JP2008006372A - Wood-based biomass pretreatment method - Google Patents

Wood-based biomass pretreatment method Download PDF

Info

Publication number
JP2008006372A
JP2008006372A JP2006179172A JP2006179172A JP2008006372A JP 2008006372 A JP2008006372 A JP 2008006372A JP 2006179172 A JP2006179172 A JP 2006179172A JP 2006179172 A JP2006179172 A JP 2006179172A JP 2008006372 A JP2008006372 A JP 2008006372A
Authority
JP
Japan
Prior art keywords
wood
biomass
pretreatment method
based biomass
lignin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006179172A
Other languages
Japanese (ja)
Inventor
Akira Tsukamoto
塚本  晃
Seiji Nakagame
誠司 仲亀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Original Assignee
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Paper Co Ltd filed Critical Oji Paper Co Ltd
Priority to JP2006179172A priority Critical patent/JP2008006372A/en
Publication of JP2008006372A publication Critical patent/JP2008006372A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/58Construction or demolition [C&D] waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/78Recycling of wood or furniture waste

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Processing Of Solid Wastes (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wood-based biomass pretreatment method which enables a reduction in energy needed to grind wood-based biomass when the wood-based biomass is pretreated with microorganism and biomass energy is produced by multi-fuel combustion or gasification or when pretreatment for saccharification of wood-based biomass is carried out by means of sulfuric acid hydrolysis or the like. <P>SOLUTION: This is a wood-based biomass pretreatment method which requires grinding processing using white-rot fungi having lignin-decomposing activity. In the pretreatment method, the white-rot fungi are Trametes hirsuta, and the Trametes hirsuta is preferably Trametes hirsuta whose cellulose-decomposing activity is restrained. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

木質系バイオマスを微生物で前処理し、混焼やガス化によるバイオマスエネルギー製造時や硫酸加水分解等による糖化の前処理における木質系バイオマスの粉砕エネルギーを削減する技術に関する。   The present invention relates to a technique for pre-treating woody biomass with microorganisms and reducing the pulverization energy of woody biomass during biomass energy production by co-firing or gasification or pretreatment for saccharification by sulfuric acid hydrolysis.

間伐材や林地残材または建築廃材などの木質系バイオマス材料を用いて石炭との混焼による火力発電を行い、化石資源である石炭の使用量を削減し、再生可能かつカーボーンニュートラルな資源である木質系バイオマスを有効利用しようとする機運が高まっている。また、同じ試みとしてガス化発電システムやガス化メタノール製造システム、さらにエタノール製造システムにおいても木質系バイオマス資源の利用が期待されている。
しかしながら、これらの技術における課題として木質系バイオマスの前処理技術、すなわち如何に効率よく粉砕するかが大きな課題となっている。
具体的には微粉炭焚きボイラでは、石炭を微粉炭機で微細な粒子にして空気中に浮遊させながら燃焼させる。この時、微粉炭の粒度は、200メッシュ(75μm)通過割合が70〜80%、100メッシュ(150μm)通過割合が90%程度である。このため、微粉炭焚きボイラでバイオマスを混焼するために、バイオマスも細かく粉砕する必要がある(非特許文献1)。
新エネルギー産業技術総合開発機構(NEDO)バイオマスエネルギー高効率転換技術開発 石炭・木質バイオマス混焼技術の研究開発 平成14年度成果報告書157〜158,(2002)
Using woody biomass material such as thinned wood, forest residue or building waste, thermal power generation by co-combustion with coal reduces the amount of coal used as fossil resources, and wood that is a renewable and carbon neutral resource Motivation to make effective use of biomass is increasing. In the same attempt, woody biomass resources are expected to be used in gasification power generation systems, gasification methanol production systems, and ethanol production systems.
However, as a problem in these techniques, a pretreatment technique of woody biomass, that is, how to efficiently pulverize is a big problem.
Specifically, in a pulverized coal-fired boiler, coal is made into fine particles by a pulverized coal machine and burned while being suspended in the air. At this time, the particle size of the pulverized coal is such that the passing rate of 200 mesh (75 μm) is 70 to 80% and the passing rate of 100 mesh (150 μm) is about 90%. For this reason, in order to co-fire biomass with a pulverized coal-fired boiler, it is also necessary to finely pulverize the biomass (Non-patent Document 1).
New Energy Industrial Technology Development Organization (NEDO) Biomass Energy High-efficiency Technology Development Research and Development of Coal / Wood Biomass Mixed Firing Technology Fiscal 2002 Performance Report 157-158, (2002)

しかしながら、通常の火力発電所の石炭焚きボイラで使用される石炭に要する粉砕動力と比較すると、同じ粒度を得るためには10倍以上の動力が必要であることが知られている。例えば、石炭ではローラミルを粉砕機として使用した場合、10〜20kWh/tであるのに対して、木質バイオマスをインパクトミルなどの粉砕機にて粉砕した場合、材による違いはあるが、通常100〜200kWh/tとなる。本発明は、木質バイオマスの粉砕動力を削減することを課題とする。   However, it is known that more than 10 times more power is required to obtain the same particle size as compared with the pulverization power required for coal used in a coal-fired boiler of a normal thermal power plant. For example, when using a roller mill as a pulverizer in coal, it is 10 to 20 kWh / t, whereas when wood biomass is pulverized with a pulverizer such as an impact mill, there are differences depending on the material, but usually 100 to 100 200 kWh / t. An object of the present invention is to reduce the pulverization power of woody biomass.

