JP2008006146A - Fingerprint authentication method and device - Google Patents

Fingerprint authentication method and device Download PDF

Info

Publication number
JP2008006146A
JP2008006146A JP2006180981A JP2006180981A JP2008006146A JP 2008006146 A JP2008006146 A JP 2008006146A JP 2006180981 A JP2006180981 A JP 2006180981A JP 2006180981 A JP2006180981 A JP 2006180981A JP 2008006146 A JP2008006146 A JP 2008006146A
Authority
JP
Japan
Prior art keywords
fingerprint
light
fingerprint information
extracted
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006180981A
Other languages
Japanese (ja)
Inventor
Masahiko Kasuga
正彦 春日
Morifumi Oono
守史 大野
Tadashi Chiba
正 千葉
Sanpei Miyamoto
三平 宮本
Atsushi Takasugi
敦 高杉
Kouji Ichimori
高示 一森
Hiroyuki Yamada
浩幸 山田
Yoshihisa Aida
芳久 会田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2006180981A priority Critical patent/JP2008006146A/en
Publication of JP2008006146A publication Critical patent/JP2008006146A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fingerprint authentication method and device added with biometrics having a little possibility of an erroneous determination. <P>SOLUTION: White light generated by a light source 11 is passed through a transparent section of a filter 12 and illuminated to the epidermis 21 of an authentication object finger 20, its diffuse light is read by a sensor 13 and the fingerprint of the epidermis 21 is extracted. Alternatively, a light with wavelength of approximately 400 nm is filtered by the filter 12 and illuminated to the dermis 22, its diffuse light is read and the internal fingerprint of the dermis 22 is extracted. Near infrared light is filtered by the filter 12 and illuminated to the vein 23 inside the finger, and a ratio of oxygenated hemoglobin to reduced hemoglobin is detected based on the spectral distribution of the diffuse light. A processing section 14 complements the fingerprint of the epidermis 21 with the internal fingerprint of the dermis 22, collates the fingerprint information with fingerprint information of a person registering the fingerprint information to authenticate the fingerprint whether or not being the identity, and at the same time performs biometrics for it based on the ratio of the oxygenated hemoglobin. When determined not to be the identity, the extracted fingerprint information is stored in a storage section 15. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、指紋によって個人を特定する指紋認証方法と装置、特に入力された指紋像が生体から得られたものであることを確認要素として組み入れた指紋認証方法と装置に関するものである。   The present invention relates to a fingerprint authentication method and apparatus for identifying an individual using a fingerprint, and more particularly to a fingerprint authentication method and apparatus that incorporates an input fingerprint image obtained from a living body as a confirmation element.

図2は、下記特許文献1に記載された従来の個人特定照合装置の構成図である。
この個人特定照合装置は、指紋認証に生体認証を付加したもので、図2(a)に示すように、個人を特定照合するための情報として指紋像を入力する指紋入力部1と、予めメモリに登録された指紋情報照合用データ2と、入力された指紋像を照合用データと照合して登録された指紋に該当するものがあるか否かを調べる指紋情報照合演算部3を有している。更に、この個人特定照合装置は、指紋をコピーした人工指や切断された指等による“なりすまし”を防止するために、入力された指紋像を有する指が生きた指であるか否かを判定するための生体検出部4と生体情報演算部5を有している。生体情報演算部5の判定結果は指紋情報照合演算部3に与えられ、指紋像の照合結果と生体情報の判定結果による総合結論が、照合結果出力部6から出力されるようになっている。
FIG. 2 is a configuration diagram of a conventional personal identification device described in Patent Document 1 below.
This personal identification collation apparatus is one in which biometric authentication is added to fingerprint authentication. As shown in FIG. 2A, a fingerprint input unit 1 for inputting a fingerprint image as information for specific collation with an individual, and a memory in advance And fingerprint information matching operation unit 3 for checking whether there is a fingerprint corresponding to the registered fingerprint by comparing the inputted fingerprint image with the matching data. Yes. Furthermore, this personal identification checking device determines whether or not the finger having the inputted fingerprint image is a live finger in order to prevent “spoofing” by an artificial finger or a finger that has been copied. A living body detecting unit 4 and a living body information calculating unit 5 are provided. The determination result of the biometric information calculation unit 5 is given to the fingerprint information collation calculation unit 3, and a comprehensive conclusion based on the fingerprint image collation result and the biometric information determination result is output from the collation result output unit 6.

