JP2008007471A - Raw material for metal organic chemical vapor deposition (mocvd) method and method for producing silicon-containing film using the raw material - Google Patents

Raw material for metal organic chemical vapor deposition (mocvd) method and method for producing silicon-containing film using the raw material Download PDF

Info

Publication number
JP2008007471A
JP2008007471A JP2006180685A JP2006180685A JP2008007471A JP 2008007471 A JP2008007471 A JP 2008007471A JP 2006180685 A JP2006180685 A JP 2006180685A JP 2006180685 A JP2006180685 A JP 2006180685A JP 2008007471 A JP2008007471 A JP 2008007471A
Authority
JP
Japan
Prior art keywords
raw material
film
film formation
mocvd
methyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006180685A
Other languages
Japanese (ja)
Inventor
Atsushi Sai
篤 齋
Mitsuhide Kawasaki
光秀 川崎
Nobuyuki Soyama
信幸 曽山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2006180685A priority Critical patent/JP2008007471A/en
Publication of JP2008007471A publication Critical patent/JP2008007471A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a raw material for MOCVD method, from which a film can stably be produced at a high film-producing rate under a low temperature condition of 400°C or the like, and which is excellent in coatability having a difference in level, and to provide a method for producing a silicon-containing film using the raw material. <P>SOLUTION: This raw material of the present invention for MOCVD method is characterized by using an organic silicon compound represented by formula (1) (R<SP>1</SP>is methyl or ethyl; R<SP>2</SP>is H, methyl or ethyl; R<SP>3</SP>is H or methyl; R<SP>4</SP>is a 1 to 4C straight chain or branched alkyl). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、有機金属化学気相成長法(Metal Organic Chemical Vapor Deposition、以下、MOCVD法という。)にてSiN薄膜やHfSiO薄膜等のシリコン含有膜を作製するための原料として好適なMOCVD法用原料及び該原料を用いたシリコン含有膜の製造方法に関するものである。   The present invention is a MOCVD method material suitable as a material for producing a silicon-containing film such as a SiN thin film or a HfSiO thin film by metal organic chemical vapor deposition (hereinafter referred to as MOCVD method). And a method for producing a silicon-containing film using the raw material.

ウェーハのパッシベーション膜には、SiN系絶縁膜が広く用いられている。SiN系絶縁膜を成膜する方法としては、基板上に形成されたAl配線等の低融点材料層にダメージを与えないように、プラズマCVD法によって低温での成膜が行われている。ここでの原料ガスとしては、シラン/アンモニア混合ガス、シラン/窒素混合ガス等が用いられている。
しかしプラズマCVD法により形成されるSiN系絶縁膜の段差被覆性は、半導体装置の微細化や多層配線化に伴う基板の表面段差の増大に対応できず、ボイドが形成されたり、クラックが発生し易くなっていた。
A SiN insulating film is widely used as a wafer passivation film. As a method of forming a SiN-based insulating film, film formation is performed at a low temperature by a plasma CVD method so as not to damage a low melting point material layer such as an Al wiring formed on the substrate. As the source gas here, a silane / ammonia mixed gas, a silane / nitrogen mixed gas, or the like is used.
However, the step coverage of the SiN insulating film formed by the plasma CVD method cannot cope with the increase in the level difference of the substrate surface due to the miniaturization of semiconductor devices and the multilayer wiring, resulting in the formation of voids and cracks. It was easy.

そこで段差被覆性に優れたSiN系絶縁膜を成膜する方法として、原料ガスに有機シリコン化合物を用いてCVD法を行うことが検討及び開発されている。[(CH3)2N]4Si等のSi原子とN原子との結合(Si−N結合)を有する化合物を原料ガスとして成膜を行うと、Si−N結合の存在により効率のよいSiN系絶縁膜の成膜が可能となる。また成膜時に有機シリコン化合物から炭化水素基が切断されることでSi−N結合を存続した中間生成物が高分子化されやすく、流動性が高くなるために、段差被覆性に優れたSiN系絶縁膜が成膜できると考えられている。 Therefore, as a method for forming a SiN-based insulating film having excellent step coverage, it has been studied and developed to perform a CVD method using an organic silicon compound as a source gas. When film formation is performed using a compound having a bond of Si atom and N atom (Si—N bond) such as [(CH 3 ) 2 N] 4 Si as a source gas, SiN is more efficient due to the presence of the Si—N bond. A system insulating film can be formed. Moreover, since the hydrocarbon group is cleaved from the organic silicon compound during film formation, the intermediate product in which the Si—N bond is maintained is easily polymerized, and the fluidity is increased. It is considered that an insulating film can be formed.

一方、高誘電体ゲート絶縁膜としてシリコン酸化膜が使用されているが、近年LSIの高集積化に伴って、シリコン酸化膜の薄膜化が進んでいる。膜厚が100nm以下の薄さとなった薄膜にはトンネル電流が流れて絶縁効果が低下してしまうため、シリコン酸化膜でのこれ以上の薄膜化は限界となっている。
そのためシリコン酸化膜に代わるゲート絶縁膜が要望されており、候補としてHfSiO等が注目されている。これら薄膜の製造方法としては、スパッタリング、イオンプレーティング、塗布熱分解、ゾルゲル等のMODが挙げられるが、組成制御性、段差被覆性に優れること、半導体製造プロセスとの整合性等からMOCVD法が最適な薄膜製造プロセスとして検討されている。
On the other hand, a silicon oxide film is used as the high dielectric gate insulating film. However, in recent years, with the high integration of LSI, the silicon oxide film is becoming thinner. Since a tunnel current flows through a thin film having a thickness of 100 nm or less and the insulation effect is lowered, further reduction in the thickness of the silicon oxide film is limited.
Therefore, there is a demand for a gate insulating film that replaces the silicon oxide film, and HfSiO and the like are attracting attention as candidates. Examples of the method for producing these thin films include MOD such as sputtering, ion plating, coating pyrolysis, and sol-gel. However, the MOCVD method is used because of its excellent composition controllability, step coverage, and consistency with the semiconductor manufacturing process. It has been studied as an optimal thin film manufacturing process.

