は、図2(1)に示すオリフィス201および閉止弁100を備えた態様のバイパスライン110によって、開閉弁10を跨いで高圧側ライン11と低圧側ライン12とを連結して、該バイパスラインのオリフィス201を介して高圧ガスの流量を調節して供給し、低圧側ライン内圧を所要の圧力に昇圧するようにした実施態様の一例である。なお、本態様において、オリフィスに代えて、又はオリフィス201と直列的に圧力調整器202(図2(2)参照)を備えた態様のバイパスラインとして高圧ガスの圧力を調整して低圧側に供給し、低圧側ライン内圧を所要の圧力に昇圧することもできる。   FIG. 3 shows the bypass line 110 having the orifice 201 and the shut-off valve 100 shown in FIG. 2 (1) connected to the high-pressure side line 11 and the low-pressure side line 12 across the on-off valve 10. This is an example of an embodiment in which the flow rate of the high-pressure gas is adjusted and supplied through the orifice 201 of the line, and the low-pressure line internal pressure is increased to a required pressure. In this embodiment, the pressure of the high-pressure gas is adjusted and supplied to the low-pressure side as a bypass line having a pressure regulator 202 (see FIG. 2B) in place of the orifice or in series with the orifice 201. In addition, the low-pressure line internal pressure can be increased to a required pressure.

図3に示す実施態様において、低圧側ライン内圧の昇圧は、高圧側ライン11と低圧側ライン12を仕切る開閉弁10を閉じた状態で、液化ガス貯槽1から導出された液相ガスを圧縮機2で所定圧力に昇圧し、蒸発器3で気化させた高圧ガスを、前記ライン11から分岐されたバイパスライン110に導入し開放状態の閉止弁100及びオリフィス201を介してガス流量を調節しながら前記低圧側ライン12に供給して低圧側ライン内圧を昇圧し、所要の圧力に到達したところで、バイパスラインの閉止弁100を閉じて、前記開閉弁10を開放して高圧ガスを低圧側ラインに導入し、開閉弁20を介して充填容器4に所定の充填圧に充填する。   In the embodiment shown in FIG. 3, the internal pressure of the low pressure side line is increased by using the liquid phase gas derived from the liquefied gas storage tank 1 with the on-off valve 10 separating the high pressure side line 11 and the low pressure side line 12 closed. The high pressure gas increased to a predetermined pressure at 2 and vaporized by the evaporator 3 is introduced into the bypass line 110 branched from the line 11 and the gas flow rate is adjusted through the open shut valve 100 and the orifice 201. The low pressure side line 12 is supplied to increase the low pressure side line internal pressure, and when the required pressure is reached, the bypass line closing valve 100 is closed and the on-off valve 10 is opened to supply the high pressure gas to the low pressure side line. Then, the filling container 4 is filled to a predetermined filling pressure via the on-off valve 20.

図3において、ライン12に設けられた圧力センサーなどの低圧側ライン内圧検知手段203により低圧側ライン内圧を検知し、所要の圧力に到達したところで、前記内圧検知手段203から伝達される信号を受けて作動する電磁弁などの閉止弁作動機構と、オリフィス201などの流量調整手段との組み合わせにより閉止弁100が閉止される。なお、前記検知手段203からの信号伝達経路を破線で示す。   In FIG. 3, the low pressure side line internal pressure detecting means 203 such as a pressure sensor provided in the line 12 detects the low pressure side line internal pressure, and when the required pressure is reached, the signal transmitted from the internal pressure detecting means 203 is received. The closing valve 100 is closed by a combination of a closing valve operating mechanism such as an electromagnetic valve that operates and a flow rate adjusting means such as the orifice 201. The signal transmission path from the detection means 203 is indicated by a broken line.

