JP2008004678A - Method and device for inspecting ferroelectric material - Google Patents

Method and device for inspecting ferroelectric material Download PDF

Info

Publication number
JP2008004678A
JP2008004678A JP2006171316A JP2006171316A JP2008004678A JP 2008004678 A JP2008004678 A JP 2008004678A JP 2006171316 A JP2006171316 A JP 2006171316A JP 2006171316 A JP2006171316 A JP 2006171316A JP 2008004678 A JP2008004678 A JP 2008004678A
Authority
JP
Japan
Prior art keywords
polarization
ferroelectric
voltage
pyroelectric current
absolute value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006171316A
Other languages
Japanese (ja)
Other versions
JP5116261B2 (en
Inventor
Hiroshi Saito
宏 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2006171316A priority Critical patent/JP5116261B2/en
Publication of JP2008004678A publication Critical patent/JP2008004678A/en
Application granted granted Critical
Publication of JP5116261B2 publication Critical patent/JP5116261B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for easily and precisely inspecting polarization characteristic distribution and a failure of a ferroelectric material in a wafer size. <P>SOLUTION: In the method of inspecting a ferroelectric substance, polarization reversal occurs by first polarization reversal voltage and second polarization reversal voltage whose pole is different from first polarization reversal voltage. The method includes: a first step of applying voltage which has the same pole as first polarization reversal voltage and whose absolute value is not less than that of first polarization reversal voltage to the ferroelectric substance, and polarizing the ferroelectric substance; a second step of applying voltage between voltage which has the same pole as first polarization reversal voltage and is smaller than the absolute value of first polarization reversal voltage, and voltage which has the same pole as second polarization reversal voltage and is smaller than the absolute value of second polarization reversal voltage to the ferroelectric substance; and a third step of applying voltage which has the same pole as second polarization reversal voltage, and whose absolute value is not less than that of second polarization reversal voltage to the ferroelectric substance. A polarization measuring step of heating the ferroelectric substance and measuring the polarization characteristic by pyroelectricity of the ferroelectric substance is performed after the first to third steps. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、強誘電体材料の分極電圧分布及び欠陥の検査方法及びその検査装置に関する。   The present invention relates to a method for inspecting a polarization voltage distribution and a defect of a ferroelectric material, and an inspection apparatus therefor.

従来の強誘電体材料を用いたデバイスとして圧電素子を用いたソーデバイスがあった。近年では、圧電素子を用いたアクチュエータや強誘電体を用いた半導体記憶装置(半導体強誘電性メモリ素子)が開発されている。強誘電体材料を用いる半導体記憶装置の場合、製造品質管理では、デバイスの特性を一定にするため、強誘電体材料の分極特性の面内の分布をウェハサイズで管理することが重要である。そこで、強誘電体材料の分極特性の面分布をデバイス製造工程で、簡便で正確に測定し、検査する必要がある。   There has been a saw device using a piezoelectric element as a conventional device using a ferroelectric material. In recent years, actuators using piezoelectric elements and semiconductor memory devices (semiconductor ferroelectric memory elements) using ferroelectrics have been developed. In the case of a semiconductor memory device using a ferroelectric material, in manufacturing quality control, it is important to manage the in-plane distribution of the polarization characteristics of the ferroelectric material by the wafer size in order to keep the device characteristics constant. Therefore, it is necessary to measure and inspect the surface distribution of the polarization characteristics of the ferroelectric material simply and accurately in the device manufacturing process.

従来、強誘電体材料の分極特性の面分布測定には、20μm角程度の微小領域の分極状態を正確に検査する走査型非線形誘電率顕微法があった。一方、半導体記憶装置に強誘電体材料を用いる場合、基板サイズが直径5あるいは6インチといった大面積での分極特性の面内分布を簡便に検査する必要があるが、大面積での分極特性の面内分布を測定する方法がなかった。このため、分極は電界に依存し、電界は強誘電体材料の膜厚に依存するため、膜厚のバラつきは分極特性のバラつきにつながるという性質を利用し、X線を用いて強誘電体材料の膜厚の面分布を検査することで代用していた。   Conventionally, there has been a scanning nonlinear permittivity microscopic method for accurately inspecting the polarization state of a minute region of about 20 μm square for measuring the surface distribution of the polarization characteristics of a ferroelectric material. On the other hand, when a ferroelectric material is used for a semiconductor memory device, it is necessary to simply inspect the in-plane distribution of polarization characteristics in a large area such as a substrate size of 5 or 6 inches in diameter. There was no way to measure the in-plane distribution. For this reason, the polarization depends on the electric field, and the electric field depends on the film thickness of the ferroelectric material. Therefore, using the property that the variation in film thickness leads to the variation in polarization characteristics, the ferroelectric material can be obtained using X-rays. It was substituted by inspecting the surface distribution of the film thickness.

強誘電体材料の分極特性の面分布を検査する方法として、走査型非線形誘電率顕微法があるが、20μm角程度の微小領域を正確に検査することはできるが、5あるいは6インチといった大面積の分極特性の面分布を検査することは非常に困難である。一方、強誘電体材料の膜厚の面分布によって分極特性の面分布を推定する方法は簡便ではあるが、性質が一定である保証がないので、正確性に問題があった。   As a method for inspecting the surface distribution of the polarization characteristics of the ferroelectric material, there is a scanning nonlinear permittivity microscopic method, which can inspect a very small area of about 20 μm square, but has a large area of 5 or 6 inches. It is very difficult to examine the surface distribution of the polarization characteristics. On the other hand, the method of estimating the surface distribution of the polarization characteristics from the surface distribution of the film thickness of the ferroelectric material is simple, but there is no guarantee that the properties are constant, so there is a problem in accuracy.

また、強誘誘電体材料をデバイスとして使用する場合、電極を強誘電体材料に電極が積層される。従来の走査型非線形誘電率顕微法及び膜厚の測定では、電極の欠陥を同時に検査することはできなかった。   Further, when a ferroelectric dielectric material is used as a device, the electrode is laminated on the ferroelectric material. In conventional scanning nonlinear permittivity microscopy and film thickness measurement, it has not been possible to inspect electrode defects simultaneously.

本発明の目的は、上記各問題点を解決し、ウェハサイズで強誘電体材料の分極特性分布と欠陥を簡便で正確に検査する方法を提供することにある。   An object of the present invention is to solve the above problems and provide a method for simply and accurately inspecting the polarization characteristic distribution and defects of a ferroelectric material at a wafer size.

上記目的を達成するために、本発明は、第1の抗電界に対応する第1の分極反転電圧と、第2の抗電界に対応し前記第1の分極反転電圧とは異極の第2の分極反転電圧と、にて分極反転が生じる強誘電体の検査方法であって、前記第1の分極反転電圧と同極かつ前記第1の分極反転電圧の絶対値以上の絶対値の電圧を前記強誘電体に印加して前記強誘電体を分極する第1の工程と、前記第1の分極反転電圧と同極かつ前記第1の分極反転電圧の絶対値より小さい電圧と、前記第2の分極反転電圧と同極かつ前記第2の分極反転電圧の絶対値より小さい電圧と、の間の電圧を前記強誘電体に印加する第2の工程と、前記第2の分極反転電圧と同極かつ前記第2の分極反転電圧の絶対値以上の絶対値の電圧を前記強誘電体に印加する第3の工程と、を有し、前記強誘電体を加熱し、前記強誘電体の焦電性による分極特性を測定する分極測定工程を、前記第1ないし第3工程の各工程の後に行うことを特徴とする。   In order to achieve the above object, the present invention provides a second polarization inversion voltage corresponding to a first coercive electric field and a second polarity corresponding to a second coercive electric field and different from the first polarization inversion voltage. And the polarization inversion voltage of the ferroelectric that causes polarization reversal at the same polarity as the first polarization reversal voltage and having an absolute value equal to or greater than the absolute value of the first polarization reversal voltage. A first step of applying the polarization to the ferroelectric to polarize the ferroelectric, a voltage having the same polarity as the first polarization inversion voltage and smaller than an absolute value of the first polarization inversion voltage, and the second A second step of applying to the ferroelectric a voltage having the same polarity as that of the polarization inversion voltage and a voltage smaller than the absolute value of the second polarization inversion voltage, and the same as the second polarization inversion voltage. A third step of applying a voltage having an absolute value equal to or greater than the absolute value of the second polarization inversion voltage to the ferroelectric; Has, heating the ferroelectric, polarization measurement step of measuring the polarization characteristics of the pyroelectric of the ferroelectric, and performing after each step of the first to third steps.