生体検出部4は、図2(b)に示すように、指紋像を採取するためのプリズムのやや手前に設置された発光ダイオード等の光源と、受光用ホトダイオード等のセンサで構成されている。即ち、プリズムの面に指先の指紋面を押し当てたときに、指の第2関節の腹面が位置する場所に、光源とセンサが10〜14mmの間隔で並べられている。生体検出部4は、光源からパルス状の可視光〜遠赤外光を異なるレベルで2回出力し、被検体を通過・散乱してセンサに入射された光のレベル差を検出するものである。被検体を通過した光のレベル差は、被検体中の酸素濃度に関係しており、生体検出部4で検出されたレベル差は、生体情報演算部5に与えられ、平均値が求められて正確な酸素濃度が演算され、生体であるか否かの判定が行われるようになっている。   As shown in FIG. 2B, the living body detection unit 4 includes a light source such as a light emitting diode installed slightly in front of a prism for collecting a fingerprint image, and a sensor such as a light receiving photodiode. That is, when the fingerprint surface of the fingertip is pressed against the surface of the prism, the light source and the sensor are arranged at an interval of 10 to 14 mm where the abdominal surface of the second joint of the finger is located. The living body detection unit 4 outputs pulsed visible light to far-infrared light twice from the light source at different levels, and detects a level difference of light that has passed through and scattered from the subject and entered the sensor. . The level difference of light that has passed through the subject is related to the oxygen concentration in the subject, and the level difference detected by the living body detection unit 4 is given to the biological information calculation unit 5 to obtain an average value. An accurate oxygen concentration is calculated, and it is determined whether or not it is a living body.

特開平7−308308号公報JP 7-308308 A

しかしながら、前記個人特定照合装置では、指紋像の照合と生体情報の判定を独立した構成で行うようにしているので、装置が大型化・複雑化すると共に、“なりすまし”を完全に防止することが困難であった。   However, in the personal identification collation apparatus, the fingerprint image collation and the biometric information determination are performed independently, so that the apparatus becomes large and complicated, and “spoofing” can be completely prevented. It was difficult.

本発明は、生体認証を付加した誤判断のおそれが少ない指紋認証方法と指紋認証装置を提供することを目的としている。   An object of the present invention is to provide a fingerprint authentication method and a fingerprint authentication apparatus that are less likely to be erroneously determined by adding biometric authentication.

本発明の指紋認証方法は、白色光を認証対象の指先の表皮に照射し、該表皮からの散乱光の分布に基づいて指紋を抽出する指紋抽出処理と、波長の短い可視光を前記指先の真皮に照射し、該真皮からの散乱光の分布に基づいて内蔵指紋を抽出する内蔵指紋抽出処理と、前記指紋抽出処理で抽出した指紋を、前記内蔵指紋抽出処理で抽出した内蔵指紋で補完して指紋情報を生成する指紋情報生成処理と、近赤外光を前記指先の静脈に照射し、該静脈中の血液で散乱されて出力される光のスペクトル分布に基づいて生体反応の有無を判定する生体検出処理と、前記生体検出処理で生体反応が有ると判定されたときに、前記生成された指紋情報を予め登録された指紋情報と照合して一致するか否かを判定し、該生体検出処理で生体反応が無いと判定されたときには、該生成された指紋情報を記憶する指紋照合処理とを行うことを特徴としている。   The fingerprint authentication method of the present invention irradiates the skin of the fingertip to be authenticated with white light, extracts the fingerprint based on the distribution of scattered light from the skin, and applies visible light having a short wavelength to the fingertip. A built-in fingerprint extraction process that irradiates the dermis and extracts a built-in fingerprint based on the distribution of scattered light from the dermis, and the fingerprint extracted by the fingerprint extraction process is complemented with the built-in fingerprint extracted by the built-in fingerprint extraction process. Fingerprint information generation processing for generating fingerprint information and irradiating the fingertip vein with the near-infrared light and determining the presence or absence of a biological reaction based on the spectral distribution of the light scattered and output by the blood in the vein And determining whether or not the generated fingerprint information matches with the pre-registered fingerprint information when it is determined that there is a biological reaction in the biological detection process and the biological detection process. Determined that there is no biological reaction in the detection process When being is characterized in that performing the fingerprint verification process for storing fingerprint information said generated.

本発明では、表皮からの散乱光に基づいて指紋を抽出する指紋抽出処理と、真皮からの散乱光に基づいて内蔵指紋を抽出する内蔵指紋抽出処理と、静脈中の血液で散乱された光のスペクトル分布に基づいて生体反応の有無を判定する生体検出処理を行い、生体反応が検出されたときには、抽出した指紋を内蔵指紋で補完して生成した指紋情報を予め登録された指紋情報と照合して指紋認証を行うようにしている。これにより、生体認証を付加した誤判断のおそれが少ない指紋認証が可能になるという効果がある。また、生体反応が無いと判定されたときには、生成された指紋情報を記憶するようにしているので、偽造された指紋の持ち主を割り出すために利用することができるという効果がある。   In the present invention, fingerprint extraction processing for extracting a fingerprint based on scattered light from the epidermis, built-in fingerprint extraction processing for extracting a built-in fingerprint based on scattered light from the dermis, and light scattered by blood in the veins Biological detection processing is performed to determine the presence or absence of a biological reaction based on the spectrum distribution. When a biological reaction is detected, fingerprint information generated by complementing the extracted fingerprint with a built-in fingerprint is compared with previously registered fingerprint information. Fingerprint authentication. Thereby, there is an effect that fingerprint authentication with less risk of erroneous determination with biometric authentication added becomes possible. Further, when it is determined that there is no biological reaction, since the generated fingerprint information is stored, there is an effect that it can be used to determine the owner of a forged fingerprint.