そこで本出願人は、MOCVD法によりSiN薄膜やHfSiO薄膜を成膜するための原料として、一般式M[(Ri)2N](n-s)(Rii)sで示される金属原子と窒素原子との結合又は半金属原子と窒素原子との結合を有する有機金属化合物において、化合物中に含まれる塩素の含有量が200ppm以下、かつ水の含有量が30ppm以下である有機金属化合物を開示した(例えば、特許文献1参照。)。上記一般式のMは金属原子又は半金属原子であって、金属原子がHf、Zr、Ta、Ti、Ce、Al、V、La、Nb又はNiであり、半金属原子がSiであり、Riはメチル基又はエチル基であり、Riiはエチル基であり、nはMの価数であり、sは0〜n−1の整数である。上記特許文献1では上記一般式で示される化合物中の塩素と水の含有量をそれぞれ規定することにより、塩素と水とがそれぞれ上記範囲以上含有した場合に形成される架橋した化合物の発生を抑制するため、この有機金属化合物を用いて成膜すると気化安定性を向上することができる。
特開2004−250431号公報(請求項1,2、明細書段落[0021])
Therefore, the applicant of the present invention uses a metal atom and a nitrogen atom represented by the general formula M [(R i ) 2 N] (ns) (R ii ) s as raw materials for forming a SiN thin film or a HfSiO thin film by MOCVD. Or an organometallic compound having a bond between a semi-metal atom and a nitrogen atom, wherein the chlorine content in the compound is 200 ppm or less and the water content is 30 ppm or less ( For example, see Patent Document 1.) M in the above general formula is a metal atom or a metalloid atom, the metal atom is Hf, Zr, Ta, Ti, Ce, Al, V, La, Nb or Ni, the metalloid atom is Si, R i is a methyl group or an ethyl group, R ii is an ethyl group, n is a valence of M, and s is an integer of 0 to n-1. In the above-mentioned Patent Document 1, by controlling the contents of chlorine and water in the compound represented by the above general formula, the generation of crosslinked compounds formed when chlorine and water are contained in the above ranges or more is suppressed. Therefore, vapor deposition stability can be improved by forming a film using this organometallic compound.
Japanese Patent Laying-Open No. 2004-250431 (Claims 1, 2, paragraph [0021] of the specification)

しかしながら、上記特許文献1の一般式に示される有機金属化合物は、塩素と水の含有量を規定することで気化安定性は向上できたが、400℃のような低温条件での成膜では、十分な成膜速度が得られているとは言えず、低温条件での成膜で高い成膜速度を有するMOCVD法用原料が求められていた。   However, the organometallic compound represented by the general formula of Patent Document 1 has improved vaporization stability by defining the contents of chlorine and water, but in film formation under a low temperature condition such as 400 ° C., It cannot be said that a sufficient film formation rate has been obtained, and there has been a demand for a raw material for MOCVD that has a high film formation rate in film formation under low temperature conditions.

本発明の目的は、上記文献1に記載された原料に比べて、400℃のような低温条件での成膜でも高い成膜速度が得られ、安定した成膜が可能であり、かつ段差被覆性に優れるMOCVD法用原料及び該原料を用いたシリコン含有膜の製造方法を提供することにある。   The object of the present invention is to achieve a high film formation rate even in film formation under a low temperature condition such as 400 ° C., stable film formation, and step coverage as compared with the raw material described in Document 1 above. An object of the present invention is to provide a raw material for MOCVD method having excellent properties and a method for producing a silicon-containing film using the raw material.

請求項1に係る発明は、次の式(1)で示される有機シリコン化合物を用いたことを特徴とするMOCVD法用原料である。   The invention according to claim 1 is a raw material for an MOCVD method characterized by using an organic silicon compound represented by the following formula (1).

Figure 2008007471
Figure 2008007471

但し、式中のR1はメチル基又はエチル基であり、R2は水素、メチル基又はエチル基であり、R3は水素又はメチル基であり、R4は炭素数1〜4の直鎖又は分岐状アルキル基である。 However, R 1 in the formula is a methyl or ethyl group, R 2 is hydrogen, methyl or ethyl group, R 3 is hydrogen or methyl, R 4 is a straight chain of 1 to 4 carbon atoms Or it is a branched alkyl group.

請求項1に係る発明では、上記(1)で示される有機シリコン化合物をMOCVD法用原料として用いることで、400℃のような低温条件での成膜でも、高い成膜速度が得られる。また、安定した成膜が可能であり、かつ段差被覆性に富んだ薄膜を形成することができる。   In the invention according to claim 1, by using the organic silicon compound shown in (1) as a raw material for the MOCVD method, a high film formation rate can be obtained even in a film formation under a low temperature condition such as 400 ° C. In addition, a stable film can be formed, and a thin film rich in step coverage can be formed.

請求項2に係る発明は、請求項1記載のMOCVD法用原料を用いてMOCVD法によりシリコン含有膜を製造する方法である。   The invention according to claim 2 is a method of manufacturing a silicon-containing film by MOCVD using the raw material for MOCVD according to claim 1.

本発明のMOCVD法用原料及び該原料を用いたシリコン含有膜の製造方法は、アルキルシランにヒドラジン誘導体が結合した構造を有する上記式(1)で示される有機シリコン化合物をMOCVD法用原料として用いた場合に、400℃のような低温条件での成膜でも高い成膜速度が得られるので低温での成膜に優れ、安定した成膜が可能であり、かつ段差被覆性に富んだ薄膜を形成することができる。   The raw material for MOCVD method and the method for producing a silicon-containing film using the raw material of the present invention use an organic silicon compound represented by the above formula (1) having a structure in which a hydrazine derivative is bonded to alkylsilane as a raw material for MOCVD method. In this case, a high film formation rate can be obtained even at a low temperature condition such as 400 ° C., so that a thin film that is excellent in low temperature film formation, stable film formation and rich in step coverage can be obtained. Can be formed.

次に本発明を実施するための最良の形態を説明する。
本発明のMOCVD法用原料は、次の式(1)で示される有機シリコン化合物を用いたことを特徴とする。
Next, the best mode for carrying out the present invention will be described.
The raw material for MOCVD method of the present invention is characterized by using an organic silicon compound represented by the following formula (1).