本発明によれば、大面積の強誘電体材料の分極特性の面内の分布を簡便で正確に検査することができる。   According to the present invention, the in-plane distribution of polarization characteristics of a ferroelectric material having a large area can be easily and accurately inspected.

強誘電体は、電場を与えなくても分極を示し(自発分極)、自発分極の向きは電場により反転することが可能である。電場Eの変化に対し分極に比例する電束密度(強誘電体の分極量)の値を測定すると図8のようになる。強誘電体に正の電界(正の電圧)を印加し、分極量が最大になる状態にした後、電圧を下げていく。   A ferroelectric exhibits polarization without applying an electric field (spontaneous polarization), and the direction of spontaneous polarization can be reversed by an electric field. When the value of the electric flux density (the amount of polarization of the ferroelectric material) proportional to the polarization with respect to the change of the electric field E is measured, it is as shown in FIG. A positive electric field (positive voltage) is applied to the ferroelectric material so as to maximize the amount of polarization, and then the voltage is lowered.

電圧が0Vの分極量をPrとし、その後更に電圧を下げる(負の電圧を印加する)と、第2の抗電界−Ec(第2の分極反転電圧)にて分極量が0となる。第2の抗電界−Ecを越えて更に負の電圧を印加すると分極反転が起こり、電界−Emaxで最小の分極量を示す。その後電圧を上げると、電圧0V(電界が0)にて分極量−Prを示す。更に電圧を上げる(正の電圧を印加する)と分極量が0となる第1の抗電界Ec(第1の分極反転電圧)になる。第1の抗電界Ecを越えて更に正の電圧を加えると分極反転が生じ、電界Emaxで最大の分極量となる。   When the amount of polarization when the voltage is 0 V is Pr, and then the voltage is further lowered (a negative voltage is applied), the amount of polarization becomes 0 at the second coercive electric field −Ec (second polarization inversion voltage). When a negative voltage is further applied beyond the second coercive electric field -Ec, polarization inversion occurs, and the electric field -Emax shows the minimum amount of polarization. Thereafter, when the voltage is increased, the polarization amount -Pr is shown at a voltage of 0 V (electric field is 0). When the voltage is further increased (a positive voltage is applied), the first coercive electric field Ec (first polarization inversion voltage) in which the polarization amount becomes 0 is obtained. When a positive voltage is further applied beyond the first coercive electric field Ec, polarization inversion occurs, and the electric field Emax has the maximum amount of polarization.

更に、強誘電体は、加熱され、温度が上昇すると分極の大きさに応じて、分極方向に電荷を発生する焦電性という性質を有している。本発明は、強誘電体の焦電性を利用して強誘電体の分極の面内分布を測定するものである。以下、図を用いて基板面内の分極状態分布の測定原理について説明する。   Furthermore, the ferroelectric has the property of pyroelectricity that generates charges in the polarization direction according to the magnitude of polarization when heated and the temperature rises. In the present invention, the in-plane distribution of polarization of a ferroelectric is measured using the pyroelectric property of the ferroelectric. Hereinafter, the measurement principle of the polarization state distribution in the substrate surface will be described with reference to the drawings.

[装置]
本発明で用いる検査装置について説明する。
[apparatus]
The inspection apparatus used in the present invention will be described.

検査装置の構成を、図2を用いて説明する。検査装置は、分極電圧印加装置23と、分極測定装置24と、温度制御装置25から構成される。検査される試料は、強誘電体材料20を上電極22と下電極21で挟んだ積層構造である。分極電圧印加装置23は、強誘電体材料20の上電極22と下電極21間に電圧を印加する装置である。分極測定装置22は、強誘電体材料20の分極状態を測定する装置である。温度制御装置25は、強誘電体材料20の温度を一定に制御する装置である。強誘電体材料20の温度を一定にすることで、分極状態の測定を再現性良く行うことができる。   The configuration of the inspection apparatus will be described with reference to FIG. The inspection device includes a polarization voltage application device 23, a polarization measurement device 24, and a temperature control device 25. The sample to be inspected has a laminated structure in which the ferroelectric material 20 is sandwiched between the upper electrode 22 and the lower electrode 21. The polarization voltage application device 23 is a device that applies a voltage between the upper electrode 22 and the lower electrode 21 of the ferroelectric material 20. The polarization measuring device 22 is a device that measures the polarization state of the ferroelectric material 20. The temperature control device 25 is a device that controls the temperature of the ferroelectric material 20 to be constant. By making the temperature of the ferroelectric material 20 constant, the polarization state can be measured with good reproducibility.

本実施例では、分極測定装置24として、株式会社浜松ホトニクス製Phemos 1000を用いた。Phemos 1000においては、レーザの走査と同期して電流変化を測定するOBIRCH(Optical Beam Induced Resistance Change)解析機能を使用し、分極状態の測定を行った。Phemos 1000の構成を説明する。Phemos 1000は、レーザ走査装置と、電流アンプであるOBIRCHアンプとレーザの走査位置と電流値を同期して表示する表示装置から構成されている。   In this example, a Phemos 1000 manufactured by Hamamatsu Photonics Co., Ltd. was used as the polarization measuring device 24. In the Chemos 1000, the polarization state was measured using an OBIRCH (Optical Beam Induced Resistance Change) analysis function that measures current change in synchronization with laser scanning. The configuration of the Chemos 1000 will be described. The Chemos 1000 includes a laser scanning device, an OBIRCH amplifier that is a current amplifier, and a display device that displays a laser scanning position and a current value in synchronization.

[分極状態の測定の原理]
強誘電体は、加熱すると温度上昇と分極の大きさに応じて、分極方向に電荷を発生する焦電性という性質を有している。よって、図3に示すように、強誘電体30の分極方向36に分極している領域32を局所加熱すると、領域32に電荷Qが面33に発生する。面33と面37を電気的に接続すると、焦電電流34が流れる。一方、分極方向36に分極している領域35を局所加熱すると、電荷Qは、面37に生じ、焦電電流38が流れる。つまり、領域32と領域35は分極方向が逆なので、焦電電流も逆方向に流れる。電荷Qを、本実施例では、焦電電流として検出したが、もちろん電圧変化として検出しても良い。
[Principle of measurement of polarization state]
Ferroelectrics have the property of pyroelectricity that generates charges in the polarization direction according to the temperature rise and the magnitude of polarization when heated. Therefore, as shown in FIG. 3, when the region 32 polarized in the polarization direction 36 of the ferroelectric 30 is locally heated, a charge Q is generated on the surface 33 in the region 32. When the surface 33 and the surface 37 are electrically connected, a pyroelectric current 34 flows. On the other hand, when the region 35 polarized in the polarization direction 36 is locally heated, the charge Q is generated on the surface 37 and the pyroelectric current 38 flows. That is, since the polarization directions of the region 32 and the region 35 are opposite, the pyroelectric current also flows in the opposite direction. In this embodiment, the charge Q is detected as a pyroelectric current, but it may be detected as a voltage change.