上記技術的課題を解決すべく、鋭意研究を重ねた結果、粉砕処理を行う前に予め木質バイオマスに多量に含まれるフェニルプロパン構造を基本単位とするマトリックス構造の分解に有効なリグニン分解酵素活性を有する微生物で前処理することにより、ミルなどによる粉砕動力を削減できることを見出し、本発明を完成するに至った。   As a result of intensive research to solve the above technical problems, lignin-degrading enzyme activity effective in decomposing the matrix structure based on phenylpropane structure contained in a large amount in woody biomass in advance before pulverization is obtained. It has been found that the pulverization power by a mill or the like can be reduced by pretreatment with microorganisms possessed, and the present invention has been completed.

さらに、セルロース分解酵素活性を抑制することにバイオマスの収量減少も抑えることができ、効率的にバイオマスの前処理を行うことが容易になった。   Furthermore, suppression of cellulolytic enzyme activity can also suppress a decrease in yield of biomass, and it has become easier to efficiently perform biomass pretreatment.

すなわち、本発明は、1)リグニン分解能を有する白色腐朽菌を用いた粉砕処理を必要する木質バイオマスの前処理方法を提供する。また、本発明は、2)アラゲカワラタケを用いた木質バイオマスの前処理方法を提供する。さらに、本発明は、3)セルロース分解酵素活性を抑制したアラゲカワラタケを用いた木質バイオマスの前処理方法を提供するものである。   That is, the present invention provides 1) a pretreatment method for woody biomass that requires pulverization using a white rot fungus having lignin resolution. In addition, the present invention provides 2) a method for pretreatment of woody biomass using agaricus mushroom. Furthermore, the present invention provides 3) a pretreatment method for woody biomass using agaricus mushroom that has suppressed cellulolytic enzyme activity.

木質系バイオマスを微生物で前処理し、混焼やガス化によるバイオマスエネルギー製造時や硫酸加水分解等による糖化の前処理における木質系バイオマスの粉砕エネルギーを削減する技術に利用できる。   Woody biomass can be pretreated with microorganisms, and can be used in technologies for reducing the pulverization energy of woody biomass during biomass energy production by co-firing or gasification or saccharification pretreatment by sulfuric acid hydrolysis.

以下、本発明について詳細に説明する。
先ず、本発明に使用する木質バイオマスとしては、樹木の全部、またはその一部、林地残材、間伐材、もしくは建築廃材など用いることができ、リグニンを1〜30%程度含有するリグノセルロース材料を使用することができる。また、本発明において使用する微生物はリグニン分解能力を有するものであればいずれも用いることができるが、リグニン分解菌としてはアラゲカワラタケ(Trametes hirsuta)、フレビア・トレメローザ(Phlebia tremellosa)、ヒラタケ(Pleurotus ostreatus)、カイガラタケ(Lenzites betuluna)、比較的リグニン分解能に優れるといわれる従来公知のファネロケーテ・クリソスポリウム(Phanerochaete chrysosporium)や選択的リグニン分解菌であるセリポリオプシス・サバーミスポラ(Ceriporiopsis subvermispora)等の白色腐朽菌等を用いることができる。
Hereinafter, the present invention will be described in detail.
First, as the woody biomass used in the present invention, it is possible to use all or a part of a tree, forest land remnants, thinned wood, construction waste, etc., and a lignocellulosic material containing about 1 to 30% lignin. Can be used. Any microorganism can be used in the present invention as long as it has lignin-degrading ability. Examples of lignin-degrading bacteria include Trachetes hirsuta, Flavia tremellosa, and Pleurotus ostereatus. ), Larvae (Lenzites betuluna), Phanerochae chrysosporium (Phanerochaete chrysosporium), which is said to be relatively excellent in lignin resolving ability, and Seripoliopis saberoporopis (Ceriporpis), a selective lignin-degrading bacterium. Etc. can be used.