本発明における低圧側ライン内圧を所要の圧力に予め昇圧するには、高圧側ラインと低圧側ラインとを仕切る開閉弁を、一度に全開することなく、例えば、開閉弁を微開して高圧ガスを低圧側に導入し、低圧側ライン内圧を0.3〜0.8MPaに昇圧したのち、開閉弁を全開放し高圧ガスを導入することもできる。
また、充填容器への供給配管が複数に分岐されて配置されている場合に、複数に分岐された供給配管に設けられた開閉弁に、図2に示すと同様の構成からなるバイパスラインをそれぞれに設け充填容器へのガス圧力や、ガス流量を調整することも可能である。
In order to increase the internal pressure of the low pressure side line to a required pressure in advance in the present invention, for example, the open / close valve that partitions the high pressure side line and the low pressure side line is not fully opened at one time, for example, the open / close valve is slightly opened and the high pressure gas is Can be introduced to the low pressure side, and the internal pressure of the low pressure side line can be increased to 0.3 to 0.8 MPa, and then the on-off valve can be fully opened to introduce the high pressure gas.
In addition, when the supply pipe to the filling container is divided into a plurality of branches, a bypass line having the same configuration as shown in FIG. 2 is provided in each of the on-off valves provided in the plurality of supply pipes. It is also possible to adjust the gas pressure to the filling container and the gas flow rate.

次に、本発明において、上記のバイパスラインを設けることなく、低圧側ラインの内圧を昇圧する別の実施態様の例を、図4、図5に示す。   Next, in the present invention, examples of another embodiment for increasing the internal pressure of the low-pressure side line without providing the bypass line are shown in FIGS.

図4に示す実施態様は、高圧ガスとして用いられる液化ガスが充填された液化ガス貯槽1から弁301を介してライン13に導出された液相ガスを、ライン13を経て蒸発器31で気化し、この気化ガスを、弁30を介してライン13を経て開閉弁10の下流側に導入して低圧側ライン内圧を昇圧する。低圧側ライン内圧が所要の圧力に昇圧したところで、前記弁30を閉じて、前記開閉弁10を開放して高圧ガスを低圧側ラインに導入し開閉弁20を介して充填容器に所要の圧力に充填する。   In the embodiment shown in FIG. 4, the liquid phase gas led to the line 13 through the valve 301 from the liquefied gas storage tank 1 filled with the liquefied gas used as the high pressure gas is vaporized by the evaporator 31 via the line 13. Then, this vaporized gas is introduced into the downstream side of the on-off valve 10 through the line 13 through the valve 30 to increase the low-pressure side line internal pressure. When the internal pressure of the low-pressure side line is increased to the required pressure, the valve 30 is closed, the on-off valve 10 is opened, high-pressure gas is introduced into the low-pressure side line, and the required pressure is applied to the filling container via the on-off valve 20. Fill.

図5に示す他の実施態様は、高圧ガスとして用いられる液化ガスが充填された液化ガス貯槽1に存在する気相ガスを、弁301を介してライン14に導出し、これを加温器5に供給して加温し、弁30を介してライン14を経て開閉弁10の下流側に導入して前記低圧側ライン内圧を昇圧する。低圧側ライン内圧が所要の圧力に昇圧したところで、前記弁30を閉じて、前記開閉弁10を開放して高圧ガスを低圧側に導入し開閉弁20を介して充填容器に所要の圧力に充填する。   In another embodiment shown in FIG. 5, the gas phase gas existing in the liquefied gas storage tank 1 filled with the liquefied gas used as the high pressure gas is led out to the line 14 via the valve 301, and this is heated. And is introduced into the downstream side of the on-off valve 10 through the line 14 through the valve 30 to increase the low-pressure side line internal pressure. When the low-pressure line internal pressure is increased to the required pressure, the valve 30 is closed, the on-off valve 10 is opened, high-pressure gas is introduced to the low-pressure side, and the filling container is charged to the required pressure via the on-off valve 20. To do.

上記図4及び図5に示す実施態様においても、図示しないが、前記低圧側ライン12に市販の圧力センサーなどの内圧検知手段を設け、低圧側ライン内圧が、所要の圧力に到達したところで前記弁30の閉止しと、前記開閉弁10の開放が連動して作動するように開閉弁作動機構を設け、これにより高圧ガスの低圧側ラインへの供給が行われるように構成してもよい。このようにすることにより前記弁30の閉止と前記開閉弁10の開放を自動的に行うようにすることができる。   In the embodiment shown in FIG. 4 and FIG. 5 as well, although not shown, the low pressure side line 12 is provided with an internal pressure detecting means such as a commercially available pressure sensor, and when the low pressure side line internal pressure reaches a required pressure, the valve An on-off valve operating mechanism may be provided so that the closing of 30 and the opening of the on-off valve 10 operate in conjunction with each other, whereby high pressure gas is supplied to the low pressure side line. By doing so, the valve 30 can be automatically closed and the on-off valve 10 can be automatically opened.