この発明の前記並びにその他の目的と新規な特徴は、次の好ましい実施例の説明を添付図面と照らし合わせて読むと、より完全に明らかになるであろう。但し、図面は、もっぱら解説のためのものであって、この発明の範囲を限定するものではない。   The above and other objects and novel features of the present invention will become more fully apparent when the following description of the preferred embodiment is read in conjunction with the accompanying drawings. However, the drawings are for explanation only, and do not limit the scope of the present invention.

図1は、本発明の実施例1を示す指紋認証装置の構成図である。
この指紋認証装置は、指紋認証機能に生体認証機能を付加したもので、装置基板10上に形成された光源11、フィルタ12、センサ13、処理部14及び記憶部15を有している。光源11は、認証対象の指20に照射する白色光を発生するもので、例えば、波長が400〜760nmの広帯域スペクトルを有する白色発光ダイオード等が用いられている。
FIG. 1 is a configuration diagram of a fingerprint authentication device showing Embodiment 1 of the present invention.
This fingerprint authentication device is obtained by adding a biometric authentication function to the fingerprint authentication function, and includes a light source 11, a filter 12, a sensor 13, a processing unit 14, and a storage unit 15 formed on the device substrate 10. The light source 11 generates white light that irradiates the finger 20 to be authenticated. For example, a white light-emitting diode having a broadband spectrum with a wavelength of 400 to 760 nm is used.

フィルタ12は、光源11で発生した白色光から波長を選別して指20の表皮21、真皮22及び静脈23に照射するものである。このフィルタ12では、指紋が形成された指先の表皮21に照射するための白色光と、内蔵指紋が形成された指先の真皮22に照射するための波長の短い可視光(例えば、波長400nm程度の紫色の光)と、指内部の静脈23に照射するための波長760nm程度の近赤外光を選別して出力するようになっている。なお、内蔵指紋は、表皮21の指紋と同じ形状であるが、表皮の内側に形成されているため、表皮の指紋ほど明瞭に読み取ることができず、単独で指紋認証に用いることは困難である。従って、表皮に怪我や磨耗等がある場合に、指紋の欠損部分を補完するために用いられる。   The filter 12 selects a wavelength from white light generated by the light source 11 and irradiates the epidermis 21, dermis 22 and vein 23 of the finger 20. In this filter 12, white light for irradiating the skin 21 of the fingertip on which the fingerprint is formed and visible light having a short wavelength for irradiating the dermis 22 of the fingertip on which the built-in fingerprint is formed (for example, a wavelength of about 400 nm). Purple light) and near-infrared light having a wavelength of about 760 nm for irradiating the vein 23 inside the finger are selected and output. The built-in fingerprint has the same shape as the fingerprint of the epidermis 21 but is formed on the inner side of the epidermis. Therefore, it cannot be read as clearly as the fingerprint of the epidermis and is difficult to use alone for fingerprint authentication. . Therefore, when the epidermis is injured, worn, or the like, it is used to complement the missing portion of the fingerprint.

センサ13は、表皮21で散乱された白色光を受光して指紋を抽出すると共に、真皮22で散乱された波長の短い可視光を受光して内蔵指紋を抽出するものである。更に、センサ13は、静脈23中の血液で散乱された近赤外光のスペクトル分布を検出するようになっている。   The sensor 13 receives white light scattered by the epidermis 21 and extracts a fingerprint, and receives visible light having a short wavelength scattered by the dermis 22 and extracts a built-in fingerprint. Further, the sensor 13 detects the spectral distribution of near-infrared light scattered by the blood in the vein 23.

処理部14は、センサ13で抽出された表皮21の指紋と真皮22の内蔵指紋を、予め登録された指紋と照合して指紋認証を行うと共に、このセンサ13で検出された近赤外光のスペクトル分布に基づいて生体認証を行うものである。また、処理部14は、生体認証ができなかった場合に、抽出した指紋情報を記憶部15に保存する機能を有している。   The processing unit 14 performs fingerprint authentication by comparing the fingerprint of the epidermis 21 and the built-in fingerprint of the dermis 22 extracted by the sensor 13 with a pre-registered fingerprint, and the near-infrared light detected by the sensor 13 Biometric authentication is performed based on the spectrum distribution. Further, the processing unit 14 has a function of storing the extracted fingerprint information in the storage unit 15 when biometric authentication is not possible.

次に動作を説明する。
光源11で発生された白色光は、フィルタ12の素通し部を通して認証対象の指20の指先の表皮21に照射される。表皮21に当たった光は、凸部で反射され凹部で分散されて、その散乱光がセンサ13に入射される。センサ13では、入射された光の分布に基づいて表皮21の指紋が抽出される。
Next, the operation will be described.
The white light generated by the light source 11 is applied to the skin 21 of the fingertip of the finger 20 to be authenticated through the filter 12. The light hitting the skin 21 is reflected by the convex part and dispersed by the concave part, and the scattered light is incident on the sensor 13. The sensor 13 extracts a fingerprint of the epidermis 21 based on the distribution of incident light.

