JP2008007901A - Immunocyte activating material and column - Google Patents

Immunocyte activating material and column Download PDF

Info

Publication number
JP2008007901A
JP2008007901A JP2006181378A JP2006181378A JP2008007901A JP 2008007901 A JP2008007901 A JP 2008007901A JP 2006181378 A JP2006181378 A JP 2006181378A JP 2006181378 A JP2006181378 A JP 2006181378A JP 2008007901 A JP2008007901 A JP 2008007901A
Authority
JP
Japan
Prior art keywords
group
column
immune cell
lipoteichoic acid
extracorporeal circulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006181378A
Other languages
Japanese (ja)
Inventor
Kazuo Teramoto
和雄 寺本
Masaaki Shimagaki
昌明 島垣
Zaiko Iwamoto
在弘 岩本
Yuji Ueda
祐二 上田
Kyuichi Yamagishi
久一 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Technology Licensing Organization Co Ltd
Original Assignee
Kansai Technology Licensing Organization Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Technology Licensing Organization Co Ltd filed Critical Kansai Technology Licensing Organization Co Ltd
Priority to JP2006181378A priority Critical patent/JP2008007901A/en
Publication of JP2008007901A publication Critical patent/JP2008007901A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Medicinal Preparation (AREA)
  • External Artificial Organs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a material activating an immunocyte and having excellent safety for living bodies, to provide a column filled with the material and to provide a method for effectively using the column. <P>SOLUTION: The immunocyte activating material is characterized by immobilizing lipoteichoic acid on a water-insoluble carrier having a functional group covalently bonding to an amino group or a hydroxy group. The column is filled with the immunocyte activating material. The method for using the column is characterized by using the column for extracorporeal circulation in combination with administration of an anti-malignant tumor agent. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、感染症や癌治療に使用できる免疫細胞活性化材およびカラム並びに該カラムの使用方法に関するものである。   The present invention relates to an immune cell activator and a column that can be used for treating infectious diseases and cancer, and a method of using the column.

先進国では寿命の延長に伴い、癌で死亡する人の割合が急増している。また、高齢化による感染症の増加も問題である。これらは加齢による免疫能低下が原因と考えられる。腫瘍の治療には、主として抗悪性腫瘍剤が使われるが、抗悪性腫瘍剤は腫瘍細胞だけでなく、正常な骨髄細胞をも破壊するので、患者の免疫能の低下を招く。
例えば、抗悪性腫瘍剤投与による副作用として好中球減少症が起きることが多く、この場合、日和見感染の危険が高まる。この予防のために、グラヌロサイト・コロニー刺激因子(G−CSF)の投与が行われているが、癌の転移や増殖に効果があるわけではなく、逆に、癌の増殖を助長する危険性もある。また、抗悪性腫瘍剤投与によって好中球だけでなく、リンパ球等の他の免疫細胞も損傷を受けるので、病原菌に対するだけでなく、癌に対する防御能も低下する。
In industrialized countries, the proportion of people who die from cancer is increasing rapidly with increasing lifespan. An increase in infectious diseases due to aging is also a problem. These are thought to be caused by a decrease in immune capacity due to aging. Anti-neoplastic agents are mainly used for the treatment of tumors, but anti-neoplastic agents destroy not only tumor cells but also normal bone marrow cells, leading to a decrease in the immune capacity of patients.
For example, neutropenia often occurs as a side effect of administration of an antineoplastic agent, and in this case, the risk of opportunistic infection increases. For this prevention, granulosite colony stimulating factor (G-CSF) is administered, but it is not effective for metastasis and growth of cancer, and conversely, there is a risk of promoting cancer growth. is there. In addition, not only neutrophils but also other immune cells such as lymphocytes are damaged by administration of the antineoplastic agent, so that not only the pathogenic bacteria but also the protective ability against cancer is reduced.

従って、このように加齢や抗悪性腫瘍剤投与などにより免疫能の低下した患者の免疫を高める方法が望まれている。特に、化学療法を受けている癌患者において、抗悪性腫瘍剤の使用量を減らして免疫系の損傷を防ぐと共に、免疫細胞を活性化して免疫を高めるような方法の出現が望まれている。   Therefore, a method for enhancing the immunity of a patient whose immunity has decreased due to aging or administration of an antineoplastic agent is desired. In particular, in cancer patients undergoing chemotherapy, the emergence of methods that reduce the amount of antineoplastic agent used to prevent damage to the immune system and activate immune cells to enhance immunity is desired.

免疫を活性化する方法の一つとして、白血球を体外に導き、免疫を高めるような材料に接触させる方法が考えられる。このような体外循環用の細胞活性化材は以前も考えられていて、グラム陰性菌細胞壁由来のリポポリサッカライドを固定化した繊維(非特許文献1)やレクチンの一種であるポークウッドマイトジェンを固定化したビーズ(非特許文献2)が報告されている。
しかし、これらのリガンドであるリポポリサッカライド、ポークウッドマイトジェンはいずれも毒性の強い物質であり、これらをカラム本体(筒体)に詰めて、体外循環に使った時は、万一、担体から血液中に遊離して全身に回れば、患者がショックを起こす危険がある。
したがって、より安全性に優れた免疫活性化材が必要である。
Tani T, et al. Therapeutic Apheresis 4,167-172, 2000. Numa K, et al. Cancer Immunol Immunother, 32, 125-130, 1990.
As a method for activating immunity, a method is conceivable in which leukocytes are guided outside the body and contacted with a material that enhances immunity. Such a cell activating material for extracorporeal circulation has been conceived before, and a fiber (non-patent document 1) in which lipopolysaccharide derived from the cell wall of Gram-negative bacteria is immobilized or porkwood mitogen, which is a kind of lectin, is immobilized. The bead (Non-patent Document 2) has been reported.
However, these ligands, lipopolysaccharide and porkwood mitogen, are both highly toxic substances. If these are packed in the column body (cylinder) and used for extracorporeal circulation, they should be removed from the carrier. If released to the whole body, there is a risk of shock to the patient.
Therefore, there is a need for an immunostimulatory material with better safety.
Tani T, et al. Therapeutic Apheresis 4,167-172, 2000. Numa K, et al. Cancer Immunol Immunother, 32, 125-130, 1990.

本発明は、上記問題を解消するため、免疫細胞を活性化できるとともに、生体への安全性に優れた材料、及び該材料を充填したカラムを提供することを課題とする。また、抗悪性腫瘍剤の投与量を減少することができる該カラムの使用方法を提供することを課題とする。   In order to solve the above problems, an object of the present invention is to provide a material that can activate immune cells and is excellent in safety to living bodies, and a column packed with the material. Another object of the present invention is to provide a method for using the column that can reduce the dose of an antineoplastic agent.

本発明者等は、上記課題を解決するために、安全に使用することのできる免疫活性化材が得られないか、種々検討した結果、毒性の低いリポタイコ酸を、そのアミノ基または水酸基との共有結合により水不溶性担体に固定化した材料が、ラット脾細胞の細胞性免疫を活性化することを見出し、本発明に到達した。   In order to solve the above-mentioned problems, the present inventors have made various studies as to whether an immunostimulatory material that can be used safely is obtained. As a result, low-toxic lipoteichoic acid is converted to its amino group or hydroxyl group. The inventors have found that a material immobilized on a water-insoluble carrier by covalent bonding activates cellular immunity of rat splenocytes, and have reached the present invention.

すなわち本発明は、アミノ基または水酸基と共有結合しうる官能基を有する水不溶性担体にリポタイコ酸を固定化してなる免疫細胞活性化材である。   That is, the present invention is an immune cell activating material obtained by immobilizing lipoteichoic acid on a water-insoluble carrier having a functional group capable of being covalently bonded to an amino group or a hydroxyl group.

前記リポタイコ酸は合成することも可能であるが、グラム陽性菌由来のものが好ましい。特に安全性に優れたリポタイコ酸として、溶血性連鎖球菌及び枯草菌に由来するものが挙げられる。   The lipoteichoic acid can be synthesized, but those derived from Gram-positive bacteria are preferred. Examples of lipoteichoic acid having particularly excellent safety include those derived from hemolytic streptococci and Bacillus subtilis.

前記アミノ基または水酸基と共有結合しうる官能基は、活性ハロゲン基、イソチオシアナート基、イソシアナート基、アルデヒド基及びカルボキシル基からなる群から選ばれる少なくとも一つであることが好ましい。   The functional group that can be covalently bonded to the amino group or the hydroxyl group is preferably at least one selected from the group consisting of an active halogen group, an isothiocyanate group, an isocyanate group, an aldehyde group, and a carboxyl group.

また、前記水不溶性担体は、芳香族化合物重合体であることが好ましい。   The water-insoluble carrier is preferably an aromatic compound polymer.

また、前記免疫細胞活性化材の形状は、繊維、膜、中空糸または粒状であることが好ましい。該活性化材は、カラムに充填して用いるのに好適である。また、該カラムは、体循環治療用カラムとして用いることができる。   Moreover, it is preferable that the shape of the said immune cell activation material is a fiber, a film | membrane, a hollow fiber, or a granular form. The activator is suitable for use in a packed column. The column can also be used as a systemic circulation column.

さらに、本発明者らは、上記体外循環カラムのより有効な使用方法を検討した結果、癌治療の際に、抗悪性腫瘍剤と共に用いて治療の効果を高め、ひいては抗悪性腫瘍剤の投与量を軽減することに成功し、本発明を完成した。   Furthermore, as a result of studying more effective methods of using the extracorporeal circulation column, the present inventors have used the anti-neoplastic agent together with an anti-neoplastic agent in the case of cancer treatment, thereby increasing the dosage of the anti-neoplastic agent. The present invention has been completed.