この技術で用いられる菌を含め、生物前処理に用いられるリグニン分解菌の多くは、バイオマスの分解の際に、リグニンと共にセルロース等バイオマスの他の成分も消費してしまうため、結果的にバイオマスの収量を下げてしまうため、さらに好ましくは遺伝子組換え技術を利用し、セルロース分解酵素活性を抑制した白色腐朽菌を用いることが効果的な省エネルギーに繋がり、本発明者らが開発したセルロース分解酵素活性抑制株を用いることも選択肢の一つである(特願2005−297869「薬剤耐性遺伝子の利用」)。   Many of the lignin-degrading bacteria used for biological pretreatment, including the bacteria used in this technology, consume other components of biomass such as cellulose together with lignin when decomposing biomass. In order to reduce the yield, it is more preferable to use genetically modified technology and use white-rot fungi with suppressed cellulolytic enzyme activity, leading to effective energy saving and cellulolytic enzyme activity developed by the present inventors. It is also an option to use a suppressor strain (Japanese Patent Application No. 2005-297869 “Utilization of drug resistance gene”).

本発明では、上記のバイオマスにあらかじめそれぞれの菌に適した条件で増殖せしめた上記リグニン分解白色腐朽菌やセルロース分解酵素活性を抑制したリグニン分解白色腐朽菌を接種し、一定期間バイオマスと共に培養することにより処理を行う。リグニン分解菌の接種と同時あるいはその前後に下記培地を添加すると効果的である。   In the present invention, the above biomass is inoculated with the above lignin-degrading white rot fungi previously grown under conditions suitable for each fungus or the lignin-degrading white rot fungus with suppressed cellulolytic enzyme activity, and cultured with the biomass for a certain period of time. Process by. It is effective to add the following medium at the same time as or before or after the inoculation of lignin-degrading bacteria.

培地は、リグニン分解白色腐朽菌やセルロース分解酵素活性抑制宿主細胞が生育できるのであればいずれの培地をも用いることができるが、例えば、炭素源としては、廃糖蜜やグルコース、セロビオース、非晶性セルロース等の他、パルプ、紙、綿等を使用することができる。また、窒素源としては、酵母エキス、ペプトン、各種アミノ酸、大豆粕、コーンスティープリカー、各種無機窒素などの窒素化合物を用いることができる。さらに、必要に応じて、各種塩類やビタミン、ミネラル等を適宜用いることができる。   As the medium, any medium can be used as long as lignin-degrading white rot fungi or cellulolytic enzyme activity-suppressing host cells can grow. For example, as a carbon source, waste molasses, glucose, cellobiose, amorphous In addition to cellulose and the like, pulp, paper, cotton and the like can be used. As the nitrogen source, nitrogen compounds such as yeast extract, peptone, various amino acids, soybean meal, corn steep liquor, various inorganic nitrogen can be used. Furthermore, various salts, vitamins, minerals, and the like can be used as needed.

培養温度及びpHは、リグニン分解白色腐朽菌やセルロース分解酵素活性抑制リグニン分解白色腐朽菌が増殖可能な範囲において適宜設定可能であるが、例えば、培養温度は20〜60℃、好ましくは25〜37℃であり、pHは3〜9、好ましくは4〜6である。また、通気は0.001〜1.0vvm、好ましくは0.05〜0.2vvmである。さらに、菌処理の期間は適宜設定可能であるが、工業利用を考え5〜20日間が好ましい。菌処理後は、バイオマスを直接あるいは乾燥させてからその後の粉砕処理に用いることができる。以上の操作により粉砕エネルギーを削減することができた。   The culture temperature and pH can be appropriately set within a range in which the lignin-degrading white rot fungi and the cellulose-degrading enzyme activity-suppressed lignin-degraded white rot fungi can grow. For example, the culture temperature is 20 to 60 ° C., preferably 25 to 37. ° C and the pH is 3-9, preferably 4-6. The ventilation is 0.001 to 1.0 vvm, preferably 0.05 to 0.2 vvm. Furthermore, the period of the bacterial treatment can be appropriately set, but 5 to 20 days is preferable in consideration of industrial use. After the fungus treatment, the biomass can be used directly or after drying for subsequent grinding treatment. The grinding energy could be reduced by the above operation.

以下、実施例により本発明を更に具体的に説明するが、本発明の範囲はこれらの具体例に限定されない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the scope of the present invention is not limited to these specific examples.