本発明に係る酸素又は酸素混合ガスのような高圧ガス充填設備において扱われる該高圧ガスの圧力は、必要とされる充填圧にもよるが通常10MPa〜25MPaの範囲が一般的である。
上記の酸素又は酸素混合ガスを充填容器に充填するに際して、供給される高圧ガスに伴って生じる断熱圧縮による急激なガス温度の上昇を抑制するに足る低圧側ライン内圧がどの程度の圧力であれば高圧ガスが導入されても発火を抑制することが可能であるかについて検討を行った。図6に試験装置により低圧側内圧を0.1MPa、0.3MPa、0.6MPaとしたときの供給する高圧ガス圧力と発火頻度との関係を示す。上記の0.1MPaは大気圧における発火頻度を参考例として示したものである。
図6に示すグラフは、試験装置により高圧側と低圧側とを仕切る開閉弁を例えば0.3sec.の短時間で全開した場合、配管の末端部に備えた有機材料ガスケット(PCTFE;ポリクロロトリフルオロエチレン)の発火頻度を調べたものである。(なお、発火頻度は25回の試験を行い発火した際の割合で示した)
The pressure of the high-pressure gas handled in the high-pressure gas filling equipment such as oxygen or oxygen mixed gas according to the present invention is generally in the range of 10 MPa to 25 MPa, although it depends on the required filling pressure.
When filling the above-mentioned oxygen or oxygen mixed gas into the filling container, what is the pressure on the low-pressure side line enough to suppress a sudden increase in gas temperature due to adiabatic compression caused by the supplied high-pressure gas? We examined whether it was possible to suppress ignition even when high-pressure gas was introduced. FIG. 6 shows the relationship between the high-pressure gas pressure to be supplied and the ignition frequency when the low-pressure side internal pressure is set to 0.1 MPa, 0.3 MPa, and 0.6 MPa using a test apparatus. The above 0.1 MPa shows the ignition frequency at atmospheric pressure as a reference example.
The graph shown in FIG. 6 shows that the open / close valve that partitions the high pressure side and the low pressure side by the test device is 0.3 sec. In this case, the ignition frequency of the organic material gasket (PCTFE; polychlorotrifluoroethylene) provided at the end of the pipe is examined. (Note that the firing frequency is expressed as a ratio when 25 tests were performed and fired)

図6に示すように、例えば、供給される高圧ガス圧力が15MPaのときには、低圧側ライン内圧が少なくとも0.3MPa以上に昇圧されていれば15MPaの高圧ガスを供給しても発火の発生を抑制することができる。また供給高圧ガス圧力が20MPaのときには、低圧側ライン内圧が0.6MPaに昇圧されていれば20MPaの高圧ガスを供給しても発火の発生を抑制することができることが分かる。   As shown in FIG. 6, for example, when the high pressure gas pressure to be supplied is 15 MPa, the occurrence of ignition is suppressed even if the high pressure gas of 15 MPa is supplied if the low pressure side line internal pressure is increased to at least 0.3 MPa or more. can do. It can also be seen that when the supply high-pressure gas pressure is 20 MPa, the occurrence of ignition can be suppressed even if a high-pressure gas of 20 MPa is supplied if the low-pressure line internal pressure is increased to 0.6 MPa.

供給高圧ガスの圧力がさらに高い場合には、これに対応して低圧側ライン内圧が昇圧される。例えば供給高圧ガス圧力が25MPaのときには、低圧側ライン内圧を0.8MPa程度に昇圧すれれば発火の発生を抑制することが可能である。   When the pressure of the supplied high pressure gas is higher, the low pressure side line internal pressure is increased correspondingly. For example, when the supply high-pressure gas pressure is 25 MPa, it is possible to suppress the occurrence of ignition if the low-pressure side line internal pressure is increased to about 0.8 MPa.

一般的に、本発明に係る酸素又は酸素混合ガス充填設備において、扱われる酸素又は酸素混合ガスは上記したように通常10MPa〜25MPaの範囲であり、したがって、この場合低圧側の圧力としては、少なくとも0.3MPaより高い圧力なっていれば、断熱圧縮による急激なガス温度の上昇を抑制することができる。   Generally, in the oxygen or oxygen mixed gas filling equipment according to the present invention, the oxygen or oxygen mixed gas to be handled is usually in the range of 10 MPa to 25 MPa as described above. Therefore, in this case, the pressure on the low pressure side is at least If the pressure is higher than 0.3 MPa, an abrupt increase in gas temperature due to adiabatic compression can be suppressed.

本発明において、低圧側ライン圧力を昇圧調整する手段として、バイパスラインを設けて昇圧する場合には、低圧側ライン内圧が少なくとも0.3MPa程度に昇圧されていれば高圧ガスを低圧側に導入しても発火等を抑制することが可能である。
低圧側ライン内圧の上限は特に限定されないが、高圧に設定することは所望の圧力に昇圧させるのに長時間を要し好ましくなく実用的には、上限は通常2.0MPa程度とすることが好ましい。
In the present invention, as a means for increasing the pressure of the low-pressure side line, when the pressure is increased by providing a bypass line, the high-pressure gas is introduced into the low-pressure side if the internal pressure of the low-pressure side line is increased to at least about 0.3 MPa. However, it is possible to suppress ignition and the like.
The upper limit of the low-pressure line internal pressure is not particularly limited, but setting it to a high pressure is not preferable because it takes a long time to increase the pressure to a desired pressure, and practically, the upper limit is preferably about 2.0 MPa. .

一方、図4又は図5に示すように、バイパスラインを配置しないで、液相ガスを気化した気化ガス、又は液化ガス貯槽から採り出した気相ガスにより低圧側ライン内圧を昇圧する場合についても、前記気化ガス又は気相ガスの圧力である上記0.3MPa〜0.8MPaの範囲に昇圧され、断熱圧縮を好適に抑制することができる。なお、上記の気化ガス又は気相ガスの圧力が上記の圧力に満たない場合には、ライン13又は14内で別途圧縮機で上記の圧力にすればなお好ましい。
また、上記の昇圧される低圧側ライン内圧が、供給される高圧ガス圧力に対して、断熱圧縮による急激はガス温度の上昇を抑制するのに十分な圧力でないような場合には、高圧ガスの供給速度を制御して緩やかに供給すれば発火を抑制することが可能である。
On the other hand, as shown in FIG. 4 or FIG. 5, even when the bypass line is not arranged, the internal pressure of the low pressure side line is increased by the vaporized gas obtained by evaporating the liquid phase gas or the gas phase gas extracted from the liquefied gas storage tank. The pressure is increased to the range of 0.3 MPa to 0.8 MPa, which is the pressure of the vaporized gas or gas phase gas, and adiabatic compression can be suitably suppressed. In addition, when the pressure of said vaporization gas or gaseous-phase gas is less than said pressure, it is still more preferable if it is said pressure with a compressor separately in the line 13 or 14. FIG.
In addition, when the pressure inside the low-pressure side line to be increased is not sufficient to suppress the increase in gas temperature due to adiabatic compression with respect to the supplied high-pressure gas pressure, If the supply speed is controlled and gently supplied, ignition can be suppressed.

本発明の方法によれば、酸素又は酸素混合ガス等の支燃性高圧ガスを充填容器に充填する充填設備において、高圧側ラインと低圧側ラインとを仕切る開閉弁を介して高圧ガスを低圧側ラインに供給するに際し、高圧ガスの導入に伴って発生する断熱圧縮による急激なガス温度の上昇を抑制することができ、圧力調整弁や開閉弁などに設けられている有機材料の劣化を抑制することができ、また発火を防止することができるので、本発明は、高圧酸素及び高圧酸素混合ガスを、安全かつ確実に充填容器に供給、充填することができ、工業的に意義あるものである。   According to the method of the present invention, in a filling facility for filling a filling container with a combustion-supporting high-pressure gas such as oxygen or an oxygen mixed gas, the high-pressure gas is supplied to the low-pressure side via the on-off valve that partitions the high-pressure side line and the low-pressure side line. When supplying to the line, it is possible to suppress a sudden rise in gas temperature due to adiabatic compression that occurs with the introduction of high-pressure gas, and to suppress deterioration of organic materials provided in pressure regulating valves, on-off valves, etc. Therefore, the present invention is capable of supplying and filling high-pressure oxygen and a high-pressure oxygen mixed gas into a filling container safely and reliably, and is industrially significant. .

酸素又は酸素混合ガスを充填容器に充填する充填設備の一般的な充填系統の概要図を示す。1 shows a schematic diagram of a general filling system of a filling facility for filling a filling container with oxygen or an oxygen mixed gas. 本発明におけるバイパスラインに流量調整手段又は内圧調整手段を設けた部分説明図を示す。2(1)は流量調整手段を設けた例であり、2(2)は内圧調整手段を設けた例である。The partial explanatory view which provided the flow volume adjustment means or the internal pressure adjustment means in the bypass line in the present invention is shown. 2 (1) is an example in which a flow rate adjusting means is provided, and 2 (2) is an example in which an internal pressure adjusting means is provided. 本発明におけるバイパスラインを設けて低圧側ライン内圧を昇圧する実施態様を示す。An embodiment in which a bypass line in the present invention is provided to increase the low-pressure line internal pressure is shown. 本発明における低圧側ライン内圧を昇圧する他の実施態様を示す。The other embodiment which raises the low pressure side line internal pressure in this invention is shown. 本発明における低圧側ライン内圧を昇圧する別の実施態様を示す。4 shows another embodiment of increasing the low-pressure line internal pressure in the present invention. 低圧側ライン内圧力による供給高圧ガス圧と発火頻度の一例を示すグラフ。The graph which shows an example of the supply high-pressure gas pressure and the ignition frequency by the low-pressure side line internal pressure.

符号の説明Explanation of symbols

1 液化ガス貯槽
2 圧縮機
3、31 蒸発器
4 充填容器
5 加温器
10、20、 開閉弁
11 高圧側ライン
12 低圧側ライン
110 バイパスライン
100 閉止弁
201 オリフィス
202 圧力調整器
203 内圧検知手段
DESCRIPTION OF SYMBOLS 1 Liquefied gas storage tank 2 Compressor 3, 31 Evaporator 4 Filling container 5 Heater 10, 20, On-off valve 11 High-pressure side line 12 Low-pressure side line 110 Bypass line 100 Shut-off valve 201 Orifice 202 Pressure regulator 203 Internal pressure detection means

Claims (10)