また、光源11で発生された白色光から、フィルタ12で波長400nm程度の光が選別されて認証対象の指20の表皮21を通過して真皮22に照射される。真皮22に当たった光は、凸部で反射され凹部で分散されて、その散乱光がセンサ13に入射される。センサ13では、入射された光の分布に基づいて真皮22の内蔵指紋が抽出される。   Also, light having a wavelength of about 400 nm is selected from the white light generated by the light source 11 by the filter 12 and passes through the epidermis 21 of the finger 20 to be authenticated and is applied to the dermis 22. The light hitting the dermis 22 is reflected by the convex part and dispersed by the concave part, and the scattered light is incident on the sensor 13. The sensor 13 extracts a built-in fingerprint of the dermis 22 based on the distribution of incident light.

更に、光源11で発生された白色光から、フィルタ12で近赤外光が選別されて認証対象の指20の内部の静脈23に照射される。静脈23に当たった近赤外光は、この静脈内の血液で散乱され、その散乱光がセンサ13に入射される。センサ13では、入射された近赤外光のスペクトル分布に基づいて、血液中の酸化ヘモグロビンと還元ヘモグロビンの割合が検出される。   Further, near-infrared light is selected from the white light generated by the light source 11 by the filter 12 and irradiated to the vein 23 inside the finger 20 to be authenticated. Near infrared light hitting the vein 23 is scattered by the blood in the vein, and the scattered light is incident on the sensor 13. The sensor 13 detects the ratio of oxyhemoglobin and deoxyhemoglobin in the blood based on the spectral distribution of the incident near-infrared light.

処理部14では、センサ13で抽出された表皮21の指紋を主として用い、これをセンサ13で抽出された真皮22の内蔵指紋で補完することにより、指紋情報が生成される。そして、この生成された指紋情報が予め登録された人の指紋情報と照合され、本人であるか否かを判定する指紋認定が行われる。更に、処理部14では、センサ13で検出された酸化ヘモグロビンと還元ヘモグロビンの割合に基づいて、生体認証が行われる。生体認証の結果、生体ではないと判定されると、抽出された指紋情報が記憶部15に保存される。   The processing unit 14 mainly uses the fingerprint of the epidermis 21 extracted by the sensor 13 and complements it with the built-in fingerprint of the dermis 22 extracted by the sensor 13 to generate fingerprint information. The generated fingerprint information is collated with the fingerprint information of a person registered in advance, and fingerprint authentication is performed to determine whether or not the person is the person. Further, the processing unit 14 performs biometric authentication based on the ratio of oxygenated hemoglobin and reduced hemoglobin detected by the sensor 13. As a result of biometric authentication, if it is determined that the subject is not a biometric, the extracted fingerprint information is stored in the storage unit 15.

以上のように、この実施例1の指紋認証装置は、次のような利点がある。
(1) 白色光を表皮21に照射して抽出した指紋と、波長の短い可視光(波長400nm程度の光)を真皮22に照射して抽出した内蔵指紋を用いて指紋認証を行うようにしているので、怪我等で表皮の指紋認証が困難な場合でも、本人の確認が可能である。
(2) 表皮21の指紋と内蔵指紋を用いているので、偽造した指紋を指先に貼り付けた場合でも、見破ることができる。
(3) 近赤外光を静脈23に照射して血液中の酸化ヘモグロビンの割合によって生体認証を行っているので、指紋をコピーした人工指や切断された指等による“なりすまし”を防止することができる。
(4) 生体認証されない場合に、抽出された指紋情報を記憶部15に保存しているので、偽造された指紋の持ち主を割り出すために利用することができる。
(5) 光源11、フィルタ12、センサ13、処理部14及び記憶部15を、装置基板10上で認証対象の指20の下側の一箇所に集中して形成しているので、装置のサイズが小型化され、省スペースを実現することができる。
As described above, the fingerprint authentication device according to the first embodiment has the following advantages.
(1) Fingerprint authentication is performed using a fingerprint extracted by irradiating the skin 21 with white light and a built-in fingerprint extracted by irradiating the dermis 22 with visible light having a short wavelength (light having a wavelength of about 400 nm). Therefore, even if it is difficult to perform fingerprint authentication of the epidermis due to injury or the like, the identity of the person can be confirmed.
(2) Since the fingerprint of the skin 21 and the built-in fingerprint are used, even when a forged fingerprint is attached to the fingertip, it can be seen through.
(3) Since the biometric authentication is performed by irradiating the vein 23 with near-infrared light and the ratio of oxyhemoglobin in the blood, it is possible to prevent “spoofing” by an artificial finger copied from the fingerprint or a cut finger. Can do.
(4) Since the extracted fingerprint information is stored in the storage unit 15 when biometric authentication is not performed, it can be used to determine the owner of a forged fingerprint.
(5) Since the light source 11, the filter 12, the sensor 13, the processing unit 14, and the storage unit 15 are formed on the device substrate 10 in a concentrated manner at one location below the finger 20 to be authenticated, the size of the device Can be reduced in size and space can be saved.