〔実施例1〕
「白色腐朽菌アラゲカワラタケNBRC4917株で処理した広葉樹木材チップの粉砕処理」
白色腐朽菌アラゲカワラタケNBRC4917株をポテトデキストロース寒天培地上で28℃にて培養した後、4℃で保存した。このプレートから直径5mmのコルクボーラーで打ち抜いた切片を5つずつ、グルコース・ペプトン培地(グルコース3%、ポリペプトン1%、KHPO0.15%、MgSO0.05%、リン酸でpH5.0に調製)を100mlずつ含む300ml容三角フラスコに植菌し、28℃、100rpmで1週間振盪培養した。培養後、菌体をろ別し、菌体に残存した培地を滅菌水で洗浄した。菌体は滅菌水と共に、ワーリングブレンダーで45秒間粉砕し、絶乾重量1kgの広葉樹ユーカリ・グロブラスチップに対し、菌体の乾燥重量が5mgになるように植菌した。植菌後は菌が全体に行き渡るようによく撹拌した。培養は28℃で通気をしながら2週間静置培養を行った。チップ含水率が40〜65%になるように随時飽和水蒸気を通気させた。通気する際の通気量は対チップ当り、0.01vvmになるように行った。
処理前後のチップ絶乾重量を測定し、以下の式を用いてチップ収率を算出した。
(処理後の絶乾重量)/(処理前の絶乾重量)×100
結果を表1に示した。
菌処理後の木材チップ絶乾重量20gを木粉作成用のラボ用ウイレー型粉砕機(吉田製作所、東京、日本)を用いて粉砕し、同時に使用電力量はワットメーター(Hiokidenki model 3133)と積分計(model 3141)を用いて測定を行った。
結果を表5に示す。
また、得られた木粉を篩い分け機を用いて粒度分布も併せて測定した。
結果を表2に示す。
[Example 1]
“Crushing of hardwood wood chips treated with white rot fungus Alagekawaratake NBRC4917”
The white rot fungus Alagekawaratake NBRC4917 was cultured on potato dextrose agar at 28 ° C. and stored at 4 ° C. Five sections of this plate punched out with a cork borer with a diameter of 5 mm were prepared in glucose peptone medium (glucose 3%, polypeptone 1%, KH 2 PO 4 0.15%, MgSO 4 0.05%, pH 5 with phosphoric acid. In a 300 ml Erlenmeyer flask containing 100 ml each, and cultured with shaking at 28 ° C. and 100 rpm for 1 week. After the cultivation, the cells were filtered off, and the medium remaining in the cells was washed with sterilized water. The cells were pulverized for 45 seconds together with sterilized water using a Waring blender, and inoculated so that the dry weight of the cells was 5 mg on a hardwood eucalyptus / globula chip having an absolute dry weight of 1 kg. After inoculation, the mixture was stirred well so that the bacteria spread throughout. The culture was carried out by static culture for 2 weeks with aeration at 28 ° C. Saturated water vapor was aerated as needed so that the moisture content of the chip was 40 to 65%. The amount of ventilation when venting was 0.01 vvm per chip.
The chip dry weight before and after the treatment was measured, and the chip yield was calculated using the following formula.
(Absolute dry weight after treatment) / (absolute dry weight before treatment) × 100
The results are shown in Table 1.
20g dry weight of wood chips after fungus treatment was pulverized using a laboratory wheelie pulverizer (Yoshida Seisakusho, Tokyo, Japan) for the production of wood flour. At the same time, the power consumption was integrated with a watt meter (Hiokidenki model 3133). Measurement was performed using a meter (model 3141).
The results are shown in Table 5.
The obtained wood flour was also measured for particle size distribution using a sieving machine.
The results are shown in Table 2.

〔実施例2〕
セルロース分解酵素活性を抑制した形質転換株で処理した広葉樹木材チップの粉砕処理
セルロース分解酵素活性抑制リグニン分解菌として、アラゲカワラタケから「薬剤耐性遺伝子の利用」(特願2005−297869)に準拠して作製したカルボキシン耐性セルロース分解酵素活性抑制株を用いた。
上記セルロース分解酵素活性抑制株をポテトデキストロース寒天培地上で28℃にて培養した後、4℃で保存した。このプレートから直径5mmのコルクボーラーで打ち抜いた切片を5つずつ、グルコース・ペプトン培地(グルコース3%、ポリペプトン1%、KHPO0.15%、MgSO0.05%、リン酸でpH5.0に調製)を100mlずつ含む300ml容三角フラスコに植菌し、28℃、100rpmで1週間振盪培養した。培養後、菌体をろ別し、菌体に残存した培地を滅菌水で洗浄した。菌体は滅菌水と共に、ワーリングブレンダーで45秒間粉砕し、絶乾重量1kgの広葉樹ユーカリ・グロブラスチップに対し、菌体の乾燥重量が5mgになるように植菌した。植菌後は菌が全体に行き渡るようによく撹拌した。培養は28℃で通気をしながら2週間静置培養を行った。チップ含水率が40〜65%になるように随時飽和水蒸気を通気させた。通気する際の通気量は対チップ当り、0.01vvmになるように行った。
処理前後のチップ絶乾重量を測定し、以下の式を用いてチップ収率を算出した。
(処理後の絶乾重量)/(処理前の絶乾重量)×100
結果を表1に示した。
菌処理後の木材チップ絶乾重量20gを木粉作成用のラボ用ウイレー型粉砕機(吉田製作所、東京、日本)を用いて粉砕し、同時に使用電力量はワットメーター(Hiokidenki model 3133)と積分計(model 3141)を用いて測定を行った。
結果を表5に示す。
また、得られた木粉を篩い分け機を用いて粒度分布も併せて測定した。
結果を表2に示す。
[Example 2]
Grinding treatment of hardwood wood chips treated with a transformant with suppressed cellulolytic enzyme activity Cellulose-degrading enzyme activity-suppressed lignin-degrading bacterium according to “Utilization of drug resistance gene” (Japanese Patent Application No. 2005-297869) The produced carboxin resistant cellulolytic enzyme activity suppression strain was used.
The cellulolytic enzyme activity-suppressed strain was cultured at 28 ° C. on a potato dextrose agar medium, and stored at 4 ° C. Five sections of this plate punched out with a cork borer with a diameter of 5 mm were prepared in glucose peptone medium (glucose 3%, polypeptone 1%, KH 2 PO 4 0.15%, MgSO 4 0.05%, pH 5 with phosphoric acid. In a 300 ml Erlenmeyer flask containing 100 ml each, and cultured with shaking at 28 ° C. and 100 rpm for 1 week. After the cultivation, the cells were filtered off, and the medium remaining in the cells was washed with sterilized water. The microbial cells were pulverized with sterilized water for 45 seconds using a Waring blender, and inoculated so that the dry weight of the microbial cells was 5 mg on a hardwood eucalyptus / globula chip with an absolute dry weight of 1 kg. After inoculation, the mixture was stirred well so that the bacteria spread throughout. The culture was carried out by static culture for 2 weeks with aeration at 28 ° C. Saturated water vapor was aerated as needed so that the moisture content of the chip was 40 to 65%. The amount of ventilation when venting was 0.01 vvm per chip.
The chip dry weight before and after the treatment was measured, and the chip yield was calculated using the following formula.
(Absolute dry weight after treatment) / (absolute dry weight before treatment) × 100
The results are shown in Table 1.
20g dry weight of wood chips after fungus treatment was pulverized using a laboratory wheelie pulverizer (Yoshida Seisakusho, Tokyo, Japan) for the production of wood flour. At the same time, the power consumption was integrated with a watt meter (Hiokidenki model 3133). Measurement was performed using a meter (model 3141).
The results are shown in Table 5.
The obtained wood flour was also measured for particle size distribution using a sieving machine.
The results are shown in Table 2.

〔実施例3〕
白色腐朽菌Ceriporiopsis subvermispora CZ−3株(ATCC 96608)で処理した針葉樹木材チップの粉砕処理
白色腐朽菌Ceriporiopsis subvermispora CZ−3株をポテトデキストロース寒天培地上で28℃にて培養した後、4℃で保存した。このプレートから直径5mmのコルクボーラーで打ち抜いた切片を5つずつ、グルコース・ペプトン培地(グルコース3%、ポリペプトン1%、KHPO0.15%、MgSO0.05%、リン酸でpH5.0に調製)を100mlずつ含む300ml容三角フラスコに植菌し、28℃、100rpmで1週間振盪培養した。培養後、菌体をろ別し、菌体に残存した培地を滅菌水で洗浄した。菌体は滅菌水と共に、ワーリングブレンダーで45秒間粉砕し、絶乾重量1kgの針葉樹カラマツチップに対し、菌体の乾燥重量が5mgになるように植菌した。植菌後は菌が全体に行き渡るようによく撹拌した。培養は28℃で通気をしながら2週間静置培養を行った。チップ含水率が40〜65%になるように随時飽和水蒸気を通気させた。通気する際の通気量は対チップ当り、0.01vvmになるように行った。
処理前後のチップ絶乾重量を測定し、以下の式を用いてチップ収率を算出した。
(処理後の絶乾重量)/(処理前の絶乾重量)×100
結果を表3に示した。
菌処理後の木材チップ絶乾重量20gを木粉作成用のラボ用ウイレー型粉砕機(吉田製作所、東京、日本)を用いて粉砕し、同時に使用電力量はワットメーター(Hiokidenki model 3133)と積分計(model 3141)を用いて測定を行った。
結果を表6に示す。
また、得られた木粉を篩い分け機を用いて粒度分布も併せて測定した。
結果を表4に示す。
Example 3
Grinding of softwood wood chips treated with white rot fungus Ceriporiopsis subvermisspora CZ-3 strain (ATCC 96608) After culturing white rot fungus Ceriporiopsis subvermisspora CZ-3 strain on potato dextrose agar medium at 28 ° C. did. Five sections of this plate punched out with a cork borer with a diameter of 5 mm were prepared in glucose peptone medium (glucose 3%, polypeptone 1%, KH 2 PO 4 0.15%, MgSO 4 0.05%, pH 5 with phosphoric acid. In a 300 ml Erlenmeyer flask containing 100 ml each, and cultured with shaking at 28 ° C. and 100 rpm for 1 week. After the cultivation, the cells were filtered off, and the medium remaining in the cells was washed with sterilized water. The microbial cells were pulverized for 45 seconds together with sterilized water with a Waring blender, and inoculated so that the dry weight of the microbial cells was 5 mg on a 1-kg conifer larch chip. After inoculation, the mixture was stirred well so that the bacteria spread throughout. The culture was carried out by static culture for 2 weeks with aeration at 28 ° C. Saturated water vapor was aerated as needed so that the moisture content of the chip was 40 to 65%. The amount of ventilation when venting was 0.01 vvm per chip.
The chip dry weight before and after the treatment was measured, and the chip yield was calculated using the following formula.
(Absolute dry weight after treatment) / (absolute dry weight before treatment) × 100
The results are shown in Table 3.
20g dry weight of wood chips after fungus treatment was pulverized using a laboratory wheelie pulverizer (Yoshida Seisakusho, Tokyo, Japan) for the production of wood flour. Measurement was performed using a meter (model 3141).
The results are shown in Table 6.
The obtained wood flour was also measured for particle size distribution using a sieving machine.
The results are shown in Table 4.

〔実施例4〕
セルロース分解酵素活性を抑制した形質転換株で処理した針葉樹木材チップの粉砕処理
セルロース分解酵素活性抑制リグニン分解菌として、アラゲカワラタケから「薬剤耐性遺伝子の利用」(特願2005−297869)に準拠して作製したカルボキシン耐性セルロース分解酵素活性抑制株を用いた。
上記セルロース分解酵素活性抑制株をポテトデキストロース寒天培地上で28℃にて培養した後、4℃で保存した。このプレートから直径5mmのコルクボーラーで打ち抜いた切片を5つずつ、グルコース・ペプトン培地(グルコース3%、ポリペプトン1%、KHPO0.15%、MgSO0.05%、リン酸でpH5.0に調製)を100mlずつ含む300ml容三角フラスコに植菌し、28℃、100rpmで1週間振盪培養した。培養後、菌体をろ別し、菌体に残存した培地を滅菌水で洗浄した。菌体は滅菌水と共に、ワーリングブレンダーで45秒間粉砕し、絶乾重量1kgの針葉樹カラマツチップに対し、菌体の乾燥重量が5mgになるように植菌した。植菌後は菌が全体に行き渡るようによく撹拌した。培養は28℃で通気をしながら2週間静置培養を行った。チップ含水率が40〜65%になるように随時飽和水蒸気を通気させた。通気する際の通気量は対チップ当り、0.01vvmになるように行った。
処理前後のチップ絶乾重量を測定し、以下の式を用いてチップ収率を算出した。
(処理後の絶乾重量)/(処理前の絶乾重量)×100
結果を表3に示した。
菌処理後の木材チップ絶乾重量20gを木粉作成用のラボ用ウイレー型粉砕機(吉田製作所、東京、日本)を用いて粉砕し、同時に使用電力量はワットメーター(Hiokidenki model 3133)と積分計(model 3141)を用いて測定を行った。
結果を表6に示す。
また、得られた木粉を篩い分け機を用いて粒度分布も併せて測定した。
結果を表4に示す。
Example 4
Grinding of softwood wood chips treated with a transformant that has suppressed cellulolytic enzyme activity Cellulose-degrading enzyme activity-suppressed lignin-degrading bacteria from “A drug-resistant gene” (Japanese Patent Application No. 2005-297869) The produced carboxin resistant cellulolytic enzyme activity suppression strain was used.
The cellulolytic enzyme activity-suppressed strain was cultured at 28 ° C. on a potato dextrose agar medium, and stored at 4 ° C. Five sections of this plate punched out with a cork borer with a diameter of 5 mm were prepared in glucose peptone medium (glucose 3%, polypeptone 1%, KH 2 PO 4 0.15%, MgSO 4 0.05%, pH 5 with phosphoric acid. In a 300 ml Erlenmeyer flask containing 100 ml each, and cultured with shaking at 28 ° C. and 100 rpm for 1 week. After the cultivation, the cells were filtered off, and the medium remaining in the cells was washed with sterilized water. The microbial cells were pulverized for 45 seconds together with sterilized water with a Waring blender, and inoculated so that the dry weight of the microbial cells was 5 mg on a 1-kg conifer larch chip. After inoculation, the mixture was stirred well so that the bacteria spread throughout. The culture was carried out by static culture for 2 weeks with aeration at 28 ° C. Saturated water vapor was aerated as needed so that the moisture content of the chip was 40 to 65%. The amount of ventilation when venting was 0.01 vvm per chip.
The chip dry weight before and after the treatment was measured, and the chip yield was calculated using the following formula.
(Absolute dry weight after treatment) / (absolute dry weight before treatment) × 100
The results are shown in Table 3.
20g dry weight of wood chips after fungus treatment was pulverized using a laboratory wheelie pulverizer (Yoshida Seisakusho, Tokyo, Japan) for the production of wood flour. Measurement was performed using a meter (model 3141).
The results are shown in Table 6.
The obtained wood flour was also measured for particle size distribution using a sieving machine.
The results are shown in Table 4.

〔比較例1〕
菌処理していないユーカリ・グロブラスチップの粉砕処理
菌処理していないユーカリ・グロブラスチップを2週間0.01vvmとなるように通気処理のみを行い、実施例1と同様にウィーレーミルを用いて破砕を行い、電力量と粒度分布を測定した。結果を表5ならびに表2に示す。
以上のようにバイオマスの混焼火力発電に要求されるサイズのバイオマスを得るのに20%程度削減することが可能となる。また、セルロース分解酵素活性抑制株を用いることによりバイオマスの収率低下を抑制することもできた。
[Comparative Example 1]
Grinding treatment of eucalyptus and globulas chips not treated with fungus Eucalyptus and globulas chips not treated with fungi were subjected to aeration treatment so as to be 0.01 vvm for 2 weeks, and crushed using a wheelie mill as in Example 1. And the amount of power and the particle size distribution were measured. The results are shown in Table 5 and Table 2.
As described above, it is possible to reduce by about 20% in order to obtain biomass of a size required for biomass co-fired thermal power generation. Moreover, the yield fall of biomass could also be suppressed by using a cellulolytic enzyme activity suppression strain.

〔比較例2〕
菌処理していないカラマツチップの粉砕処理
菌処理していないカラマツチップを2週間0.01vvmとなるように通気処理のみを行い、実施例3と同様にウイレー型粉砕機を用いて破砕を行い、電力量と粒度分布を測定した。結果を表6ならびに表4に示す。
[Comparative Example 2]
Grinding treatment of larch chips not treated with bacteria Only lather treatment was performed so that larch chips not treated with bacteria were 0.01 vvm for 2 weeks, and crushing was performed using a Wiley type grinder in the same manner as in Example 3. The amount of power and the particle size distribution were measured. The results are shown in Table 6 and Table 4.

以上のように広葉樹のみならず針葉樹に対しても粉砕エネルギーを削減することができた。   As described above, pulverization energy could be reduced not only for hardwoods but also for conifers.

Figure 2008006372
Figure 2008006372

Figure 2008006372
Figure 2008006372

Figure 2008006372
Figure 2008006372

Figure 2008006372
Figure 2008006372

Figure 2008006372
Figure 2008006372

Figure 2008006372
Figure 2008006372

木質系バイオマスを微生物で前処理し、混焼やガス化によるバイオマスエネルギー製造時や硫酸加水分解等による糖化の前処理における木質系バイオマスの粉砕エネルギーを削減する技術に利用できる。
Woody biomass can be pretreated with microorganisms, and can be used in technologies for reducing the pulverization energy of woody biomass during biomass energy production by co-firing or gasification or saccharification pretreatment by sulfuric acid hydrolysis.

Claims (3)

リグニン分解能を有する白色腐朽菌を用いた粉砕処理を要する木質バイオマスの前処理方法。   A pretreatment method for woody biomass that requires grinding using white rot fungi having lignin resolution. 前記白色腐朽菌が、アラゲカワラタケである請求項1記載のバイオマスの前処理方法。   The biomass pretreatment method according to claim 1, wherein the white rot fungus is Alagekawaratake. 前記アラゲカワラタケが、セルロース分解酵素活性を抑制したアラゲカワラタケ株である請求項2記載のバイオマスの前処理方法。
The biomass pretreatment method according to claim 2, wherein the mushroom mushroom is a mushroom mushroom strain with suppressed cellulolytic enzyme activity.
JP2006179172A 2006-06-29 2006-06-29 Wood-based biomass pretreatment method Pending JP2008006372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006179172A JP2008006372A (en) 2006-06-29 2006-06-29 Wood-based biomass pretreatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006179172A JP2008006372A (en) 2006-06-29 2006-06-29 Wood-based biomass pretreatment method

Publications (1)

Publication Number Publication Date
JP2008006372A true JP2008006372A (en) 2008-01-17

Family

ID=39065071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006179172A Pending JP2008006372A (en) 2006-06-29 2006-06-29 Wood-based biomass pretreatment method

Country Status (1)

Country Link
JP (1) JP2008006372A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010035446A (en) * 2008-08-01 2010-02-18 Kyoto Univ Method for saccharification pretreatment of herbaceous biomass
WO2010077172A1 (en) 2008-12-29 2010-07-08 Limited Liability Company "Prof Business" Process for pretreatment of wood raw material for saccharification, system and product
CN102261004A (en) * 2010-05-26 2011-11-30 中国科学院成都生物研究所 Biological-chemical combined pretreatment method of lignocellulosic materials
JP2012512949A (en) * 2008-12-19 2012-06-07 キシレコ インコーポレイテッド Biomass processing method
US9145568B2 (en) 2011-05-31 2015-09-29 University Of Miyazaki Method for producing ethanol using basidiomycete