そこで、もし、領域32と領域35の分極方向が不明な場合でも、局所加熱で生じた焦電電流34と焦電電流38の方向と大きさを測定すれば、領域32と領域35の分極状態を測定することができる。同様に局所加熱と焦電電流の測定を、ウェハの面内で順次繰り返すことで、ウェハの分極状態の面分布を測定することができる。   Therefore, even if the polarization directions of the regions 32 and 35 are unknown, the polarization states of the regions 32 and 35 can be determined by measuring the directions and magnitudes of the pyroelectric current 34 and the pyroelectric current 38 generated by local heating. Can be measured. Similarly, the surface distribution of the polarization state of the wafer can be measured by sequentially repeating local heating and pyroelectric current measurement within the wafer surface.

この原理から、分極状態の測定は、誘電体の内、強誘電体を含めた焦電体に適用できる。焦電性を示す材料は強誘電性以外にもあるが、強誘電性を示す結晶は必ず焦電性を示す。例えば、適用できる材料として、水晶、ニオブ酸リチウム、ニオブ酸カリウム、タンタル酸リチウム、ランガサイト、チタン酸バリウム、チタン酸鉛、メタニオブ酸鉛、ポリフッ化ビニリデン、酸化亜鉛、チタン酸ジルコン酸鉛(PZT)、マグネシウムニオブ酸鉛−PZT、ニッケルニオブ酸鉛−PZT、マグネシウムニオブ酸鉛−PT、ニッケルニオブ酸鉛−PT、ストロンチウム・ビスマス・タンタルの酸化物、チタン酸バリウムストロンチウム等がある。この実施例では、強誘電体であるPZTを用いた。局所加熱する部分の移動方法としては、レーザを走査する方法や、電磁誘導を用いる方法、集光させた光を走査する方法、イオンビームを走査する方法、電子線を走査する方法がある。この実施例ではPhemos 1000でレーザを走査する方法を用いた。レーザの走査は、広い領域から狭い領域まで行うことができるので、ウェハサイズのように広い領域の分極状態の測定を行うことができる。   From this principle, the measurement of the polarization state can be applied to pyroelectric materials including ferroelectrics among dielectric materials. There are other materials that exhibit pyroelectricity besides ferroelectricity, but crystals that exhibit ferroelectricity always exhibit pyroelectricity. For example, applicable materials are quartz, lithium niobate, potassium niobate, lithium tantalate, langasite, barium titanate, lead titanate, lead metaniobate, polyvinylidene fluoride, zinc oxide, lead zirconate titanate (PZT). ), Lead magnesium niobate-PZT, lead nickel niobate-PZT, lead magnesium niobate-PT, lead nickel niobate-PT, oxide of strontium / bismuth / tantalum, barium strontium titanate, and the like. In this example, PZT, which is a ferroelectric material, was used. As a method of moving the portion to be locally heated, there are a method of scanning a laser, a method of using electromagnetic induction, a method of scanning condensed light, a method of scanning an ion beam, and a method of scanning an electron beam. In this embodiment, a method of scanning a laser with a Chemos 1000 was used. Since laser scanning can be performed from a wide region to a narrow region, the polarization state of a wide region such as a wafer size can be measured.

[試料]
検査した強誘電体試料40の構造を図4に示す。面方位が100面の単結晶Si基板41上にPt(膜厚300nm)/Ti(膜厚30nm)からなる下電極42と、PZT(膜厚3μm)である強誘電体材料43と、Pt(膜厚300nm)/Ti(膜厚30nm)からなる上電極44が積層された構造である。このような積層構造は、強誘電体メモリや強誘電体圧電素子といった強誘電体デバイスに広く使用される構造である。よって、強誘電体デバイス一般の検査工程に応用可能である。上電極44と下電極42は強誘電体材料43の全面に作成されていても、パターニングされていてもよい。上電極44と下電極42に電圧を印加すると強誘電体材料43の分極方向を揃えることができる。ある電圧を印加すると強誘電体材料43の分極方向を反転させることができる。このときの電圧を分極反転電圧と呼ぶ。下電極から見て、上電極に正の分極反転電圧(第一の分極反転電圧)を印加すると分極方向45に分極し、負の分極反転電圧(第二の分極反転電圧)を印加すると分極方向46に分極する。
[sample]
The structure of the inspected ferroelectric sample 40 is shown in FIG. A lower electrode 42 made of Pt (film thickness of 300 nm) / Ti (film thickness of 30 nm), a ferroelectric material 43 of PZT (film thickness of 3 μm), and a Pt ( In this structure, the upper electrode 44 made of (film thickness 300 nm) / Ti (film thickness 30 nm) is laminated. Such a laminated structure is a structure widely used for ferroelectric devices such as ferroelectric memories and ferroelectric piezoelectric elements. Therefore, it can be applied to a general inspection process of a ferroelectric device. The upper electrode 44 and the lower electrode 42 may be formed on the entire surface of the ferroelectric material 43 or may be patterned. When a voltage is applied to the upper electrode 44 and the lower electrode 42, the polarization direction of the ferroelectric material 43 can be made uniform. When a certain voltage is applied, the polarization direction of the ferroelectric material 43 can be reversed. The voltage at this time is called a polarization inversion voltage. As viewed from the lower electrode, when a positive polarization inversion voltage (first polarization inversion voltage) is applied to the upper electrode, polarization is caused in the polarization direction 45, and when a negative polarization inversion voltage (second polarization inversion voltage) is applied, the polarization direction is applied. 46 is polarized.

[分極状態の測定方法]
図5を用いて説明する。まず、分極測定装置と強誘電体試料の接続と配置を説明する。上電極44と下電極42をOBIRCHアンプ53に接続した。上電極44方向からレーザ51が照射されるように、強誘電体試料を試料台に設置した。YLFレーザ等の赤外線レーザを用いれば、Si基板41を透過するので、下電極42方向から赤外線レーザが照射されるように設置しても良い。この場合、上電極44にレーザを照射できない試料に対して分極状態の測定を行うことができる。
[Measurement method of polarization state]
This will be described with reference to FIG. First, the connection and arrangement of the polarization measuring device and the ferroelectric sample will be described. The upper electrode 44 and the lower electrode 42 were connected to the OBIRCH amplifier 53. The ferroelectric sample was placed on the sample stage so that the laser 51 was irradiated from the upper electrode 44 direction. If an infrared laser such as a YLF laser is used, it passes through the Si substrate 41 and may be installed so that the infrared laser is irradiated from the direction of the lower electrode 42. In this case, the polarization state can be measured with respect to the sample in which the upper electrode 44 cannot be irradiated with the laser.

次に、分極測定装置の動作を説明する。レーザ走査装置で強誘電体試料に対してレーザ51を走査し、同時にOBIRCHアンプ53でレーザの局所加熱で強誘電体試料に生じる焦電電流52を測定する。次にレーザ51の走査位置54と焦電電流52の変化を同期させて画像化し、表示装置に表示する。この画像化したものを焦電電流像55と呼ぶ。焦電電流が負のものを黒に正のものを白に対応付け行うことで画像化する。本実施例においては、白黒のコントラストで画像化したが、焦電電流の値毎にカラーで画像化しても良い。他にも、レーザ光の照射位置と焦電電流値とを記憶させ、電流値の等高線を描かせる等の表示を行うこともできる。   Next, the operation of the polarization measuring device will be described. The laser 51 scans the ferroelectric sample with the laser scanning device, and simultaneously, the OBIRCH amplifier 53 measures the pyroelectric current 52 generated in the ferroelectric sample by local heating of the laser. Next, the scanning position 54 of the laser 51 and the change of the pyroelectric current 52 are imaged in synchronization and displayed on the display device. This image is called a pyroelectric current image 55. An image is formed by associating a negative pyroelectric current with black and a positive pyroelectric current with white. In this embodiment, the image is formed with black and white contrast. However, the image may be formed with color for each pyroelectric current value. In addition, it is possible to display such as storing the irradiation position of the laser beam and the pyroelectric current value and drawing a contour line of the current value.