Figure 2008007471
Figure 2008007471

但し、式中のR1はメチル基又はエチル基であり、R2は水素、メチル基又はエチル基であり、R3は水素又はメチル基であり、R4は炭素数1〜4の直鎖又は分岐状アルキル基である。 However, R 1 in the formula is a methyl or ethyl group, R 2 is hydrogen, methyl or ethyl group, R 3 is hydrogen or methyl, R 4 is a straight chain of 1 to 4 carbon atoms Or it is a branched alkyl group.

アルキルシランにヒドラジン誘導体が結合した構造を有する上記式(1)で示される有機シリコン化合物は、室温で液体状態であって、MOCVD法用原料として用いた場合に、400℃のような低温条件での成膜でも高い成膜速度が得られるので低温での成膜に優れ、安定した成膜が可能であり、かつ段差被覆性に富んだ薄膜を形成することができる。   The organosilicon compound represented by the above formula (1) having a structure in which a hydrazine derivative is bonded to an alkylsilane is in a liquid state at room temperature and is used at a low temperature condition such as 400 ° C. when used as a raw material for MOCVD. Since a high film formation rate can be obtained even in this film formation, it is excellent in film formation at a low temperature, a stable film formation is possible, and a thin film rich in step coverage can be formed.

上記式(1)で示される有機シリコン化合物が低温成膜が可能であるのは、シリコン原子に結合した水素原子と、窒素原子に結合した水素原子が、成膜基板上で接近し、シリコン原子に結合した水素原子が、70eVの熱エネルギーによって、容易に切断され、分子のエネルギーが偏在化するので、窒素原子側の水素ラジカルが放出されて、基板へのシリコン−窒素の接近を促進する効果があるためである。   The organic silicon compound represented by the above formula (1) can be formed at a low temperature because the hydrogen atom bonded to the silicon atom and the hydrogen atom bonded to the nitrogen atom approach each other on the film formation substrate. Since the hydrogen atom bonded to is easily cleaved by the thermal energy of 70 eV and the molecular energy is unevenly distributed, the hydrogen radical on the nitrogen atom side is released, and the effect of promoting the approach of silicon-nitrogen to the substrate Because there is.

本発明のMOCVD法用原料に用いる上記式(1)のR1がメチル基、R2がメチル基、R3が水素及びR4がメチル基を示す有機シリコン化合物の合成方法について説明する。
先ず、四塩化珪素1モル等量に対してn−メチルリチウムが3モル等量の割合となるように、四塩化珪素を−40℃に保ちながらn−メチルリチウムのエーテル溶液をゆっくりと滴下する。滴下後は0℃に保ちながら約24時間攪拌することにより、四塩化珪素とn−メチルリチウムとを反応させる。この反応後は反応液の液温を室温にまで戻す。次に、反応液に無水モノメチルヒドラジン1モル等量を−80℃の冷却下で、1分間に0.8〜1ccの割合となるように約5時間かけて滴下する。この間1,2−ジメチルヒドラジン(CH3NHNHCH3)についても反応液に1,2−ジメチルヒドラジン1モル等量を−80℃の冷却下で、1分間に0.8〜1ccの割合となるように約5時間かけて滴下する。滴下後は、反応液を30℃で約266Pa(2torr)にまで減圧して溶媒を除去することにより、目的物であるモノメチルヒドラジドジメチルシランを約0.4モル得ることができる。
A method for synthesizing an organosilicon compound in which R 1 of the above formula (1) used in the MOCVD method of the present invention is a methyl group, R 2 is a methyl group, R 3 is hydrogen, and R 4 is a methyl group will be described.
First, an ether solution of n-methyllithium is slowly added dropwise while maintaining silicon tetrachloride at -40 ° C. so that 3 mol equivalent of n-methyllithium is equivalent to 1 mol equivalent of silicon tetrachloride. . After dropping, silicon tetrachloride and n-methyllithium are reacted by stirring for about 24 hours while maintaining at 0 ° C. After this reaction, the temperature of the reaction solution is returned to room temperature. Next, 1 mol equivalent of anhydrous monomethylhydrazine is added dropwise to the reaction solution over about 5 hours at a rate of 0.8 to 1 cc per minute under cooling at −80 ° C. During this time, 1,2-dimethylhydrazine (CH 3 NHNHCH 3 ) was also added to the reaction solution at a rate of 0.8 to 1 cc per minute with 1 mol equivalent of 1,2-dimethylhydrazine under cooling at −80 ° C. In about 5 hours. After the dropwise addition, the reaction solution is decompressed to about 266 Pa (2 torr) at 30 ° C. to remove the solvent, whereby about 0.4 mol of monomethylhydrazide dimethylsilane as the target product can be obtained.

なお、上記使用した1,2−ジメチルヒドラジンの代わりに、所望の官能基に対応する直鎖又は分岐状アルキル基を有するヒドラジン誘導体を使用すること、並びに必要によってヒドラジン誘導体とともにNaBH4を少量加えることによって、目的とする式(1)のR1〜R4を変化させた有機シリコン化合物が得られる。 Instead of the 1,2-dimethylhydrazine used above, use a hydrazine derivative having a linear or branched alkyl group corresponding to the desired functional group, and if necessary, add a small amount of NaBH 4 together with the hydrazine derivative. Thus, an organic silicon compound in which R 1 to R 4 of the target formula (1) are changed is obtained.

本発明のMOCVD法用原料を用いてMOCVD法によりシリコン含有膜を製造することで、低温での成膜に優れ、安定した成膜が可能であり、かつ段差被覆性に富んだ薄膜を形成することができる。製造するシリコン含有膜としてはSiN薄膜やHfSiO薄膜等が挙げられる。SiN薄膜は配線保護膜のようなパッシベーション膜として使用され、HfSiO薄膜はゲート絶縁膜として使用される。   By producing a silicon-containing film by the MOCVD method using the raw material for the MOCVD method of the present invention, a thin film excellent in low-temperature film formation, stable film formation, and rich in step coverage can be formed. be able to. Examples of the silicon-containing film to be manufactured include a SiN thin film and a HfSiO thin film. The SiN thin film is used as a passivation film such as a wiring protective film, and the HfSiO thin film is used as a gate insulating film.