すなわち、本発明は、上記体外循環カラムの使用方法であって、抗悪性腫瘍剤の投与と併用して(すなわち、抗悪性腫瘍剤の投与前あるいは投与後または投与と同時に)、体外循環に使用することを特徴とするカラムの使用方法である。より好ましい使用方法は、抗悪性腫瘍剤を投与した後、体外循環に使用する方法である。   That is, the present invention is a method for using the extracorporeal circulation column, which is used for extracorporeal circulation in combination with administration of an antineoplastic agent (that is, before or after administration of an antineoplastic agent or simultaneously with administration). It is the usage method of the column characterized by doing. A more preferred method of use is a method of use for extracorporeal circulation after administration of an antineoplastic agent.

前記抗悪性腫瘍剤は、代謝拮抗性抗悪性腫瘍剤であることが好ましく、ゲムシタビンであることがより好ましい。   The antineoplastic agent is preferably an antimetabolite antineoplastic agent, more preferably gemcitabine.

本発明の免疫細胞活性化材によれば、キラー細胞の誘導に結びつく細胞活性化を引き起こすことができる。また、本発明の使用方法によれば、進行癌の治療または患者の延命およびクオリティ・オブ・ライフの向上が可能である。   According to the immune cell activator of the present invention, cell activation associated with induction of killer cells can be caused. Further, according to the method of use of the present invention, it is possible to treat advanced cancer or to prolong the life and improve the quality of life of patients.

本発明でいうアミノ基または水酸基と共有結合しうる官能基とは、アミノ基または水酸基と化学反応して共有結合を形成しうる官能基であれば、何でも良く特に限定されない。具体例を上げると、クロルメチル基、ブロムメチル基、ヨードメチル基等で代表されるハロメチル基、クロルアセチル基、ブロムアセチル基、ヨードアセチル基等で代表されるハロアセチル基等で代表される活性ハロゲン基、イソチオシアナート基、イソシアナート基、アルデヒド基、カルボキシル基等およびこれらの誘導体が挙げられるが、目的に応じ、適宜、これらの群から選ばれる一つあるいは複数が用いられる。   The functional group that can be covalently bonded to an amino group or a hydroxyl group in the present invention is not particularly limited as long as it is a functional group that can chemically react with an amino group or a hydroxyl group to form a covalent bond. Specific examples include halomethyl groups represented by chloromethyl group, bromomethyl group, iodomethyl group, etc., active halogen groups represented by haloacetyl groups represented by chloroacetyl group, bromoacetyl group, iodoacetyl group, etc. Examples include an isocyanate group, an isocyanate group, an aldehyde group, a carboxyl group, and derivatives thereof, and one or more selected from these groups are appropriately used depending on the purpose.

本発明でいう水不溶性担体とは、ポリスチレン、ポリビニルトルエンで代表されるビニル芳香族化合物重合体、芳香族ポリスルホン重合体、ポリエーテルイミド、芳香族ポリイミド重合体、ポリアクリル酸エステル系重合体、ポリメタアクリル酸エステル系重合体、ポリビニルアルコール系重合体、ポリ塩化ビニル、ガラス等、実質上、水に不溶性の重合体で、かつ、リポタイコ酸を化学結合で固定化することができる重合体の成型品を意味する。
具体例をあげると、芳香族化合物重合体の場合、その芳香核の一部が下記一般式(1)
−(CHn −A−(CHm −Y (1)
(式中、nは1以上20以下の整数を表し、mは0以上20以下の整数を表し、nとmは同一でも異なっていてもよい。Aは酸素原子、硫黄原子、窒素原子、尿素基、アミド基またはメチレン基を示し、YはCl、Br、I、−N=C=O、−N=C=Sを表す)で示される官能基を結合しているものが挙げられる。
The water-insoluble carrier referred to in the present invention is a polystyrene, a vinyl aromatic compound polymer represented by polyvinyltoluene, an aromatic polysulfone polymer, a polyetherimide, an aromatic polyimide polymer, a polyacrylate polymer, Molding of polymers such as methacrylic acid ester polymers, polyvinyl alcohol polymers, polyvinyl chloride, glass, etc., which are substantially water-insoluble polymers and can fix lipoteichoic acid with chemical bonds. Means goods.
As a specific example, in the case of an aromatic compound polymer, a part of the aromatic nucleus is represented by the following general formula (1):
- (CH 2) n -A- ( CH 2) m -Y (1)
(In the formula, n represents an integer of 1 to 20, m represents an integer of 0 to 20, and n and m may be the same or different. A represents an oxygen atom, a sulfur atom, a nitrogen atom, urea. Group, amide group, or methylene group, and Y is Cl, Br, I, -N = C = O, -N = C = S).

本発明の上記担体に用いられる重合体(および共重合体)の分子量は、成型できるものであればよく特に制限はないが、成形性の良さから、通常、5万以上500万以下、とりわけ、10万以上100万以下のものが好ましく用いられる。   The molecular weight of the polymer (and copolymer) used in the carrier of the present invention is not particularly limited as long as it can be molded, but is usually from 50,000 to 5,000,000, particularly from the good moldability, Those of 100,000 to 1,000,000 are preferably used.

本発明の重合体中における官能基の適正な量、即ち密度は、幹となる重合体の化学構造および用途によって異なるが、少なすぎるとその機能が発現されず、多すぎると利用されずに無駄になる。従って、例えば、一般式(1)で表される官能基を有する芳香族化合物重合体の場合、官能基の量は、通常、繰り返し単位(単量体)当たり0.001〜4個、とりわけ、0.01〜1個が好ましい。   The appropriate amount of functional groups in the polymer of the present invention, that is, the density varies depending on the chemical structure and application of the main polymer, but if it is too small, its function will not be expressed, and if it is too large, it will not be used. become. Therefore, for example, in the case of an aromatic compound polymer having a functional group represented by the general formula (1), the amount of the functional group is usually 0.001 to 4 per repeating unit (monomer). 0.01-1 piece is preferable.

リポタイコ酸は溶血性連鎖状球菌、枯草菌、黄色ブドウ球菌等のグラム陽性菌の細胞壁に存在する化合物であるが、菌体をブタノール等の有機溶媒で抽出した後、混入するタンパク質を分解・除去し、適宜、クロマト精製して、純粋な形で得ることができる(例えば、J.Immunotherapy 1993:13:232-242)。   Lipotycoic acid is a compound that is present in the cell walls of Gram-positive bacteria such as hemolytic streptococci, Bacillus subtilis, and Staphylococcus aureus. And, if appropriate, chromatographic purification can be obtained in pure form (eg J. Immunotherapy 1993: 13: 232-242).

リポタイコ酸の固定化密度は、少なすぎるとその機能が発現されず、多すぎると利用されずに無駄になる。従って、リポタイコ酸の量は、通常、繰り返し単位当たり0.0000001〜0.04個、とりわけ、0.00001〜0.005個が好ましい。しかし、体外循環材料として用いる場合、免疫細胞活性化材表面に固定化されたリポタイコ酸は血液細胞と接触できるので、有効に働くが、免疫細胞活性化材の内部に存在するリポタイコ酸は血液細胞と接触する機会が無いので、有効に働かない。従って、リポタイコ酸の固定化密度は成型品表面での密度が重要である。その観点からは、官能基を有する水不溶性担体を形成後、リポタイコ酸の溶液に入れて固定化する方法で製造したものが好ましい。
一方、体外循環の際、安全に体外に取り出せる血液量はヒトの場合、200mLと言われているので、カラムの大きさには限界があり、従って、充填できる活性化材の量に限界がある。これらを勘案すると、前記方法で製造した免疫細胞活性化材におけるリポタイコ酸の固定化密度は、0.01mg/g〜10mg/gが好ましく、リポタイコ酸の効率的利用の観点で0.1mg/g〜1mg/gがさらに好ましい。
担体に固定化されたリポタイコ酸の量は、固定化時の固定化反応母液中に残存するリポタイコ酸量から簡便に求めることができるが、リポタイコ酸固定化物(免疫細胞活性化材)を分析して求めることも可能である。
後者の方法としては、リポタイコ酸固定化物を抗リポタイコ酸抗体水溶液に浸して、抗原-抗体結合を進行させたあと、当該水溶液中に残存する遊離抗体量を測定し、反応前の抗体量との差を求めることにより容易に定量することができる。その他、リポタイコ酸固定化物を酸で加水分解処理した後、加水分解液中に含まれるグリセリン、リン酸、グルコース、アミノ糖、アミノ酸、長鎖脂肪酸などを高速液体クロマトグラフィーなどで分析することによって定量することも可能である。
If the immobilization density of lipoteichoic acid is too small, its function is not expressed, and if it is too large, it is not used and is wasted. Therefore, the amount of lipoteichoic acid is usually preferably 0.0000001 to 0.04, particularly 0.00001 to 0.005 per repeating unit. However, when used as an extracorporeal circulation material, lipoteichoic acid immobilized on the surface of the immune cell activator can work with blood cells, so it works effectively, but lipoteichoic acid present inside the immune cell activator is blood cells. Because there is no opportunity to contact with, it does not work effectively. Therefore, the density on the surface of the molded product is important for the immobilization density of lipoteichoic acid. From this point of view, it is preferable to use a method in which a water-insoluble carrier having a functional group is formed and then placed in a lipoteichoic acid solution and immobilized.
On the other hand, the amount of blood that can be safely taken out of the body during extracorporeal circulation is said to be 200 mL for humans, so there is a limit to the size of the column, and therefore the amount of activation material that can be packed is limited. . Taking these into consideration, the immobilization density of lipoteichoic acid in the immune cell activator produced by the above method is preferably 0.01 mg / g to 10 mg / g, and 0.1 mg / g from the viewpoint of efficient use of lipoteichoic acid. More preferred is ˜1 mg / g.
The amount of lipoteichoic acid immobilized on the carrier can be easily determined from the amount of lipoteichoic acid remaining in the immobilization reaction mother liquor at the time of immobilization, but the lipoteichoic acid-immobilized product (immunocyte activation material) is analyzed. It is also possible to ask.
As the latter method, the lipoteichoic acid-immobilized product is immersed in an anti-lipotycoic acid antibody aqueous solution to allow antigen-antibody binding to proceed, and then the amount of free antibody remaining in the aqueous solution is measured. It can be easily quantified by obtaining the difference. In addition, after hydrolyzing lipoteichoic acid immobilized product with acid, glycerin, phosphoric acid, glucose, amino sugar, amino acid, long chain fatty acid, etc. contained in the hydrolyzed solution are analyzed by high performance liquid chromatography etc. It is also possible to do.