最後に、以下の実施例で共通の分極測定装置の測定条件を説明する。レーザはYLFレーザを用いた。スポット径は約1.3μmであった。スキャン速度の値は1秒に設定した。スキャン速度は、早いほどSN比よく測定することができる。よって、分極測定装置で設定できる最速の設定にした。これは、焦電性の反応時間が非常に短いためである。例えば、2μs以下の反応時間を持っていると報告されている。焦電性の反応速度に近い速度でスキャンすることが望ましい。   Finally, the measurement conditions of a common polarization measuring device will be described in the following examples. The laser used was a YLF laser. The spot diameter was about 1.3 μm. The scan speed value was set to 1 second. The higher the scan speed, the better the SN ratio. Therefore, it was set to the fastest setting that can be set by the polarization measuring device. This is because the pyroelectric reaction time is very short. For example, it has been reported to have a reaction time of 2 μs or less. It is desirable to scan at a speed close to the pyroelectric reaction speed.

レーザを照射領域全体に5回程度走査してから、焦電電流の検出を行った。これは、強誘電体試料表面の温度を均一にして、再現性良く焦電電流を測定できる効果がある。強誘電体試料の温度を温度制御装置で一定に制御しているので、再現性を高めることができる。レーザ強度は150mWにした。150mWにすることで、測定するのに十分な大きさの焦電電流を得ることができた。レーザ強度は過剰に大きくすると強誘電体にダメージを与えるので、電流アンプで測定するのに十分な焦電電流の大きさになる最小のレーザ強度にすることが望ましい。レーザスキャン中の印加電圧は0[V]にすることで、焦電電流をOBIRCHアンプで検出しやすくなり、分極状態によらずに、SN比良く焦電電流像を取得する効果がある。これは、図3の焦電電流34と焦電電流38に示すように、焦電電流は、分極状態によって、流れる方向が反転するので、どちらの焦電電流も強める電圧は存在しないためである。もちろん、分極状態が既知ならば、焦電電流が流れやすい方向に絶対値が分極反転電圧以下の電圧を印加すれば、焦電電流を強めSN比良く焦電電流像を取得することができる。また、印加電圧が0[V]であるので、強誘電体試料の分極状態に影響を与えずに焦電電流像を取得できるという効果がある。   After scanning the entire irradiation region with the laser about 5 times, pyroelectric current was detected. This has the effect that the pyroelectric current can be measured with good reproducibility by making the temperature of the ferroelectric sample surface uniform. Since the temperature of the ferroelectric sample is controlled to be constant by the temperature control device, reproducibility can be improved. The laser intensity was 150 mW. By setting the power to 150 mW, it was possible to obtain a pyroelectric current large enough for measurement. If the laser intensity is excessively increased, the ferroelectric material is damaged. Therefore, it is desirable to set the laser intensity to a minimum level at which the pyroelectric current is large enough to be measured by a current amplifier. Setting the applied voltage during laser scanning to 0 [V] makes it easy to detect the pyroelectric current with an OBIRCH amplifier, and has an effect of acquiring a pyroelectric current image with a good S / N ratio regardless of the polarization state. This is because, as indicated by the pyroelectric current 34 and the pyroelectric current 38 in FIG. 3, the direction in which the pyroelectric current flows is reversed depending on the polarization state, and thus there is no voltage that intensifies either pyroelectric current. . Of course, if the polarization state is known, if a voltage whose absolute value is equal to or less than the polarization inversion voltage is applied in a direction in which the pyroelectric current easily flows, the pyroelectric current can be increased and a pyroelectric current image can be acquired with a high SN ratio. Further, since the applied voltage is 0 [V], there is an effect that a pyroelectric current image can be acquired without affecting the polarization state of the ferroelectric sample.

上述の例においては、上部及び下部電極を有する強誘電体をレーザでピンポイントに加熱した例を示したが、例えば強誘電体を全体的に加熱し、部分的に1対の電極にて焦電電流を測定する方法にも応用可能である。   In the above example, an example in which a ferroelectric material having upper and lower electrodes is pinpointly heated with a laser is shown. However, for example, the ferroelectric material is entirely heated and partially focused by a pair of electrodes. It can also be applied to a method for measuring electric current.

以下に本発明の強誘電体の分極特性分布や、電極の剥離や、電極間のリークや、異物や、分極低下の検査の実施例を示す。分極反転電圧と同極な電圧とは、分極反転電圧が+の場合は+、−の場合は−の電圧という意味である。また、分極反転電圧と異極の電圧とは、分極反転電圧が+の場合は−、−の場合は+という意味である。   Examples of the inspection of the polarization characteristic distribution of the ferroelectric according to the present invention, peeling of electrodes, leakage between electrodes, foreign matter, and polarization lowering are shown below. The voltage having the same polarity as the polarization inversion voltage means a voltage of + when the polarization inversion voltage is +, and a voltage of-when the polarization inversion voltage is −. Further, the polarization inversion voltage and the voltage of a different polarity mean-when the polarization inversion voltage is +, and + when-.

(第1の実施形態)
本発明を用いた分極特性分布の検査について説明する。
(First embodiment)
The inspection of the polarization characteristic distribution using the present invention will be described.

分極特性分布の検査工程を図1と、図6と、図7を用いて説明する。図1は、分極分布の検査の工程フローチャートである。図6は、図1中の分極処理工程2と分極反転工程3において、分極電圧印加装置で強誘電体材料に印加した電圧の時間変化である。図7は、分極測定の結果である。測定した試料の上電極方向からの光学反射像を図7(a)に示す。   The inspection process of the polarization characteristic distribution will be described with reference to FIG. 1, FIG. 6, and FIG. FIG. 1 is a process flow chart of polarization distribution inspection. FIG. 6 shows the time change of the voltage applied to the ferroelectric material by the polarization voltage application device in the polarization treatment step 2 and the polarization inversion step 3 in FIG. FIG. 7 shows the result of polarization measurement. An optical reflection image from the upper electrode direction of the measured sample is shown in FIG.

図1のフローチャートの各ステップに従って、分極特性分布の検査工程を説明する。   The inspection process of the polarization characteristic distribution will be described according to the steps of the flowchart of FIG.

第1に、前処理工程1では、強誘電体試料の分極反転電圧を測定する。強誘電体特性測定装置を用いて図8のような強誘電体の分極量と電場の関係を取得し、分極反転電圧を測定した(ステップ5)。その結果、下電極を基準として上電極に20[V]付近で下電極方向に分極反転し、−9[V]付近で、上電極方向に分極反転することが分かった。よって、この場合、第一の分極反転電圧は20[V]であり、第二の分極反転電圧は、−9[V]である。   First, in the pretreatment step 1, the polarization inversion voltage of the ferroelectric sample is measured. The relationship between the polarization amount of the ferroelectric and the electric field as shown in FIG. 8 was obtained using a ferroelectric property measuring apparatus, and the polarization inversion voltage was measured (step 5). As a result, it was found that the polarization was inverted in the direction of the lower electrode around 20 [V] with respect to the upper electrode, and the polarization was inverted in the direction of the upper electrode near −9 [V]. Therefore, in this case, the first polarization inversion voltage is 20 [V], and the second polarization inversion voltage is −9 [V].