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010035446A (en) * 2008-08-01 2010-02-18 Kyoto Univ Method for saccharification pretreatment of herbaceous biomass
JP2012512949A (en) * 2008-12-19 2012-06-07 キシレコ インコーポレイテッド Biomass processing method
JP2015147933A (en) * 2008-12-19 2015-08-20 キシレコ インコーポレイテッド Processing method of biomass
US9428621B2 (en) 2008-12-19 2016-08-30 Xyleco, Inc. Processing biomass
US9745518B2 (en) 2008-12-19 2017-08-29 Xyleco, Inc. Processing hydrocarbon-containing materials
JP2018159079A (en) * 2008-12-19 2018-10-11 キシレコ インコーポレイテッド Processing method of biomass
US10273416B2 (en) 2008-12-19 2019-04-30 Xyleco, Inc. Processing hydrocarbon-containing materials
WO2010077172A1 (en) 2008-12-29 2010-07-08 Limited Liability Company "Prof Business" Process for pretreatment of wood raw material for saccharification, system and product
CN102261004A (en) * 2010-05-26 2011-11-30 中国科学院成都生物研究所 Biological-chemical combined pretreatment method of lignocellulosic materials
US9145568B2 (en) 2011-05-31 2015-09-29 University Of Miyazaki Method for producing ethanol using basidiomycete

Similar Documents

Publication Publication Date Title
Song et al. Biological pretreatment under non-sterile conditions for enzymatic hydrolysis of corn stover
Elisashvili et al. Use of Pleurotus dryinus for lignocellulolytic enzymes production in submerged fermentation of mandarin peels and tree leaves
Singhania et al. Bioethanol production from wheat straw via enzymatic route employing Penicillium janthinellum cellulases
Yoon et al. Fungal solid-state fermentation and various methods of enhancement in cellulase production
Kachlishvili et al. Effect of nitrogen source on lignocellulolytic enzyme production by white-rot basidiomycetes under solid-state cultivation
Liu et al. Anaerobic digestion of lignocellulosic biomasses pretreated with Ceriporiopsis subvermispora
Malhotra et al. Laccase-mediated delignification and detoxification of lignocellulosic biomass: removing obstacles in energy generation
Elisashvili et al. Lentinus edodes and Pleurotus species lignocellulolytic enzymes activity in submerged and solid-state fermentation of lignocellulosic wastes of different composition
Chandra et al. Cellulolytic enzymes on lignocellulosic substrates in solid state fermentation by Aspergillus niger
Liu et al. Fungal pretreatment of switchgrass for improved saccharification and simultaneous enzyme production
Saratale et al. Cellulolytic enzymes production by utilizing agricultural wastes under solid state fermentation and its application for biohydrogen production
Thakur et al. Degradation and selective ligninolysis of wheat straw and banana stem for an efficient bioethanol production using fungal and chemical pretreatment
An et al. Sequential solid-state and submerged cultivation of the white rot fungus Pleurotus ostreatus on biomass and the activity of lignocellulolytic enzymes
Julia et al. Potential use of soybean hulls and waste paper as supports in SSF for cellulase production by Aspergillus niger
US20080213850A1 (en) Pretreatment of Waste Mushroom Bed and Method of Converting the Same to Yield Sugars and Ethanol
Kondo et al. Effect of chemical factors on integrated fungal fermentation of sugarcane bagasse for ethanol production by a white-rot fungus, Phlebia sp. MG-60
Zhang et al. Lignin degradation in corn stalk by combined method of H 2 O 2 hydrolysis and Aspergillus oryzae CGMCC5992 liquid-state fermentation
JP2008006372A (en) Wood-based biomass pretreatment method
Hamouda et al. Enhancement of bioethanol production from Ulva fasciata by biological and chemical saccharification
Doria et al. Evaluation of lignocellulolytic activities of ten fungal species able to degrade poplar wood
Kasprzycka et al. Flammulina velutipes treatment of non-sterile tall wheat grass for enhancing biodegradability and methane production
Mishra et al. Lignocellulolytic enzyme production from submerged fermentation of paddy straw
Batool et al. Optimization of physical and nutritional factors for enhanced production of lignin peroxidase by Ganoderma lucidum IBL-05 in solid state culture of wheat straw.
Massadeh et al. Effect of carbon sources on the extracellular lignocellulolytic enzymetic system of Pleurotus Sajor-Caju
Ali et al. Ethanol and xylitol production from xylanase broth of Thermomyces lanuginosus grown on some lignocellulosic wastes using Candida tropicalis EMCC2