本発明の免疫細胞活性化材は、対応するリポタイコ酸の溶液に、担体を加え、そのまま、あるいは、必要に応じて縮合剤を加えることによって反応させ、製造することができる。具体的には、担体がクロルメチル基、ブロムメチル基、ヨードメチル基等で代表されるハロメチル基、クロルアセチル基、ブロムアセチル基、ヨードアセチル基等で代表されるハロアセチル基等で代表される活性ハロゲン基を有する場合は、リポタイコ酸水溶液のpHを7〜12に調整することにより固定化反応を進めることができる。また、担体がイソチオシアナート基、イソシアナート基を有する場合は、反応液に触媒として第3級アミンを加えることにより進めることができる。この場合、尿素結合やチオウレイド結合、もしくは、チオ尿素結合やチオウレイド結合でリポタイコ酸を固定化する。担体がカルボキシル基を有する場合は、反応液にジシクロヘキシルカルボジイミドや水溶性カルボジイミドなどのペプチド縮合剤を加えることにより得ることができる。
反応溶媒としては、リポタイコ酸を溶解するものであれば良く、特に限定されないが、水のほか、ジメチルスルホキシド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドおよびN−メチルピロリドンなど、担体を膨潤させる有機溶媒が好ましく用いられる。
The immune cell activator of the present invention can be produced by adding a carrier to the corresponding solution of lipoteichoic acid and reacting it as it is or by adding a condensing agent as necessary. Specifically, the carrier has an active halogen group typified by a halomethyl group typified by a chloromethyl group, a bromomethyl group, an iodomethyl group, etc., a haloacetyl group typified by a chloroacetyl group, a bromoacetyl group, an iodoacetyl group, etc. If so, the immobilization reaction can be advanced by adjusting the pH of the lipoteichoic acid aqueous solution to 7-12. Moreover, when a support | carrier has an isothiocyanate group and an isocyanate group, it can advance by adding a tertiary amine as a catalyst to a reaction liquid. In this case, lipoteichoic acid is immobilized by a urea bond, a thioureido bond, or a thiourea bond or a thioureido bond. When the carrier has a carboxyl group, it can be obtained by adding a peptide condensing agent such as dicyclohexylcarbodiimide or water-soluble carbodiimide to the reaction solution.
The reaction solvent is not particularly limited as long as it dissolves lipoteichoic acid, but a carrier such as dimethyl sulfoxide, N, N-dimethylformamide, N, N-dimethylacetamide and N-methylpyrrolidone can be used. An organic solvent for swelling is preferably used.

本発明でいう免疫細胞活性化は、第1に癌細胞やウイルス感染細胞を駆除する役割を持つキラー細胞の増殖や活性化を意味する細胞性免疫の活性化である。第2に癌細胞やウイルスに対する抗体の産生に関与する細胞の活性化を意味する液性免疫の活性化である。癌の治療においては細胞性免疫がとりわけ重要であると言われている。このキラー細胞の増殖・活性化にはインターロイキンー12(以下IL−12と呼ぶ。)とインターフェロン−γが重要な役割を持つことが分かっているので、IL−12やインターフェロン−γを誘導できることが免疫細胞活性化材の重要な機能である。なお、本発明の作用機構は明確でなく、これを明らかにするには、さらなる検討が必要であるが、活性化の初期に樹状細胞やそのトールライクレセプター類が関与しているものと考えられる。   The immune cell activation referred to in the present invention is the activation of cellular immunity, which means the proliferation and activation of killer cells having the role of extinguishing cancer cells and virus-infected cells. Second is the activation of humoral immunity, which means the activation of cells involved in the production of antibodies against cancer cells and viruses. Cellular immunity is said to be particularly important in the treatment of cancer. It is known that interleukin-12 (hereinafter referred to as IL-12) and interferon-γ have an important role in the growth and activation of this killer cell, so that IL-12 and interferon-γ can be induced. Is an important function of immune cell activator. The mechanism of action of the present invention is not clear, and further investigation is necessary to clarify this, but it is considered that dendritic cells and their toll-like receptors are involved in the early stage of activation. It is done.

本発明の免疫活性材の形状は、繊維、膜、フイルム、中空糸、不織布、粒状物およびこれらの高次加工品であり、用途に応じ、適宜、選択される。これらは、体外循環用カラムに充填し、癌治療用として用いることができる。この場合、抗悪性腫瘍剤と併用して用いるのが効果的である。   The shape of the immunologically active material of the present invention is a fiber, a membrane, a film, a hollow fiber, a nonwoven fabric, a granular material, or a higher-order processed product thereof, and is appropriately selected depending on the application. These can be packed in an extracorporeal circulation column and used for cancer treatment. In this case, it is effective to use in combination with an antineoplastic agent.

本発明で用いる抗悪性腫瘍剤としては、単独使用で抗腫瘍性を示す薬剤であれば良く、特に制限されない。具体例を挙げると、ゲムシタビン、フルオロウラシル、テガフール、シタラビン、メトトレキセートなどで代表される代謝拮抗性抗悪性腫瘍剤、シクロホスファミドで代表されるアルキル化剤、ビンクリスチン、ビンブラスチン、ビンデシン、エトポシド、イリノテカン、ドセタキセル、パクリタキセルなどで代表されるアルカロイド系抗悪性腫瘍剤、ドキソルビシン、エピルビシン、ビラルビシン、ダウノルビシン、マイトマイシンC、アクチノマイシンD、ペプロマイシン、ネオカルチノスタチン、ブレオマイシンなどで代表される抗生物質抗悪性腫瘍剤、ゲフィチニブなどで代表される酵素阻害性抗悪性腫瘍剤、シスプラチン、カルボプラチンなどがある。なかでも代謝拮抗性抗悪性腫瘍剤が、アルキル化剤に認められるような発癌性が無く、且つ、骨髄などに対する毒性も低いので、好ましい。さらに、代謝拮抗性抗悪性腫瘍剤のなかでもゲムシタビンは、腫瘍細胞内での代謝が遅いために抗腫瘍効果が持続し、多くの固形腫瘍に対して抗腫瘍効果を示すので、特に、好ましい。   The antineoplastic agent used in the present invention is not particularly limited as long as it is a drug that exhibits antitumor properties when used alone. Specific examples include antimetabolite antitumor agents represented by gemcitabine, fluorouracil, tegafur, cytarabine, methotrexate, alkylating agents represented by cyclophosphamide, vincristine, vinblastine, vindesine, etoposide, irinotecan, Alkaloid antineoplastic agents typified by docetaxel, paclitaxel, etc., antibiotic antineoplastic agents typified by doxorubicin, epirubicin, biralubicin, daunorubicin, mitomycin C, actinomycin D, peplomycin, neocalcinostatin, bleomycin, etc. Enzyme-inhibiting antineoplastic agents such as gefitinib, cisplatin and carboplatin. Of these, antimetabolite anti-neoplastic agents are preferred because they do not have the carcinogenicity observed in alkylating agents and have low toxicity to bone marrow. Furthermore, among antimetabolite anti-neoplastic agents, gemcitabine is particularly preferable because it has a slow metabolism in tumor cells and thus has an antitumor effect and exhibits an antitumor effect on many solid tumors.

本発明における抗悪性腫瘍剤の好ましい投与方法としては、腫瘍の近くの組織に注射する方法、静脈に注射する方法、筋肉内に注射する方法、経口で投与する方法などがあり、特に制限はされないが、薬の特性に応じて適宜採用することが好ましい。投与量が少なすぎると、本発明の効果が低く、投与量が多すぎると、骨髄抑制などが起き、腫瘍免疫の誘導が抑制され、抗腫瘍効果が逆に低下してしまう。一般的には個々の抗悪性腫瘍剤に指定された適正投与量の100分の1以上2分の1以下の使用が望ましい。抗悪性腫瘍剤の投与時期は、体外循環治療の前でも後でも同時でもよいが、体外循環治療に先だって行われるのがより好ましい。特に好ましくは体外循環治療の24時間から200時間前、より好ましくは24時間から100時間前におこなわれる。   The preferred administration method of the antineoplastic agent in the present invention includes a method of injecting into a tissue near the tumor, a method of injecting intravenously, a method of injecting intramuscularly, a method of administering orally, etc., and is not particularly limited. However, it is preferable to employ appropriately depending on the characteristics of the drug. If the dose is too small, the effect of the present invention is low, and if the dose is too large, bone marrow suppression or the like occurs, the induction of tumor immunity is suppressed, and the antitumor effect is reduced. In general, it is desirable to use 1/100 to 1/2 of the appropriate dose designated for each antineoplastic agent. The administration timing of the antineoplastic agent may be before or after the extracorporeal circulation treatment, but is more preferably performed prior to the extracorporeal circulation treatment. Particularly preferably, it is performed 24 hours to 200 hours before the extracorporeal circulation treatment, more preferably 24 hours to 100 hours.

本発明で用いる免疫細胞活性化材の表面積は成型品1グラム当たり0.1平方メートル以上であることが好ましく、より好ましくは、1平方メートル以上である。ただし無限に大きくはできないので、実際上、限界があり、100平方メートル以下が好ましい。この表面積は窒素ガス吸着法(BET法)で求めることができる。   The surface area of the immune cell activator used in the present invention is preferably 0.1 square meter or more, more preferably 1 square meter or more per gram of the molded product. However, since it cannot be infinitely large, there is a practical limit, and 100 square meters or less is preferable. This surface area can be determined by a nitrogen gas adsorption method (BET method).

本発明で用いる体外循環カラムの作製は、例えば綿状、筒編み状、フェルト状のリポタイコ酸を固定化した免疫細胞活性化材を、空隙容積が200mL程度以下になるようにして、適度の大きさの円筒形のカラム本体に詰めることで達成できる。
体外循環の基本的な実施方法としては、採血用穿刺カテーテル、抗凝固剤を連続的に投与するための輸液ポンプを接続したドリップチャンバー、血液ポンプ、ドリップチャンバー、本発明の体外循環カラム、ドリップチャンバー、返血用穿刺カテーテルの順に適度の太さのチューブを用いて連結し、体外循環回路を作製し、これに血液を流すことで行うことが出来る。採血および返血は大腿や腕の動脈もしくは静脈に穿刺して行う。大型の哺乳動物に対しては通常、血液透析器や吸着型血液浄化器のために市販されている体外循環装置と血液回路を使用することができる。体外循環の時間は10分から300分間、通常、30分から120分間行われるのが好ましい。体外循環の際に用いる抗凝固剤には特に制限はなく、ヘパリンやフサンなどが用いられる。
The extracorporeal circulation column used in the present invention is prepared by, for example, using an immune cell activator in which a lipoteichoic acid in the form of cotton, tube braid, or felt is immobilized so that the void volume is about 200 mL or less. This can be achieved by filling the cylindrical column body.
As a basic implementation method of extracorporeal circulation, a puncture catheter for blood collection, a drip chamber connected with an infusion pump for continuously administering an anticoagulant, a blood pump, a drip chamber, the extracorporeal circulation column of the present invention, and a drip chamber The blood return puncture catheter can be connected in the order of a tube having an appropriate thickness to produce an extracorporeal circuit, and blood can be allowed to flow therethrough. Blood is collected and returned by puncturing the artery or vein of the thigh or arm. For large mammals, extracorporeal circulation devices and blood circuits that are commercially available for hemodialyzers and adsorption blood purifiers can be used. The extracorporeal circulation is preferably performed for 10 to 300 minutes, usually 30 to 120 minutes. The anticoagulant used for extracorporeal circulation is not particularly limited, and heparin, fusan, etc. are used.

本発明の使用方法による治療では、抗悪性腫瘍剤(抗癌剤)の使用量が少なくて済むので、副作用が少ない利点がある。さらに、患者のQOLを低下させない利点がある。   In the treatment according to the method of use of the present invention, since the amount of the antineoplastic agent (anticancer agent) used is small, there are advantages in that there are few side effects. Further, there is an advantage that the patient's QOL is not lowered.

本発明を実施例に基づいて具体的に説明する。なお、本実施例中のリポタイコ酸の濃度及びNK活性の分析は以下に従った。
1.リポタイコ酸濃度の分析
フェノール硫酸法で求めた。即ち、直径20mmのガラス製試験管にリポタイコ酸を含有する水溶液2mLと5%フェノール水1mLを加えた後、5mLの濃硫酸を急速に添加し、振とうした。この液を30分間静置した後、485nmの吸光度を測定し、検量線から濃度を求めた。なお、検量線作成の際、反応触媒としてトリエチルアミンを使用した場合は、処理前の溶液の吸光度から得たトリエチルアミンを同濃度になるよう加え、検量線を作製した。
2.NK活性の測定
(YAC−1細胞の調製)
NK細胞感受性の癌細胞であるYAC−1細胞は、ペニシリンGを50単位/mL、ストレプトマイシンを50マイクログラム/mL、2−メルカプトエタノールを50マイクロモル/L含有し、ウシ胎児血清を10体積%となるよう添加したPRMI1640培地(以下完全培地と略称する)中で経代培養した。
(ラット脾細胞)
ラットをネンブタールで麻酔した後、腹部大動脈から失血・屠殺させ、脾臓を採取した。脾臓を完全培地中で細かく砕き、細胞を採取した後、赤血球を除くため低浸透圧液で処理し、溶血させた。得られた細胞を完全培地に浮遊させ、脾細胞液とした。
(YAC−1細胞のユーロピウムラベルとNK活性の測定)
YAC−1細胞のユーロピウムラベルは文献(Nagao F, Tanaka M, 1992 Medical Immunology, 23 (1), 84-88)に従って行った。脾細胞とユーロピウムラベルしたYAC−1細胞を40:1、20:1、10:1、5:1(細胞数比)で混合した後、37℃の炭酸ガスインキュウベーター中、20時間培養した。ユーロピウム溶出量の測定はWallac社製 ARVOTM SX DELFIA 1420 マルチラベルカウンターを用いて測定した。
The present invention will be specifically described based on examples. The analysis of the lipoteichoic acid concentration and NK activity in this example was as follows.
1. Analysis of lipoteichoic acid concentration Determined by the phenol-sulfuric acid method. That is, 2 mL of an aqueous solution containing lipoteichoic acid and 1 mL of 5% phenol water were added to a glass test tube having a diameter of 20 mm, and then 5 mL of concentrated sulfuric acid was rapidly added and shaken. After allowing this solution to stand for 30 minutes, absorbance at 485 nm was measured, and the concentration was determined from a calibration curve. When preparing a calibration curve, when triethylamine was used as a reaction catalyst, a calibration curve was prepared by adding triethylamine obtained from the absorbance of the solution before the treatment to the same concentration.
2. Measurement of NK activity (Preparation of YAC-1 cells)
YAC-1 cells, which are cancer cells sensitive to NK cells, contain penicillin G at 50 units / mL, streptomycin at 50 microgram / mL, 2-mercaptoethanol at 50 micromol / L, and fetal bovine serum at 10% by volume. Subculture was performed in a PRMI1640 medium (hereinafter abbreviated as a complete medium) added to the above.
(Rat splenocytes)
After anesthetizing the rat with Nembutal, blood was removed from the abdominal aorta and sacrificed, and the spleen was collected. The spleen was finely broken in a complete medium, and the cells were collected, and then treated with a low osmotic pressure solution to remove red blood cells and hemolyzed. The obtained cells were suspended in a complete medium to obtain a spleen cell solution.
(Measurement of europium label and NK activity of YAC-1 cells)
Europium labeling of YAC-1 cells was performed according to the literature (Nagao F, Tanaka M, 1992 Medical Immunology, 23 (1), 84-88). Spleen cells and europium-labeled YAC-1 cells were mixed at 40: 1, 20: 1, 10: 1, 5: 1 (cell number ratio) and then cultured in a carbon dioxide incubator at 37 ° C. for 20 hours. . Europium elution was measured using a Wallac ARVO SX DELFIA 1420 multilabel counter.