第2に、分極処理工程2では、強誘電体試料の分極方向を揃える。まず、図6に示すように、第一の分極反転電圧以上の電圧である25[V]を上電極に印加し、分極方向を下電極で一様になるように分極処理を行った(ステップ6)。分極処理で印加する電圧は、第一の分極反転電圧よりも絶対値が十分大きいことが望ましい。分極処理を行うことで、焦電電流が増加し、焦電電流像のSN比を向上する効果がある。その後、分極測定装置で、分極状態の測定を行った(ステップ7)。この結果、図7(b)に示すような、一様な焦電電流像を取得し、一様に分極されていることを確認した(ステップ8)。   Second, in the polarization treatment step 2, the polarization direction of the ferroelectric sample is aligned. First, as shown in FIG. 6, 25 [V], which is a voltage equal to or higher than the first polarization inversion voltage, was applied to the upper electrode, and the polarization process was performed so that the polarization direction was uniform at the lower electrode (step). 6). It is desirable that the voltage applied in the polarization process has a sufficiently larger absolute value than the first polarization inversion voltage. By performing the polarization process, the pyroelectric current increases, and there is an effect of improving the SN ratio of the pyroelectric current image. Thereafter, the polarization state was measured with a polarization measuring device (step 7). As a result, a uniform pyroelectric current image as shown in FIG. 7B was obtained, and it was confirmed that it was uniformly polarized (step 8).

第3に、分極反転工程3では、分極処理工程2で印加した電圧と逆の方向に電圧を徐々に印加し、分極反転する途中過程の分極状態を測定し、分極反転電圧のムラを検出する。まず、図6に示すように上電極に、絶対値が第二の分極反転電圧より小さい− 7.5 [V]印加して、分極反転を行った(ステップ9)。分極反転後、分極測定装置で、分極状態の測定を行ったところ、図7(c)のような焦電電流像を得た(ステップ10)。図7(c)では、焦電電流の正負が逆になる領域Aと領域Bが存在している。   Third, in the polarization reversal step 3, a voltage is gradually applied in the direction opposite to the voltage applied in the polarization treatment step 2, the polarization state during the polarization reversal is measured, and unevenness of the polarization reversal voltage is detected. . First, as shown in FIG. 6, polarization inversion was performed by applying −7.5 [V] to the upper electrode whose absolute value is smaller than the second polarization inversion voltage (step 9). After polarization reversal, the polarization state was measured with a polarization measuring device, and a pyroelectric current image as shown in FIG. 7C was obtained (step 10). In FIG.7 (c), the area | region A and the area | region B where the positive / negative of a pyroelectric current are reversed exist.

これは、領域Aと領域Bでは、分極反転電圧が異なるため、領域Aは、すでに分極反転しているのに対し、領域Bでは、まだ、分極反転していないためである。この分極反転電圧のムラが焦電電流像のムラとして現れている。   This is because the region A and the region B have different polarization inversion voltages, so that the region A has already undergone polarization inversion, while the region B has not yet undergone polarization inversion. This uneven polarization inversion voltage appears as an uneven pyroelectric current image.

焦電電流像に分極反転していない領域があるので(ステップ11)、印加電圧の絶対値を0.5[V]ステップで増加させて(ステップ12)、図6に示すように、上電極に印加し、分極処理を行った後(ステップ9)、分極状態の測定を行った(ステップ10)。第二の分極反転電圧よりも絶対値が大きい電圧である−10[V]の電圧を印加した時、分極測定装置で、分極状態を測定したところ、図7(d)に示すように一様な焦電電流像を取得した(ステップ10)。焦電電流像が一様に分極反転しているのを確認したので、分極反転工程3を終了した(ステップ11)。このように、前処理で測定した分極反転電圧より小さい電圧を順次印加し、部分的に分極反転する領域を検出することで、図7(c)の領域AとBのような部分的な分極反転電圧のムラを検出することができる。この電圧の増加分を分極反転電圧付近で、細かくすることで、より詳細な検査を行うことができる。   Since there is a region where the polarization inversion is not present in the pyroelectric current image (step 11), the absolute value of the applied voltage is increased by 0.5 [V] steps (step 12), and as shown in FIG. And the polarization state was measured (step 9), and then the polarization state was measured (step 10). When a voltage of −10 [V], which is a voltage whose absolute value is larger than the second polarization reversal voltage, is applied, the polarization state is measured with a polarization measuring device, and as shown in FIG. A pyroelectric current image was acquired (step 10). Since it was confirmed that the pyroelectric current image was uniformly reversed in polarization, the polarization inversion step 3 was completed (step 11). In this manner, by sequentially applying a voltage smaller than the polarization inversion voltage measured in the pretreatment and detecting a region where the polarization is partially inverted, partial polarization such as regions A and B in FIG. It is possible to detect inversion voltage unevenness. By making this increase in voltage fine in the vicinity of the polarization inversion voltage, a more detailed inspection can be performed.

第4に、検査工程4では、取得した焦電電流像の検査を行った。図7(c)より、領域Aの負の反転電圧は、−7.5[V]以上であることが分かる。一方、図7(d)より領域Bの負の反転電圧は、−7.5[V]よりも小さく−10[V]以上であることがわかる。よって、反転電圧が強誘電体試料内で不均一であることが分かった。   Fourth, in the inspection process 4, the acquired pyroelectric current image was inspected. FIG. 7C shows that the negative inversion voltage in the region A is −7.5 [V] or more. On the other hand, it can be seen from FIG. 7D that the negative inversion voltage in the region B is smaller than −7.5 [V] and equal to or higher than −10 [V]. Therefore, it was found that the inversion voltage is not uniform in the ferroelectric sample.

印加する電圧の正負をすべて逆にして、第1〜第4の工程を同様に行ったところ、領域Aの正の反転電圧は、領域Aの正の反転電圧は、20[V]よりも大きくて、25[V]以下で、領域Bの正の反転電圧は20[V]以下であることが分かった。以上より、領域Aと比較して領域Bでは、反転電圧が負の方向にずれていることがわかる。強誘電体膜の製作過程を調査した結果、領域Bは、X線の照射による強誘電材料の損傷によって、反転電圧が負の方向にずれたことが分かった。   When the positive and negative of the applied voltage are all reversed and the first to fourth steps are performed in the same manner, the positive inversion voltage in the region A is larger than 20 [V]. Thus, it was found that the positive inversion voltage in the region B was 25 [V] or less and 20 [V] or less. From the above, it can be seen that in the region B as compared with the region A, the inversion voltage is shifted in the negative direction. As a result of investigating the manufacturing process of the ferroelectric film, it was found that in the region B, the inversion voltage was shifted in the negative direction due to the damage of the ferroelectric material by the X-ray irradiation.

このような分極反転電圧のムラは、デバイスの特性に大きく影響する。そして、領域Aと領域Bでは、膜厚に違いは無いので、従来の膜厚を測定する方法では、このような分極特性のムラを発見することはできない。一方、本発明では、膜厚にムラがあっても、分極反転電圧がムラのある領域で変わるため、焦電電流像のムラとして従来同様、やはり検出できる。以上のように分極特性分布の欠陥を検出することができる。   Such unevenness of the polarization inversion voltage greatly affects the characteristics of the device. Since there is no difference in film thickness between the region A and the region B, such unevenness in polarization characteristics cannot be found by the conventional method of measuring the film thickness. On the other hand, in the present invention, even if the film thickness is uneven, the polarization inversion voltage changes in the uneven area, so that it can still be detected as a pyroelectric current image unevenness as in the conventional case. As described above, defects in the polarization characteristic distribution can be detected.

(第2の実施形態)
本発明は、強誘電体材料と上下電極の剥離の検査にも適用することができる。
(Second Embodiment)
The present invention can also be applied to inspection of peeling between a ferroelectric material and upper and lower electrodes.