なお、本発明のMOCVD法用原料は、室温で液体状態の有機シリコン化合物を用いているので、このままMOCVDに用いることができる以外に、この原料を有機溶媒に12〜15重量%溶液となるように溶解して溶液を調製し、この溶液をMOCVD法用原料として使用しても良い。   In addition, since the raw material for MOCVD method of the present invention uses an organic silicon compound in a liquid state at room temperature, in addition to being able to be used for MOCVD as it is, this raw material is made into a 12 to 15% by weight solution in an organic solvent. It is also possible to prepare a solution by dissolving it in the solution and use this solution as a raw material for MOCVD.

次に本発明の実施例を比較例とともに詳しく説明する。
<実施例1>
先ず、四塩化珪素1モル等量に対してn−メチルリチウムが3モル等量の割合となるように、四塩化珪素を−40℃に保ちながらn−メチルリチウムのエーテル溶液をゆっくりと滴下した。滴下後は0℃に保ちながら約24時間攪拌することにより、四塩化珪素とn−メチルリチウムとを反応させた。反応後は反応液の液温を室温にまで戻した。次に、反応液に無水モノメチルヒドラジン1モル等量を−80℃の冷却下で、1分間に0.8〜1ccの割合となるように約5時間かけて滴下した。この間1,2−ジメチルヒドラジンについても反応液に1,2−ジメチルヒドラジン1モル等量を−80℃の冷却下で、1分間に0.8〜1ccの割合となるように約5時間かけて滴下した。滴下後は、反応液を30℃で約266Pa(2torr)にまで減圧して溶媒を除去することにより、所望の有機シリコン化合物を得た。
得られた有機シリコン化合物について1H-NMRにより同定を行った。1H-NMRの結果を次の表1に示す。表1の結果から、得られた有機シリコン化合物は、上記式(1)のR1がメチル基、R2がメチル基、R3が水素及びR4がメチル基を示す有機シリコン化合物であることが同定された。
Next, examples of the present invention will be described in detail together with comparative examples.
<Example 1>
First, an ether solution of n-methyllithium was slowly added dropwise while maintaining the silicon tetrachloride at -40 ° C. so that the molar ratio of n-methyllithium was 3 mol equivalent to 1 mol equivalent of silicon tetrachloride. . After dripping, silicon tetrachloride and n-methyllithium were reacted by stirring for about 24 hours while maintaining at 0 ° C. After the reaction, the temperature of the reaction solution was returned to room temperature. Next, 1 mol equivalent of anhydrous monomethylhydrazine was added dropwise to the reaction solution over about 5 hours at a rate of 0.8 to 1 cc per minute under cooling at −80 ° C. During this time, 1,2-dimethylhydrazine was also added to the reaction solution in an amount of 1 mol equivalent of 1,2-dimethylhydrazine over about 5 hours so that the rate was 0.8 to 1 cc per minute under cooling at -80 ° C. It was dripped. After the dropwise addition, the reaction solution was decompressed to about 266 Pa (2 torr) at 30 ° C. to remove the solvent, thereby obtaining a desired organosilicon compound.
The obtained organosilicon compound was identified by 1 H-NMR. The results of 1 H-NMR are shown in Table 1 below. From the results of Table 1, the obtained organosilicon compound is an organosilicon compound in which R 1 in the above formula (1) represents a methyl group, R 2 represents a methyl group, R 3 represents hydrogen, and R 4 represents a methyl group. Was identified.

<実施例2>
1,2−ジメチルヒドラジンを1−メチル−2−エチルヒドラジン(CH3NHNHC25)に変更し、この1−メチル−2−エチルヒドラジンとともにNaBH4を少量加えた以外は実施例1と同様にして合成を行い、所望の有機シリコン化合物を得た。
得られた有機シリコン化合物について1H-NMRにより同定を行った。1H-NMRの結果を次の表1に示す。表1の結果から、得られた有機シリコン化合物は、上記式(1)のR1がメチル基、R2が水素、R3がメチル基及びR4がエチル基を示す有機シリコン化合物であることが同定された。
<Example 2>
The same as Example 1 except that 1,2-dimethylhydrazine was changed to 1-methyl-2-ethylhydrazine (CH 3 NHNHC 2 H 5 ) and a small amount of NaBH 4 was added together with this 1-methyl-2-ethylhydrazine. Synthesis was performed to obtain a desired organosilicon compound.
The obtained organosilicon compound was identified by 1 H-NMR. The results of 1 H-NMR are shown in Table 1 below. From the results of Table 1, the obtained organosilicon compound is an organosilicon compound in which R 1 in the above formula (1) is a methyl group, R 2 is hydrogen, R 3 is a methyl group, and R 4 is an ethyl group. Was identified.

<実施例3>
1,2−ジメチルヒドラジンを1−メチル−2−イソプロピルヒドラジン(CH3NHNH(i-C37))に変更し、この1−メチル−2−イソプロピルヒドラジンとともにNaBH4を少量加えた以外は実施例1と同様にして合成を行い、所望の有機シリコン化合物を得た。
得られた有機シリコン化合物について1H-NMRにより同定を行った。1H-NMRの結果を次の表1に示す。表1の結果から、得られた有機シリコン化合物は、上記式(1)のR1がメチル基、R2がエチル基、R3が水素及びR4がイソプロピル基を示す有機シリコン化合物であることが同定された。
<Example 3>
Except that 1,2-dimethylhydrazine was changed to 1-methyl-2-isopropylhydrazine (CH 3 NHNH (i-C 3 H 7 )) and a small amount of NaBH 4 was added together with 1-methyl-2-isopropylhydrazine. Synthesis was performed in the same manner as in Example 1 to obtain a desired organic silicon compound.
The obtained organosilicon compound was identified by 1 H-NMR. The results of 1 H-NMR are shown in Table 1 below. From the results of Table 1, the obtained organosilicon compound is an organosilicon compound in which R 1 in the above formula (1) is a methyl group, R 2 is an ethyl group, R 3 is hydrogen, and R 4 is an isopropyl group. Was identified.

<実施例4>
1,2−ジメチルヒドラジンを1−メチル−2−ターシャリーブチルヒドラジン(CH3NHNH(t-C49))に変更し、この1−メチル−2−ターシャリーブチルヒドラジンとともにNaBH4を少量加えた以外は実施例1と同様にして合成を行い、所望の有機シリコン化合物を得た。
得られた有機シリコン化合物について1H-NMRにより同定を行った。1H-NMRの結果を次の表1に示す。表1の結果から、得られた有機シリコン化合物は、上記式(1)のR1がメチル基、R2が水素、R3が水素及びR4がターシャリーブチル基を示す有機シリコン化合物であることが同定された。
<Example 4>
1,2-dimethylhydrazine was changed to 1-methyl-2-tertiary butyl hydrazine (CH 3 NHNH (t—C 4 H 9 )), and a small amount of NaBH 4 was added together with the 1-methyl-2-tertiary butyl hydrazine. Synthesis was performed in the same manner as in Example 1 except that a desired organosilicon compound was obtained.
The obtained organosilicon compound was identified by 1 H-NMR. The results of 1 H-NMR are shown in Table 1 below. From the results of Table 1, the obtained organosilicon compound is an organosilicon compound in which R 1 in the above formula (1) represents a methyl group, R 2 represents hydrogen, R 3 represents hydrogen, and R 4 represents a tertiary butyl group. It was identified.

<実施例5>
1,2−ジメチルヒドラジンを1−エチル−2−メチルヒドラジン(C25NHNHCH3)に変更した以外は実施例1と同様にして合成を行い、所望の有機シリコン化合物を得た。
得られた有機シリコン化合物について1H-NMRにより同定を行った。1H-NMRの結果を次の表1に示す。表1の結果から、得られた有機シリコン化合物は、上記式(1)のR1がエチル基、R2がメチル基、R3が水素及びR4がメチル基を示す有機シリコン化合物であることが同定された。
<Example 5>
Synthesis was performed in the same manner as in Example 1 except that 1,2-dimethylhydrazine was changed to 1-ethyl-2-methylhydrazine (C 2 H 5 NHNHCH 3 ) to obtain a desired organic silicon compound.
The obtained organosilicon compound was identified by 1 H-NMR. The results of 1 H-NMR are shown in Table 1 below. From the results of Table 1, the obtained organosilicon compound is an organosilicon compound in which R 1 in the above formula (1) represents an ethyl group, R 2 represents a methyl group, R 3 represents hydrogen, and R 4 represents a methyl group. Was identified.

<実施例6>
1,2−ジメチルヒドラジンを1,2−ジエチルヒドラジン(C25NHNHC25)に変更し、この1,2−ジエチルヒドラジンとともにNaBH4を少量加えた以外は実施例1と同様にして合成を行い、所望の有機シリコン化合物を得た。
得られた有機シリコン化合物について1H-NMRにより同定を行った。1H-NMRの結果を次の表1に示す。表1の結果から、得られた有機シリコン化合物は、上記式(1)のR1がエチル基、R2が水素、R3がメチル基及びR4がエチル基を示す有機シリコン化合物であることが同定された。
<Example 6>
Except that 1,2-dimethylhydrazine was changed to 1,2-diethylhydrazine (C 2 H 5 NHNHC 2 H 5 ) and a small amount of NaBH 4 was added together with this 1,2-diethylhydrazine, the same as in Example 1. Synthesis was performed to obtain a desired organosilicon compound.
The obtained organosilicon compound was identified by 1 H-NMR. The results of 1 H-NMR are shown in Table 1 below. From the results of Table 1, the obtained organosilicon compound is an organosilicon compound in which R 1 in the above formula (1) is an ethyl group, R 2 is hydrogen, R 3 is a methyl group, and R 4 is an ethyl group. Was identified.

<実施例7>
1,2−ジメチルヒドラジンを1−エチル−2−イソプロピルヒドラジン(C25NHNH(i-C37))に変更し、この1−エチル−2−イソプロピルヒドラジンとともにNaBH4を少量加えた以外は実施例1と同様にして合成を行い、所望の有機シリコン化合物を得た。
得られた有機シリコン化合物について1H-NMRにより同定を行った。1H-NMRの結果を次の表1に示す。表1の結果から、得られた有機シリコン化合物は、上記式(1)のR1がエチル基、R2がエチル基、R3が水素及びR4がイソプロピル基を示す有機シリコン化合物であることが同定された。
<Example 7>
1,2-Dimethylhydrazine was changed to 1-ethyl-2-isopropylhydrazine (C 2 H 5 NHNH (i-C 3 H 7 )), and a small amount of NaBH 4 was added together with the 1-ethyl-2-isopropylhydrazine. Except that, synthesis was performed in the same manner as in Example 1 to obtain a desired organosilicon compound.
The obtained organosilicon compound was identified by 1 H-NMR. The results of 1 H-NMR are shown in Table 1 below. From the results of Table 1, the obtained organosilicon compound is an organosilicon compound in which R 1 in the above formula (1) is an ethyl group, R 2 is an ethyl group, R 3 is hydrogen, and R 4 is an isopropyl group. Was identified.

<実施例8>
1,2−ジメチルヒドラジンを1−エチル−2−ターシャリーブチルヒドラジン(C25NHNH(t-C49))に変更し、この1−エチル−2−ターシャリーブチルヒドラジンとともにNaBH4を少量加えた以外は実施例1と同様にして合成を行い、所望の有機シリコン化合物を得た。
得られた有機シリコン化合物について1H-NMRにより同定を行った。1H-NMRの結果を次の表1に示す。表1の結果から、得られた有機シリコン化合物は、上記式(1)のR1がエチル基、R2が水素、R3が水素及びR4がターシャリーブチル基を示す有機シリコン化合物であることが同定された。
<Example 8>
1,2-dimethylhydrazine was changed to 1-ethyl-2-tertiary butyl hydrazine (C 2 H 5 NHNH (t—C 4 H 9 )) and NaBH 4 together with the 1-ethyl-2-tertiary butyl hydrazine. Synthesis was performed in the same manner as in Example 1 except that a small amount of was added to obtain a desired organosilicon compound.
The obtained organosilicon compound was identified by 1 H-NMR. The results of 1 H-NMR are shown in Table 1 below. From the results of Table 1, the obtained organosilicon compound is an organosilicon compound in which R 1 in the above formula (1) represents an ethyl group, R 2 represents hydrogen, R 3 represents hydrogen, and R 4 represents a tertiary butyl group. It was identified.

Figure 2008007471
Figure 2008007471

<比較例1>
従来よりSiN膜形成材料として使用されているヘキサクロロジシランを用意した。
<Comparative Example 1>
Hexachlorodisilane, which has been conventionally used as a SiN film forming material, was prepared.

<比較試験1>
実施例1〜8で得られた有機シリコン化合物と比較例1で用意した有機シリコン化合物をそれぞれMOCVD法用原料として、以下の条件でSiN薄膜を成膜し、成膜したSiN薄膜における成膜時間当たりの膜厚試験、表面粗さ及び段差被覆性試験を行った。
先ず、基板として基板表面にSiO2膜(厚さ5000Å)を形成したシリコン基板を4枚ずつ用意し、この基板をMOCVD装置の成膜室に設置した。また、有機シリコン化合物をMOCVD法用原料として原料容器に貯留した。次いで、成膜室内の基板温度を400℃、気化室内の気化温度を150℃、成膜室内の圧力を約1.33kPa(10torr)にそれぞれ設定した。反応ガスとしてはNH3ガスを用い、成膜室内に供給される反応ガス流量が1000ccmとなるように制御した。次に、キャリアガスを原料容器内に供給して原料容器に貯留した有機シリコン化合物を0.5g/minの割合で気化器に供給して気化させ、気化器で気化した有機シリコン化合物とNH3ガスとを成膜室に送り込み、成膜室内の基板上にSiNを堆積させた。成膜時間が5分、10分、20分及び30分となったときに基板をそれぞれ1枚ずつ成膜室より取出した。
<Comparison test 1>
Using the organosilicon compounds obtained in Examples 1 to 8 and the organosilicon compound prepared in Comparative Example 1 as raw materials for the MOCVD method, a SiN thin film was formed under the following conditions, and the deposition time in the formed SiN thin film Film thickness test, surface roughness and step coverage test were performed.
First, four silicon substrates each having a SiO 2 film (thickness 5000 mm) formed on the substrate surface were prepared as substrates, and these substrates were placed in a film formation chamber of an MOCVD apparatus. Moreover, the organic silicon compound was stored in the raw material container as a raw material for the MOCVD method. Next, the substrate temperature in the film formation chamber was set to 400 ° C., the vaporization temperature in the vaporization chamber was set to 150 ° C., and the pressure in the film formation chamber was set to about 1.33 kPa (10 torr). NH 3 gas was used as the reaction gas, and the flow rate of the reaction gas supplied into the film formation chamber was controlled to 1000 ccm. Next, the organic silicon compound stored in the raw material container by supplying the carrier gas into the raw material container is supplied to the vaporizer at a rate of 0.5 g / min to vaporize, and the organic silicon compound vaporized by the vaporizer and NH 3 Gas was fed into the film formation chamber, and SiN was deposited on the substrate in the film formation chamber. When the film formation time was 5 minutes, 10 minutes, 20 minutes, and 30 minutes, one substrate was taken out from the film formation chamber.

(1)成膜時間あたりの膜厚試験
成膜を終えて成膜室より取出した基板上の薄膜を走査型電子顕微鏡(scanning electron microscope;以下、SEMという。)により測定した断面SEM像から膜厚を測定した。
(1) Film thickness test per film formation time Films from cross-sectional SEM images obtained by measuring a thin film on a substrate taken out of the film formation chamber after film formation with a scanning electron microscope (hereinafter referred to as SEM) The thickness was measured.

(2)段差被覆性試験
成膜時間が10分で成膜室より取出した基板上の薄膜を原子間力顕微鏡(atomic force microscope、AFM)により測定し、薄膜表面のRa(average roughness)を測定した。
(2) Step coverage test The thin film on the substrate taken out from the film formation chamber in 10 minutes is measured with an atomic force microscope (AFM), and the Ra (average roughness) of the thin film surface is measured. did.

(3)段差被覆性試験
成膜時間が10分で成膜室より取出した基板上の薄膜をSEMにより測定した断面SEM像から段差被覆性を測定した。
(3) Step coverage test The step coverage was measured from a cross-sectional SEM image obtained by measuring the thin film on the substrate taken out from the deposition chamber in 10 minutes with the SEM.

実施例1〜8及び比較例1のMOCVD法用原料を用いたSiN薄膜における各試験結果を表2に示す。   Table 2 shows the test results of the SiN thin films using the MOCVD raw materials of Examples 1 to 8 and Comparative Example 1.

Figure 2008007471
Figure 2008007471

表2より明らかなように、従来より知られている比較例1で用意した有機シリコン化合物を用いて得られたSiN薄膜は、低い成膜速度であり、AFMによる表面粗さRaが大きく、成膜の安定性が悪いことが判った。また段差被覆性も非常に悪い結果となっていた。以上の評価試験より比較例1で用意した有機シリコン化合物は400℃のような低温での成膜には適していないことが判った。これに対して実施例1〜8で得られた有機シリコン化合物を用いて得られたSiN薄膜は、比較例1で用意した有機シリコン化合物を用いた場合に比べて非常に成膜速度が高く、AFMによる表面粗さRaも小さく、成膜安定性が高い結果が得られた。また、段差被覆性も0.8〜1.0と、基板の平坦部分と同様に溝の奥まで均一に成膜されていることが判った。このような成膜特性を有する本発明の有機シリコン化合物を用いたMOCVD法用原料は、低温条件でのSiN薄膜等のシリコン含有薄膜の製造に好適であることが判る。   As is clear from Table 2, the SiN thin film obtained using the conventionally known organosilicon compound prepared in Comparative Example 1 has a low film formation rate, a large surface roughness Ra by AFM, and a high growth rate. It was found that the stability of the membrane was poor. Also, the step coverage was very bad. From the above evaluation test, it was found that the organosilicon compound prepared in Comparative Example 1 was not suitable for film formation at a low temperature such as 400 ° C. On the other hand, the SiN thin film obtained using the organic silicon compound obtained in Examples 1 to 8 has a very high film formation rate as compared with the case where the organic silicon compound prepared in Comparative Example 1 is used. The surface roughness Ra by AFM was also small, and the film formation stability was high. In addition, it was found that the step coverage was 0.8 to 1.0, and the film was uniformly formed to the depth of the groove as in the flat portion of the substrate. It can be seen that the raw material for MOCVD method using the organosilicon compound of the present invention having such film formation characteristics is suitable for the production of silicon-containing thin films such as SiN thin films under low temperature conditions.

<比較例2>
従来よりHfSiO膜形成材料として使用されているテトラキスジメチルアミノシランを用意した。
<比較例3>
従来よりHfSiO膜形成材料として使用されているシランを用意した。
<Comparative example 2>
Tetrakisdimethylaminosilane, which has been conventionally used as a HfSiO film forming material, was prepared.
<Comparative Example 3>
Silane which has been conventionally used as a HfSiO film forming material was prepared.

<比較試験2>
実施例1〜8で得られた有機シリコン化合物と比較例2〜3で用意した有機シリコン化合物をそれぞれMOCVD法用原料として、以下の条件でHfSiO薄膜を成膜し、前述した比較試験1と同様にして成膜したHfSiO薄膜における成膜時間当たりの膜厚試験、表面粗さ及び段差被覆性試験を行った。
先ず、基板として基板表面にSiO2膜(厚さ5000Å)を形成したシリコン基板を4枚ずつ用意し、この基板をMOCVD装置の成膜室に設置した。また、有機シリコン化合物をMOCVD法用原料として第1原料容器に貯留した。同様に有機ハフニウム化合物をMOCVD法用原料として第2原料容器に貯留した。有機ハフニウム化合物としては、テトラキスジエチルアミノハフニウム(以下、TDEAHという。)又はテトラキスエチルメチルアミノハフニウム(以下、TEMAHという。)を使用した。次いで、成膜室内の基板温度を400℃、気化室内の気化温度を150℃、成膜室内の圧力を約1.33kPa(10torr)にそれぞれ設定した。反応ガスとしてはO2ガスを用い、成膜室内に供給される反応ガス流量が1000ccmとなるように制御した。次に、キャリアガスを第1原料容器内に供給して第1原料容器に貯留した有機シリコン化合物を0.5g/minの割合で気化器に供給して気化させた。同様に、キャリアガスを第2原料容器内に供給して第2原料容器に貯留した有機ハフニウム化合物を0.1ccmの割合で気化器に供給して気化させた。気化器で気化した有機シリコン化合物及び有機ハフニウム化合物とO2ガスとを成膜室に送り込み、成膜室内の基板上にHfSiOを堆積させた。成膜時間が5分、10分、20分及び30分となったときに基板をそれぞれ1枚ずつ成膜室より取出した。
<Comparison test 2>
Using the organic silicon compounds obtained in Examples 1 to 8 and the organic silicon compounds prepared in Comparative Examples 2 to 3 as raw materials for the MOCVD method, HfSiO thin films were formed under the following conditions, and the same as Comparative Test 1 described above. The film thickness test per film formation time, the surface roughness and the step coverage test were performed on the HfSiO thin film formed as described above.
First, four silicon substrates each having a SiO 2 film (thickness 5000 mm) formed on the substrate surface were prepared as substrates, and these substrates were placed in a film formation chamber of an MOCVD apparatus. Further, the organic silicon compound was stored in the first raw material container as a raw material for the MOCVD method. Similarly, the organic hafnium compound was stored in the second raw material container as a raw material for the MOCVD method. Tetrakisdiethylaminohafnium (hereinafter referred to as TDEAH) or tetrakisethylmethylaminohafnium (hereinafter referred to as TEMAH) was used as the organic hafnium compound. Next, the substrate temperature in the film formation chamber was set to 400 ° C., the vaporization temperature in the vaporization chamber was set to 150 ° C., and the pressure in the film formation chamber was set to about 1.33 kPa (10 torr). O 2 gas was used as the reaction gas, and the flow rate of the reaction gas supplied into the film formation chamber was controlled to be 1000 ccm. Next, the carrier gas was supplied into the first raw material container, and the organosilicon compound stored in the first raw material container was supplied to the vaporizer at a rate of 0.5 g / min and vaporized. Similarly, the carrier gas was supplied into the second raw material container, and the organic hafnium compound stored in the second raw material container was supplied to the vaporizer at a rate of 0.1 ccm and vaporized. The organic silicon compound and organic hafnium compound vaporized by the vaporizer and O 2 gas were sent into the film formation chamber, and HfSiO was deposited on the substrate in the film formation chamber. When the film formation time was 5 minutes, 10 minutes, 20 minutes, and 30 minutes, one substrate was taken out from the film formation chamber.

実施例1〜8及び比較例2〜3のMOCVD法用原料を用いたHfSiO薄膜における各試験結果を表3に示す。   Table 3 shows the test results of the HfSiO thin films using the raw materials for MOCVD in Examples 1 to 8 and Comparative Examples 2 to 3.

Figure 2008007471
Figure 2008007471

表3より明らかなように、従来より知られている比較例2,3で用意した有機シリコン化合物を用いて得られたHfSiO薄膜は、低い成膜速度であり、AFMによる表面粗さRaが大きく、成膜の安定性が悪いことが判った。また段差被覆性も非常に悪い結果となっていた。以上の評価試験より比較例2,3で用意した有機シリコン化合物は400℃のような低温での成膜には適していないことが判った。これに対して実施例1〜8で得られた有機シリコン化合物を用いて得られたHfSiO薄膜は、比較例2,3で用意した有機シリコン化合物を用いた場合に比べて非常に成膜速度が高く、AFMによる表面粗さRaも小さく、成膜安定性が高い結果が得られた。また、段差被覆性も0.8〜1.0と、基板の平坦部分と同様に溝の奥まで均一に成膜されていることが判った。このような成膜特性を有する本発明の有機シリコン化合物を用いたMOCVD法用原料は、低温条件でのHfSiO薄膜等のシリコン含有薄膜の製造に好適であることが判る。
As is apparent from Table 3, the HfSiO thin film obtained by using the organic silicon compounds prepared in Comparative Examples 2 and 3 that have been conventionally known has a low film formation rate and a large surface roughness Ra by AFM. It was found that the stability of film formation was poor. Also, the step coverage was very bad. From the above evaluation tests, it was found that the organosilicon compounds prepared in Comparative Examples 2 and 3 were not suitable for film formation at a low temperature such as 400 ° C. On the other hand, the HfSiO thin film obtained by using the organic silicon compounds obtained in Examples 1 to 8 has a very high film forming speed as compared with the case of using the organic silicon compounds prepared in Comparative Examples 2 and 3. The result was high, the surface roughness Ra by AFM was small, and the film formation stability was high. In addition, it was found that the step coverage was 0.8 to 1.0, and the film was uniformly formed to the depth of the groove as in the flat portion of the substrate. It can be seen that the raw material for MOCVD using the organosilicon compound of the present invention having such film formation characteristics is suitable for the production of silicon-containing thin films such as HfSiO thin films under low temperature conditions.

Claims (2)

次の式(1)で示される有機シリコン化合物を用いたことを特徴とする有機金属化学蒸着法用原料。
Figure 2008007471
但し、式中のR1はメチル基又はエチル基であり、R2は水素、メチル基又はエチル基であり、R3は水素又はメチル基であり、R4は炭素数1〜4の直鎖又は分岐状アルキル基である。
A raw material for metal organic chemical vapor deposition characterized by using an organic silicon compound represented by the following formula (1).
Figure 2008007471
However, R 1 in the formula is a methyl or ethyl group, R 2 is hydrogen, methyl or ethyl group, R 3 is hydrogen or methyl, R 4 is a straight chain of 1 to 4 carbon atoms Or it is a branched alkyl group.
請求項1記載の有機金属化学蒸着法用原料を用いて有機金属化学蒸着法によりシリコン含有膜を製造する方法。
A method for producing a silicon-containing film by metal organic chemical vapor deposition using the metal organic chemical vapor deposition raw material according to claim 1.
JP2006180685A 2006-06-30 2006-06-30 Raw material for metal organic chemical vapor deposition (mocvd) method and method for producing silicon-containing film using the raw material Withdrawn JP2008007471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006180685A JP2008007471A (en) 2006-06-30 2006-06-30 Raw material for metal organic chemical vapor deposition (mocvd) method and method for producing silicon-containing film using the raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006180685A JP2008007471A (en) 2006-06-30 2006-06-30 Raw material for metal organic chemical vapor deposition (mocvd) method and method for producing silicon-containing film using the raw material

Publications (1)

Publication Number Publication Date
JP2008007471A true JP2008007471A (en) 2008-01-17

Family

ID=39065987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006180685A Withdrawn JP2008007471A (en) 2006-06-30 2006-06-30 Raw material for metal organic chemical vapor deposition (mocvd) method and method for producing silicon-containing film using the raw material

Country Status (1)

Country Link
JP (1) JP2008007471A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158927A (en) * 2007-11-08 2009-07-16 Air Products & Chemicals Inc Preparation of metal-containing film via ald or cvd processes
WO2011155353A1 (en) * 2010-06-10 2011-12-15 東ソー株式会社 Hydrosilane derivative, method for producing same, and method for producing silicon-containing thin film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158927A (en) * 2007-11-08 2009-07-16 Air Products & Chemicals Inc Preparation of metal-containing film via ald or cvd processes
WO2011155353A1 (en) * 2010-06-10 2011-12-15 東ソー株式会社 Hydrosilane derivative, method for producing same, and method for producing silicon-containing thin film
JP2012126704A (en) * 2010-06-10 2012-07-05 Tosoh Corp Hydrosilane derivative, method for producing the same, and method for producing silicon-containing thin film
CN103124734A (en) * 2010-06-10 2013-05-29 东曹株式会社 Hydrosilane derivative, method for producing same, and method for producing silicon-containing thin film
US9120825B2 (en) 2010-06-10 2015-09-01 Tosoh Corporation Hydrosilane derivative, method for producing same, and method for producing silicon-containing thin film
KR101768259B1 (en) 2010-06-10 2017-08-14 토소가부시키가이샤 Hydrosilane derivative, method for producing same, and method for producing silicon-containing thin film

Similar Documents

Publication Publication Date Title
KR102242461B1 (en) Compositions and methods for the deposition of silicon oxide films
TWI652278B (en) Method for preparing organic amine decane
JP2018528615A (en) Method for depositing conformal metal or metalloid silicon nitride films and resulting films
JP2016147861A (en) Bisaminoalkoxysilane compounds and methods for using the same to deposit silicon-containing films
TW202035430A (en) Compositions and methods using same for silicon containing films
JP2016500762A (en) Method for producing silicon-containing thin film
KR102308644B1 (en) Silicon precursor compounds, method of preparing the same, and method of forming silicon-containing films using the same
TWI776009B (en) Lanthanoid compound, lanthanoid-containing thin film and formation of lanthanoid-containing thin film using the lanthanoid compound
KR20130049020A (en) Tantalum precursor compound and method for preparing the same
CN109585264B (en) Flowable chemical vapor deposition method for silicon nitride film
JP2008007471A (en) Raw material for metal organic chemical vapor deposition (mocvd) method and method for producing silicon-containing film using the raw material
JP7164789B2 (en) Precursors and processes for depositing Si-containing films using ALD at temperatures above 550°C
JP2021177550A (en) Silicon precursor and manufacturing method of silicon-containing thin film using silicon precursor
JP2013008828A (en) Formation method of silicon insulating film
KR102491073B1 (en) Silicon precursor compound, composition for forming a silicon-containing film comprising the same, and method for forming a film using the composition
KR102537665B1 (en) Method for forming a silicon-containing film and silicon-containing film formed thereby
US20220220132A1 (en) Organosilane precursors for ald/cvd/sod of silicon-containing film applications
JP4289141B2 (en) ORGANIC SILICON COMPOUND, SOLUTION RAW MATERIAL, AND METHOD FOR FORMING SILICON-CONTAINING FILM USING THE COMPOUND
TW202022153A (en) Method of manufacturing thin film, thin film and electronic device
TW202321499A (en) Multilayered silicon nitride film
TW202311273A (en) Silicon precursors
JP2023531394A (en) Silicon-based self-assembled monolayer composition and surface preparation using the same
TW202205431A (en) Vapor deposition precursor compounds and process of use
KR20150059129A (en) Organo group 14 metalloid azide compounds and method of thin film deposition using them as precursors
JP2006100812A (en) RAW MATERIAL LIQUID FOR METAL ORGANIC CHEMICAL VAPOR DEPOSITION AND METHOD OF PRODUCING Hf-Si CONTAINING COMPLEX OXIDE FILM USING THE RAW MATERIAL LIQUID

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090901