[実施例1]
(水不溶性担体1の調製)
1.原糸の調製
36島の海島複合繊維であって、島が更に芯鞘複合によりなるものを次の成分を用いて、紡糸速度800m/分、延伸倍率3倍の製糸条件で得た。
島の芯成分;ポリプロピレン
島の鞘成分;ポリスチレン90重量%、ポリプロピレン10重量%
海成分;エチレンテレフタレート単位を主たる繰り返し単位とし、共重合成分として5−ナトリウムスルホイソフタル酸3wt%含む共重合ポリエステル
複合比率(重量比率);芯:鞘:海=40:40:20
上記で得られた三成分複合繊維を苛性ソーダ水溶液中で加熱して、海成分を溶解し、芯鞘型のポリプロピレン補強ポリスチレン繊維として、直径4μmの原糸1を得た。
2.水不溶性担体の調製
ニトロベンゼン700mLと硫酸460mLの混合液にパラホルムアルデヒド3.6g(0.2重量%)を加え、20℃で溶解した後、0℃に冷却し、127g(7重量%)のN−メチロール−α−クロルアセトアミドを加えて、5℃以下で溶解した。これに39gの上記原糸1を浸し、室温で2時間静置した。その後、繊維を取り出し、大過剰の冷メタノール中に入れ、洗浄した。繊維をメタノールで良く洗った後、水洗し、乾燥して、57.5gのα−クロルアセトアミドメチル化ポリスチレン繊維(水不溶性担体1)を得た(繰り返し単位当たりの官能基密度:1)。
[Example 1]
(Preparation of water-insoluble carrier 1)
1. Preparation of raw yarn 36 islands of sea-island composite fiber, in which the island is further formed of a core-sheath composite, was obtained using the following ingredients under the spinning conditions of spinning speed of 800 m / min and draw ratio of 3 times.
Island core component; Polypropylene island sheath component: Polystyrene 90% by weight, polypropylene 10% by weight
Sea component: ethylene terephthalate unit as a main repeating unit, and copolymerized polyester composite ratio (weight ratio) containing 3 wt% of 5-sodiumsulfoisophthalic acid as a copolymer component; core: sheath: sea = 40: 40: 20
The ternary composite fiber obtained above was heated in an aqueous caustic soda solution to dissolve the sea component, and a core yarn 1 having a diameter of 4 μm was obtained as a core-sheath polypropylene reinforced polystyrene fiber.
2. Preparation of water-insoluble carrier To a mixed solution of 700 mL of nitrobenzene and 460 mL of sulfuric acid, 3.6 g (0.2 wt%) of paraformaldehyde was added, dissolved at 20 ° C., cooled to 0 ° C., and 127 g (7 wt%) of N -Methylol-α-chloroacetamide was added and dissolved at 5 ° C or lower. 39 g of the above-mentioned raw yarn 1 was immersed in this, and left still for 2 hours at room temperature. Thereafter, the fiber was taken out, placed in a large excess of cold methanol and washed. The fiber was thoroughly washed with methanol, washed with water, and dried to obtain 57.5 g of α-chloroacetamidomethylated polystyrene fiber (water-insoluble carrier 1) (functional group density per repeating unit: 1).

[実施例2]
(水不溶性担体2の調製)
チオシアン化ナトリウム20gを400mLのジメチルホルムアミド400mlに溶かした溶液に13gの水不溶性担体1を浸し、室温で48時間浸漬した。繊維を取り出し、水洗後、真空乾燥して、13gのα−チオイソシアナトアセトアミドメチル化ポリスチレン繊維(水不溶性担体2)を得た。
[Example 2]
(Preparation of water-insoluble carrier 2)
13 g of water-insoluble carrier 1 was immersed in a solution of 20 g of sodium thiocyanide in 400 mL of dimethylformamide and immersed at room temperature for 48 hours. The fiber was taken out, washed with water, and vacuum-dried to obtain 13 g of α-thioisocyanatoacetamidomethylated polystyrene fiber (water-insoluble carrier 2).

[実施例3]
(水不溶性担体3の調製)
ニトロベンゼン16mLと硫酸32mLの混合溶液を0℃に冷却後、4.2gのN−ヒドロキシメチル−2−クロルアセタミドを加えて、溶解し、これを、10℃のユーデルポリスルホンP3500の1.5Lのニトロベンゼン溶液(150g/1.5L)に、良く攪拌しながら加え、さらに、室温で3時間攪拌した。その後、反応混合物を大過剰の冷メタノール中に入れ、ポリマーを沈殿させた。沈殿をメタノールで良く洗った後、乾燥して、150gの2−クロルアセタミドメチル化ポリスルホン(繰り返し単位当たりの官能基密度:0.05;重合体−A)を得た。
10gの重合体−Aを500mLのテトラヒドロフランに溶解し、重合体−Aの溶液とした。この溶液中に、単糸繊度0.7デニールのナイロンー6の筒編み40.0gを浸した。20時間後、筒編みを取り出し、液を切って、風乾燥し、さらに、真空乾燥して、40.5gのコーティング編み地(水不溶性担体3)を得た。
[Example 3]
(Preparation of water-insoluble carrier 3)
After cooling a mixed solution of 16 mL of nitrobenzene and 32 mL of sulfuric acid to 0 ° C., 4.2 g of N-hydroxymethyl-2-chloroacetamide was added and dissolved, and this was dissolved in 1.5 L of nitrobenzene of Udelpolysulfone P3500 at 10 ° C. The solution (150 g / 1.5 L) was added with good stirring, and further stirred at room temperature for 3 hours. The reaction mixture was then placed in a large excess of cold methanol to precipitate the polymer. The precipitate was washed well with methanol and dried to obtain 150 g of 2-chloroacetamidomethylated polysulfone (functional group density per repeating unit: 0.05; polymer-A).
10 g of Polymer-A was dissolved in 500 mL of tetrahydrofuran to obtain a polymer-A solution. In this solution, 40.0 g of nylon-6 cylinder braid having a single yarn fineness of 0.7 denier was immersed. After 20 hours, the tubular knitting was taken out, drained, air dried, and further vacuum dried to obtain 40.5 g of a coated knitted fabric (water-insoluble carrier 3).

[実施例4]
(水不溶性担体4の調製)
ニトロベンゼン600mLと硫酸390mLの混合溶液にパラホルムアルデヒド3gを20℃で溶解した後、0℃に冷却し、75.9gのN−ヒドロキシ−2−クロルアセトアミドを加えて、5℃以下で溶解した。これに10gの実施例1で調製した原糸1を浸し、室温で2時間静置した。その後、繊維を取りだし、大過剰の冷メタノール中に入れ、洗浄した。繊維をメタノールで良く洗った後、水洗し、乾燥して、15.0gのポリプロピレン補強2−クロルアセトアミドメチル化ポリスチレン繊維(水不溶性担体4)を得た。
[Example 4]
(Preparation of water-insoluble carrier 4)
After 3 g of paraformaldehyde was dissolved at 20 ° C. in a mixed solution of 600 mL of nitrobenzene and 390 mL of sulfuric acid, the solution was cooled to 0 ° C., and 75.9 g of N-hydroxy-2-chloroacetamide was added and dissolved at 5 ° C. or lower. 10 g of the original yarn 1 prepared in Example 1 was dipped in this, and allowed to stand at room temperature for 2 hours. Thereafter, the fiber was taken out and placed in a large excess of cold methanol for washing. The fiber was thoroughly washed with methanol, then washed with water and dried to obtain 15.0 g of polypropylene-reinforced 2-chloroacetamidomethylated polystyrene fiber (water-insoluble carrier 4).

[実施例5]
(免疫細胞活性化材1の調製)
リポタイコ酸の固定1
Bacillus subtilis由来のリポタイコ酸(シグマ社)10mgを炭酸緩衝液(pH8.3)に溶かして100mLとし、これに5.45gの水不溶性担体1を加え、室温で48h振とうした。繊維を取り出し、水洗し、本発明にかかる免疫細胞活性化材1を得た。固定化前と固定化後の水溶液のリポタイコ酸濃度の差から固定化量を算出した。リポタイコ酸固定化密度は0.56mg/g (92pmol/g )であった。
[Example 5]
(Preparation of immune cell activation material 1)
Fixation of lipoteichoic acid 1
10 mg of lipoteichoic acid (Sigma) derived from Bacillus subtilis was dissolved in a carbonate buffer (pH 8.3) to make 100 mL, and 5.45 g of water-insoluble carrier 1 was added thereto, followed by shaking at room temperature for 48 hours. The fiber was taken out and washed with water to obtain an immune cell activation material 1 according to the present invention. The amount of immobilization was calculated from the difference in the lipoteichoic acid concentration of the aqueous solution before and after immobilization. The lipoteichoic acid immobilization density was 0.56 mg / g (92 pmol / g).

[実施例6]
(免疫細胞活性化材2の調製)
リポタイコ酸の固定2
Bacillus subtilis由来のリポタイコ酸(シグマ社)10mgを炭酸緩衝液(pH9.1)に溶かして100mLとし、これに5.55gの水不溶性担体1を加え、室温で48h振とうした。繊維を取り出し、水洗し、本発明にかかる免疫細胞活性化材2を得た。固定化前と固定化後の水溶液のリポタイコ酸濃度の差から固定化量を算出した。リポタイコ酸固定化密度は0.61mg/g (100pmol/g )であった。
[Example 6]
(Preparation of immune cell activation material 2)
Fixation of lipoteichoic acid 2
10 mg of lipoteichoic acid (Sigma) derived from Bacillus subtilis was dissolved in a carbonate buffer (pH 9.1) to make 100 mL, and 5.55 g of water-insoluble carrier 1 was added thereto and shaken at room temperature for 48 h. The fiber was taken out and washed with water to obtain an immune cell activating material 2 according to the present invention. The amount of immobilization was calculated from the difference in the lipoteichoic acid concentration of the aqueous solution before and after immobilization. The lipoteichoic acid immobilization density was 0.61 mg / g (100 pmol / g).

[実施例7]
(免疫細胞活性化材3の調製)
リポタイコ酸の固定3
Bacillus subtilis由来のリポタイコ酸(シグマ社)10mgを炭酸緩衝液(pH10.0)に溶かして100mLとし、これに5.25gの水不溶性担体1を加え、室温で48h振とうした。繊維を取り出し、水洗し、本発明にかかる免疫細胞活性化材3を得た。固定化前と固定化後の水溶液のリポタイコ酸濃度の差から固定化量を算出した。リポタイコ酸固定化密度は0.63mg/g (103pmol/g )であった。
[Example 7]
(Preparation of immune cell activation material 3)
Fixation of lipoteichoic acid 3
10 mg of lipoteichoic acid derived from Bacillus subtilis (Sigma) was dissolved in a carbonate buffer (pH 10.0) to make 100 mL, and 5.25 g of water-insoluble carrier 1 was added thereto and shaken at room temperature for 48 h. The fiber was taken out and washed with water to obtain an immune cell activation material 3 according to the present invention. The amount of immobilization was calculated from the difference in the lipoteichoic acid concentration of the aqueous solution before and after immobilization. The immobilization density of lipoteichoic acid was 0.63 mg / g (103 pmol / g).

[実施例8]
(免疫細胞活性化材4の調製)
リポタイコ酸の固定4
Streptococcus pyrogenes由来のリポタイコ酸(シグマ社)10mgをリン酸緩衝生理食塩液(pH7.4)に溶かして100mLとし、これに6.0gの水不溶性担体1を加え、室温で48h振とうした。繊維を取り出し、水洗し、本発明にかかる免疫細胞活性化材4を得た。固定化前と固定化後の水溶液のリポタイコ酸濃度の差から固定化量を算出した。固定化密度は0.22mg/g (37pmol/g )であった。
[Example 8]
(Preparation of immune cell activation material 4)
Fixation of lipoteichoic acid 4
10 mg of lipoteichoic acid (Sigma) derived from Streptococcus pyrogenes was dissolved in phosphate buffered saline (pH 7.4) to 100 mL, 6.0 g of water-insoluble carrier 1 was added thereto, and the mixture was shaken at room temperature for 48 hours. The fiber was taken out and washed with water to obtain an immune cell activation material 4 according to the present invention. The amount of immobilization was calculated from the difference in the lipoteichoic acid concentration of the aqueous solution before and after immobilization. The immobilization density was 0.22 mg / g (37 pmol / g).

[実施例9]
(免疫細胞活性化材5の調製)
リポタイコ酸の固定5
Streptococcus pyrogenes由来のリポタイコ酸(シグマ社)10mgをPBSに溶かして100mLとし、これに6.0gの水不溶性担体2を加え、室温で1h振とうした後、トリエチルアミン0.2mLを加え、室温で48h振とうした。繊維を取り出し、水洗し、本発明にかかる免疫細胞活性化材5を得た。固定化前と固定化後の水溶液のリポタイコ酸濃度の差から固定化量を算出した。固定化密度は0.61mg/g(100pmol/g )であった。
[Example 9]
(Preparation of immune cell activation material 5)
Fixation of lipoteichoic acid 5
10 mg of lipoteichoic acid derived from Streptococcus pyrogenes (Sigma) was dissolved in PBS to 100 mL, 6.0 g of water-insoluble carrier 2 was added thereto, shaken at room temperature for 1 h, added with 0.2 mL of triethylamine, and then at room temperature for 48 h. Shake. The fiber was taken out and washed with water to obtain an immune cell activation material 5 according to the present invention. The amount of immobilization was calculated from the difference in the lipoteichoic acid concentration of the aqueous solution before and after immobilization. The immobilization density was 0.61 mg / g (100 pmol / g).

[実施例10]
(免疫細胞活性化材6の調製)
リポタイコ酸の固定6
Bacillus subtilis由来のリポタイコ酸(シグマ社)10mgを炭酸緩衝液(pH10.0)に溶かして100mLとし、これに5.25gの水不溶性担体3を加え、室温で48h振とうした。編み地を取り出し、水洗し、本発明にかかる免疫細胞活性化材6を得た。固定化前と固定化後の水溶液のリポタイコ酸濃度の差から固定化量を算出した。リポタイコ酸固定化密度は0.25mg/g(41pmol/g)であった。
[Example 10]
(Preparation of immune cell activation material 6)
Fixation of lipoteichoic acid 6
10 mg of lipoteichoic acid (Sigma) derived from Bacillus subtilis was dissolved in carbonate buffer (pH 10.0) to make 100 mL, and 5.25 g of water-insoluble carrier 3 was added thereto, and shaken at room temperature for 48 h. The knitted fabric was taken out and washed with water to obtain an immune cell activation material 6 according to the present invention. The amount of immobilization was calculated from the difference in the lipoteichoic acid concentration of the aqueous solution before and after immobilization. The lipoteichoic acid immobilization density was 0.25 mg / g (41 pmol / g).

[実施例11]
(免疫細胞活性化材7の調製)
リポタイコ酸の固定7
Streptococcus pyrogenes由来のリポタイコ酸(シグマ社)10mgを炭酸緩衝液(pH9.1)に溶かして100mLとし、これに5.55gの水不溶性担体4を加え、室温で48h振とうした。繊維を取り出し、水洗し、本発明にかかる免疫細胞活性化材7を得た。固定化前と固定化後の水溶液のリポタイコ酸濃度の差から固定化量を算出した。リポタイコ酸固定化密度は0.56mg/gであった。
[Example 11]
(Preparation of immune cell activation material 7)
Fixation of lipoteichoic acid 7
10 mg of lipoteichoic acid (Sigma) derived from Streptococcus pyrogenes was dissolved in carbonate buffer (pH 9.1) to make 100 mL, and 5.55 g of water-insoluble carrier 4 was added thereto and shaken at room temperature for 48 h. The fiber was taken out and washed with water to obtain an immune cell activating material 7 according to the present invention. The amount of immobilization was calculated from the difference in the lipoteichoic acid concentration of the aqueous solution before and after immobilization. The lipoteichoic acid immobilization density was 0.56 mg / g.

[実施例12]
(カラム1の作製)
内径1cm内容積2mlのポリプロピレン製円筒形カラム本体に0.15gの免疫細胞活性化材5を充填して、本発明にかかる体外循環カラム1を調製した。カラム1は体外循環直前に1000単位のヘパリンナトリウムを含む生理食塩水で予備洗浄し、さらに500mLの生理食塩水で洗浄して用いた。
[Example 12]
(Preparation of column 1)
An extracorporeal circulation column 1 according to the present invention was prepared by filling 0.15 g of the immune cell activator 5 into a polypropylene cylindrical column body having an inner diameter of 1 cm and an internal volume of 2 ml. Column 1 was pre-washed with a physiological saline containing 1000 units of heparin sodium immediately before extracorporeal circulation, and further washed with 500 mL of physiological saline.

[実施例13]
(カラム2の作製)
内径1cm内容積2mlのポリプロピレン製円筒形カラム本体に0.15gの免疫細胞活性化材7を充填して、本発明にかかる体外循環カラム2を調製した。体外循環前に10単位/mL濃度のヘパリンナトリウムを含む生理食塩水15mLで予備洗浄して用いた。
[Example 13]
(Preparation of column 2)
An extracorporeal circulation column 2 according to the present invention was prepared by filling a cylindrical cylindrical column body made of polypropylene having an inner diameter of 1 cm and an internal volume of 2 ml with 0.15 g of the immune cell activator 7. Prior to extracorporeal circulation, pre-washed with 15 mL of physiological saline containing sodium heparin at a concentration of 10 units / mL.

[実施例14]
(免疫細胞活性化材の効果の検討)
免疫細胞活性化材5を用いて、ラット脾細胞によるイン・ビボ試験によって、本発明に係る免疫細胞活性化材の効果を検討した
[Example 14]
(Examination of effect of immune cell activator)
Using the immune cell activator 5, the effect of the immune cell activator according to the present invention was examined by an in vivo test using rat splenocytes.

ラット脾細胞の活性効果の検討
WKAH/Hkmラット(雄、10週令)の背部皮下に4−ジメチルアミノアゾベンゼン誘発肝癌細胞KDH−8{矢野 諭、北海道医誌、68巻5号、654−664(1993)}を1×10個接種して、担癌ラットを調製した。腫瘍接種2週間後(腫瘍体積:3.2mL)に脾臓を採取し、完全培地(RPMI1400培地:ウシ胎児血清10体積%含有、2−メルカプトエタノール50マイクログラム/L含有、ストレプトマイシン50マイクログラム/mL含有、ペニシリン−G50単位/mL含有)中で破砕し、血球細胞を取り出した後、赤血球を溶血させて、完全培地に浮遊させた脾細胞液(2×10個/mL濃度)を調製した。癌細胞を接種しなかった同週令の正常ラットからも同様にして脾細胞液(2×10個/mL濃度)を調製した。
Examination of the activity effect of rat spleen cells 4-dimethylaminoazobenzene-induced hepatocarcinoma cells KDH-8 {Yano Satoshi, Hokkaido Medical Journal, Vol. 68, No. 5, 654-664] subcutaneously on the back of WKAH / Hkm rats (male, 10 weeks old) (1993)} was inoculated 1 × 10 6 to prepare tumor-bearing rats. Two weeks after tumor inoculation (tumor volume: 3.2 mL), the spleen was collected, and complete medium (RPMI1400 medium: containing 10% by volume of fetal calf serum, containing 2-mercaptoethanol 50 microgram / L, streptomycin 50 microgram / mL). Containing, penicillin-G50 units / mL), and after removing blood cells, erythrocytes were hemolyzed and a spleen cell solution (2 × 10 6 cells / mL concentration) suspended in a complete medium was prepared. . Spleen cell fluid (2 × 10 6 cells / mL concentration) was prepared in the same manner from normal rats of the same week that were not inoculated with cancer cells.