電極の剥離の検査工程を図1を用いて説明する。第1に、前処理工程1で分極反転電圧を取得する(ステップ5)。第2に、分極処理工程2で、分極反転電圧以上の電圧を強誘電体試料に印加し、分極処理を行う(ステップ6)。この際、印加電圧は分極反転電圧より十分大きいことが望ましい。分極処理を行うことで、焦電電流が増加し、焦電電流像のSN比を向上する効果がある。分極処理後、分極状態の測定を行い、焦電電流像を取得する(ステップ7)。次に、この焦電電流像の検査を行う(ステップ8)。   The electrode peeling inspection process will be described with reference to FIG. First, the polarization inversion voltage is acquired in the preprocessing step 1 (step 5). Secondly, in the polarization process step 2, a voltage equal to or higher than the polarization inversion voltage is applied to the ferroelectric sample to perform the polarization process (step 6). At this time, it is desirable that the applied voltage is sufficiently larger than the polarization inversion voltage. By performing the polarization process, the pyroelectric current increases, and there is an effect of improving the SN ratio of the pyroelectric current image. After the polarization process, the polarization state is measured and a pyroelectric current image is acquired (step 7). Next, this pyroelectric current image is inspected (step 8).

焦電電流像の検査について、詳細を説明する。電極に剥離があると、剥離部では、上下電極の電気的な接続が不良になるので、焦電電流値が変化する。よって、焦電電流像で、焦電電流値が変化している領域を剥離部の欠陥として検出することができる。   Details of the inspection of the pyroelectric current image will be described. If the electrode is peeled off, the electrical connection between the upper and lower electrodes becomes poor at the peeled portion, so that the pyroelectric current value changes. Therefore, in the pyroelectric current image, a region where the pyroelectric current value is changed can be detected as a defect in the peeled portion.

剥離部の面積が500×500nm程度の微少面積であっても、焦電電流像であれば輝度の違いにより簡単に測定することができる。   Even if the area of the peeled portion is as small as about 500 × 500 nm, a pyroelectric current image can be easily measured due to the difference in luminance.

(第3の実施形態)
本発明は、強誘電体試料の上下電極のリークの検査にも適用することができる。
(Third embodiment)
The present invention can also be applied to inspection of leakage of upper and lower electrodes of a ferroelectric sample.

上下電極のリークの検査工程を図1を用いて説明する。第1に、前処理工程1で分極反転電圧を取得する(ステップ5)。第2に、分極処理工程2で、分極反転電圧以上の電圧を強誘電体試料に印加し、分極処理を行う(ステップ6)。この際、印加電圧は分極反転電圧より十分大きいことが望ましい。分極処理を行うことで、焦電電流が増加し、焦電電流像のSN比を向上する効果がある。分極処理後、分極状態の測定を行い、焦電電流像を取得する(ステップ7)。次に、この焦電電流像の検査を行う(ステップ8)。   An inspection process for leaks in the upper and lower electrodes will be described with reference to FIG. First, the polarization inversion voltage is acquired in the preprocessing step 1 (step 5). Secondly, in the polarization process step 2, a voltage equal to or higher than the polarization inversion voltage is applied to the ferroelectric sample to perform the polarization process (step 6). At this time, it is desirable that the applied voltage is sufficiently larger than the polarization inversion voltage. By performing the polarization process, the pyroelectric current increases, and there is an effect of improving the SN ratio of the pyroelectric current image. After the polarization process, the polarization state is measured and a pyroelectric current image is acquired (step 7). Next, this pyroelectric current image is inspected (step 8).

焦電電流像の検査について、詳細を説明する。リーク箇所では上下電極の電気的な接続がよくなるため、焦電電流値が変化する。よって、焦電電流像で、焦電電流値が変化している領域をリーク箇所の欠陥として検出することができる。リークの場合であっても上述の電極の剥がれと同様に、焦電電流像を用いれば微少な面積のリークを検出することができる。   Details of the inspection of the pyroelectric current image will be described. Since the electrical connection between the upper and lower electrodes is improved at the leak location, the pyroelectric current value changes. Therefore, in the pyroelectric current image, a region where the pyroelectric current value changes can be detected as a defect at the leak location. Even in the case of a leak, a leak of a very small area can be detected by using a pyroelectric current image in the same manner as the above-described electrode peeling.

(第4の実施形態)
本発明は、強誘電体試料内の異物の検査にも適用することができる。
(Fourth embodiment)
The present invention can also be applied to inspection of foreign matter in a ferroelectric sample.

異物の検査工程を、図1を用いて説明する。第1に、前処理工程1で分極反転電圧を取得する(ステップ5)。第2に、分極処理工程2で、分極反転電圧以上の電圧を強誘電体試料に印加し、分極処理を行う(ステップ6)。この際、印加電圧は分極反転電圧より十分大きいことが望ましい。分極処理を行うことで、焦電電流が増加し、焦電電流像のSN比を向上する効果がある。分極処理後、分極状態の測定を行い、焦電電流像を取得する(ステップ7)。次に、この焦電電流像の検査を行う(ステップ8)。   The foreign substance inspection process will be described with reference to FIG. First, the polarization inversion voltage is acquired in the preprocessing step 1 (step 5). Secondly, in the polarization process step 2, a voltage equal to or higher than the polarization inversion voltage is applied to the ferroelectric sample to perform the polarization process (step 6). At this time, it is desirable that the applied voltage is sufficiently larger than the polarization inversion voltage. By performing the polarization process, the pyroelectric current increases, and there is an effect of improving the SN ratio of the pyroelectric current image. After the polarization process, the polarization state is measured and a pyroelectric current image is acquired (step 7). Next, this pyroelectric current image is inspected (step 8).

焦電電流像の検査について、詳細を説明する。異物は、強誘電体試料と熱伝導率が異なるため、局所加熱を行うと加熱状況が強誘電体試料と異物でことなる。よって、異物のある領域で焦電電流値が変化する。よって、焦電電流像で、焦電電流値が変化している箇所を異物箇所の欠陥として検出することができる。異物の場合であっても上述の電極の剥がれと同様に、焦電電流像を用いれば微少な面積の異物を検出することができる。   Details of the inspection of the pyroelectric current image will be described. Since the foreign matter has a thermal conductivity different from that of the ferroelectric sample, when the local heating is performed, the heating state is different from the ferroelectric sample and the foreign matter. Therefore, the pyroelectric current value changes in a region where there is a foreign object. Therefore, in the pyroelectric current image, a portion where the pyroelectric current value is changed can be detected as a defect in the foreign material portion. Even in the case of a foreign substance, a foreign substance having a very small area can be detected by using a pyroelectric current image in the same manner as the above-described electrode peeling.

(第5の実施形態)
本発明は、強誘電体試料の分極の低下箇所の検査にも適用することができる。
分極の低下箇所の検査工程を図1を用いて説明する。第1に、前処理工程1で分極反転電圧を取得する(ステップ5)。第2に、分極処理工程2で、分極反転電圧以上の電圧を強誘電体試料に印加し、分極処理を行う(ステップ6)。この際、印加電圧は分極反転電圧より十分大きいことが望ましい。分極処理を行うことで、焦電電流が増加し、焦電電流像のSN比を向上する効果がある。分極処理後、分極状態の測定を行い、焦電電流像を取得する(ステップ7)。次に、この焦電電流像の検査を行う(ステップ8)。
(Fifth embodiment)
The present invention can also be applied to inspection of a portion where the polarization of a ferroelectric sample is lowered.
The inspection process for the portion where the polarization is reduced will be described with reference to FIG. First, the polarization inversion voltage is acquired in the preprocessing step 1 (step 5). Secondly, in the polarization process step 2, a voltage equal to or higher than the polarization inversion voltage is applied to the ferroelectric sample to perform the polarization process (step 6). At this time, it is desirable that the applied voltage is sufficiently larger than the polarization inversion voltage. By performing the polarization process, the pyroelectric current increases, and there is an effect of improving the SN ratio of the pyroelectric current image. After the polarization process, the polarization state is measured and a pyroelectric current image is acquired (step 7). Next, this pyroelectric current image is inspected (step 8).