高圧ガスを充填容器に供給する供給設備において、前記高圧ガスが流通する高圧側ラインと前記充填容器に連なる低圧側ラインとを仕切る開閉弁を介して高圧ガスを低圧側ラインに供給するに際し、低圧側ラインの内圧を予め昇圧した後、前記開閉弁を開放し高圧ガスを供給することを特徴とする高圧ガス供給方法。   When supplying high-pressure gas to a low-pressure side line through an on-off valve that partitions a high-pressure side line through which the high-pressure gas flows and a low-pressure side line connected to the filling container in a supply facility for supplying high-pressure gas to the filling container, A method for supplying high-pressure gas, wherein after increasing the internal pressure of the side line in advance, the on-off valve is opened to supply high-pressure gas. 前記開閉弁を跨いで高圧側ラインと低圧側ラインとを連結するとともに、流量調整手段及び/又は内圧調整手段が設けられたバイパスラインを介して低圧側ラインに高圧ガスを導入することにより前記低圧側ラインの昇圧を行うことを特徴とする請求項1に記載の高圧ガス供給方法。   The high pressure side line and the low pressure side line are connected across the on-off valve, and the low pressure gas is introduced into the low pressure side line through a bypass line provided with flow rate adjusting means and / or internal pressure adjusting means. 2. The high-pressure gas supply method according to claim 1, wherein the side line is boosted. 前記流量調整手段及び/又は内圧調整手段が設けられたバイパスラインには前記低圧側ラインに導入される高圧ガスの流入を遮断する閉止弁を備えていることを特徴とする請求項2に記載の高圧ガス供給方法。   The bypass line provided with the flow rate adjusting means and / or the internal pressure adjusting means is provided with a closing valve for blocking the inflow of high pressure gas introduced into the low pressure side line. High pressure gas supply method. 前記流量調整手段は、前記閉止弁の上流側及び/又は下流側に設けられたオリフィスあるいは流量調整器であることを特徴とする請求項3に記載の高圧ガス供給方法。   The high-pressure gas supply method according to claim 3, wherein the flow rate adjusting means is an orifice or a flow rate adjuster provided on the upstream side and / or downstream side of the shut-off valve. 前記内圧調整手段は、(イ)前記閉止弁の上流側及び/又は下流側に設けられた圧力調整器、あるいは(ロ)低圧側ライン内圧検知手段及び該検知手段と連動する閉止弁作動機構との組み合わせであることを特徴とする請求項3に記載の高圧ガス供給方法。   The internal pressure adjusting means includes: (a) a pressure regulator provided on the upstream side and / or downstream side of the closing valve; or (b) a low pressure side line internal pressure detecting means and a closing valve operating mechanism linked to the detecting means. The high-pressure gas supply method according to claim 3, wherein the high-pressure gas supply method is a combination. 前記バイパスラインに、前記請求項4に記載の流量調整手段と、前記請求項5に記載の(イ)あるいは(ロ)の内圧調整手段とをともに備えていることを特徴とする請求項3に記載の高圧ガス供給方法。   The bypass line is provided with both the flow rate adjusting means according to claim 4 and the internal pressure adjusting means according to (a) or (b) according to claim 5. The high-pressure gas supply method described. 前記高圧ガスとして用いられる液化ガスが充填された液化ガス貯槽から導出された液相ガスを気化し、この気化ガスを、低圧側ラインに供給することにより前記低圧側ラインの昇圧を行うことを特徴とする請求項1に記載の高圧ガス供給方法。   The liquid phase gas derived from the liquefied gas storage tank filled with the liquefied gas used as the high pressure gas is vaporized, and the vapor pressure gas is supplied to the low pressure side line to boost the low pressure side line. The high-pressure gas supply method according to claim 1. 前記高圧ガスとして用いられる液化ガスが充填された液化ガス貯槽内に存在する気相ガスを導出し、該気相ガスを加温して低圧側ラインに供給することにより前記低圧側ラインの昇圧を行うことを特徴とする請求項1に記載の高圧ガス供給方法。   Deriving the gas phase gas existing in the liquefied gas storage tank filled with the liquefied gas used as the high pressure gas, heating the gas phase gas and supplying the gas phase gas to the low pressure side line, thereby boosting the low pressure side line. The high-pressure gas supply method according to claim 1, wherein the high-pressure gas supply method is performed. 前記低圧側ライン内圧が少なくとも0.3MPa以上であることを特徴とする請求項1〜8のいずれかに記載の高圧ガス供給方法。   The high-pressure gas supply method according to any one of claims 1 to 8, wherein the low-pressure side line internal pressure is at least 0.3 MPa or more. 前記高圧ガスが酸素又は酸素混合ガスであることを特徴とする請求項1〜9のいずれかに記載の高圧ガス供給方法。   The high-pressure gas supply method according to claim 1, wherein the high-pressure gas is oxygen or an oxygen mixed gas.
JP2006178785A 2006-06-28 2006-06-28 High pressure gas supply method Active JP4886386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006178785A JP4886386B2 (en) 2006-06-28 2006-06-28 High pressure gas supply method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006178785A JP4886386B2 (en) 2006-06-28 2006-06-28 High pressure gas supply method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011243166A Division JP5244954B2 (en) 2011-11-07 2011-11-07 High pressure gas supply method

Publications (2)

Publication Number Publication Date
JP2008008388A true JP2008008388A (en) 2008-01-17
JP4886386B2 JP4886386B2 (en) 2012-02-29

Family

ID=39066791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006178785A Active JP4886386B2 (en) 2006-06-28 2006-06-28 High pressure gas supply method

Country Status (1)

Country Link
JP (1) JP4886386B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101992750A (en) * 2010-10-27 2011-03-30 四川金科环保科技有限公司 CNG delivery trailer structure suitable for single and double-line gas filling substations
CN102011936A (en) * 2010-10-27 2011-04-13 四川金科环保科技有限公司 Hydraulic bottle pushing double-line gas filling substation
KR101333943B1 (en) * 2011-11-14 2013-11-27 한국가스공사 Prevent device to surging of compressor
CN104676243A (en) * 2015-03-24 2015-06-03 隆昌山川精密焊管有限责任公司 Classified gas-inflating method for gas spring and tool for method
CN105043013A (en) * 2015-08-31 2015-11-11 深圳市海格金谷化工科技有限公司 Uninterrupted backup system of air separation equipment
JP2016109175A (en) * 2014-12-03 2016-06-20 大陽日酸株式会社 High pressure gas accumulation system and high pressure gas accumulation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57116097A (en) * 1980-11-21 1982-07-19 Roussel Uclaf Novel manufacture of 3-aminosteroids and their salts and novel intermediates obtained
JP2002541405A (en) * 1999-03-30 2002-12-03 ライボルト ヴァークウム ゲゼルシャフト ミット ベシュレンクテル ハフツング Shut-off gas valve device
JP2005273753A (en) * 2004-03-24 2005-10-06 Osaka Gas Co Ltd Vaporizing and supplying system of liquefied natural gas
JP2006138332A (en) * 2004-11-10 2006-06-01 Toho Gas Co Ltd Gas supply device and gas supply method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57116097A (en) * 1980-11-21 1982-07-19 Roussel Uclaf Novel manufacture of 3-aminosteroids and their salts and novel intermediates obtained
JP2002541405A (en) * 1999-03-30 2002-12-03 ライボルト ヴァークウム ゲゼルシャフト ミット ベシュレンクテル ハフツング Shut-off gas valve device
JP2005273753A (en) * 2004-03-24 2005-10-06 Osaka Gas Co Ltd Vaporizing and supplying system of liquefied natural gas
JP2006138332A (en) * 2004-11-10 2006-06-01 Toho Gas Co Ltd Gas supply device and gas supply method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101992750A (en) * 2010-10-27 2011-03-30 四川金科环保科技有限公司 CNG delivery trailer structure suitable for single and double-line gas filling substations
CN102011936A (en) * 2010-10-27 2011-04-13 四川金科环保科技有限公司 Hydraulic bottle pushing double-line gas filling substation
KR101333943B1 (en) * 2011-11-14 2013-11-27 한국가스공사 Prevent device to surging of compressor
JP2016109175A (en) * 2014-12-03 2016-06-20 大陽日酸株式会社 High pressure gas accumulation system and high pressure gas accumulation method
CN104676243A (en) * 2015-03-24 2015-06-03 隆昌山川精密焊管有限责任公司 Classified gas-inflating method for gas spring and tool for method
CN105043013A (en) * 2015-08-31 2015-11-11 深圳市海格金谷化工科技有限公司 Uninterrupted backup system of air separation equipment

Also Published As

Publication number Publication date
JP4886386B2 (en) 2012-02-29

Similar Documents

Publication Publication Date Title
JP4886386B2 (en) High pressure gas supply method
US10371065B2 (en) High pressure fluid control system and method of controlling pressure bias in an end use device
JP7239619B2 (en) Ship fuel supply system and fuel supply method
CN113574308B (en) Fuel tank arrangement in a marine vessel and method of releasing hydrogen from a liquid hydrogen fuel tank arrangement
JP2012087671A (en) Fuel gas supply system for gas engine
WO2017098742A1 (en) Safety valve system, tank, ship, and operation method for safety valve system on ships
KR20110043472A (en) Gas fuel supply apparatus
US9915398B2 (en) Rapid gas exchange and delivery system
CN115199409A (en) Fuel system and method for purging
JP5244954B2 (en) High pressure gas supply method
JP4130909B2 (en) Double fuel-fired gas turbine fuel supply system
KR102569821B1 (en) Gaseous fuel supply system
KR101943615B1 (en) LNG gasification apparatus for preventing explosion
KR101106703B1 (en) Liquid gas supply system with leakage pressure rise prevention valve for pressurized gas leakage
JP2012016415A (en) Fire extinguisher
JP2002372193A (en) Liquefied gas supplying device
JP2005226716A (en) Gas-filling system
JP2016209436A (en) Gaseous fire extinguishing equipment and pressure regulator
JP5846448B2 (en) Pressure control device for gaseous fuel
EA023979B1 (en) System for flare gas recovery
JP2011157992A (en) High-pressure gas supply device
JP2006285661A (en) Pressure governing device
JP2017180619A (en) Fuel supply system
WO2024100724A1 (en) Method for blocking end piping, outside air inflow determination method, and piping equipment
KR101863120B1 (en) pyro valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4886386

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250