0.1gの本発明に係る免疫細胞活性化材5を完全培地10mL中37℃で1h振とうした後、この完全培地(以後、洗浄培地と呼ぶ)から免疫細胞活性化材を分離し、上記2種類の脾細胞液5mL中で37℃で1h振とうした。免疫細胞活性化材を除去した後、脾細胞液を37℃の炭酸ガスインキュベーター中で48時間培養した。
比較として脾細胞のみを完全培地中で培養したものと、脾細胞を洗浄培地に浮遊させたものを調製した。脾細胞濃度はいずれも2×10個/mL濃度として培養を開始した。6種の細胞培養液を遠心して培養上清を採取し、サイトカイン濃度を測定した。
上清1:活性化材1h処理後の担癌ラット脾細胞の脾細胞液中培養上清
上清2:担癌ラット脾細胞の完全培地中培養上清
上清3:担癌ラット脾細胞の洗浄培地中培養上清
上清4:活性化材1h処理後の正常ラット脾細胞の脾細胞液中培養上清
上清5:正常ラット脾細胞の完全培地中培養上清
上清6:正常ラット脾細胞の洗浄培地中培養上清
After 0.1 g of the immune cell activation material 5 according to the present invention was shaken in 10 mL of a complete medium at 37 ° C. for 1 h, the immune cell activation material was separated from the complete medium (hereinafter referred to as a washing medium), The mixture was shaken for 1 h at 37 ° C. in 5 mL of two types of spleen cell solutions. After removing the immune cell activator, the spleen cell solution was cultured for 48 hours in a 37 ° C. carbon dioxide incubator.
For comparison, a spleen cell alone cultured in a complete medium and a spleen cell suspended in a washing medium were prepared. The culture was started at a spleen cell concentration of 2 × 10 6 cells / mL. Six types of cell cultures were centrifuged to collect the culture supernatant, and the cytokine concentration was measured.
Supernatant 1: Culture supernatant of tumor-bearing rat spleen cells after treatment with activating material 1h in supernatant of spleen cell supernatant 2: Culture supernatant of tumor-bearing rat spleen cells in complete medium Culture supernatant in washing medium Supernatant 4: Culture supernatant in splenocyte of normal rat splenocytes after treatment with activating material 1h Supernatant 5: Culture supernatant in normal medium of normal rat splenocytes Supernatant 6: Normal rat Culture supernatant in washing medium of splenocytes

IL−12の測定結果を表1に示す。

Figure 2008007901

表1から明らかなように、本発明に係る免疫細胞活性化材がキラー細胞の誘導に重要な役割を持つIL−12を強力に産生させることが分かる。 The measurement results of IL-12 are shown in Table 1.
Figure 2008007901

As is apparent from Table 1, it can be seen that the immune cell activator according to the present invention strongly produces IL-12 having an important role in the induction of killer cells.

[実施例15]
(体外循環治療効果の検討)
ラットを用いたイン・ビボ試験により、本発明に係るカラム1を用いて体外循環治療を行い、生存期間の延長効果を検討した。
[Example 15]
(Examination of extracorporeal circulation treatment effect)
By in vivo tests using rats, extracorporeal circulation treatment was performed using column 1 according to the present invention, and the effect of extending survival time was examined.

担癌ラットの調製と体外循環治療
11匹の12週令WKAH:Hkmラット(雄)の背部皮下に1×10個のKDH−8細胞を接種して担癌モデルラットを調製した。KDH細胞接種7日後のラット4匹について、右大腿動脈および右大腿静脈に24G×3/4"のサーフロー留置針(テルモ(株))を挿入・固定し、マイクロチューブポンプN−100(東京理科器械(株))とカラム1を直列に連結して、回路を作成し、血流速度2ml/分で、60分間、体外循環した。体外循環中はヘパリンナトリウム注射液(武田薬品工業(株))を100U/hの速度で持続注入した。体外循環治療群の腫瘍接種後平均生存日数は64.5±1.5日であった。一方、体外循環治療を施さなかった担癌ラットの腫瘍接種後平均生存日数は55.7±2.7日であった。このように有意に(t検定;p<0.001)生存日数の延長が認められたことから、本発明にかかる体外循環カラムが生存期間の延長に効果のあることが確認できた。
Preparation of tumor-bearing rats and treatment of extracorporeal circulation Cancer-bearing model rats were prepared by inoculating 1 × 10 6 KDH-8 cells subcutaneously in the back of 11 12-week-old WKAH: Hkm rats (male). For 4 rats 7 days after KDH cell inoculation, 24G × 3/4 ”Surfflow indwelling needle (Terumo Corp.) was inserted and fixed in the right femoral artery and right femoral vein, and microtube pump N-100 (Tokyo Science) Instrument Co., Ltd.) and column 1 were connected in series to create a circuit, which was circulated extracorporeally for 60 minutes at a blood flow rate of 2 ml / min.Heparin sodium injection solution (Takeda Pharmaceutical Co., Ltd.) ) Was continuously infused at a rate of 100 U / h, and the mean survival days after tumor inoculation in the extracorporeal circulation treatment group were 64.5 ± 1.5 days, whereas tumors of cancer-bearing rats that had not been treated with extracorporeal circulation The average survival time after inoculation was 55.7 ± 2.7 days, and the significant increase in survival days was observed (t test; p <0.001). Ensure that the column is effective in extending survival. I was able to confirm.

[実施例16]
(体外循環治療効果の検討)
ラットを用いたイン・ビボ試験により、本発明に係るカラム1を用いて体外循環治療を行い、NK活性に対する効果を検討した。
(担癌ラットの調製と体外循環治療)
4匹の10週令WKAH:Hkmラット(雄)の背部皮下に1×10個のKDH−8細胞を接種して担癌モデルラットを調製した。KDH細胞接種11日後のラット2匹について、右大腿動脈および右大腿静脈に24G×3/4"のサーフロー留置針(テルモ(株))を挿入・固定し、マイクロチューブポンプN−100(東京理科器械(株))とカラム1を直列に連結して、回路を作成し、血流速度2ml/分で、60分間、体外循環して、体外循環治療群とした。体外循環中はヘパリンナトリウム注射液(武田薬品工業株式会社)を100U/hの速度で持続注入した。腫瘍接種後25日目に体外循環治療群2匹と無治療群2匹のラットから脾臓細胞を取り出し、YAC―1細胞に対する細胞障害活性(NK活性)を調べた。両群2匹ずつのNK活性の平均値を図示すると、図1のようになった。図から体外循環治療群のNK活性が高いことが分かる。
[Example 16]
(Examination of extracorporeal circulation treatment effect)
By an in vivo test using rats, extracorporeal circulation treatment was performed using column 1 according to the present invention, and the effect on NK activity was examined.
(Preparation of cancer-bearing rats and treatment of extracorporeal circulation)
Cancer-bearing model rats were prepared by inoculating 1 × 10 6 KDH-8 cells subcutaneously in the back of four 10-week-old WKAH: Hkm rats (male). About 2 rats 11 days after KDH cell inoculation, 24G × 3/4 ”Surfflow indwelling needle (Terumo Corp.) was inserted and fixed in the right femoral artery and right femoral vein, and microtube pump N-100 (Tokyo Science) Instrument Co., Ltd.) and column 1 were connected in series to create a circuit, and extracorporeal circulation was performed for 60 minutes at a blood flow rate of 2 ml / min to form an extracorporeal circulation treatment group.Heparin sodium injection during extracorporeal circulation The solution (Takeda Pharmaceutical Co., Ltd.) was continuously injected at a rate of 100 U / h 25 days after tumor inoculation, spleen cells were removed from 2 rats in the extracorporeal circulation treatment group and 2 rats in the non-treatment group to obtain YAC-1 cells. The average of the NK activity of two animals in each group is shown in Fig. 1. The figure shows that the NK activity in the extracorporeal circulation treatment group is high.

[実施例17]
(抗悪性腫瘍剤と併用した際の効果の検討)
ラットを用いたインビボ試験により、本発明に係るカラム2と抗悪性腫瘍剤の併用治療の効果を検討した。
[Example 17]
(Examination of effects when used in combination with antineoplastic agents)
The effect of combined treatment of column 2 and an antineoplastic agent according to the present invention was examined by an in vivo test using rats.

1.担癌ラットの調製
12週令のWKAH:Hkmラット(雄)を吸入麻酔薬セボフレン(丸石製薬(株)製)で麻酔した後、背部皮下に4−ジメチルアミノアゾベンゼン誘発肝癌細胞KDH−8{矢野 諭、北海道医誌、68巻5号、654−664(1993)}を1×10個接種した。腫瘍は100%の確率で生着した。
1. Preparation of tumor-bearing rats After anesthetizing a 12-week-old WKAH: Hkm rat (male) with an inhalation anesthetic sevofurene (manufactured by Maruishi Pharmaceutical Co., Ltd.), 4-dimethylaminoazobenzene-induced hepatoma cell KDH-8 {Yano Satoshi, Hokkaido Medical Journal, Vol. 68 No. 5, 654-664 (1993)} was 1 × 10 6 cells inoculation. Tumors engrafted with 100% probability.

2.抗悪性腫瘍剤投与
癌細胞接種7日後(ラット体重:400〜430g)、0.6mgの塩酸ゲムシタビン(株式会社日本イーライリリー社、注射用品を生理食塩水に溶解し、20mg/mLとして使用)を腫瘍の近くに注射した。
2. 7 days after cancer cell inoculation (rat weight: 400 to 430 g), 0.6 mg of gemcitabine hydrochloride (Japan Eli Lilly Co., Ltd., injection product dissolved in physiological saline and used as 20 mg / mL) Injection near the tumor.