焦電電流像の検査について、詳細を説明する。強誘電体試料が分極が低下すると、焦電電流値も低下する。よって、焦電電流像で、焦電電流値が変化している領域を分極の低下箇所の欠陥として検出することができる。分極の低下箇所の場合であっても上述の電極の剥がれと同様に、焦電電流像を用いれば微少な面積の分極の低下箇所を検出することができる。   Details of the inspection of the pyroelectric current image will be described. When the polarization of the ferroelectric sample decreases, the pyroelectric current value also decreases. Therefore, in the pyroelectric current image, a region where the pyroelectric current value is changed can be detected as a defect at a location where the polarization is reduced. Even in the case of a decrease in polarization, a decrease in polarization in a small area can be detected by using a pyroelectric current image in the same manner as the above-described electrode peeling.

(第6の実施形態)
本発明は、第1実施例〜第5実施例の分極特性分布及び、電極の剥離及び、電極間のリーク及び、異物及び、分極の低下の一部、及びすべての検査を同時に行うこともできる。
(Sixth embodiment)
The present invention can simultaneously carry out the inspection of the polarization characteristic distribution, the electrode separation, the leakage between the electrodes, the foreign matter, a part of the decrease in polarization, and all of the first to fifth embodiments. .

図1の検査工程フローで取得した焦電電流像の一部、または、すべてにムラがあるとき、実施例1〜5で示したいずれかの欠陥が強誘電体試料にある事がわかる。一方、すべての焦電電流像にムラがなければ、強誘電体試料に欠陥がないことが分かる。これは、画像処理を行って、ムラを際立たせても良い。こうすることで、欠陥の判定を容易に行うことができる。また、それぞれの焦電電流像を重ね合わせ、重ね合わせた焦電電流像を検査することで、ムラの判定を一括して、行うことができる。例えば、各焦電電流像を足し合わせることや、掛け合わせることが考えられる。こうすることで、欠陥の判定を高速に行うことができる。   When a part or all of the pyroelectric current image acquired in the inspection process flow of FIG. 1 is uneven, it can be seen that any of the defects shown in Examples 1 to 5 are present in the ferroelectric sample. On the other hand, if there is no unevenness in all pyroelectric current images, it can be seen that there is no defect in the ferroelectric sample. In this case, image processing may be performed to make unevenness stand out. By doing so, it is possible to easily determine the defect. In addition, it is possible to collectively determine unevenness by superimposing the respective pyroelectric current images and inspecting the superimposed pyroelectric current images. For example, it is conceivable to add or multiply the pyroelectric current images. In this way, the defect can be determined at high speed.

本実施形態の検査工程のフローチャートである。It is a flowchart of the inspection process of this embodiment. 本実施形態の検査装置である。It is an inspection apparatus of this embodiment. 本実施形態の分極状態の測定の原理を示す図である。It is a figure which shows the principle of the measurement of the polarization state of this embodiment. 本実施形態にて検査される強誘電体試料を示す図である。It is a figure which shows the ferroelectric sample test | inspected by this embodiment. 本実施形態の分極測定装置の構造を示す図である。It is a figure which shows the structure of the polarization measuring apparatus of this embodiment. 本実施形態の分極電圧印加装置の印加電圧の時間変化を示す図である。It is a figure which shows the time change of the applied voltage of the polarization voltage application apparatus of this embodiment. 本実施形態の分極状態の測定の結果である。It is a result of the measurement of the polarization state of this embodiment. 強誘電体の分極特性を示した図である。It is the figure which showed the polarization characteristic of the ferroelectric substance.

符号の説明Explanation of symbols

20 強誘電体材料
21 下電極
22 上電極
23 分極電圧印加装置
24 分極計測装置
25 温度制御装置
30 強誘電体
31、36 分極方向
32、35 分極している領域
33、37 面
34、38 焦電電流
41 単結晶Si基板
42 下電極
43 強誘電体材料
44 上電極
51 レーザ
52 焦電電流
53 OBIRCアンプ
DESCRIPTION OF SYMBOLS 20 Ferroelectric material 21 Lower electrode 22 Upper electrode 23 Polarization voltage application apparatus 24 Polarization measuring apparatus 25 Temperature control apparatus 30 Ferroelectric substance 31, 36 Polarization direction 32, 35 Polarized area 33, 37 Surface 34, 38 Pyroelectric Current 41 Single crystal Si substrate 42 Lower electrode 43 Ferroelectric material 44 Upper electrode 51 Laser 52 Pyroelectric current 53 OBIRC amplifier

Claims (8)

第1の抗電界に対応する第1の分極反転電圧と、第2の抗電界に対応し前記第1の分極反転電圧とは異極の第2の分極反転電圧とで分極反転が生じる強誘電体の検査方法であって、
前記第1の分極反転電圧と同極かつ前記第1の分極反転電圧の絶対値以上の絶対値の電圧を前記強誘電体に印加して前記強誘電体を分極する第1の工程と、
前記第1の分極反転電圧と同極かつ前記第1の分極反転電圧の絶対値より小さい電圧と、前記第2の分極反転電圧と同極かつ前記第2の分極反転電圧の絶対値より小さい電圧と、の間の電圧を前記強誘電体に印加する第2の工程と、
前記第2の分極反転電圧と同極かつ前記第2の分極反転電圧の絶対値以上の絶対値の電圧を前記強誘電体に印加する第3の工程とを有し、
前記強誘電体を加熱し、前記強誘電体の焦電性による分極特性を測定する分極測定工程を、前記第1ないし第3工程の各工程の後に行うことを特徴とする強誘電体の検査方法。
Ferroelectricity in which polarization reversal occurs between a first polarization reversal voltage corresponding to a first coercive electric field and a second polarization reversal voltage corresponding to a second coercive electric field and having a different polarity from the first polarization reversal voltage A body inspection method,
Applying a voltage having the same polarity as the first polarization inversion voltage and having an absolute value equal to or greater than the absolute value of the first polarization inversion voltage to the ferroelectric to polarize the ferroelectric;
A voltage having the same polarity as the first polarization inversion voltage and smaller than the absolute value of the first polarization inversion voltage, and a voltage having the same polarity as the second polarization inversion voltage and less than the absolute value of the second polarization inversion voltage A second step of applying a voltage between and to the ferroelectric;
A third step of applying a voltage having the same polarity as the second polarization reversal voltage and an absolute value equal to or greater than the absolute value of the second polarization reversal voltage to the ferroelectric;
The ferroelectric inspection, wherein a polarization measurement step of heating the ferroelectric and measuring a polarization characteristic due to pyroelectric property of the ferroelectric is performed after each of the first to third steps. Method.
前記第2の工程は、印加する電圧を変えて複数回行われることを特徴とする請求項1に記載の強誘電体の検査方法。   The ferroelectric inspection method according to claim 1, wherein the second step is performed a plurality of times by changing a voltage to be applied. 前記強誘電体への電圧の印加及び前記分極特性の測定は、前記強誘電体に設けられた一対の電極を介して行われることを特徴とする請求項1または2に記載の強誘電体の検査方法。   3. The ferroelectric of claim 1, wherein the application of a voltage to the ferroelectric and the measurement of the polarization property are performed via a pair of electrodes provided on the ferroelectric. Inspection method. 前記分極測定工程において、前記強誘電体は電圧が印加されていないことを特徴とする請求項1ないし3のいずれか1項に記載の強誘電体の検査方法。   4. The ferroelectric inspection method according to claim 1, wherein no voltage is applied to the ferroelectric in the polarization measurement step. 5. 前記強誘電体の加熱が、レーザを用いて行われることを特徴とする請求項1ないし4のいずれか1項に記載の強誘電体の検査方法。   5. The ferroelectric inspection method according to claim 1, wherein the ferroelectric is heated using a laser. 前記分極特性の測定は、
前記強誘電体の焦電電流から分極反転電圧を測定することを特徴とする請求項1から5のいずれか1項に記載の強誘電体の検査方法。
Measurement of the polarization characteristics
6. The ferroelectric inspection method according to claim 1, wherein a polarization inversion voltage is measured from a pyroelectric current of the ferroelectric.
前記焦電電流から前記電極の欠陥及び前記強誘電体の膜厚の検査を行うことを特徴とする請求項6に記載の強誘電体の検査方法。   The ferroelectric inspection method according to claim 6, wherein a defect of the electrode and a film thickness of the ferroelectric are inspected from the pyroelectric current. 互いに対向する面に電極が形成された強誘電体の検査装置であって、
前記強誘電体の温度を制御する制御手段と、
前記強誘電体の前記電極に電圧を印加する手段と、
前記強誘電体の前記電極に接続され、電流を検出する手段と、
前記強誘電体の表面にレーザ光を照射する、レーザ光源と、
前記レーザ光源を走査させ、レーザ光で前記強誘電体表面を走査する走査手段と、
前記検出手段により検出された電流値を表示する表示手段とを有し、
前記電流を検出する手段は、前記レーザ光により加熱された領域で前記強誘電体から生じる焦電電流を検出し、
前記表示手段は、前記焦電電流を前記走査手段で走査した位置と同期させ画像化した焦電電流像を表示することを特徴とする強誘電体の検査装置。
A ferroelectric inspection apparatus in which electrodes are formed on opposite surfaces,
Control means for controlling the temperature of the ferroelectric;
Means for applying a voltage to the electrode of the ferroelectric;
Means for detecting a current connected to the electrode of the ferroelectric;
A laser light source for irradiating the surface of the ferroelectric with laser light; and
Scanning means for scanning the laser light source and scanning the ferroelectric surface with laser light;
Display means for displaying the current value detected by the detection means,
The means for detecting the current detects a pyroelectric current generated from the ferroelectric in a region heated by the laser beam,
The ferroelectric inspection apparatus characterized in that the display means displays a pyroelectric current image that is imaged by synchronizing the pyroelectric current with a position scanned by the scanning means.
JP2006171316A 2006-06-21 2006-06-21 Ferroelectric inspection equipment Expired - Fee Related JP5116261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006171316A JP5116261B2 (en) 2006-06-21 2006-06-21 Ferroelectric inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006171316A JP5116261B2 (en) 2006-06-21 2006-06-21 Ferroelectric inspection equipment