図3は、本発明の実施例2を示す指紋認証装置の構成図であり、図1中の要素と共通の要素には共通の符号が付されている。   FIG. 3 is a configuration diagram of a fingerprint authentication device showing Embodiment 2 of the present invention, and elements common to those in FIG. 1 are denoted by common reference numerals.

この実施例2では、光源11からフィルタ12を通過して指20の表皮21、真皮22及び静脈23に照射される光の経路が異なる他は、図1と同様の構成となっている。   The second embodiment has the same configuration as that of FIG. 1 except that the path of light irradiated from the light source 11 through the filter 12 to the epidermis 21, dermis 22 and vein 23 of the finger 20 is different.

この指紋認証装置では、光源11で発生された白色光は、フィルタ12の素通し部を通して認証対象の指20の腹側から爪24の内側に照射され、この爪24で反射されて指先の表皮21を透過した光がセンサ13に入射される。センサ13では、入射された光の分布に基づいて表皮21の指紋が抽出される。   In this fingerprint authentication device, the white light generated by the light source 11 is irradiated from the ventral side of the finger 20 to be authenticated to the inside of the nail 24 through the filter 12, reflected by the nail 24 and reflected by the epidermis 21 of the fingertip. Is transmitted to the sensor 13. The sensor 13 extracts a fingerprint of the epidermis 21 based on the distribution of incident light.

また、光源11で発生された白色光から、フィルタ12で波長400nm程度の光が選別されて認証対象の指20の爪24の内側に照射され、この爪24で反射されて指先の真皮22を透過した光がセンサ13に入射される。センサ13では、入射された光の分布に基づいて真皮22の内蔵指紋が抽出される。   Further, light having a wavelength of about 400 nm is selected from the white light generated by the light source 11 by the filter 12 and irradiated to the inner side of the nail 24 of the finger 20 to be authenticated, and is reflected by the nail 24 so that the dermis 22 of the fingertip is reflected. The transmitted light is incident on the sensor 13. The sensor 13 extracts a built-in fingerprint of the dermis 22 based on the distribution of incident light.

更に、光源11で発生された白色光から、フィルタ12で近赤外光が選別されて認証対象の指20の爪24の内側に照射され、この爪24で反射されて静脈23内の血液で散乱された光がセンサ13に入射される。センサ13では、入射された近赤外光のスペクトル分布に基づいて、血液中の酸化ヘモグロビンと還元ヘモグロビンの割合が検出される。その他の動作は実施例1と同様であり、同様の利点がある。   Further, near-infrared light is selected from the white light generated by the light source 11 by the filter 12 and irradiated to the inside of the nail 24 of the finger 20 to be authenticated, reflected by the nail 24 and blood in the vein 23. The scattered light is incident on the sensor 13. The sensor 13 detects the ratio of oxyhemoglobin and deoxyhemoglobin in the blood based on the spectral distribution of the incident near-infrared light. Other operations are the same as those of the first embodiment and have the same advantages.

本発明の実施例1を示す指紋認証装置の構成図である。It is a block diagram of the fingerprint authentication apparatus which shows Example 1 of this invention. 従来の個人特定照合装置の構成図である。It is a block diagram of the conventional individual specific collation apparatus. 本発明の実施例2を示す指紋認証装置の構成図である。It is a block diagram of the fingerprint authentication apparatus which shows Example 2 of this invention.

符号の説明Explanation of symbols

10 装置基板
11 光源
12 フィルタ
13 センサ
14 処理部
15 記憶部
DESCRIPTION OF SYMBOLS 10 Device board | substrate 11 Light source 12 Filter 13 Sensor 14 Processing part 15 Memory | storage part

Claims (4)

白色光を認証対象の指先の表皮に照射し、該表皮からの散乱光の分布に基づいて指紋を抽出する指紋抽出処理と、
波長の短い可視光を前記指先の真皮に照射し、該真皮からの散乱光の分布に基づいて内蔵指紋を抽出する内蔵指紋抽出処理と、
前記指紋抽出処理で抽出した指紋を、前記内蔵指紋抽出処理で抽出した内蔵指紋で補完して指紋情報を生成する指紋情報生成処理と、
近赤外光を前記指先の静脈に照射し、該静脈中の血液で散乱されて出力される光のスペクトル分布に基づいて生体反応の有無を判定する生体検出処理と、
前記生体検出処理で生体反応が有ると判定されたときに、前記生成された指紋情報を予め登録された指紋情報と照合して一致するか否かを判定し、該生体検出処理で生体反応が無いと判定されたときには、該生成された指紋情報を記憶する指紋照合処理とを、
行うことを特徴とする指紋認証方法。
A fingerprint extraction process that irradiates the skin of the fingertip of the authentication target with white light and extracts a fingerprint based on the distribution of scattered light from the skin,
A built-in fingerprint extraction process that irradiates the dermis of the fingertip with a short wavelength of visible light and extracts a built-in fingerprint based on the distribution of scattered light from the dermis;
Fingerprint information generation processing for generating fingerprint information by complementing the fingerprint extracted by the fingerprint extraction processing with the internal fingerprint extracted by the internal fingerprint extraction processing;
A living body detection process for irradiating the fingertip vein with near infrared light, and determining the presence or absence of a biological reaction based on the spectral distribution of the light scattered and output by the blood in the vein;
When it is determined in the biological detection process that there is a biological reaction, the generated fingerprint information is compared with fingerprint information registered in advance to determine whether or not they match, and the biological reaction is detected in the biological detection process. When it is determined that there is no fingerprint collation processing for storing the generated fingerprint information,
A fingerprint authentication method characterized by performing.
白色光を認証対象の指の腹側から爪に照射し、該爪で反射されて指先の表皮を透過した光の分布に基づいて指紋を抽出する指紋抽出処理と、
波長の短い可視光を前記指の腹側から爪に照射し、該爪で反射されて指先の真皮を透過した光の分布に基づいて内蔵指紋を抽出する内蔵指紋抽出処理と、
前記指紋抽出処理で抽出した指紋を、前記内蔵指紋抽出処理で抽出した内蔵指紋で補完して指紋情報を生成する指紋情報生成処理と、
近赤外光を前記指の腹側から爪に照射し、該爪で反射されて静脈中の血液を透過した光のスペクトル分布に基づいて生体反応の有無を判定する生体検出処理と、
前記生体検出処理で生体反応が有ると判定されたときに、前記生成された指紋情報を予め登録された指紋情報と照合して一致するか否かを判定し、該生体検出処理で生体反応が無いと判定されたときには、該生成された指紋情報を記憶する指紋照合処理とを、
行うことを特徴とする指紋認証方法。
A fingerprint extraction process for irradiating the nail from the ventral side of the finger to be authenticated with white light and extracting the fingerprint based on the distribution of light reflected by the nail and transmitted through the epidermis of the fingertip;
A built-in fingerprint extraction process that irradiates the nail with visible light having a short wavelength from the ventral side of the finger and extracts a built-in fingerprint based on the distribution of light reflected by the nail and transmitted through the dermis of the fingertip;
Fingerprint information generation processing for generating fingerprint information by complementing the fingerprint extracted by the fingerprint extraction processing with the internal fingerprint extracted by the internal fingerprint extraction processing;
A biological detection process for irradiating the nail with near infrared light from the ventral side of the finger and determining the presence or absence of a biological reaction based on the spectral distribution of the light reflected by the nail and transmitted through the blood in the vein;
When it is determined in the biological detection process that there is a biological reaction, the generated fingerprint information is compared with fingerprint information registered in advance to determine whether or not they match, and the biological reaction is detected in the biological detection process. When it is determined that there is no fingerprint collation processing for storing the generated fingerprint information,
A fingerprint authentication method characterized by performing.
可視光から近赤外光までを含む白色光を発生する光源と、
前記光源で発生された光から、白色光、波長の短い可視光及び近赤外光を選別して出力するフィルタと、
前記フィルタから出力されて認証対象の指の表皮で散乱された前記白色光の分布に基づいて指紋を抽出し、該フィルタから出力されて該認証対象の指の真皮で散乱された前記波長の短い可視光の分布に基づいて内蔵指紋を抽出し、該フィルタから出力されて該認証対象の指の静脈中の血液で散乱された前記近赤外光のスペクトル分布に基づいて生体反応の有無を検出するセンサと、
前記センサで抽出された指紋を該センサで抽出された内蔵指紋で補完して指紋情報を生成すると共に、該センサで生体反応が検出されたときには、該生成した指紋情報を予め登録された指紋情報と照合して一致するか否かを判定し、該センサで生体反応が検出されないときには、該生成した指紋情報を記憶部に記憶する処理部とを、
備えたことを特徴とする指紋認証装置。
A light source that generates white light including visible light to near-infrared light;
A filter for selecting and outputting white light, visible light having a short wavelength, and near infrared light from the light generated by the light source;
A fingerprint is extracted based on the distribution of the white light output from the filter and scattered by the epidermis of the finger to be authenticated, and the short wavelength output from the filter and scattered by the dermis of the finger to be authenticated The internal fingerprint is extracted based on the distribution of visible light, and the presence or absence of a biological reaction is detected based on the spectral distribution of the near-infrared light output from the filter and scattered by the blood in the finger vein of the authentication target A sensor to
The fingerprint extracted by the sensor is complemented with the built-in fingerprint extracted by the sensor to generate fingerprint information. When a biological reaction is detected by the sensor, the generated fingerprint information is registered in advance as fingerprint information. And a processing unit that stores the generated fingerprint information in a storage unit when a biological reaction is not detected by the sensor,
A fingerprint authentication apparatus comprising:
可視光から近赤外光までを含む白色光を発生する光源と、
前記光源で発生された光から、白色光、波長の短い可視光及び近赤外光を選別して出力するフィルタと、
前記フィルタから出力されて認証対象の指の爪で反射されて表皮を透過した前記白色光の分布に基づいて指紋を抽出し、該フィルタから出力されて該認証対象の指の爪で反射されて真皮を透過した前記波長の短い可視光の分布に基づいて内蔵指紋を抽出し、該フィルタから出力されて該認証対象の指の爪で反射されて静脈中の血液を透過した前記近赤外光のスペクトル分布に基づいて生体反応の有無を検出するセンサと、
前記センサで抽出された指紋を該センサで抽出された内蔵指紋で補完して指紋情報を生成すると共に、該センサで生体反応が検出されたときには、該生成した指紋情報を予め登録された指紋情報と照合して一致するか否かを判定し、該センサで生体反応が検出されないときには、該生成した指紋情報を記憶部に記憶する処理部とを、
備えたことを特徴とする指紋認証装置。
A light source that generates white light including visible light to near-infrared light;
A filter for selecting and outputting white light, visible light having a short wavelength, and near infrared light from the light generated by the light source;
A fingerprint is extracted based on the distribution of the white light output from the filter and reflected by the fingernail of the authentication target and transmitted through the epidermis, and output from the filter and reflected by the fingernail of the authentication target. The near-infrared light that extracts a built-in fingerprint based on the distribution of visible light having a short wavelength that has passed through the dermis, is output from the filter, is reflected by the fingernail of the authentication target, and passes through blood in the vein A sensor for detecting the presence or absence of a biological reaction based on the spectral distribution of
The fingerprint extracted by the sensor is complemented with the built-in fingerprint extracted by the sensor to generate fingerprint information. When a biological reaction is detected by the sensor, the generated fingerprint information is registered in advance as fingerprint information. And a processing unit that stores the generated fingerprint information in a storage unit when a biological reaction is not detected by the sensor,
A fingerprint authentication apparatus comprising:
JP2006180981A 2006-06-30 2006-06-30 Fingerprint authentication method and device Pending JP2008006146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006180981A JP2008006146A (en) 2006-06-30 2006-06-30 Fingerprint authentication method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006180981A JP2008006146A (en) 2006-06-30 2006-06-30 Fingerprint authentication method and device

Publications (1)

Publication Number Publication Date
JP2008006146A true JP2008006146A (en) 2008-01-17

Family

ID=39064877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006180981A Pending JP2008006146A (en) 2006-06-30 2006-06-30 Fingerprint authentication method and device

Country Status (1)

Country Link
JP (1) JP2008006146A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100995668B1 (en) 2008-07-15 2010-11-19 동국대학교 산학협력단 Apparatus of capturing bio-metrics information by using hot-mirror
WO2011058837A1 (en) * 2009-11-10 2011-05-19 日本電気株式会社 Fake-finger determination device, fake-finger determination method and fake-finger determination program
WO2011152213A1 (en) * 2010-06-04 2011-12-08 日本電気株式会社 Fingerprint authentication system, fingerprint authentication method, and fingerprint authentication program
KR101147137B1 (en) * 2010-07-09 2012-05-25 주식회사 디젠트 Apparatus for extracting fingerprint and finger-vein information
CN109564627A (en) * 2018-10-30 2019-04-02 深圳市汇顶科技股份有限公司 Have optical finger print device and hand-held device under the screen of the anti-fake sensing function of optical finger print
TWI672779B (en) * 2016-12-28 2019-09-21 曦威科技股份有限公司 Fingerprint identification device, mobile device using the same and method for manufacturing fingerprint identification device
WO2021199769A1 (en) * 2020-03-30 2021-10-07 ソニーセミコンダクタソリューションズ株式会社 Electronic instrument
WO2021199768A1 (en) * 2020-03-30 2021-10-07 ソニーセミコンダクタソリューションズ株式会社 Electronic device
EP4270297A4 (en) * 2020-12-22 2024-04-17 Sony Group Corp Information processing device, method, and program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001167053A (en) * 1999-12-08 2001-06-22 Nec Corp User authentication device using biometrics and user authentication method used for the same
JP2003331270A (en) * 2002-05-09 2003-11-21 Sony Corp Bio-pattern detecting means, bio-pattern detecting device, biometrics method and biometrics device
WO2004068394A1 (en) * 2003-01-21 2004-08-12 Atmel Grenoble S.A. Person recognition method and device
WO2004090786A2 (en) * 2003-04-04 2004-10-21 Lumidigm, Inc. Multispectral biometric sensor
JP2005046234A (en) * 2003-07-31 2005-02-24 Hitachi Ltd Living body detecting method
JP2006158952A (en) * 2004-11-15 2006-06-22 Nec Corp Biological feature input device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001167053A (en) * 1999-12-08 2001-06-22 Nec Corp User authentication device using biometrics and user authentication method used for the same
JP2003331270A (en) * 2002-05-09 2003-11-21 Sony Corp Bio-pattern detecting means, bio-pattern detecting device, biometrics method and biometrics device
WO2004068394A1 (en) * 2003-01-21 2004-08-12 Atmel Grenoble S.A. Person recognition method and device
WO2004090786A2 (en) * 2003-04-04 2004-10-21 Lumidigm, Inc. Multispectral biometric sensor
JP2005046234A (en) * 2003-07-31 2005-02-24 Hitachi Ltd Living body detecting method
JP2006158952A (en) * 2004-11-15 2006-06-22 Nec Corp Biological feature input device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100995668B1 (en) 2008-07-15 2010-11-19 동국대학교 산학협력단 Apparatus of capturing bio-metrics information by using hot-mirror
WO2011058837A1 (en) * 2009-11-10 2011-05-19 日本電気株式会社 Fake-finger determination device, fake-finger determination method and fake-finger determination program
US8855381B2 (en) 2009-11-10 2014-10-07 Nec Corporation Fake-finger determination device, fake-finger determination method and fake-finger determination program
JP5709016B2 (en) * 2009-11-10 2015-04-30 日本電気株式会社 Fake finger determination device, fake finger determination method, and fake finger determination program
JP5850341B2 (en) * 2010-06-04 2016-02-03 日本電気株式会社 Fingerprint authentication system, fingerprint authentication method, and fingerprint authentication program
WO2011152213A1 (en) * 2010-06-04 2011-12-08 日本電気株式会社 Fingerprint authentication system, fingerprint authentication method, and fingerprint authentication program
US8942439B2 (en) 2010-06-04 2015-01-27 Nec Corporation Fingerprint authentication system, fingerprint authentication method, and fingerprint authentication program
KR101147137B1 (en) * 2010-07-09 2012-05-25 주식회사 디젠트 Apparatus for extracting fingerprint and finger-vein information
TWI672779B (en) * 2016-12-28 2019-09-21 曦威科技股份有限公司 Fingerprint identification device, mobile device using the same and method for manufacturing fingerprint identification device
CN109564627A (en) * 2018-10-30 2019-04-02 深圳市汇顶科技股份有限公司 Have optical finger print device and hand-held device under the screen of the anti-fake sensing function of optical finger print
CN109564627B (en) * 2018-10-30 2023-09-05 深圳市汇顶科技股份有限公司 Under-screen optical fingerprint device with optical fingerprint anti-counterfeiting sensing function and handheld device
WO2021199769A1 (en) * 2020-03-30 2021-10-07 ソニーセミコンダクタソリューションズ株式会社 Electronic instrument
WO2021199768A1 (en) * 2020-03-30 2021-10-07 ソニーセミコンダクタソリューションズ株式会社 Electronic device
US11948397B2 (en) 2020-03-30 2024-04-02 Sony Semiconductor Solutions Corporation Electronic device
EP4270297A4 (en) * 2020-12-22 2024-04-17 Sony Group Corp Information processing device, method, and program

Similar Documents

Publication Publication Date Title
JP2008006146A (en) Fingerprint authentication method and device
JP4740251B2 (en) Method and apparatus for identification based on biometrics
Reddy et al. A new antispoofing approach for biometric devices
JP6134662B2 (en) Biometric authentication device and biometric authentication method
US8766189B2 (en) Optical system, method and computer program for detecting the presence of a living biological organism
JP5055210B2 (en) Finger vein authentication device
JPH09510636A (en) Biometric personal identification system
JP5951817B1 (en) Finger vein authentication system
TW200939134A (en) Imaging apparatus and method for authentication of user
US9898646B2 (en) Method of validation intended to validate that an element is covered by a true skin
KR101054314B1 (en) Counterfeit fingerprint detection device and method
JP2008067727A (en) Personal authentication device
WO2013146760A1 (en) Authentication device, prism body for use in authentication, and authentication method
KR20170116530A (en) Apparatus and Method for Recognizing Fake Fingerprint Using Wave Length of Light
JP2003303178A (en) Individual identifying system
JP5923524B2 (en) Biometric authentication device, blood vessel imaging device, and method
JP2008009821A (en) Fingerprint authentication method and device thereof
WO2006049396A1 (en) Method and apparatus for distinguishing forged fingerprint using laser beam
Hoshyar et al. Review on finger vein authentication system by applying neural network
JP7458643B2 (en) Terminal device for blood flow authentication device and entrance/exit control device using the same
JP5618414B2 (en) Finger vein authentication system
JP6984895B2 (en) Blood flow authentication device
KR20170142029A (en) A Vessels Pattern Recognition Based Biometrics Machine using Laser Speckle Imaging and Methods Thereof
JP5944712B2 (en) Vein authentication system, vein authentication apparatus and vein authentication method
KR101584730B1 (en) Finger vein authentication system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080813

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20081210

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110705