3.体外循環治療
担癌ラット12匹中、4匹は無治療群とし、4匹を抗悪性腫瘍剤投与のみの治療群とした。残りの4匹についてKDH細胞接種9日後(抗悪性腫瘍剤投与の2日後)、体外循環治療を施行して抗悪性腫瘍剤投与後体外循環治療群とした。右大腿動脈および右大腿静脈に24G×3/4"のサーフロー留置針(テルモ(株))を挿入・固定し、マイクロチューブポンプN−100(東京理科器械(株))と上記カラム2を直列に連結して、回路を作成した。大腿動脈から採血し、カラム2を通した後、大腿静脈に返血した。血流速度2ml/minで1時間、体外循環した。体外循環中はヘパリンナトリウム注射液(武田薬品工業(株))を100単位/hの速度で持続注入した。
3. Extracorporeal Circulation Treatment Of 12 cancer-bearing rats, 4 were treated without treatment and 4 were treated with only antineoplastic agents. The remaining 4 animals were subjected to extracorporeal circulation treatment 9 days after KDH cell inoculation (2 days after administration of the antineoplastic agent) and set as the extracorporeal circulation treatment group after administration of the antineoplastic agent. A 24G x 3/4 "Surfflow indwelling needle (Terumo Corp.) is inserted and fixed in the right femoral artery and right femoral vein, and the microtube pump N-100 (Tokyo Science Instrument Co., Ltd.) and the above column 2 are connected in series. The blood was collected from the femoral artery, returned to the femoral vein, and returned to the femoral vein for 1 hour at a blood flow rate of 2 ml / min.Heparin sodium during extracorporeal circulation An injection solution (Takeda Pharmaceutical Co., Ltd.) was continuously injected at a rate of 100 units / h.

無治療群4匹の腫瘍接種後平均生存日数は50.3±1.7日であった。
抗悪性腫瘍剤投与治療群4匹の腫瘍接種後平均生存日数は61.5±3.3日であった。
抗悪性腫瘍剤投与後体外循環治療群4匹の腫瘍接種後平均生存日数は71.5±6.2日であった。
The average survival time after tumor inoculation in 4 untreated groups was 50.3 ± 1.7 days.
The mean survival days after tumor inoculation of the 4 treatment groups administered with the antineoplastic agent were 61.5 ± 3.3 days.
The mean survival time after tumor inoculation of the 4 extracorporeal circulation treatment groups after administration of the antineoplastic agent was 71.5 ± 6.2 days.

平均生存日数の統計学的有意差(t検定;p<0.001)は無治療群と抗悪性腫瘍剤投与後体外循環治療群間ではP<0.01で、抗悪性腫瘍剤投与治療群と抗悪性腫瘍剤投与後体外循環治療群間ではP<0.05であり、本発明の抗悪性腫瘍剤投与後の体外循環治療が有効であることが示された。   The statistically significant difference in mean survival days (t test; p <0.001) was P <0.01 between the no-treatment group and the extracorporeal circulation treatment group after administration of the antineoplastic agent, and the anti-neoplastic agent administration treatment group And P <0.05 between the group treated with the antineoplastic agent after administration of the antineoplastic agent, indicating that the extracorporeal circulation treatment after administration of the antineoplastic agent of the present invention is effective.

本発明に係るカラムを用いて体外循環治療を行った場合のNK活性に対する効果を示すグラフである。It is a graph which shows the effect with respect to NK activity at the time of performing extracorporeal circulation treatment using the column which concerns on this invention.

Claims (13)

アミノ基または水酸基と共有結合しうる官能基を有する水不溶性担体にリポタイコ酸を固定化してなる免疫細胞活性化材。 An immune cell activator obtained by immobilizing lipoteichoic acid on a water-insoluble carrier having an amino group or a functional group capable of covalently bonding to a hydroxyl group. 前記リポタイコ酸がグラム陽性菌に由来するものであることを特徴とする請求項1に記載の免疫細胞活性化材。 The immune cell activator according to claim 1, wherein the lipoteichoic acid is derived from a Gram-positive bacterium. 前記リポタイコ酸が溶血性連鎖状球菌に由来するものであることを特徴とする請求項1に記載の免疫細胞活性化材。 2. The immune cell activator according to claim 1, wherein the lipoteichoic acid is derived from hemolytic streptococci. 前記リポタイコ酸が枯草菌に由来するものであることを特徴とする請求項1に記載の免疫細胞活性化材。 2. The immune cell activator according to claim 1, wherein the lipoteichoic acid is derived from Bacillus subtilis. 前記アミノ基または水酸基と共有結合しうる官能基が、活性ハロゲン基、イソチオシアナート基、イソシアナート基、アルデヒド基、カルボキシル基の群から選ばれる少なくとも一つであることを特徴とする、請求項1〜4のいずれか1項に記載の免疫細胞活性化材。 The functional group capable of being covalently bonded to the amino group or the hydroxyl group is at least one selected from the group consisting of an active halogen group, an isothiocyanate group, an isocyanate group, an aldehyde group, and a carboxyl group. The immune cell activation material of any one of 1-4. 前記水不溶性担体が芳香族化合物重合体であることを特徴とする請求項1〜5のいずれか1項に記載の免疫細胞活性化材。 The immune cell activator according to any one of claims 1 to 5, wherein the water-insoluble carrier is an aromatic compound polymer. 形状が繊維、膜、中空糸または粒状物であることを特徴とする請求項1〜6のいずれか1項に記載の免疫細胞活性化材。 The immune cell activation material according to any one of claims 1 to 6, wherein the shape is a fiber, a membrane, a hollow fiber, or a granular material. 請求項7記載の免疫細胞活性化材が充填されていることを特徴とするカラム。 A column packed with the immune cell activation material according to claim 7. 体外循環治療用であることを特徴とする請求項8記載のカラム。 The column according to claim 8, which is used for extracorporeal circulation therapy. 請求項9記載のカラムの使用方法であって、抗悪性腫瘍剤の投与前あるいは投与後または投与と同時に、体外循環に使用することを特徴とするカラムの使用方法。 The method for using a column according to claim 9, wherein the column is used for extracorporeal circulation before, after or simultaneously with the administration of the antineoplastic agent. 抗悪性腫瘍剤を投与した後、体外循環に使用することを特徴とする請求項10記載のカラムの使用方法。 The method of using a column according to claim 10, wherein the column is used for extracorporeal circulation after administration of an anti-malignant tumor agent. 前記抗悪性腫瘍剤が代謝拮抗性抗悪性腫瘍剤であることを特徴とする請求項10または11記載のカラムの使用方法。 The method of using a column according to claim 10 or 11, wherein the antineoplastic agent is an antimetabolite antineoplastic agent. 前記代謝拮抗性抗悪性腫瘍剤がゲムシタビンであることを特徴とする請求項12記載のカラムの使用方法。 The method of using a column according to claim 12, wherein the antimetabolite antineoplastic agent is gemcitabine.
JP2006181378A 2006-06-30 2006-06-30 Immunocyte activating material and column Pending JP2008007901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006181378A JP2008007901A (en) 2006-06-30 2006-06-30 Immunocyte activating material and column

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006181378A JP2008007901A (en) 2006-06-30 2006-06-30 Immunocyte activating material and column

Publications (1)

Publication Number Publication Date
JP2008007901A true JP2008007901A (en) 2008-01-17

Family

ID=39066360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006181378A Pending JP2008007901A (en) 2006-06-30 2006-06-30 Immunocyte activating material and column

Country Status (1)

Country Link
JP (1) JP2008007901A (en)

Similar Documents

Publication Publication Date Title
Shoji et al. Extracorporeal endotoxin removal by polymyxin B immobilized fiber cartridge: designing and antiendotoxin efficacy in the clinical application
CN105903020B (en) The fullerene micro-nano material and its application of prevention and/or treatment bone marrow suppression
WO2007121538A1 (en) Anti-inflammatory blood product and method of use
ES2651948T3 (en) Administration of an adsorbent polymer for the treatment of systemic inflammation
CN111423591B (en) Amphiphilic graft copolymer based on hyaluronic acid and preparation method and application thereof
US9127250B2 (en) Immunosuppressive cell-capturing material and immunosuppressive cell-capturing column
JP2012005827A (en) High mobility group protein adsorbent carrier
US8932590B2 (en) Method of adsorbing transforming growth factor β
JP2006288571A (en) Adsorbent for cancer treatment and column for extracorporeal circulation
JP5341559B2 (en) Porous adsorbent
JP2008007901A (en) Immunocyte activating material and column
JP4957886B2 (en) Column with immune activation ability
CN109364256B (en) Agarose micelle drug carrier
CN112891557A (en) ICG-beta-cyclodextrin drug delivery system and preparation method and application thereof
JP4200689B2 (en) Extracorporeal circulation column for cancer treatment
CN112638425A (en) PKC inhibitors for targeted treatment of septic cholestasis by CTM
CN116549418B (en) Nanoparticle for resisting postoperative infection and recurrence of gastric cancer as well as preparation method and application thereof
CN114306205B (en) Heparin-polypeptide dual-grafted cyclodextrin framework composition with lung targeting function, and preparation method and application thereof
JP7454263B2 (en) polymer drug
JP2010063761A (en) Leukocyte depletion column
CN108498458B (en) A kind of nano-medicament carrier, medicament carrier system and preparation method for ultrasound control release based on pulullan polysaccharide
US20230099752A1 (en) Novel cerium oxide nanocomplex and a composition for preventing or treating peritonitis comprising the same
JP5051362B2 (en) Cytocidal activity enhancing material and extracorporeal circulation column
CN113827593A (en) Squalene Sidapamide prodrug self-assembly nanoparticles and preparation method and application thereof
CN1814292B (en) Anti-cancer prodrug, preparing method and use