Publications (2)

Publication Number Publication Date
JP2008004678A true JP2008004678A (en) 2008-01-10
JP5116261B2 JP5116261B2 (en) 2013-01-09

Family

ID=39008839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006171316A Expired - Fee Related JP5116261B2 (en) 2006-06-21 2006-06-21 Ferroelectric inspection equipment

Country Status (1)

Country Link
JP (1) JP5116261B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011179976A (en) * 2010-03-01 2011-09-15 Kobe Univ Polarization inspection method and polarization inspection device
KR101070856B1 (en) 2009-03-18 2011-10-06 광주과학기술원 System and method for visualization of domain-wall at low remanent internal field after polarization reversal for the production of optical devices

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0482310A (en) * 1990-07-24 1992-03-16 Murata Mfg Co Ltd Polarization method for piezoelectric body
JPH05102272A (en) * 1991-10-03 1993-04-23 Olympus Optical Co Ltd Ferroelectric body domain wall observation device
JPH05182261A (en) * 1991-12-27 1993-07-23 Ricoh Co Ltd Information storage device
JPH08264020A (en) * 1995-03-27 1996-10-11 Tokuyama Corp Ferroelectric material
JPH11502375A (en) * 1995-03-17 1999-02-23 シメトリックス・コーポレイション Method of manufacturing laminated superlattice material and method of manufacturing electronic device having the same
JP2001331022A (en) * 2000-03-16 2001-11-30 Fuji Photo Film Co Ltd Image forming method and device using ferroelectric substance and image forming medium
JP2001344836A (en) * 2000-05-30 2001-12-14 Matsushita Electric Ind Co Ltd Ferroelectric memory and optical information processing device
JP2006108639A (en) * 2004-09-13 2006-04-20 Denso Corp Piezoelectric actuator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0482310A (en) * 1990-07-24 1992-03-16 Murata Mfg Co Ltd Polarization method for piezoelectric body
JPH05102272A (en) * 1991-10-03 1993-04-23 Olympus Optical Co Ltd Ferroelectric body domain wall observation device
JPH05182261A (en) * 1991-12-27 1993-07-23 Ricoh Co Ltd Information storage device
JPH11502375A (en) * 1995-03-17 1999-02-23 シメトリックス・コーポレイション Method of manufacturing laminated superlattice material and method of manufacturing electronic device having the same
JPH08264020A (en) * 1995-03-27 1996-10-11 Tokuyama Corp Ferroelectric material
JP2001331022A (en) * 2000-03-16 2001-11-30 Fuji Photo Film Co Ltd Image forming method and device using ferroelectric substance and image forming medium
JP2001344836A (en) * 2000-05-30 2001-12-14 Matsushita Electric Ind Co Ltd Ferroelectric memory and optical information processing device
JP2006108639A (en) * 2004-09-13 2006-04-20 Denso Corp Piezoelectric actuator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101070856B1 (en) 2009-03-18 2011-10-06 광주과학기술원 System and method for visualization of domain-wall at low remanent internal field after polarization reversal for the production of optical devices
JP2011179976A (en) * 2010-03-01 2011-09-15 Kobe Univ Polarization inspection method and polarization inspection device

Also Published As

Publication number Publication date
JP5116261B2 (en) 2013-01-09

Similar Documents

Publication Publication Date Title
JP4034500B2 (en) Semiconductor device inspection method and inspection apparatus, and semiconductor device manufacturing method using the same
TWI397140B (en) Array testing method using electric bias stress for tft array
CN108560060B (en) Lithium niobate nano domain processing and imaging method based on PFM
JP5590043B2 (en) TFT substrate inspection apparatus and TFT substrate inspection method
JP5116261B2 (en) Ferroelectric inspection equipment
JP2002043383A (en) System and method for manufacturing thin film transistor, method for evaluating polysilicon, and polysilicon inspection device
JP2013250098A (en) Method and apparatus for detecting wiring defect, and method for manufacturing wiring board
KR100753782B1 (en) Polysilicon evaluating method, polysilicon Inspection apparatus and method for preparation of thin film transistor
JP2002184715A (en) Thin film transistor manufacturing system and object surface evaluating device
JP4728207B2 (en) Inspection device
JP2008232906A (en) Method for measuring characteristic of piezo-electric element
JP5239163B2 (en) Thin film capacitor inspection method and apparatus
JP2007199429A (en) Manufacturing method, inspection method and inspection device for liquid crystal display panel,
Stewart et al. Spatial characterization of piezoelectric materials using the scanning laser intensity modulation method (LIMM)
JP3224027B2 (en) Method and apparatus for measuring ion density of liquid crystal panel
Mellinger et al. High-resolution three-dimensional space-charge and polarization mapping with thermal pulses
JP2005069976A (en) Evaluation device for ferroelectric films and evaluation method thereof
JP2008304345A (en) Inspection apparatus and method of ferroelectric element
EP2101165B1 (en) Method for creating and/or detecting a pyroelectric response, detector comprising a pyroelectric material and apparatus for investigating a sample comprising a pyroelectric material
WO2004070403A1 (en) Apparatus and method for inspecting thin film transistor active matrix substrate
KR100392995B1 (en) A method and apparatus for measuring ion density of liquid crystal panel
JP2011179976A (en) Polarization inspection method and polarization inspection device
JP5196157B2 (en) TFT array inspection method and TFT array inspection apparatus
JP2001264805A (en) Method and device for measuring voltage retention rate of tft liquid crystal panel
JP2004221411A (en) Element evaluating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121016

R151 Written notification of patent or utility model registration

Ref document number: 5116261

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees